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Abstract

We discuss an extension of Toeplitz quantization based on polyanalytic functions. We
derive isomorphism theorem for polyanalytic Toeplitz operators between weighted
Sobolev-Fock spaces of polyanalytic functions, which are images of modulation spaces
under polyanalytic Bargmann transforms. This generalizes well-known results from
the analytic setting. Finally, we derive an asymptotic symbol calculus and present an
asymptotic expansion of complex Weyl operators in terms of polyanalytic Toeplitz
operators.
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1 Introduction

Polyanalytic functions and the associated polyanalytic Bargmann transforms have
received a lot of attention in Gabor analysis. The main contribution of this paper
is the investigation of quantization schemes associated to polyanalytic functions, in
particular extensions of Toeplitz quantization using this class of non-analytic functions.
We aim to address researchers in microlocal analysis and time-frequency analysis.
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Recall, that Bargmann transforms and Fock spaces provide a widely used language
that connects the theory of entire functions with a variety of topics in theoretical
and applied mathematics, including signal analysis, quantum mechanics as well as
complex geometry and analytic microlocal analysis.

This area of mathematics goes back to the seminal work [7] of Bargmann that has
been motivated by applications in quantum mechanics. In microlocal analysis, gener-
alized Bargmann transforms are mostly known as Fourier-Bros-Iagolitzer transforms
and were first applied by Bros, lagolnitzer and Stapp in order to analyze wave front
sets, see e.g. [29], or [49] for a more recent and general approach. Janssen established
the link between the Bargmann transform and Gabor frames in [30] which allowed
him to apply methods from complex analysis to problems in signal analysis. This
connection between Gabor frames and complex analysis has turned out to be very
fruitful, e.g. for the characterization of the Gabor frame set of a Gaussian in [42,48],
or the construction of unconditional bases for Bargmann-Fock spaces in [18].

Toeplitz operators provide a natural framework to describe linear transformations
in Fock type spaces that can be interpreted as signal manipulations, quantum observ-
ables or pseudodifferential operators, see, e.g., [8,28] for early investigations. In fact,
Toeplitz operators are nothing else but the image of anti-Wick or localization operators
under the Bargmann transform. Putting it differently, localization operators are in fact
Toeplitz operators on the phase space, see [4,9,14]. We would, however, like to men-
tion that in some parts of the literature the terms Toeplitz and anti-Wick quantization
are used in interchanged ways. We choose our terminology in alignment with [9,53]
and others.

The aim of this paper is to lift the well-established theory of Toeplitz operators to the
polyanalytic setting, following initial works of Abreu, Grochenig and Faustino [1,5,16]
as well as [15,23,44]. That is, we introduce multiplication operators on Bargmann-
Fock type spaces of polyanalytic functions and, thus, provide a whole new family
of quantization schemes. Polyanalytic Toeplitz operators appear as the natural com-
plexification of localization operators with Hermite function windows. Moreover,
polyanalytic Bargmann-Fock spaces are precisely the images of the classical mod-
ulation spaces under polyanalytic Bargmann transforms.

Polyanalytic functions were first studied by Kolossov more than a century ago.
Howoever, it was not until the seminal work of Vasilevski [52] that this generalization
of analytic functions has received more attention. The increasing importance in math-
ematics and signal analysis is due to the link between Gabor superframes generated
by Hermite functions which are intrinsically related to polyanalytic spaces [1,22].
Polyanalytic functions appear also in the quantization of a class of magnetic Hamil-
tonians as its eigenfunctions, known as Landau levels [2], and in the theory of the
integer quantum Hall-effect, see also, e.g., [6] and [27] for background, context, and
relevance in physics.

In [5] the theory of Bargmann-Fock spaces has been extended to the setting of
polyanalytic functions, see also [3] for a survey on these recent developments. One of
our main results is a lifting theorem for modulation spaces of Grochenig-Toft [25,26]
to polyanalytic Bargmann-Fock spaces.
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Motivated by applications in analytic microlocal analysis and semiclassical quan-
tum theory, in this paper we formulate all results in a semiclassical scaling by assuming
that 1 > i > 0 is a small parameter.

This paper is structured as follows: after reviewing some basics about Bargmann
transforms and quantization in Sect.2, in Sect. 3 we introduce the idea of true polyan-
alytic Bargmann transforms as well as polyanalytic Toeplitz quantization 7y (m) of a
symbol m : C¢ — C, where k € N indicates the degree of polyanalyticity. Section
4 contains our first main theorem, namely, isomorphism results of the form

Te(m) : F"9(C) — FEra )

for polyanalytic Toeplitz operators as maps between true polyanalytic Sobolev-Fock
spaces .7-'51’[7 “7(C?). These spaces appear as images of the well-known modulation
spaces under the true polyanalytic Bargmann transform. In Sect. 5 we present an A-
dependent asymptotic symbol calculus for localization operators opay (a), where the
window ¢y is a Hermite function, as well as for their complex counterparts, namely,
polyanalytic Toeplitz operators. For example, we show that the commutator of two
Hermite localization operators opgs (a) and opis (b) has an asymptotic expansion of
the form

+ [op%, (@), op,(b)] = opf ({a. b}) + O(h)

with {, -} the usual Poisson bracket on R2?, and thus corresponds to a O (h) defor-
mation of the classical phase space. Finally, in Sect. 6 we apply the new concepts
to prove an asymptotic expansion of complex Weyl quantized operators in terms of
polyanalytic Toeplitz operators.

In summary, we obtain a whole range of new and related quantization schemes
whose combination allows for a refined analysis and more precise approximations.
It is the hope of the authors that polyanalytic Toeplitz operators will prove useful in
various applications such as manipulation of multiplexed signals, construction and
analysis of Gabor superframes and semiclassical quantum dynamics.

2 Background

We start by reviewing some concepts and results that form the basis for the subse-
quent introduction and investigation of polyanalytic Toeplitz operators. We first recall
Bargmann transforms as well as the well-known Toeplitz, Weyl and anti-Wick quanti-
zation schemes. Moreover, for the reader’s convenience and later reference we recall
the spectrogram expansion of Wigner functions from [34].

2.1 Bargmann Transform
The Bargmann transform B—see, e.g., the standard reference [21, §1.6]—maps the
usual Hilbert space L*(R?) of quantum mechanics and signal analysis into the Fock

space
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F(Cy = {F :C? - C: F is entire and ||F||Lgb < oo}
which is a closed subspace of the weighted Hilbert space
L2(CY) := L2(C?, e /2Ry,

Hence, the Fock space F ((Cd) consists of entire functions of d variables with controlled
growth behaviour at infinity. Analoguously to [1], we define the d-dimensional A-
rescaled Bargmann transform as

B:L*RY) — F(CY), Byx) = Qrh) 9>
(n,h)fd/él/ w(x)e(xzfzz/étfxz/Z)/hdx
R4
with & > 0 a small parameter. In the language of microlocal analysis, the operator
B corresponds to a particular choice of Fourier-Bros-Iagolnitzer transform, see also

Appendix 1. The Bargmann transform B : Lz(Rd) — F ((Cd) is unitary and the
associated orthogonal Bergman projector

P = BB* ey

maps Lé(@d ) into its closed subspace F(C?). One computes its adjoint operator B*
explicitely as

B*F(x) = Quh)~42(h)~4/* / F(w)e~ @—07/20402 [4he—wP/2hqy, ¢ RY,
(Cd

for any function F € Lé(@d).

Let us consider the image of an appropriately normalized Hermite function ¢ under
the Bargmann transform. Hermite functions appear as the eigenfunctions {@x };cne C
L% (R%) of the harmonic oscillator

2 2
—La,+311g% qeR?,

and one can show that

Ber(q +ip) = (nh)d/Z\/M <Wi>

is an analytic monomial, e.g. by invoking the more general formula in [41, Proposition
5]. In particular, Bgy is normalized and

{Boiheend C F(CY) 2)

is an orthonormal basis for F(C?) consisting of monomials. This property is charac-
teristic to Hermite functions, see e.g. [32].
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The Fock space F(C?) is a reproducing kernel Hilbert space, and the reproducing
kernel can be computed explicitly via the Hermite monomial basis (2) as

pz,w) =Y Bor()Ber(w) = 2mh)~ e/ 3)
keNd

That is, for all z € C? and F € F(C?) one has the pointwise evaluation property
F(2) = (F(0), p(z,9)) 2 (ca) @

and, as a consequence, one obtains the derivative formula

k

d
G F@ = Qa1 F @), o p(z, 0) 13 co) )

for all k € N,
The Bargmann transform 5 can be seen as the complex equivalent of a specific

short-time Fourier transform, which for a general window function u € S (RY) is
defined as

Va¥r (g, p) = Qui)y = (¥, MypTyu) 5 a, (6)
with (g, p) € R?? and the standard translation and modulation operators

T, W) =v(x —q), Mpyyx) =P yx), v elL?RY.

Namely, for the case of a Gaussian window gg := ¢ centered in the origin one
observes

Voot (q. —p) = ei4P=1P D12 By, (g 4 ip). %)

2.2 Toeplitz, Weyl and Anti-Wick Operators

Let us recall the definitions and basic properties of three quantization schemes:
Toeplitz, Weyl, and anti-Wick quantization. As briefly discussed in the introduc-
tion, the terms Toeplitz, anti-Wick and localization operators are in parts used in
interchanged ways within the literature. Classic references include [8,28], while our
notation and scaling is, e.g, in accordance with [34,53].

The Toeplitz operator T (m) with symbol m : C¢ — C is defined by multiplication
with m and subsequent projection down to the Fock space F(C?),

T (m) = PmP, )

Birkhauser



47  Page6of 34 Journal of Fourier Analysis and Applications (2021) 27:47

or, more explicitly,
T(m)F(w) = (2nh)_d/ m(z)F(z)ezw/me_lzlz/zhdz
(Cd

forany F € F (Cd ). Form € L°°((Cd), the quantized operator 7 (m) is bounded on
the Fock space F(C?). For more general mapping results we refer to Sect. 4.1.

Weyl quantization or canonical quantization appears as the natural quantization
scheme connecting classical and quantum mechanics. Here, a functiona : R* — C
is associated with the Weyl quantized operator op(a) via

(op(@)¥)(q) = @rh)™ /R y a3y +q), p)el @Iy (y)dy dp )

where R?? = T*R? is the phase space of classical mechanics. The associated phase
space representation of quantum states (or signals) is provided by cross-Wigner func-
tions

W, ¢)(q, p) = @rh)™ fR ) ey (g — Hdlg + 3 dy. (g, p) e R*.
(10)

That is, for suitable a, ¥ and ¢, one has
(op(@) V. §) 2ty = /R AW $)(@)dz, (1)

where we choose the inner product to be left-linear. We note that W(yr, ¢) € L2(R2)
whenever ¥, ¢ € L*(R%). In the case { = ¢ we write

W@, ¥) =Wy

for the Wigner function to abbreviate notation.

Despite of their many remarkable properties, Wigner functions Wy, exhibit the
drawback of attaining negative values whenever ¥ is not a Gaussian, see [31,45],
and hence typically are not probability densities. However, one can turn WV, into
a nonnegative function by convolution with another Wigner function: For all ¥ €
L*(R) and Schwartz class windows ¢ € S(R?) with ||| ;2gay = @]l 2(ray = 1
the convolution

SO =Wy s Wy 1 R¥ 5 R

is a smooth probability density on phase space, as can be deduced from [21, Proposi-

tion 1.42]. In time-frequency analysis S:’Z is called a spectrogram of ¥; see, e.g., the
introduction in [20]. Spectrograms constitute a subset of Cohen’s class of phase space
distributions; see [19, §3.2.1].

Birkhduser



Journal of Fourier Analysis and Applications (2021) 27:47 Page70f34 47

A popular window function for spectrograms is provided by the Gaussian wave
packet or coherent state

8 ) = o) exp (—klx —glP + tp- = J)). (@ p) €R¥, (12)

centered in (g, p). We denote the Gaussian wave packet centered in the origin (0, 0)
by go. The corresponding spectrogram

SO = | Wyw)(re) el e dy (13)
4 R2d
is known as the Husimi function of 1, first introduced in [28]. Note that

f a()SL (2)dz = / Wey * @)Wy (2)dz = (opay @ ). (14)
RZd RZd

where op,, (@) = op(Wy, *a) is the so-called anti-Wick quantized operator associated
with a; see [21, §2.7]. From [41, Proposition 5] we know that the Husimi functions of
L2-normalized Hermite functions {¢ };cne are given by the formula

2
e lzl7/2e

2k
2o !

S80(2) = 5§k () = 2me) ™!

: 2

In time-frequency analysis, general anti-Wick type operators opiy (a), (usually)
with a Schwartz class window ¢, are known as localization operators. Here, they
are equivalenty defined via multiplication in the image space of the corresponding
short-time Fourier transform (6),

oph,(a) = V(Z‘an, op8Y (a) = opyy (@), (15)

where a denotes both the symbol and the multiplication operator. The non-negative
phase space density corresponding to this quantization scheme then in turn is given
by the spectrogram S, see [9].

2.3 The Spectrogram Expansion

In the past decades there has been considerable research on the connection between
different quantization schemes and their respective calculi, such as the classic com-
parisons of left, right and Weyl quantization as well as anti-Wick operators, see e.g.
[38, §2.3 and §2.4] or [53, §4 and §13] for summaries.

Explicit formulas for the Wigner and Husimi functions of general wave packets
have been derived in [41] and subsequently applied in [36] in order to derive second
order corrections in the comparison of Wigner and Husimi functions. In [34] these cor-
rections have been generalized to arbitrary order by proving the following spectrogram
expansion.
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Theorem 1 (Spectrogram expansion from [34]) Let € L>(R?), N € N, and h > 0.
Then, if one defines the following real-valued phase space function ug in terms of
Hermite spectrograms,

N-—1 k
. o (d—1+m
i@ = e Xspo. ay=Y (G711 ae
j=0 (e m=j J
=J

for any Schwartz function a : R?*? — C there is a constant C > 0 such that

‘ /ﬂ; L AWy ()dz — /R @@y @dz) < CEN IV 172 ) a7

where C only depends on bounds on derivatives of a of degree 2N and higher. In
particular, if a is a polynomial with deg(a) < 2N then (17) vanishes.

Retracing the proof for Theorem 1 in [34] immediately shows that the offdiagonal
version of the above approximation holds as well. That is,

{op(a)yr, @) 12 = fa(Z)W(W, ¢)(2)dz

= / a@p (¥, $)(2)dz + O(RY) (18)
RZd

with the off-diagonal phase space representation

N—-1
1y 5@ =Y (=DICn_1j D Wy x WY, $)(2) (19)
j=0 keNd

[kl=j

of any two functions v, ¢ € L?(R%). We note, however, that u™ (v, ¢) typically has
a non-constant complex phase and, in particular, is not a finite linear combination of
probability densities.

In Sect. 6, polyanalytic Toeplitz operators are applied to prove a statement equiva-
lent to Theorem 1 in polyanalytic Bargmann-Fock spaces. This yields a variety of new
connections between real and complex Weyl, anti-Wick and Toeplitz type quantization
schemes.

3 Polyanalytic Toeplitz Operators
In this section, we first recall the definition of polyanalytic Fock-Bargmann spaces and
subsequently introduce and investigate polyanalytic Toeplitz operators which naturally

act on these spaces.
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3.1 Polyanalytic Bargmann-Fock Spaces

Recall that every polyanalytic function F of order k € N¢ can be uniquely written as

F(2)=)Y 7" fi(2)

<k

where f;, £ € N, are analytic functions and the sum runs over all multiindices with
0<4t; <ki,...,0 <€y <kgy. Forall k € N we denote by

35t = {F ¢! > C:F polyanalytic of degree k € N? and ”F”L%p < oo}

the polyanalytic Bargmann-Fock space of degree k which, as we will detail later, has
an orthogonal decomposition into true polyanalytic Bargmann-Fock spaces as shown
by [52]. We consider ¥ (C?) as a subspace of L%D with the correspondingly inherited
norm.

Note, that polyanalytic functions satisfy a generalized Cauchy-Riemann equation
of the form

fitl gkt p() =0 = F:C? - Cis polyanalytic of degree k.

21 2d
For later reference let us define “translations” in Bargmann-Fock spaces by
O:Lf(w) =BM,T;f(w), z=q+ip, (20)
such that
O, F(w) = 2uh)~4/2eipa/2h—1zl/ahtzw/2h gy 7y 4y e €9,

By once again closely following [1], we then define true polyanalytic Bargmann
transforms as follows.

Definition 1 (True polyanalytic Bargmann transform) For k € N¢, the true polyana-
lytic Bargmann transform By, : L2(R?) - Fk(C9) of degree k is defined as

1 2,5y dF 2
- lz[7/2h —lz1%/2h
Bef @)1= g (e Bf(2)

in analogy to the definition of Hermite polynomials via their generating function.
As a next step, let us compare B* with the short-time Fourier transform associated

with the k-th Hermite function as window just as the zero’th order comparison (7).
We include a proof for the convenience of the reader.
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Lemma 1 (see e.g. [1]) For all k € N it holds

Vi f(q, —p) = eP1/2P=IP/40 gy 12y
with z = q + ip. In particular, By : L*(R%) — §*(C?) is a partial isometry.

Proof By utilizing the partial isometry property of the Bargmann transform and recall-
ing the translation formula (20), for z = g + ip we compute

Vo £ 4. =) = f- M—p Ty il g
_ Qrh)~@ ipq/2h— 12 /4, - ;
B NN <Bf(w), e (w —z) )

eipa/2h—|z| /4R

k —k—¢ Zw/2h, ¢
= J— B s —
(Zﬂﬁ)d(2h)|k|/2\/ﬂ Ogék (Z)( 2) < f(w),e w >L2 (*)

0]

2
L<I>

which by means of the differentiation formula (5) leads to the desired result

2RkI/2 k L
S \/)E' eipa/2h—lzP /40 3 (£>(—z)k (BFO)
. 0<t<k

I
N E

4 d*
e]pq/2h7|z|2/4he‘2|2/2hd_zk (e*mz/me(z))

with standard multiindex notation. Since Bf ) is analytic for all £ € N?, By f is poly-
analytic of degree k and the partial isometry property of the polyanalytic Bargmann
transforms By, follows directly from the corresponding property of the STFT. O

Note that Hermite functions can be used to construct orthonormal bases for poly-
analytic function spaces. Namely, the set of transformed Hermite functions

d
- (mj—t;)
(Bewme<kments Beom@ o< 2" TTL, " (gl form= ¢, @)
Jj=1

and analogously for m < € is an orthonormal basis of F*(C?) for all k € N¢, where
L,S’”) denote the Laguerre polynomials, see e.g. [1]. Formula (21) can be proven by
using the Laguerre connection for overlap integrals of two shifted Hermite functions
similar as for the computation of Wigner transforms of Hermite functions, see e.g.
[41]. The polynomials in (21) are particular examples of so-called special Hermite
functions, see also [43].
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The polyanalytic Bargmann-Fock spaces admit a decomposition in terms of true
polyanalytic Bargmann-Fock spaces

FHC) = Span{Begm)pera.  F(C4) = F(C),
namely as the orthogonal sum
FeHh= P Fa
LeNd o<k

In particular, recalling (21) we know that for all m € N the basis function Begn is a
polynomial of degree £ in 7 which implies that all nonzero elements of F*(C¢) share
this property as well.

The true polyanalytic Bargmann transform B¥ acts as an isometric isomorphism

B : L*(RY) — FH)
and in analogy to (1), the map
P = BB} : Lo(C) — FXCY, P="P

is the polyanalytic Bergman projector and its kernel the polyanalytic Bergman kernel.
The reproducing kernel of F¥(C?) is given by

d
Pz w) = @rh)™ 1_[ Lk,-(ﬁlzj' — wj[2)eTw/2n

j=1

where Ly denotes the kth Laguerre polynomial.
3.2 Polyanalytic Toeplitz Quantization

Recall from (15) that general anti-Wick or localization operators are given by

op§w (@Y = opW,, x a)yr
= V(;‘aV(plﬁ

where a here denotes both the phase space function a and the operator of multiplication
with a. Expectation values of anti-Wick operators are computed on the phase space
via the corresponding spectrogram:

(opfy (@) ¥ ) = / a(z)S% (z)dz.
R2d

In the following, we extend the concept of Toeplitz operators as, e.g., defined in [53,
§13] from (8) to the d-dimensional polyanalytic setting, see also [16] for discussions
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in the one-dimensional case. For defining the quantization, we utilize the polyanalytic
Bergman projectors defined in Sect. 3.1.

Definition 2 (True polyanalytic Toeplitz quantization) Let k € N¢ and f € L*(CY).
Then, the bounded operator

Te(f) ==PefPe, Ti(f): FXCh — FE)

is called the true polyanalytic Toeplitz quantization of degree k.

For the quantization of more general symbols f one needs to introduce corresponding
Sobolev type subspaces of FX(C?) with stronger decay conditions, as we discuss in
Sect. 4.1.

Note that the Bergman projector on the right-hand side of the multiplication operator
in Definition 2 can be safely ommited when acting on polyanalytic Bargmann-Fock
spaces. It is included in order to support the intuition that real-valued symbols f €
L>®(C?, R) give rise to self-adjoint operators.

For later reference, we also define an off-diagonal type polyanalytic Toeplitz quan-
tization by multiplication in the polyanalytic space F*(C?) and projection back to the
usual Fock space F (C9.

Definition 3 (Projected polyanalytic Toeplitz quantization) Let k € N? and f €
L°°((Cd ). Then, the bounded operator

Teo(f) == BB{ fBB*, Tio(f): F(C?) — F(C)

is called the k-projected polyanalytic Toeplitz quantization of f.

Polyanalytic Toeplitz operators and anti-Wick quantization are closely related in
the following way: Let f € L®(C%) and u, v € F*(C?), Biu =: ¢ and Bjv =:
where ¢, ¥ € Lz(Rd). Then, one computes

(. P fPrv) 2 cay = (0 B fBi) 2 g
= O VETVad) @2)
where we define
f@.p) = flg—ip). (23)
For later purposes, let us also define the “inverse action” of this map as
W(z) :=u(g,—p), z=q+ipeC? u:R¥ > C. (24)
Relation (22) supports the intuition that the localization quantization rule (15) with

Hermite functions as windows can be seen as the real-valued equivalent of polyanalytic
Toeplitz quantization, see also [16].
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4 Polyanalytic Sobolev-Fock Spaces and Isomorphism Theorems

In this section, we first provide a short overview on Sobolev-Fock and modulation
spaces that serve as a general class of spaces with natural mapping properties for
Toeplitz and localization operators, respectively. Afterwards, we present the polyan-
alytic generalizations of those spaces and, as a main result, prove an isomorphism
theorem for polyanalytic Toeplitz operators.

4.1 Modulation Spaces and Sobolev-Fock Spaces

Let us briefly review modulation spaces and and their images under the Bargmann
transform, the so-called Sobolev-Fock spaces. Modulation spaces form a natural frame-
work for the calculus of localization operators in the same way as Sobolev-Fock spaces
do for Toeplitz operators.

Following usual conventions, see e.g. [17,26], we call a locally bounded weight
function m : R% — (0, 0o) moderate if

) =:v(y) <oo forally e R,

<m(z +y) miz—y)
sup ,
cer2 \ m(2) m(z)

As aresult, v is a submultiplicative function and m satisfies
m(z+y) <m(z)v(y) forallz,y e R*.

We restrict ourselves to weights of polynomial growth and call a weight function
admissable if it is moderate, continuous and at most of polynomial growth. For any
fixed submultiplicative weight function v : R — [1, co) we define the set of v-
admissable weights as

M, = {m e LZ.(R*) admissable and 0 < m(z + y) < m(z)v(y) Vy, z € R¥}.

Then, the modulation spaces with admissible weight m are defined as

1/
Pdmdy _ | £ dy/ . 14 14 alp !
My ®Y = {1 e S®Y) Veof (. &)1Pmx, &)Pdx ) dg | <o),
R4 R

1 < p,q < oo, and contain functions (or distributions) that show controlled growth
properties together with their Fourier transforms. We note that modulation spaces do
not change if we replace the Gaussian window g¢ by a different Schwartz function,
see e.g. [24, §11].

Similarly as the classical Fock space F (C9) is the image of L?*(R?) under the
Bargmann transform, one can look at Fock-type spaces that are the equivalents of
modulation spaces in the complex setting. We use the notation from [26] and write
M(UC for complex v-admissable weights withv : C? — [1, co) moderate. We introduce
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for any complex moderate weight m the Sobolev-Fock spaces
Fhacdy = HF : €4 — C entire and ||F||qu < oo]

that are complete subspaces of the Banach spaces Lg;fn with the weighted mixed
p, g-norm

q/p
IEl e = (/Rd <fRd IF(Z)I”m(z)”e""z'z/“hdRe(z)) dlm(z))

consisting of entire functions. In particular, .7-"12’2((Cd) = F(CY% gives the usual Fock
space. Itis well-known, see e.g. [25,26], that the Bargmann transform B maps the mod-
ulation space M;,"? (R?) isometrically to the Sobolev-Fock space 724 (C¢), where we
employ the notation from (23). In particular, from [18] we are able to rephrase the
following result, see also [25, Theorem 5.4] and [47,51].

1/q

Lemma2 Let u € Mg and m € ./\/l(vC Then, for all 1 < q, p < oo, the Toeplitz
operator T (m) is a bounded, invertible map from .7-"5 4C 10 F /f/?n ((Cd).

4.2 Polyanalytic Sobolev-Fock Spaces

Based on the analytic Sobolev-Fock space theory suitable for Toeplitz operators
from Sect. 4.1 one can define similar function spaces in the polyanalytic setting.
For any k € N we closely follow the definitions in [5] and define rrue polyanalytic
Sobolev-Fock spaces with mixed p, g-norms as

FEPaCdy = {F : C? - C true polyanalytic of degree k and 1Fllppa < oo}

where ]—',?[p 4cy = Fh4(C?). As we summarize in the following Lemma 3, true
polyanalytic Fock-Sobolev spaces are precisely the image of the usual modulation
spaces under the true polyanalytic Bargmann transform.

Lemma3 Foralll < p,q < oo, k € N and m € M, the true polyanalytic
Bargmann transform By, is an isomorphism

B : Myt RY) — FeP(Cd).

Proof For k = O this result is well-known, see e.g. [24-26]. For k # 0 the results
follow from Lemma 1 by observing that the modulation space M/, ¢ (R?) can be defined
without harm with the Hermite window ¢ instead of g. O

Remark 1 We note that—as we stick to weight functions of polynomial growth—the
Schwartz space is contained in all considered modulation spaces. This in particular
implies that the span of special Hermite functions
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d
- (mj—L;j)
j=1

is a dense subset of the direct sum @I k|=n }',]f,’p “1(C?) of all true polyanalytic Fock
spaces of total degree n, see also [43]. Moreover, the basis functions B¢, are orthog-
onal if m is radial in each component, that is, m(z1, ..., zg) = m(|z1], ..., |zq|) for
some m, see also [26].

4.3 Isomorphism Results

In the following, we generalize the isomorphism result from Lemma 2 to the polyana-
Iytic context. For this purpose, we investigate the mapping properties of polyanalytic
Toeplitz operators on their respective Sobolev-Fock spaces. This constitutes a main
result of this paper.

Theorem2 Let1 < p,qg <00,k € N¢, uw e M(E, andm € M(g be continuous. Then
the true polyanalytic Toeplitz operator T (m) constitutes an isomorphism as a map

Te(m) : Fera(Cl) — Frhd(c)
and the k-projected polyanalytic Toeplitz operator Iy o(m) is an isomorphism
Tio(m) : FP9(Ch — Fl (€.

Proof By Lemma 3 the polyanalytic Bargmann transform By is an isomorphism as a
map

Bi: MDI®RY) — Fpd P ().

and the isomorphism property for the localization operator opis,( f) with Hermite
function window as a map

op?k (m) : M;j*q(Rd) — Mg;’h(Rd)
is well-known, see e.g. [26, Theorem 4.3]. Moreover, from (22) we infer that
B{ T (m)By = (—1)?opf, ().
Hence, 7; (m) can be written as composition of three isomorphisms

Ty (m)

k,p.q k,p.q
Fu }'M/m

o o1

P (=1)?opg i) MPa
2z Q/m

~

~
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which completes the proof for the first part of the assertion. For the second part one
similarly obtains the diagram

Tr,0(m)
P.q : , P4
Fu > Fu m
[= ]
MPe (—l)dopﬂ‘v(rh) R D.q
i T m
for showing the isomorphism property. O

5 Symbol Calculus

After we presented the basic concept of polyanalytic Toeplitz operators and their
natural action on polyanalytic Sobolev-Fock spaces in the previous sections, we now
turn towards a basic symbolic operator calculus for Hermite localization operators as
well as polyanalytic Toeplitz operators by providing expansions for compositions and
commutators.

For localization operators with symbols in modulation spaces, composition formu-
las and Fredholm properties have been derived in great generality in [12]. Our aim is
to obtain more explicit expressions and expansions for small /. We start by present-
ing asymptotic expansions of localization operators with Hermite windows and their
compositions as i — 0, before moving on to polyanalytic spaces and operators.

5.1 Weyl Expansion of Hermite Localization Operators

By observing that localization operators are in fact smoothed Weyl operators,
op%, (a) = opW, * a)

one can Taylor expand the convolution and use the Moyal product expansion in order
to derive asymptotic expansions of compositions of localization operators.

For the standard case of a Gaussian window we recall the following formula from
[35, Lemma 1] that originated from [21, Proposition 2.96].

Lemma4 Leta : R* — C be a Schwartz function, h > 0, N € N. Then,

N-1 k
(hA)
Opaw (@) = op <a + ]; Wa> + ﬁNOP("h)

with a family rp, of Schwartz functions satisfying supy..o llop(rp) |l 12— 2 < 00.

Let us generalize this formula for higher order Hermite functions. We do this by
similar means as applied in [34] for deriving the expansion with Hermite spectrograms.
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For this purpose, let us recall the formula for Wigner transforms of Hermite functions,

d
Wi, (2) = ()4 R T Ly, (Bl P, (25)
j=1

where z = (g, p) € R2d,zj =(qj, pj) € R? and

k

Lk(x)=2<kfj)ﬂ, xcR, keN,

1
j=0 J

is the kth Laguerre polynomial, see, e.g., [21, §1.9]. In order to generalize Lemma 4
to arbitrary Hermite function windows we have to first get a better understanding of
higher order moments of the Wigner transforms of Hermite functions. Note, that due
to the symmetry of W, only even moments are different from zero.

Proposition 1 Let o, B, k € N be arbitrary.Then,

TP 20)1(28)!

20428 — —k 1 —
\/sz ka(x,f)dxd%‘ —2F1(0{+/3+ 1, —k; L;2)(=D 40‘+'3(¥!ﬂ!

where > F is the hypergeometric function.

For the proof of Proposition 1, which is mainly built on relations of binomial sums
and Gamma functions, we refer to Appendix 1. Now, we are ready to generalize
Lemma 4 as follows.

Lemma5 Letk, N e N h > 0anda being a Schwartz function. Then,

N1 pmp
opfk(a) = op (Z 4mm"'1 a) + hNop(r;fl)
m=0 ’

with a family r,]fi of functions satisfying supy..q ||0p(r,]§L) |72, 12 < oo and the order
2m phase space differential operator D,, given by

Dpa(z) = (=D"m! Y~ P> a(2)

la|l=m

that is a sum of total order 2m differential operators with constant coefficients

d
1
k L1
Cé{) = a | |12F1(Olj +Olj+d +1, _kj’ 2.
j=
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Proof We can basically retrace the proof idea of [35, Lemma 1] by writing

4% Wy (@) = / a(E) W (z — £)de 26)
RZd

and using a Taylor expansion of a around z,

N1 o
aw =Y L

|o|=0

+2N Z (g_Z)av/ = 9)2N l(aaa)(z_'_e(é._z))de

la|=2N

Since the symmetry of (25) implies that

/ f@Wy (2)dz =0
RM

whenever f is an odd function, the derivatives of odd degree in the Taylor expansion
of a do not contribute to the integral (26). For the even degree polynomials we apply
Proposition 1 and compute

>[5 C 0™ Wy o — 01
loe|=m

820[
— Z ( 223(Z) de fzaWWk(C)dé'

la|=m

B (0@ 1
=0 Y[R e+ 1Lk 152)

la|=m ’ j=1

by utilizing the fact that the Wigner function factorizes in the form (25). Hence,

N—1 KD
ax Wy, (2) = Z 4mm”" a+hVrk (27)

m=0

which completes the proof as the Calderon-Vaillancourt theorem implies the uniform
boundedness of ré. O

We would like to stress that due to the fact that the coefficients ¢, are varying in « itis

not straight-forward to write down an inverse expansion as in general D,, D, & Dy, 4,
unless for the Husimi case k = 0.

Birkhduser



Journal of Fourier Analysis and Applications (2021) 27:47 Page190f34 47

5.2 Compositions and Commutators of Hermite Localization Operators

Recall that the composition of two Weyl quantized operators is a Weyl quantized
operator again, with the symbol given by the famous Moyal product § of the two
symbols,

op(a)op(b) = op(atih), (28)

see, e.g., [53, §4.3]. In contrast, the product of two localization operators typically is
not a localization operator again. However, the product can be expanded as a sum of
localization operators with a regularizing operator as error term that becomes arbitrary
small as i — 0, see [12].

Based on the expansion from Lemma 5, we obtain the following Weyl composition
formula for two localization operators that employs the operator A(V),

ANV f(zow) = 20 (Vy, V) f(zow), z,w e R¥,

acting on functions on the doubled phase space R*¢, where o denotes the standard
symplectic form and the subscript gradients V,, V,, denote 2d-dimensional gradients
in the indicated coordinates. The notation A (V) in accordance with [53] aims to support
the reader’s intution as A(V) is the generator of bidifferential operators

(@, b) = [A(V)"(a ® b)]diag’ neN, (29)

that define the Moyal product expansion.

Proposition 2 (Composition of localization operators) Let k, N € N, h > 0 and a
and b be Schwartz functions. Then,

Wk( ) Ok (b) = Ni:l E Z Cn,m,é(a’ b) + hN ( k)
OPaw (@)0Pyw = 0p ot 47 = mine! op(py
j= n+m—+0=j

with a family p],; of Schwartz functions satisfying supy,. ||0p(p],;)|| 1212 < 00 and
the total order 2(n + m + £) bidifferential operators

Cum,e(a, b) = [(—=40) @¢(Dia, Dub)ldiag
where D,, has been defined in Lemma 5 and ay in (29).
Proof We apply Lemma 5 and the expansion of the Moyal product f to compute
N=1 o pntm

opiw, (@)oply, (b) = OP( Z mDmaﬂDnb) + hNop(o})
m+n=0
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h (—4i)*
=D ol 2 A TAY) (Dna ® Dub)lag | + h"op(op)
j=0 n+m+0=j menet:

where Q];i and ,0’,51 are families of Schwartz functions giving rise to uniformly bounded
operator families. O

For illustration purposes, let us look at the general expansion from Proposition 2
in the case of second order errors. We compute

d
Dia(z) = ) (2k; + D(0ja(@) + 97, 4a(2))

j=1
and observe that D is a diagonally weighted Laplace operator on R,
Dia(z) = (V;, diag(2k + 1, 2k + 1) V) a(z) =: Agya(z),
where 2k+1, 2k+1) := (k1 +1,2k1+1, ..., 2kg+1) € R*_ Hence, we obtain the

following second order composition formula for two localization operators in terms
of a Weyl operator:

Lemma6 Letk € N, i > 0 and a and b be Schwartz functions. Then,
Pk (73 — h : 1 1 2
op% (a)op, (b) = op (ab + 3 (—io(Va, Vb) + 3bAya + EaA(k)b)) + O(h%).

In fact, if we allow for second order error terms, the expansion from Lemma 5 can
be approximately inverted via

op (a — & Awa) = op(a) + O(1?). (30)

This observation in turn implies the following composition formula for Hermite win-
dow localization operators.

Theorem 3 Letk € N¢, i > 0 and a and b be Schwartz functions. Then, it holds
op?% (a)op? (b) = optk (ab — L (i0(Va, Vb) + (Va, V(k)b))> + 12op(6b).

with a family 9;’% of Schwartz functions satisfying supy,. ||0p(917;)||L2~>L2 < oo and
the weighted gradient

Vo = (v2ki 4+ 181, v/2ki 4+ 182, . .., v/2ka + 1324).

Proof By combining Proposition 6 and (30) we obtain
op?% (a)op?k (b) = optk <ab + B (—io(Va, Vb) + LbAgya + Langyb — %A(k)(ab))>
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+1i%op(65)

where, by the Calderon-Vailloncourt theorem, the the second order terms in 7 have a
Schwartz class symbol with the desired boundedness properties. Then, calculating

Awy(ab) = Agyab +aAgyb +2 (V(k)a, V(k)b)

implies the result. O

From Theorem 3 we directly infer that the commutator of two localization operators
exhibits the same Poisson bracket property as the Moyal bracket for Weyl operators
with the difference that the error is of second instead of third order in A.

Corollary 1 Let k € N, h > 0 and a and b be Schwartz functions. Then, for the
commutator of Hermite window localization operators it holds

[opf (@), opft,(8)] = Fopf (la. b)) + O (1)
where {a, b} denotes the Poisson bracket.

Remark2 (Hermite star products) The Hermite star products *; can be formally
defined as

opiw (@)opgy, (b) =: opgy, (axkb)

on the algebra C°°(R2d)[[h]] of formal power series in A with smooth coefficients.
Corollary 1 illustrates that—just as the Moyal product §— all Hermite star products
*; are compatible with the canonical Poisson structure on phase space. Moreover,
the expansion from Lemma 5 implies that the differential star products x; and f are
equivalent for all k in the sense of deformation quantization, see, e.g., [11,37,46]. In
particular, we note that the bidifferential operator i« (a, b) + % <V(k)a, V(k)b> from
Theorem 3 defines the same 2-cocycle as the Moyal bidifferential operator i (a, b)
in the Hochschild cochain complex over C*°(R??)[[/:]] and only differs by the sym-
metrical coboundary term.

Remark 3 (Anti-Wick star product) In the Husimi case k = 0 one has D, = A" and
can explicitly derive higher order versions of Theorem 3. In analogy to the Moyal
expansion a simple but tedious calculation yields

o
op{ (@)opfl, (b) = opfS (axob) = Y _ opfy (W' Bu(a, b))
j=0

with the bidifferential operators

(_l)n . n
@, b) = 5] (G0 (Y2, V) + Ve, Va) @b |
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see [33]. In other words, the operator B(V) = A(V) + % (V;, Vy) generates the
bidifferential operators 8, that charaterize the anti-Wick star product xq.

The symmetric term (V(xya, V)b) creates coboundary terms in the bidifferential
operators defining Hermite star products and implies that the O (%) error for the
commutator expansion in Corollary I in general is sharp. In contrast, for the Moyal
case the antisymmetry of A(V) causes O (h3) errors for the commutator which is the
main ingredient for the the well-known Egorov theorem that allows to link quantum
and quasi-classical dynamics with O(hz) errors, see [10,39].

We conclude this section by stressing again that the Weyl operator error term op (92)
in Theorem 3 is in general not a localization operator itself. This makes the composition
formula purely asymptotic in nature.

5.3 Calculus of Polyanalytic Toeplitz Operators

The formulas from Sect. 5.2 also imply composition rules for polyanalytic Toeplitz
operators as they appear as the complex equivalents of corresponding localization
operators with Hermite function windows.

From (22) we first recall the translation formulas

BiTe(f)Br = (=D%0pf(f). B*Teo(f)B = (=)ol (f) (31)
between localization operators acting on real-valued signals and polyanalytic Toeplitz

operators acting in the complex domain. Moreover, for convenience of notation we
introduce the operators

(V) f (2, w) = i0 (Va, Vo) £ (2, w) + (Ve Vi) f o w), 2w € R¥,
and their complex counterpart
Bty (@, 9)F (2. w) = (410:0u + (VRez.imz- dk VRew.tmw)oa) F (2 w), 2w € C7,
where ., 3, as usual denote complex Wirtinger differentials and the diagonal matrix
dy = diag(2k, 2k) € R24%2d Note that for k = 0 the second term vanishes and we
obtain the simple expression

E(0)(8, 9)F(z, w) = 40,9, F (z, w).

The operator /E‘:(k) 3, 9) represents E) (V) in the complex domain in the following
way.

Lemma7 Letm, i : C¢ — C be smooth and k € N?. Then, it holds

B3, 9)(m @ u)(Z, W) = Eqy (V) (i @ j1)(zr, WR),

where z, w € C? and zr = (Rez, Imz), wr = (Rew, Imw) € R,
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Proof The proof is a simple calculation that only uses the definition of the complex
Wirtinger differentials 9, f (z) = %(8Rezf(z) —10mz) f(z) and 8 f(z) = %(3Rezf(Z)+
101mgz)- O

With this notation in place, we arrive at the following composition and commutator
formulas for polyanalytic Toeplitz operators.

Theorem4 Letk € N4, b > 0 and m, uw: C? — C be Schwartz class functions.
Then, it holds

T T (1) = Te(mp — 2[Ey (V) (m ® W)]diag) + K2 Biop(0F) B

with a family 9,’; of Schwartz functions satisfying supp ||op(9,]§) |12 2 < o0.

Proof We calculate

Ti(m)Tr (1) = Biopfk (i)op%k (i) By
= Biop (it — 2B (V) (it ® 1) lgiag) Bk + O ()

by using (31) and applying Theorem 3. From Lemma 7 we then obtain
[E (V)07 ® D ding (4, P) = [0 (V)0m © 1) ldiag (¢ — ip)
which completes the proof. O

Let us remark here, that in the usual Toeplitz quantization case k = 0 this compo-
sition formula beautifully reduces to

Tm)T (1) = T (mp — 2ihdm ap) + O ().

Ignoring all growth restrictions, this shows that whenever u is analytic (or m antian-
alytic) the product mu is the appropriate Toeplitz symbol of the composition up to
second order errors.

6 Weyl Quantization and Polyanalytic Toeplitz Operators

Let us revisit the spectrogram expansion from Theorem 1 with the objects we have
defined and investigated so far. By recalling the phase space integral formulas (11)
and (14) we first observe that Theorem 1 in fact can be read as a weak approximation
of Weyl operators in terms of localization operators with Hermite function windows.
In this section, we derive expansions of complex Weyl operators in terms of Bargmann
quantized operators and, thus, prove a complex version of Theorem 1.
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6.1 An Anti-Wick Expansion of Weyl Operators

By employing the off-diagonal convolution formula
W x W, ¢) = Vutr Vug. (32)

and the definition (15) of localization operators we can rewrite (18) as

N-1
fR L a@uN (. $)()dz = [R L a) jX:(:)(—l)jCN—l, § 20 Wa s W 9)() dz

keNd
|kl=j
N—-1
= —1)/Cy_1 d
Azd”(Z)Z( YOyt Y V¥ (2) V() dz
Jj=0 keNd
|kl=j
N—-1 ]
- Z(_1)JCN,LJ- Z (Vo aVg . ¢)L2(Rd)
Jj=0 keNd
lkl=j
N—-1 )
=Y (=1/Cn-1; Y (opB @V, b),2 g0 -
j=0 keNd
k|=j

Hence, the spectrogram approximation from Theorem 1 can be rewritten in the fol-
lowing operator form:

Proposition3 Let N € N an h > 0. Then, for all h-independent Schwartz class
functions a : R*® — C it holds

N-—1
op(a) =Y (=1)/Cy_1; Y _ opfk(a) + O(hY)
Jj=0 keN?

k=)

in the operator norm topology on L*(R%).

One can generalize Proposition 3 in the usual sense by allowing for more general
symbol classes. In particular, Proposition 3 remains true as long as a belongs to a
suitable Shubin class F%N(l_p ) (R2d) of symbols, where

(R = {a € C°(R¥ . C) : [9%(z)] < Cq (7)™ VzeRM, ae NM}
(33)
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with (z) = (1 + |z|>)!/2. Note that the Weyl quantization of a symbol a € ry (R%)
creates a bounded operator from the Shubin-Sobolev space

0"® = [y e SR : (1 + x| = A"y € L2RY)|

into L2(R?), and it is known that Q" (R9) actually coincides (with equivalent norm)
with the modulation space M 2Z m (Rd), see [9,40]. For example, a more general version
of Proposition 3 can be formufated as follows.

Corollary2 Let N € N, h > 0 and assume a € 1":)" (de)form € R, p > 0. Then,

N—-1
op(a) — > (=1)/Cn-1; Y opf(a) = O(A")
j=0

keNd
|kl=J

as a bounded operator from Mr%l—ZNp (R?) into L*(R?).

We note that Corollary 2 directly implies the famous Sharp Garding inequality,
see, e.g., [53, §4.7], in the sense that for any suitable symbol a > 0 one has

op(a) + O(h) =0

since any anti-Wick quantization of a non-negative symbol yields a non-negative
operator. In fact, often the introduction of Husimi functions and anti-Wick operators
is mainly motivated by this property. Unfortunately, one does not as easily obtain
a Fefferman-Phong inequality with second order errors in 7 since the phase space
density that is underlying the second order approximation

De ;
(1+%$)opf, — 1 " opayi (a) = op(a) + O (k%)
=1

which has been investigated in [36] in general takes negative values—as does the
Wigner function.

6.2 Polyanalytic Bargmann Representation of Anti-holomorphic Weyl Quantized
Polynomials

The close connection between polyanalytic Bargmann transforms and short-time
Fourier transforms with Hermite windows allows to rephrase Proposition 3 in a Fock
space setting.

For the convenience or the reader, we use the notion of polyanalytic Bargmann-Fock
spaces of total degree n € N that we define as the direct sum

F'(C) = @ FHC),

k|=n
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and the corresponding Bargmann transforms

B, : L’RY) > F"(CY), B,:=) B
lk|=n

on the span of the true polyanalytic functions of total degree n € N. We want to
highlight that B,, is different from the polyanalytic Bargmann transform for vector-
valued signals defined and analyzed in [ 1] with applications to multiplexing. We denote
the corresponding polyanalytic Bergman projector of total degree n € N by

P,:=B,B;, neN.

Note that one has the following property:

Lemma 8 The polyanalytic Bergman projector of total degree n € N satisfies

Py # Y P

|k|=n

This follows since in general for the mixed terms it holds B B; # 0 though for k # ¢
one still has the orthogonality property BB, = 0.

The important property of almost-invariance of polyanalytic Fock spaces under
multiplication with holomorphic polynomials allows to prove the following result that
might allow new insights about the manipulation of signals in a multiplexing setup,
see [1,5].

Proposition 4 (Polyanalytic Bargmann representation of antiholomorphic Weyl oper-
ators) Let N € N, i > 0 and p : C¢ — C be a (holomorphic) polynomial of degree
N — 1. Then, one has

N-1
op() = Y _(=1)/Cy_1 jBipB;
j=0

where p(q, p) := p(q — ip) is the transformation from (23) and B; = Zlklzj By.

Proof We start by rewriting the generalized anti-Wick operators in the anti-Wick
expansion from Proposition 3 in terms of polyanalytic Bargmann transforms,

op(p) = 2} D/Cy-1,j Y op(5) = Z} D/Cno1j Y BipBr,

keNd keNd
|kl=j [k|=Jj

where the error vanishes because p is of sufficiently low degree, see Theorem 1.

Since p is a holomorphic polynomial, for each true polyanalytic Fock space F*(C¥)
multiplication by p leaves a dense subset of F*(C?) consisting of true polyanalytic
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polynomials invariant. Moreover, true polyanalytic Fock spaces are othogonal: for any
u € FK(C?) and v € FE(CY) with k # £ it holds

(u, U>L§, =0.

Thus, the result follows from observing

N—-1 N—-1
Y (=D/Cyo1j Y] BipBi =Y (=1)/Cy_1 jB}pB;.
j=0 keNd j=0

|k|=j

O

We can revisit this result in the context of multiplexing as e.g. considered
in [5]. Namely, polyanalytic Bargmann transforms allow to transform n signals
(Yo, ..., ¥n—1) into the single signal

Byo+Biyi+...+By_1¥p_1 : C? > C

that now can jointly be transmitted or manipulated. Afterwards, the n original sig-
nals can be recovered via orthogonal projection by using the suitable (polyanalytic)
Bergman projectors. This is an implication of the orthogonality of polyanalytic Fock
spaces of different degree.

In other words, Proposition 4 can be understood in the sense that the polynomial
manipulation of a single multiplexed signal with arbitrary number of “multiplexing
copies” can be expressed in terms of the action of usual Weyl operators or, conversely,
that the action of a Weyl quantized polynomial on any signal can be expressed via
a linear combination of multiplications in polyanalytic Bargmann-Fock spaces of
suitable degree. For more general manipulations the error terms from the spectrogram
expansion can be used when approximating the multi-level Bargmann multiplier by a
Weyl operator.

6.3 A Polyanalytic Toeplitz Expansion of Complex Weyl Operators

The aim of this section is to provide a version of the anti-Wick expansion from Propo-
sition 3 in the complex setting. That is, instead of anti-Wick operators we employ
the earlier defined polyanalytic Toeplitz operators and relate them to complex Weyl
operators as considered in [53, §13].

From microlocal analysis it is known that the Bargmann transform can be recovered
as a Fourier-Bros-lagolitzer transform characterized by the holomorphic quadratic
phase function

0(z, w) = 3((z — w)* —2°/2), (34)
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see also Appendix 1 for more context. In fact, 6 gives rise to the complex symplectic
map

K:CH - CH k(z,w) > (w—z, Sz —w)) (35
by means of the implicit generating function type definition
K(w, —3,0(z, w)) = (z,0.0(z, w)), z,w e CY.
One can show that « is a bijection as a map from R?“ on the Lagrangian subspace
A={@z -in):zeCccH (36)

of real dimension 2d. The subspace A is Im-Lagrangian and Re-symplectic with
respect to the complex symplectic form o¢c = Z?:l dw A dz on C" x C", that is,

Imoc [A=0 and Reoc [o is nondegenerate.
In particular A is only R-linear but not C-linear and, hence, is not of the type of com-
plex Lagrangian subspaces usually considered in the parametrization of generalized
coherent states, see, e.g., [13]. In other words, A is an isotropic subspace of maximal
dimension, but the Hermitian form
C* 5z $(z, Qa)c = 57 Qz
with the standard symplectic matrix
0 —Id
@= (Id 0 )
is neither positive nor negative definite on A, since one computes
(z, Q2)coa = 3(m(O)* —Re(©)?) Vz=(, —30) € A.

In [53, §13] the symplectic mapping « from (35) is used to introduce a complex
Weyl quantization on the Bargmann transform side. Namely, the bijection « can be
used to identify C with the Lagrangian subspace A C C2? and for a Schwartz function
a : A — C we define its Weyl quantization

opg(a) : L3(CY) — L3 (C) (37)

via the usual Fourier integral formalism

opg(a) f(z) = Qah)~? /r ( )a(”Tw)e“Z‘w“ /M f (wyde A dw (38)
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along the z-dependent contour

To():w > 23, 0(HL) = —fuf,

L
2

One can check that opg (a) defines a bounded operator both on L(Zb((Cd) and the Fock
space F(C?). Now, the Bargmann transform appears as the appropriate translation
between real and complex Weyl quantization.

Lemma 9 (see Theorem 13.9 from [53]) For any Schwartz function a : A — C one
has

B*opg(a)B = op(k*a)

where k* denotes the pull-back by k.

Note that Lemma 9 naturally extends to larger symbol classes, in particular to Shubin
classes FZ’ (A) that consist of functions a for which k*a € FZ’ (R24), see also (33).
We apply Lemma 9 to obtain an expansion of complex Weyl quantized operators in
terms of k, O-polyanalytic Toeplitz operators and, thus, provide a complex version of
Proposition 3.

Theorem5 Let N € N, h > 0 and assume a € FZ’ (A) form € R, p > 0. Then, one
has the approximation

Jopa(a) - Y, Y Teola)| = oM.
j=0

Fm=2Np(Cd)—»F(Cd)
keN?
kl|=j

whereﬂ(z) =«k*a(q, —p) withz = g + ip € C4.
Proof We have to show that opg (a) : F m=2Np(Cd)y — F(C?) which then implies

Popg (a)P = opg (a) as an operator on Fm=2Np(C?), Forany u € Fin—2Np (CY), we
can rewrite

opg (@)u(z) = /cd Kq(w, 2)u(w)dw

with the Schwartz kernel

Ka(w, Z) — (Zﬂh)_da(HTw)e(Z_w)(z+w)/4hf(W)

where

d d
—K,(w,7) = —=Kq(w, 2).
Z dw
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Then, the holomorphy of opg (a)u follows directly by the holomorphy of u since

i_opd)(a)u(z) = i_/ Ko (w, 2)u(w)dw
dz dz Jed

d
= / — K, (w, 2)u(w)dw

cd dw

:/ Ka(w, 2)(— & u) (w)dw = 0.
(Cd

The appropriate decay of opg (a)u can be inferred from the intertwining property in
Lemma 9 and the maping properties of usual Weyl quantized operators on modulation
spaces. Finally, the approximation order follows from Corollary 2. O

7 Outlook

The concept of polyanalytic Toeplitz operators we propose in this paper appears quite
straight-forward once written down and naturally exhibits all the favorable mapping
qualities that are known from the analytic Bargmann setting. However, by the con-
nection to short-time Fourier transforms and, via the spectrogram expansion, to Weyl
operators this new concept allows to formulate profound transition and approximation
formulas for the whole range of real and complex Weyl, Toeplitz as well as localization
operators.

We believe that polyanalytic Toeplitz quantization might prove a useful concept
in a variety of areas, including the deeper investigation and approximation of multi-
plexed signals, the analysis and generalization of complex quantization theories and
a geometrically satisfying complex generalization of coherent state approximations
and dynamics.
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Appendix A. Elements from Microlocal Analysis

The Bargmann transform considered in this paper is a special form of a so-called
Fourier-Bros-lagolitzer transform that are considered in microlocal analysis. In the
analytic microlocal setup from [53, §13], the operator B corresponds to the Fourier-
Bros-Iagolnitzer transform associated with the holomorphic quadratic phase 6 defined
in 34 and the corresponding strictly plurisubharmonic exponential weight function
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®(z) = —max ImO(z, x)
xeRd

that gives rise to a weighted Hilbert space Lé (C?). For the Bargmann transform B
considered in this paper the corresponding choice for @ is

() = 5z

. . . 2
and the corresponding induced norm on the weighted space Lg,.

Appendix B. Moments of Special Hermite Functions

The Wigner transforms W, of Hermite functions are also known as special Hermite
functions, see, e.g., [50]. Moments of these functions are of special interest as they
resemble the quantum expectation values of quantized monomials in the kth harmonic
oscillator eigenstate. That is,

f W, (2)dz = g, 0p(z*) i)
R2d

with standard multiindex notation, where o € N?¢. As the Wignerfunctions of mulit-
dimensional Hermite functions factorize into 2-dimensional Wigner functions, in the
following we only compute formulas for this case by proving Proposition 1.

Proof of Proposition 1 We start by computing

[ W xravde = a1 [P 02 4 62ande
R R
— n_*lﬁﬂt‘l‘ﬂ /]1‘{2 x2a%-2ﬁef(x2+s2)2 (—l)kLk(Z(xz +§'2))d)€d%—
2, £2y2 k ko\ (=22 +£2)))
=ttt [ et 3o (B g — o
R2 0 k—j Jj!

by using the Laguerre formula (25) for the Wigner function W, . Expanding the
polynomial in x and & by the binomial theorem and using the definition of the Gamma
function we get

a (—2)/ k / J 2_g2 .
(%) = n—1h01+ﬂ(_1)k Z : <k ) Z ( )/2 e & x2(n+a)§2(J—n+ﬁ)dxd§
. ! R

N L S
e GV (k j)Z()F(%—I—n—I—a)F(%—I—j—n—I—ﬂ).
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Finally, using binomial sum theorems for Gamma functions and the hypergeometric
function ,F; we compute

(*) — ﬂ_lha+ﬂ(_1)k

k

T+ HrB+3) 3 (—2)/ < k
Fa+B8+1 Jj! \k—j

)F(a+,3+1+j)

=7 B (D T @+ DT B+ aFile+ B+ 1, -k 1;2)
=P (DT (@ + DI B+ aFi@+ B+ 1, -k 1;2)
Kl 2a)

_ ke 1-0)(—1)k
=oFi(@+ B+ 1 -k 1: (=D o=

which completes the proof. O
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