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A B S T R A C T

The present study numerically investigates the breaking and spectral characteristics and geometric properties of
breaking irregular waves over slopes for different incident waves. The growth of wave non-linearity and wave
energy redistribution during shoaling and breaking process are observed to be major factors in determining
the free surface elevation skewness and spectral bandwidth. In general, the variation of the breaker indices
with the surf similarity parameter is found to be mainly governed by the type of wave breakers. The wave
breaker type further depends on the seabed slope, incident wave parameters and water depth at the location
of wave breaking. The study further explores the geometric properties for both spilling and plunging irregular
wave breakers. The wave deformation due to wave-seabed interaction plays a major role in affecting the
breaker shapes. Every individual breaking wave in the irregular wave train possesses different wave profiles
and breaker characteristics. In order to study these parameters in a probabilistic way, the statistics of the
breaker characteristics and the breaker shape parameters are investigated. The lognormal distribution is noticed
to be the most suitable fit for the wave crest steepness and asymmetry factors. This study is performed
using the open-source computational fluid dynamics (CFD) based numerical model. The numerical model is
validated for a submerged bar under breaking irregular waves and the numerical results are compared with
experimental data. The transformations of the free surface elevation due to wave shoaling, wave breaking and
wave decomposition are explored.
1. Introduction

During the last few decades, considerable efforts have been made to
study wave breaking in the coastal regions. Wave breaking primarily
governs the various hydrodynamic processes in the surf zone like
destabilization of the sea bed, wave setup and wave energy dissipation.
A lot of research has been dedicated in the past towards the wave
hydrodynamics investigation of breaking regular waves (Goda, 1970;
Hwang, 1984; Weggel, 1972; Camenen and Larson, 2007). Their studies
revealed many important parameters to quantify and understand the
regular wave breaking process. However, the study of breaking regular
waves is not sufficient to describe and investigate the real sea state.
The real sea state is highly irregular and composed of many harmonic
wave components. In contrast to regular waves, there is no well defined
breaking point for irregular waves. The breaking location is different
for each individual wave component depending on the individual wave
steepness. Therefore, the energy dissipation of irregular waves occurs
over a larger surf zone area in comparison to regular waves. The
breaker type also varies for each wave component of an irregular
wave train. The breaking characteristics and the geometric properties
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of discrete breaking events in the irregular wave train are distinct from
each other due to the different amplitudes and frequencies. The hydro-
dynamics of breaking irregular waves are still not fully understood and
are relatively uncertain. When the beach slope is constant, the temporal
and spatial variability of wave breaking should solely depend on the
incident wave spectrum (Ting, 2001).

Some researchers have attempted to investigate the individual wave
breaking frequency and statistics of breaking irregular waves. A field
study was conducted by Thorpe and Humphries (1980) to study the
relationship between the mean frequency of wave breaking at a fixed
point and the average distance between irregular breaking waves. The
wavelet method has been used analytically to determine and quantify
the breaking statistics by Mori and Yasuda (1994) and Liu (2000). Their
study revealed that the surface jumps associated with the breaking
waves can be well detected in the wavelet spectra. Ochi et al. (1996)
investigated the joint probability distribution of wave excursion and
the associated time interval of non-narrow-banded random process.
They showed that the breaking probability depends on the shape of
the wave spectrum for deep water waves. Seyama and Kimura (1988)
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measured the properties of breaking irregular waves over a slope. They
concluded that the shoaling property of zero-down-cross waves can
be approximated by linear wave theory. Also, the wave properties
during the breaking process and after breaking differ considerably from
those for periodic waves. Beji and Battjes (1993) studied the irregular
wave propagation over a submerged bar experimentally and further
investigated wave breaking and wave shoaling under irregular waves
for different spectral wave steepnesses. Ting (2001) explored the wave
and turbulence characteristics of broad- and narrow-banded irregular
waves over a sloping sea bed. They also reported the probability
distributions for the wave height and peak velocities for the breaking
irregular waves. Kjeldsen and Myrhaug (1978) conducted a study to
investigate the geometric properties of breaking waves. A wave crest
deformation can be observed both horizontally and vertically at the
onset of wave breaking.

Several numerical and analytical studies have been performed to
investigate breaking regular waves. The numerical studies of non-linear
surface waves have been conducted in the past by using potential
flow theory (Watson and West, 1975; Longuet-Higgins and Cokelet,
1976). Chen et al. (1999) reported that this approach is unable to
capture the complete breaking process accurately. The assumptions in
the potential flow theory are valid up to the breaking point; these
assumptions become invalid at the onset of wave breaking. The detailed
information about the flow properties for the free surface flows can be
computed by Computational Fluid Dynamics (CFD). In order to capture
the complete breaking process, CFD can be used without defining any
empirical breaking criterion explicitly. A number of CFD investigations
have been carried out to study breaking regular waves (Lin and Liu,
1998; Bradford, 2000). The turbulence scales in their simulations were
represented with the turbulence models. Many studies were also per-
formed using two-phase models to investigate breaking waves, since
two-phase models give a more realistic representation of the wave
breaking process (Hieu et al., 2004; Garcia et al., 2004; Christensen,
2006; Lara et al., 2006). The detailed reviews on the previous work
with CFD modelling for breaking waves can be found in Lara et al.
(2006), Bradford (2000) and Hieu et al. (2004). Alagan Chella et al.
(2015, 2016) studied the breaking characteristics and geometric prop-
erties of breaking regular waves over slopes using a CFD based model.
They compared the numerical results with experimental data by Ting
and Kirby (1996). The numerical results showed good agreement with
the experimental data for free surface elevation, horizontal and vertical
velocities and turbulent kinetic energy. Paulsen et al. (2013) simulated
non-breaking irregular waves using CFD to study the wave loads on
monopile structures. However, there is limited literature available for
breaking irregular waves propagating over slopes in shallow waters.
There are only a few studies performed in the past to investigate the
transformations in the parameters like free surface elevation skew-
ness, spectral bandwidth, breaking characteristics and geometric wave
profile properties during the breaking process for irregular waves in
shallow water over slopes. Due to the complex phenomena involved
during wave breaking, most of the studies involving breaking irreg-
ular waves are limited to field and laboratory experiments. Already
developed and tested approaches like CFD modelling can be used to
investigate these less explored aspects of breaking irregular waves over
slopes.

The objective of the present paper is to numerically investigate
breaking irregular waves over slopes in the time- and frequency-
domains and to analyse the transformations in the free surface elevation
skewness, spectral bandwidth, breaking characteristics and wave crest
profile during the wave propagation over slopes. The previous studies
related to breaking irregular waves in shallow water have not been
focused on addressing these aspects in detail. The breaking character-
istics of irregular waves are relatively complex to study as there is no
clearly defined breaking point and no clear distinction between the
different breaker types. The regular wave breaking characteristics have
2

been relatively well studied in the past (Alagan Chella et al., 2015, v
2016). The present study includes the investigation of the breaking and
spectral characteristics of irregular waves. The energy transfer from
the spectral peak region towards higher-frequencies during the wave
shoaling and wave breaking processes is quantified by using the method
used by Tian et al. (2011) for breaking focused wave groups. Further,
the analysis of the geometric properties of irregular wave breakers is
performed for different breaker types to explore the role of seabed slope
and incident wave parameters in the wave breaking process. Many
numerical and experimental studies have been carried out in the past
to study the geometric properties of regular breaking waves, but only
a few studies exist which have addressed the geometric properties of
irregular wave breakers. To the best of the authors’ knowledge, the
present study is the first attempt to investigate these parameters for
breaking irregular waves over slopes.

The numerical simulations are conducted using a CFD based two-
phase numerical model REEF3D (Bihs et al., 2016; Bihs and Kamath,
2017). This model has been successfully used to investigate different
coastal and marine engineering problems (Afzal et al., 2015; Ong
et al., 2017; Aggarwal et al., 2019a,b, 2020; Afzal et al., 2020). The
numerical model employs higher-order numerical schemes capable of
capturing the complete breaking process. The validation for modelling
of breaking irregular waves is performed by comparing the numerical
results for breaking irregular waves over a submerged bar with the
experiments performed by Beji and Battjes (1993) during the complex
transformation processes like wave shoaling and wave breaking. Next,
the propagation of irregular breaking waves over sloping seabeds is
investigated. The wave energy transfer from the spectral peak region
towards the different frequency ranges, breaking wave statistics and
the changes in free surface elevation skewness and spectral bandwidth
during the breaking process are studied in detail. An extensive anal-
ysis to explore the breaking wave characteristics and the geometric
properties for different cases is performed. The wave crest steepness
and asymmetry parameters are examined in order to understand the
influence of water depth and incident wave steepness in determining
the deformation in the wave crest. The statistics of breaking wave char-
acteristics and geometric properties of the breakers are also analysed
and discussed to quantify these parameters.

2. Numerical model

2.1. Governing equations

The present study is performed using a CFD based numerical model
REEF3D (Bihs et al., 2016; Bihs and Kamath, 2017). The Reynolds-
Averaged Navier–Stokes equations (RANS) are defined with the as-
sumption of an incompressible fluid. The momentum conservation
equation together with the continuity equation define the Navier–
Stokes equations:
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (1)

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −1
𝜌
𝜕𝑃
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

[

(𝜈 + 𝜈𝑡)
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)]

+ 𝑔𝑖 (2)

here 𝑢 is the velocity averaged over time 𝑡, 𝜌 is the fluid density, 𝑃
s the pressure, 𝜈 is the kinematic viscosity, 𝜈𝑡 is the eddy viscosity, 𝑖
nd 𝑗 denote the indices in 𝑥 and 𝑦 direction, respectively, and 𝑔𝑖 is the
cceleration due to gravity.

The solution for the pressure in the Navier–Stokes equations is ob-
ained from the projection method (Chorin, 1968). The Poisson pressure
quation is solved with the HYPRE integrated conjugate gradient solver
reconditioned with geometric multigrid (Falgout and Yang, 2002).
he fifth-order finite difference Weighted Essentially Non-Oscillatory
WENO) scheme in multi-space dimensions is utilized in the present
tudy (Jiang and Shu, 1996). The third-order TVD Runge Kutta scheme
s applied for the time discretization (Shu and Oscher, 1988). The
iscous terms are source term dependent and result in very low CFL
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numbers when discretized explicitly. In order to avoid this, the viscous
terms are treated with an implicit method to take it out of the CFL
criterion. Adaptive time stepping is used in order to control the time-
step size based on the CFL number (Griebel et al., 1998). The numerical
model utilizes a Cartesian grid in order to use higher-order discretiza-
tion schemes. The present study uses the 𝑘−𝜔 model used to calculate
the eddy-viscosity by solving for the turbulent kinetic energy 𝑘 and the
specific turbulent dissipation 𝜔 (Wilcox, 1994):

𝜕𝑘
𝜕𝑡

+ 𝑢𝑗
𝜕𝑘
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑗

[(

𝜈 +
𝜈𝑡
𝜎𝑘

)

𝜕𝑘
𝜕𝑥𝑗

]

+ 𝑃𝑘 − 𝛽𝑘𝑘𝜔 (3)

𝜕𝜔
𝜕𝑡

+ 𝑢𝑗
𝜕𝜔
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑗

[(

𝜈 +
𝜈𝑡
𝜎𝜔

)

𝜕𝜔
𝜕𝑥𝑗

]

+ 𝜔
𝑘
𝛼𝑃𝑘 − 𝛽𝜔2 (4)

where 𝑃𝑘 is the turbulent production rate and is defined as follows:

𝑃𝑘 = 𝜈𝑡
𝜕𝑢𝑖
𝜕𝑥𝑗

[
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

] (5)

The other closure coefficients are 𝛼 = 5
9 , 𝛽𝑘 = 9

100 , 𝛽 = 3
40 , 𝜎𝜔 =

2, 𝜎𝑘 = 2. The over-production of the turbulence in highly strained
flow associated with the oscillatory fluid motion under waves outside
the boundary layer is prevented by limiting the eddy-viscosity (Durbin,
2009) as follows:

𝜈𝑡 = min( 𝑘
𝜔
,
√

2
3

𝑘
|𝐒|

) (6)

where 𝐒 is the mean rate of strain.
In the present study, the level set method (Osher and Sethian,

988) is implemented to capture the free surface. The level set function
ives the closest distance to the interface and the two phases are
istinguished by the change of the sign. The function can be written
s:

(𝑥⃗, 𝑡)

⎧

⎪

⎨

⎪

⎩

> 0 𝑖𝑓 𝑥⃗ is in phase 1
= 0 𝑖𝑓 𝑥⃗ is at the interface
< 0 𝑖𝑓 𝑥⃗ is in phase 2

(7)

2.2. Irregular wave generation

The relaxation method is utilized for the wave generation and
absorption (Mayer et al., 1998). The values for the velocities and the
free surface are ramped up from the computational values to the ones
obtained from wave theory. Also, the reflected waves which travel back
towards the inlet are absorbed with this method. A numerical beach
is needed at the end of the wave flume in order to dissipate waves
and avoid reflections. In the relaxation method, a smooth transition
is made from the computational solution to the still water conditions.
The irregular waves are composed of the super-positioning of regular
wave components. The first-order irregular waves are generated by
summation of the linear regular waves components. The free surface
𝜂 is defined as:

𝜂 =
𝑁
∑

𝑖=1
𝐴𝑖𝑐𝑜𝑠𝜃𝑖 (8)

𝐴𝑖 =
√

2𝑆(𝜔𝑖)𝛥𝜔𝑖 (9)

𝜃𝑖 = 𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜖𝑖 (10)

𝜔2
𝑖 = 𝑔𝑘𝑖tanh𝑘𝑖ℎ (11)

where 𝑁 is the number of components, 𝐴𝑖 is the amplitude of each
ave component, 𝑆(𝜔𝑖) is the spectral density and 𝜃𝑖 is the phase, 𝜖𝑖

s a random number rectangularly distributed between 0 and 2𝜋, 𝜔𝑖 is
the angular frequency, 𝜆𝑖 is the wavelength and 𝑘𝑖 is the wave number
(𝑘𝑖 =

2𝜋
𝜆𝑖

).
Similarly, the wave-induced horizontal velocity 𝑢 and the wave-

nduced vertical velocity 𝑤 are computed as the sum of the individual
3

𝑢 and 𝑤 components in the irregular wave train. The second-order
irregular wave theory given by Dalzell (1999) which takes into account
the second-order wave–wave interaction is used for the higher spectral
wave steepness cases:

𝜂 = 𝜂1 + 𝜂2 ; 𝑢 = 𝑢1 + 𝑢2 ; 𝑤 = 𝑤1 +𝑤2 (12)

where 𝜂1, 𝑢1 and 𝑤1 represent the first-order components and 𝜂2, 𝑢2
and 𝑤2 represent the second-order components (the details of the
second-order irregular wave theory can be found in Dalzell (1999)).

In the present study, the Joint North Sea Wave Project (JONSWAP)
spectrum is used for the generation of irregular waves (Hasselmann
et al., 1980). The waves propagating close to the coast are usually fetch-
limited and are never fully developed. The required significant wave
height 𝐻𝑠, the peak angular frequency 𝜔𝑝 and number of components
𝑁 are given as input values to the JONSWAP spectrum. The frequency
spectrum 𝑆(𝜔) gives the distribution of the wave energy with angular
frequency 𝜔.

𝑆(𝜔) = 5
16

𝐻2
𝑠𝜔

4
𝑝𝜔

−5𝑒𝑥𝑝{−5
4
( 𝜔
𝜔𝑝

)−4}𝛾
𝑒𝑥𝑝{

−(𝜔−𝜔𝑝 )2

2𝜎2𝜔𝑝
2 }

𝐴𝛾 (13)

where 𝛾 = 3.3 ; 𝐴𝛾 = 1 - 0.287 ln (𝛾); 𝜎 = 0.07, when 𝜔 < 𝜔𝑝; 𝜎 = 0.09,
hen 𝜔 > 𝜔𝑝

.3. Validation of the numerical model for breaking irregular waves over a
ubmerged bar

The numerical model is validated for breaking irregular waves over
n impermeable submerged bar by comparing the numerical results
ith the experiments by Beji and Battjes (1993). In the experimental

etup, the length of the wave flume is 37.70 m, the width is 0.8 m and
he height is 0.75 m. The still water level over the horizontal bottom
s 𝑑 = 0.4 m. In the experiments, a piston type wavemaker was used
or generating irregular waves based on the JONSWAP spectrum. A
ubmerged trapezoidal bar with a weather side slope of 1:20 and a 2 m
ong horizontal crest followed by a 1:10 lee side slope was installed at

distance of 𝑥 = 6 m from the wavemaker. Eight wave gauges were
nstalled along the length of the wave flume in the experimental setup
o measure the free surface elevation. A two-dimensional numerical
ave tank is used to simulate the experiments described above. The
umerical setup including the wave gauge locations is illustrated in
ig. 1.

The numerical tests are performed for the grid convergence study
ith input 𝐻𝑠 = 0.054 m and the spectral peak period 𝑇𝑝 =

2𝜋
𝜔𝑝

= 2.5 s
or four different uniform grid sizes 𝑑𝑥 = 0.10 m, 0.05 m, 0.01 m and
.005 m for the wave gauge located at 𝑥 = 11 m. Fig. 2 presents the
omparison of experimental and numerical spectral wave density at 𝑥 =
1 m with 𝑑𝑥 = 0.10 m (total number of mesh elements = 3440), 0.05 m
total number of mesh elements = 13 760), 𝑑𝑥 = 0.01 m (total number
f mesh elements = 344 000), and 𝑑𝑥 = 0.005 m (total number of mesh
lements = 1.38 million). The wall time (simulation time) is around
h with 𝑑𝑥 = 0.10 m, 12 h with 𝑑𝑥 = 0.05 m, 120 h for case with
𝑥 = 0.01 m and 230 h for case with 𝑑𝑥 = 0.005 m. The simulations
re performed to obtain 200 s of the flow data. Furthermore, 128
rocessors are used for the present simulations. The computations are
onducted on the supercomputer which is based on the Intel Xeon E5-
670 processor with 2.6 GHz speed and a memory of 2 GB per core.
he present simulations employ the Cartesian grid approach, which
eans that the grid size is uniform in both directions for a 2D wave

ank (dx = dy). The spectral densities 𝑆𝜂 are normalized by the total
spectral density at WG1 (x = 6 m). It is observed that the numerical
results with 𝑑𝑥 = 0.10 m and 0.05 m underestimate the peak spectral
density by 45% and 26%, respectively. Also, the spectral density in the
higher frequency range (0.75 Hz–2.0 Hz) is not correctly represented.
This is due to the insufficient number of cells per wavelength. The
difference between the peak experimental and numerical spectral wave
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Fig. 1. Numerical setup with the wave gauge positions for a submerged bar in the numerical wave tank.
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Fig. 2. Comparison between the numerical results and the experimental data (a) Grid
convergence study for the wave gauge located at 𝑥 = 11 m. Red line for experiments;
orange line for 𝑑𝑥 = 0.005 m; dashed black line for 𝑑𝑥 = 0.01 m; blue line for 𝑑𝑥

0.05 m; solid black line for 𝑑𝑥 = 0.10 m. (For interpretation of the references to
olour in this figure legend, the reader is referred to the web version of this article.)

ensity reduces to 3% and the spectral wave density at all frequencies is
epresented with a reasonable accuracy with 𝑑𝑥 = 0.01 m and 0.005 m.
he increase in accuracy on changing 𝑑𝑥 from 0.01 m to 0.005 m is
ot very significant, but the computational costs increase by almost a
actor of 2. Thus, 𝑑𝑥 = 0.01 m is chosen for the further simulations. The
eduction in the spectral density is due to the loss of energy during the
ave breaking process. For the wave gauges located on the downslope,
large reduction in incident spectral density is observed because most
f the waves in the irregular wave train have already broken and a
arge amount of the wave energy has already been dissipated during
he breaking and redistributed during the wave decomposition process.
ig. 3 presents the comparison of 𝑆𝜂 for the wave surface elevations at
he six different wave gauge locations 𝑥 = 11 m, 12 m, 13 m, 15 m,
6 m and 17 m with 𝑑𝑥 = 0.01 m.

Correlation coefficient (𝑅) (Van Loco et al., 2002) is also calculated
o compare numerical and experimental spectral wave densities. 𝑅 can
ave a maximum value of 1 and it would mean a perfect correlation.
he spectral peak and energy distributions are well represented for
G2 at 𝑥 = 11 m with 𝑅 = 0.997 (Fig. 3a). A major portion of the

pectral density lies between the frequency range from 0 to 1.5 Hz. At
= 12 m (WG3), the still water depth is reduced to its minimum value

esulting in further shoaling and the value of 𝑅 is 0.993 (Fig. 3b). The
eak value of the spectrum is slightly reduced and the wave spectrum
ecomes broader (0 Hz to 2 Hz) as compared to the spectrum for
he previous wave gauge location (0 Hz to 1.7 Hz). This is due the
ncreasing contribution of the wave energy of the shorter waves, as can
e expected during the shoaling process. This observation is consistent
ith the experiments. Fig. 3c shows the results at 𝑥 = 13 m (WG4)
nd has 𝑅 = 0.992. At this location, many waves in the wave train
ave already broken and the peak of the spectrum is further reduced.
he contribution of wave energy towards higher frequencies is further
4

p

ncreased. The wave gauge located at 𝑥 = 15 m (WG6, on the lee
ide slope of the bar) indicates further reduction of the spectrum with
nergy transfer towards higher frequencies with 𝑅 = 0.995 (Fig. 3d).
his is caused by the wave decomposition process attributed to the

ncreasing water depth on the lee side of the slope (Kamath et al.,
017). The waves are decomposed into secondary and tertiary compo-
ents, visible through the multiple peaks at the higher frequencies in
he wave spectrum. The total energy spectral density of the wave train
s also considerably reduced (Figs. 3e with 𝑅 = 0.993 and 3f with 𝑅 =
.992); the redistribution of the wave energy takes place and the energy
rom the primary peak is transferred towards the secondary and tertiary
eaks at the higher frequencies. The size of the sampling interval for
FT and the spectral smoothening process might be the reason for some
rregularities in the wave spectra.

. Breaking irregular waves over impermeable slopes

Alagan Chella et al. (2015, 2016) have performed a numerical
tudy on the breaking of regular waves and compared their numerical
esults with the experiments by Ting and Kirby (1996). The present
nvestigation focuses on breaking irregular waves over slopes. The
etup used in the present study is similar to that of Ting and Kirby
1996). The spectral wave steepness 𝑠 for the irregular waves is defined
s:

=
2𝜋𝐻𝑠𝑜

𝑔𝑇 2
𝑝

(14)

where, 𝐻𝑠𝑜 is the offshore significant wave height and 𝑇𝑝 is the spectral
peak period.

The breaking of regular waves can be defined by four types: spilling,
plunging, collapsing and surging depending on the surf similarity pa-
rameter. The surf similarity parameter at breaking (𝜉𝑏) is a function
of the wave steepness at breaking (𝑠𝑏) and the slope of the seabed
(𝑚) (Battjes, 1974).

𝜉𝑏 =
𝑚

√

𝑠𝑏
; 𝑠𝑏 =

2𝜋𝐻𝑏

𝑔𝑇 2
(15)

⎧

⎪

⎨

⎪

⎩

𝜉𝑏 < 0.4 Spilling
0.4 < 𝜉𝑏 < 2.0 Plunging
𝜉𝑏 > 2.0 Surging or Collapsing

(16)

The spectral surf similarity parameter (𝜉) is defined as a function of
the spectral wave steepness (𝑠) and the slope of the seabed (𝑚).

𝜉 = 𝑚
√

𝑠
(17)

The breaker depth index (𝛾𝑏) and breaker height index (𝛺𝑏) are two
arameters used to investigate the breaking characteristics of waves.
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Fig. 3. Comparison of numerical and experimental spectral wave density for 𝑑𝑥 = 0.01 m at different wave gauge locations.
They are defined as:

𝛾𝑏 =
𝐻𝑏
𝑑𝑏

;𝛺𝑏 =
𝐻𝑏
𝐻𝑠𝑜

(18)

where, 𝑑𝑏 is the depth at breaking, 𝑇 is the zero-crossing period of
individual waves at breaking, 𝐻𝑏 is the local wave height at breaking
and 𝐻𝑠𝑜 is the offshore significant wave height.

Kjeldsen and Myrhaug (1978) defined the steepness and asymmetry
parameters for the local wave crest asymmetry at breaking: the wave
crest front steepness (𝜀), the wave crest rear steepness (𝛿), the horizontal
asymmetry factor (𝜇) and the vertical asymmetry factor (𝜆). The present
study uses these steepness and asymmetry parameters to study the
geometric properties of breaking irregular waves over different slopes.

3.1. Computational setup and test cases

The two-dimensional numerical wave tank is 20.5 m long and 1 m
high as shown in Fig. 4. The water depth is 𝑑 = 0.4 m. The wave
breaking is prominently influenced by the spectral steepness of the
incident wave spectrum and the slope of the seabed. The numerical
simulations are performed for three different seabed slopes 𝑚 = 1/25,
1/35 and 1/45. Wave spectra with four different wave steepnesses 𝑠 =
0.0142, 0.0267, 0.0445 and 0.0623 are tested on each slope. Therefore,
an investigation of 12 different cases in total is performed (Table 1). All
simulations are run for 𝑡 = 200 s with the number of wave components
𝑁 = 499. Nine wave gauges are placed along the numerical wave tank.
5

The distance of the wave gauge (𝑥) is measured from the toe of the slope
(Fig. 4 for 𝑚 = 1:35). The locations of the wave gauges are changed
with each change in slope, i.e. becoming more crowded together for
the 1:25 slope, and 𝐿𝑠 is the length of the slope which shortens and
is different with the increasing slope value (𝑚). Occurrence of wave
breaking, changes in the spectral characteristics and the wave transfor-
mations are analysed and presented for all 12 cases. Further, the study
investigates the energy level evolution, the breaker characteristics and
the geometric properties of breaking irregular waves over slopes. In
order to demonstrate the effect of environmental parameters on the
breaking characteristics, two different scenarios are presented in more
detail: the wave spectrum with lower spectral steepness on a steeper
slope (case A1) and the wave spectrum with higher spectral steepness
on a milder slope (case C4).

3.2. Wave transformation

3.2.1. Irregular wave breaking process
When the irregular wave train approaches the shore, the wave

height, wave length and the energy content of each wave component
change as the water depth decreases. The wave length becomes shorter
as the wave height and wave energy increase due to the shoaling
process. This process continues until the fluid particle velocity exceeds
the wave crest velocity which leads to wave breaking. Fig. 5 presents
the computed free surface profile with velocity variations during the
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Fig. 4. Setup of the numerical wave tank used in the study (Side view and representing
the setup for simulations with slope 𝑚 = 1:35 and slope length 𝐿𝑠 = 16.5 m).

Table 1
Simulation cases for study of wave propagation over impermeable slope.

Sim. No. Slope 𝑚 𝐻𝑠𝑜 (m) 𝑇𝑝 (s) Spectral
steepness 𝑠

Spectral surf
similarity parameter 𝜉

A1

1:25

0.032 1.2 0.0142 0.3357
A2 0.06 1.2 0.0267 0.2448
A3 0.10 1.2 0.0445 0.1896
A4 0.14 1.2 0.0623 0.1602

B1

1:35

0.032 1.2 0.0142 0.2398
B2 0.06 1.2 0.0267 0.1748
B3 0.10 1.2 0.0445 0.1354
B4 0.14 1.2 0.0623 0.1145

C1

1:45

0.032 1.2 0.0142 0.1865
C2 0.06 1.2 0.0267 0.1360
C3 0.10 1.2 0.0445 0.1053
C4 0.14 1.2 0.0623 0.0890

wave propagation over the slope at 𝑡 = 52.7 s, 52.9 s, 53.05 s, 53.2 s,
53.27 s and 53.39 s, respectively. When the waves propagate over the
slope, they undergo shoaling which is observed by the increase in wave
crest heights. As the waves propagate further over the slope, the main
wave crest becomes almost vertical which denotes the onset of wave
breaking as can be seen in Fig. 5a. The wave breaking is embarked
by the small water jet at the wave crest. The profile of the wave crest
becomes highly deformed and asymmetric. When the fluid particle
velocity at the wave crest exceeds the wave celerity, an over-turning
motion of the wave crest is induced (Fig. 5b). The overturning wave
crest breaks with an encasement of an air pocket (Fig. 5c), referred to
as the splash-up phenomenon and generates another small jet of water
in the downstream direction (Figs. 5d, 5e, 5f). The results for the wave
6

profile deformation during the breaking process are consistent with
previous studies (Lubin et al., 2006; Christensen, 2006; Alagan Chella
et al., 2016).

Fig. 6 presents the distribution of the normalized significant wave
height (𝐻𝑠∕𝐻𝑠𝑜) versus the normalized distance along the wave tank
(𝑥∕𝐿𝑠) for (a) cases A1–A4 with 𝑚 = 1:25 (b) cases B1–B4 with 𝑚 =
1:35 and (c) cases C1–C4 with 𝑚 = 1:45, where 𝐿𝑠 is the length of the
slope (in the order of the lower to the upper symbols in Fig. 6). For a
given slope, the waves with lower spectral wave steepness 𝑠 undergo
more shoaling and have a higher value of 𝐻𝑠∕𝐻𝑠𝑜 in the breaking zone
compared to the waves with higher spectral wave steepness 𝑠. For case
A4 (𝑠 = 0.0623, 𝑚 = 1:25), the wave height becomes 1.29𝐻𝑠𝑜 in contrast
to case A1, where the wave height is 1.37𝐻𝑠𝑜 in the breaking zone. As
expected, the wave breaking zone (around which most of the waves
in the irregular wave train break, i.e. 𝑥∕𝐿𝑠) shifts farther offshore as
the spectral wave steepness increases for a given slope. The waves
with larger 𝑠 lose most of the incident wave energy when they reach
shallower water depths due to the breaking at relatively deeper depths.
The waves with lower 𝑠 contain relatively more energy when they
approach shallower water depths and thus, a higher value of 𝐻𝑠∕𝐻𝑠𝑜
(in comparison with the waves with larger 𝑠), and the breaking zone is
relatively more onshore.

3.2.2. Energy level evolution
This section demonstrates the energy transfer between the different

frequency ranges of the wave spectrum by tracking the wave energy
levels at different frequency ranges during the wave shoaling and
wave breaking processes. Five different frequency ranges of the wave
spectrum are considered: spectral peak region (𝑓∕𝑓𝑝 = 0.9–1.1, 𝐸1),
above-peak region (𝑓∕𝑓𝑝 = 1.2–1.5, 𝐸2), higher-frequency region (𝑓∕𝑓𝑝
= 1.5–2.5, 𝐸3), low frequency range (0.5–0.9, 𝐸4), significantly high
frequency region (2.5–5, 𝐸5) and total energy 𝐸 (𝐸1 + 𝐸2 + 𝐸3 + 𝐸4
+ 𝐸5). This is similar to the methodology used by Tian et al. (2011) to
investigate the energy transfer for breaking focused wave groups. These
energy levels are non-dimensionalized with the total incident wave
energy 𝐸0𝑚. Fig. 7 presents the variation of the energy levels at different
frequency ranges versus the normalized distance in the NWT. For case
A1 (𝑠 = 0.0142, 𝑚2 = 1:25), as the waves propagate over the slope,
the energy levels from the spectral peak region 𝐸1 and low frequency
range 𝐸4 are slightly reduced due to wave shoaling, and this energy
is transferred to the above-peak region 𝐸2 as noticed by an increase
in 𝐸2 (Fig. 7a). The energy levels during the wave shoaling process
in the higher-frequency region 𝐸3 and the significantly high frequency
region 𝐸 remain almost constant. After breaking, the energy from the
5
Fig. 5. Computed wave profile with the horizontal velocity variation (m/s) during the wave propagation over sloping seabed (case B4) at 𝑡 = (a) 52.7 s (b) 52.9 s (c) 53.05 s (d)
53.2 s (e) 53.27 s (f) 53.39 s.
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Fig. 6. Variation of the normalized significant wave height versus the normalized distance for different steepnesses for 𝑚 = (a) 1:25 (cases A1–A4); (b) 1:35 (cases B1–B4); (c)
1:45 (cases C1–C4). Open circles represent 𝑠 = 0.0142; black circles for 𝑠 = 0.0267; triangles for 𝑠 = 0.0445; inverted triangles for 𝑠 = 0.0623.
Fig. 7. Variation of the energy levels versus the normalized distance in NWT for (a) case A1 (𝑠 = 0.0142, 𝑚 = 1:25); (b) case C4 (𝑠 = 0.0623, 𝑚 = 1:45). Open circles represent
1(𝑥)∕𝐸0𝑚; squares represent 𝐸2(𝑥)∕𝐸0𝑚; white rhombus represent 𝐸3(𝑥)∕𝐸0𝑚; plus represent 𝐸4(𝑥)∕𝐸0𝑚; triangles represent 𝐸5(𝑥)∕𝐸0𝑚; dark rhombus represent 𝐸(𝑥)∕𝐸0𝑚.
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pectral peak region is significantly reduced (54%). This is due to the
nergy dissipation during breaking and energy transfer towards 𝐸2 and
3, as noticed by the increase in their energy levels after breaking.
he energy levels in the significantly high frequency range 𝐸5 are not
ffected much. For case C4, a similar behaviour is observed (Fig. 7b).
owever, the wave breaking occurs at larger water depths for this
ase, due to which the energy dissipation from the spectral peak 𝐸1
or case C4 occurs earlier and some of the energy is transferred to the
igher-frequencies in 𝐸2 and 𝐸3.

.2.3. Free surface elevation skewness and spectral bandwidth
The skewness and kurtosis of the free surface elevation 𝜂 measures

he deviation from the linear theory with reference to the mean 𝜂 value.
he skewness 𝛽 and kurtosis are defined respectively, as (Goda, 2010):

= 1
𝜂3𝑟𝑚𝑠

1
𝑁

𝑁
∑

𝑖=1
(𝜂𝑖 − 𝜂̄)3 (19)

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 1
4

1
𝑁
∑

(𝜂𝑖 − 𝜂̄)4. − 3 (20)
7

𝜂𝑟𝑚𝑠 𝑁 𝑖=1
A

where 𝜂̄ is the mean value and 𝜂𝑟𝑚𝑠 is the rms (root-mean-square) value.
The bandwidth of the spectrum 𝜈 quantifies the broadness or nar-

rowness of the spectrum (Longuet-Higgins, 1975):

𝜈2 =
𝑚0𝑚2

𝑚2
1

− 1 (21)

here, 𝑚𝑛 is the spectral moment defined as:

𝑛 = ∫

∞

0
𝜔𝑛𝑆(𝜔)𝑑𝜔; 𝑛 = 0, 1, 2... (22)

ig. 8 presents the distribution of the skewness (𝛽) along the wave tank
𝑥∕𝐿𝑠) for (a) cases A1–A4 with 𝑚 = 1:25, (b) cases B1–B4 with 𝑚 =
:35, and (c) cases C1–C4 with 𝑚 = 1:45 (in the order of the lower
o the upper symbols in Fig. 8). An increase in 𝛽 is observed in the
hoaling zone and a decreasing trend is noticed inside the surf zone (the
urf zone starts from the location of wave breaking and extends till the
each). The values of 𝛽 for cases A4 (𝑠 = 0.0623, 𝑚 = 1:25) and C4 (𝑠 =
.0623, 𝑚 = 1:45) are 0.87 and 0.84, respectively at the breaking point.
fter breaking, the skewness value is reduced to 𝛽 = 0.52 for case A4
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Fig. 8. Variation of the skewness versus the normalized distance in NWT for different steepnesses for 𝑚 = (a) 1:25 (cases A1–A4); (b) 1:35 (cases B1–B4); (c) 1:45 (cases C1–C4).
Open circles represent 𝑠 = 0.0142; black circles for 𝑠 = 0.0267; triangles for 𝑠 = 0.0445; inverted triangles for 𝑠 = 0.0623.
Fig. 9. Variation of the kurtosis versus the normalized distance in NWT for different steepnesses for 𝑚 = (a) 1:25 (cases A1–A4); (b) 1:35 (cases B1–B4); (c) 1:45 (cases C1–C4).
Open circles represent 𝑠 = 0.0142; black circles for 𝑠 = 0.0267; triangles for 𝑠 = 0.0445; inverted triangles for 𝑠 = 0.0623.
i
s

and 𝛽 = 0.54 for case C4. Fig. 9 presents the distribution of the kurtosis
along the wave tank (𝑥∕𝐿𝑠) for (a) cases A1–A4 with 𝑚 = 1:25, (b) cases
B1–B4 with 𝑚 = 1:35, and (c) cases C1–C4 with 𝑚 = 1:45 (in the order of
the lower to the upper symbols in Fig. 9). The changes in the skewness
and kurtosis are mainly caused by the increasing contribution of the
higher-frequency wave components during the wave propagation over
the slope. The waves with a smaller value of 𝑠 are relatively longer,
and interact more with the slope (Herbers et al., 2002). The results are
consistent with the findings reported by Goda (2010). For a given wave
steepness, waves on a steeper slope have a slightly larger skewness and
kurtosis compared to waves on a relatively milder slope. However, the
incident wave steepness is found to be the major factor in estimating
the skewness and kurtosis.

Fig. 10 presents the distribution of the normalized bandwidth (𝜈̂)
over the distance along the wave tank (𝑥∕𝐿𝑠) for (a) cases A1–A4 with
𝑚 = 1:25, (b) cases B1–B4 with 𝑚 = 1:35, and (c) cases C1–C4 with 𝑚
= 1:45 (in the order of the lower to the upper symbols in Fig. 10). The
bandwidth 𝜈̂ is normalized with the spectral bandwidth measured at
8

the wave gauge located closest to the wave generation. In general, the
spectral bandwidth increases with wave shoaling, reaches its maximum
value at the breaking point, and then decreases after breaking. For a
given slope, the maximum 𝜈̂ at breaking is larger for waves with a
higher spectral wave steepness 𝑠. The value of 𝜈̂ is 1.49 at the breaking
point and reduces to 1.39 after breaking for case A4. For case A1, the
value of 𝜈̂ becomes 1.44 at the breaking point and reduces to 1.17
after breaking. For a given spectral wave steepness 𝑠, the bandwidth
ncrease is slightly larger for steeper seabed slopes compared to milder
lopes. The values of 𝜈̂ for cases A4 (𝑠 = 0.0623, 𝑚 = 1:25) and C4 (𝑠 =

0.0623, 𝑚 = 1:45) are 1.49 and 1.42, respectively at breaking. It is also
noticed from Fig. 10 that the bandwidth increase is higher for waves
with larger values of 𝑠. The increase in the spectral bandwidth is due
to the growth of the higher-frequency components and redistribution
of energy across the wave spectrum via energy transfers as observed in
Fig. 7. Therefore, the shoaling process leads to the widening of the wave
spectrum (i.e. energy transfer from the peak region to other frequency
components). After breaking, the spectral bandwidth is reduced mainly
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Fig. 10. Variation of the normalized bandwidth versus the normalized distance for different steepnesses for 𝑚 = (a) 1:25 (cases A1–A4); (b) 1:35 (cases B1–B4); (c) 1:45 (cases
C1–C4). Open circles represent 𝑠 = 0.0142; black circles for 𝑠 = 0.0267; triangles for 𝑠 = 0.0445; inverted triangles for 𝑠 = 0.0623.
Fig. 11. Variation of the percentage of wave breaking 𝑃𝑏 (a) versus the normalized simulation period 𝑡∕𝑇𝑝 (𝑚 = 1:35, cases B1 to B4); (b) versus spectral wave steepness 𝑠 for
ifferent seabed slopes.
ue to the energy loss in the peak region during breaking. These
bservations are consistent with the results reported by Tian et al.
2011) for breaking focused waves.

.3. Individual wave breaking

An irregular wave train is composed of regular wave components
f different wave heights and periods. The geometric criteria based on
he wave slope limit are used to determine breaking waves (Kjeldsen
nd Myrhaug, 1978; Bonmarin, 1989). The percentage of total number
f breaking waves in a given irregular wave train including breaking
t all locations 𝑃𝑏 is defined as:

𝑏 =
𝑁𝑏
𝑁𝑖

× 100 (23)

here 𝑁𝑏 is the total number of breaking waves in a given irregular
ave train including breaking at all locations s and 𝑁𝑖 is the total
umber of incident waves in a given irregular wave train.

Fig. 11a shows the percentage of total number of breaking waves
n a given irregular wave train including breaking at all locations (𝑃𝑏)

versus the normalized simulation time (𝑡∕𝑇𝑝) for a given seabed slope
𝑚 = 1 ∶ 35 (case B1 to B4), where 𝑡 is the simulation time. It is observed
from Fig. 11a that 𝑃𝑏 for case B4 (𝑠 = 0.0623) has the highest value of
29%, while for case B1 (𝑠 = 0.0142) this value is 21%. The value of
𝑃𝑏 is larger for the higher spectral wave steepness at each value of the
normalized time step (𝑡∕𝑇𝑝) for a given slope. However, the difference
in 𝑃𝑏 values until 𝑡∕𝑇𝑝 = 50 for the different wave steepness cases
is very small. The 𝑃𝑏 value increases sharply after 𝑡∕𝑇𝑝 = 50 for the
wave spectra with the higher wave steepness (𝑠 = 0.0445 and 0.0623)
in comparison to the low steepness cases. The early wave breaking is
9

induced for the higher wave steepnesses; the individual waves possess
higher incident wave heights and they break farther offshore. The
waves with lower wave steepness undergo more wave shoaling and
wave deformation, suggesting more onshore wave breaking. For the
case with the largest spectral wave steepness (s) and steepest slope (m)
(case A4), 𝑃𝑏 is largest (38.9%), while for the case with the lowest 𝑠 and
lowest 𝑚 (case C1), 𝑃𝑏 is smallest (21.5%). Fig. 11b shows 𝑃𝑏 versus 𝑠
for different 𝑚. As expected, for a given steepness it appears that 𝑃𝑏 is
larger for the steeper slope.

3.4. Breaking wave characteristics

Fig. 12 presents the breaker depth index (𝛾𝑏) (Fig. 12a) and the
breaker height index (𝛺𝑏) (Fig. 12b) versus the surf similarity param-
eter at breaking (𝜉𝑏) for cases A1 and C4. For case A1 (𝑠 = 0.0142,
𝑚 = 1:25), it is observed that the values of 𝛾𝑏 and 𝛺𝑏 decrease as 𝜉𝑏
increases and most of the waves break as plunging breakers. When the
slope is relatively steep (𝑚 = 1:25), the waves break farther offshore
with lower 𝐻𝑏 and with more reflections from the slope for 𝜉𝑏>0.4. An
expected overall range as per the model given by Ostendorf and Madsen
(1979) for 𝛾𝑏 is between 0.3 and 2.0. Most of the 𝛾𝑏 values are in this
range as shown in Fig. 12a. The values lower than this range might
indicate steepness-limited breaking due to wave-wave interactions such
as overtaking and/or reflection, while the values higher than this range
might be due to the coincidence of a reflected wave trough and an
incident wave crest as it nears incipient breaking, which would shift
the onset of breaking of the incident wave into shallower water. The
low frequency waves propagate faster and experience more reflections

from the slope (according to Battjes (1974), the reflection coefficient
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Fig. 12. Variation of the (a) breaker depth index 𝛾𝑏; (b) breaker height index 𝛺𝑏 versus the surf similarity parameter (logarithmic x-axis) at breaking 𝜉𝑏. Left side shows spilling
breakers (case C4) and right side shows plunging breakers (case A1). Open circles represent case A1 (𝑠 = 0.0142, 𝑚 = 1:25); triangles for case C4 (𝑠 = 0.0623, 𝑚 = 1:45); crosses
resent results by using the model given by Ostendorf and Madsen (1979).
s directly proportional to 𝜉2𝑏 ). The plunging breakers experience more
eflections due to larger 𝜉2𝑏 . Only few waves have a value of more than
for 𝛺𝑏 (case A1), which means that only few waves grow more than
𝑠𝑜 during the shoaling process and have a breaking height 𝐻𝑏 higher

han 𝐻𝑠𝑜 in the irregular wave train. For case C4 (s = 0.0623, m = 1:45),
he trend of 𝛾𝑏 increases and 𝛺𝑏 decreases as 𝜉𝑏 increases. Here, all the
aves break as spilling breakers and have values for 𝛺𝑏 lower than 1,
hich means that none of the waves in the irregular wave train have a
igher 𝐻𝑏 than 𝐻𝑠𝑜 during the shoaling process. The spilling breakers
xperience less reflections due to lower 𝜉2𝑏 . On a relatively milder
lope, the waves break more onshore at shallower water depths and
xperience more deformation. The wave spectra with larger spectral
ave steepness 𝑠 on milder slopes undergo less deformation (Hajime
nd Kirby, 1992). Specifically, for the irregular wave train dominated
y plunging breakers, the breaking is also affected by their interaction
ith the slope.

In order to investigate the statistics of the breaker indices, the
umulative distribution functions (CDF) for both breaker indices (𝛾𝑏 and
𝑏) are analysed. Figs. 13 and 14 present the cumulative distribution

unctions (CDF) for the normalized breaker indices 𝛾𝑏 and 𝛺̂𝑏, respec-
tively, for cases A1 and C4. The breaker indices are normalized with
their corresponding rms values. Two different distributions: the Weibull
distribution and the lognormal distribution, are tested. The lognormal
probability density function (PDF) is given by:

𝑝(𝑥) = 1

𝑥𝜎𝑙
√

2𝜋
𝑒𝑥𝑝{−

(ln𝑥 − 𝜇𝑙)2

2𝜎2𝑙
} (24)

here 𝜇𝑙 and 𝜎𝑙 represent the log mean and log standard deviation of
, respectively; the best fit values of 𝜇𝑙 and 𝜎𝑙 for 𝛾𝑏 and 𝛺̂𝑏 are given
n Table A.1.

The Weibull PDF is given by:

(𝑥) = 𝑏
𝑎
(𝑥
𝑎
)𝑏−1𝑒𝑥𝑝{−(𝑥

𝑎
)𝑏} (25)

here b is the shape parameter and a is the scale parameter; the best
it values of a and b for 𝛾𝑏 and 𝛺̂𝑏 are presented in Table A.1.

Figs. 13a and 13b indicate that the lognormal distribution is more
ppropriate for the breaker depth index 𝛾𝑏 due to a better fit with

the numerical data compared to the Weibull distribution for both
cases: spilling and plunging breakers (cases C4 and A1). This is also
obvious by comparing the log-likelihood (𝐿𝐿) values in Table A.1:
.𝑒. , the 𝐿𝐿 values can be used to compare the best fit between two
istributions. A relatively higher (or smaller negative) 𝐿𝐿 value gives
better distribution fit for the data (Kececioglu, 1993).

The normalized breaker height index (𝛺̂𝑏) follows the trend similar
to 𝛾𝑏 for case A1 (Fig. 14a). The lognormal distribution gives the best fit
in case of the irregular wave train dominated by the plunging breakers
(case A1). For case C4 (spilling breakers), the Weibull distribution is
more appropriate as suggested by a better fit to the numerical data
10

(Fig. 14b), see Table A.1.
Fig. 13. CDF fits in the Weibull scale for the normalized breaker depth index 𝛾𝑏 for
(a) case A1 (𝑠 = 0.0142, 𝑚 = 1:25) (b) case C4 (𝑠 = 0.0623, 𝑚 = 1:45). Black dots
for numerical data; black dashed line for Weibull fit; solid black line for lognormal fit
(for details of the CDF fits, see Table A.1 in Appendix).

Fig. 14. CDF fits in the Weibull scale for the normalized breaker height index 𝛺̂𝑏 for
(a) case A1 (𝑠 = 0.0142, 𝑚 = 1:25); (b) case C4 (𝑠 = 0.0623, 𝑚 = 1:45). Black dots
for numerical data; black dashed line for Weibull fit; solid black line for lognormal fit
(for details of the CDF fits, see Table A.1 in Appendix).
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h

Fig. 15. Definitions of wave profile geometry (Kjeldsen and Myrhaug, 1978) (a) crest front wave steepness 𝜀; (b) crest rear wave steepness 𝛿; (c) vertical asymmetry factor 𝜆; (d)
orizontal asymmetry factor 𝜇.
Fig. 16. Variation of the wave profile geometric properties versus the surf similarity parameter at breaking 𝜉𝑏 (logarithmic x-axis) for cases A1 (𝑠 = 0.0142, 𝑚 = 1:25) and case
C4 (𝑠 = 0.0623, 𝑚 = 1:45) (a) 𝜀; (b) 𝛿; (c) 𝜇; (d) 𝜆. Left side shows spilling breakers (case C4) and right side shows plunging breakers (case A1). Open circles represent case A1
(𝑠 = 0.0142, 𝑚 = 1:25); triangles for case C4 (𝑠 = 0.0623, 𝑚 = 1:45).
3.5. Geometric properties of wave profile at breaking

During the breaking process, the waves become more steep and
asymmetric. The present study further investigates the geometric prop-
erties of the wave profile at breaking by using the steepness and
asymmetry parameters (Fig. 15) defined by Kjeldsen and Myrhaug
(1978).

3.5.1. Study of the breaker shape with the surf similarity parameter at
breaking

The variation of different steepness and asymmetry parameters of
the wave crest with the surf similarity parameter at breaking (𝜉𝑏) is
investigated here. Figs. 16a, 16b, 16c and 16d present the crest front
wave steepness (𝜀), the crest rear wave steepness (𝛿), the horizontal
asymmetry factor (𝜇) and the vertical asymmetry factor (𝜆), respec-
tively, versus the surf similarity parameter at breaking (𝜉𝑏) for cases
A1 and C4. The crest front steepness (𝜀) values decrease in general,
as 𝜉 increases for both cases A1 and C4 (Figs. 16a and 16b). The
11

𝑏

values of 𝜀 for case C4 are slightly larger as compared to case A1,
which is dominated by plunging breakers. The crest rear steepness
(𝛿) decrease slightly as 𝜉𝑏 increases for both, case A1 (dominated by
plunging breakers) and case C4 (spilling breakers). The present findings
are consistent with the results for breaking regular waves over slopes
by Alagan Chella et al. (2015). However, some scatter is observed
in the values of the breaker shape parameters. This could be due
to wave–wave interactions and the superimposition of the reflected
waves with the incident waves. The wave crest becomes more steep
and skewed when the irregular wave train propagates over milder
slopes (for spilling breakers) compared to steeper slopes (for plunging
breakers). The low frequency waves (long waves) propagate faster and
undergo more deformation. In case of the high frequency (shorter
waves) waves, they interact less with the slope and the wave crest
becomes relatively less deformed. The present results further confirm
the findings for spilling breakers by Lader (2002).

It is noticed from Figs. 16c and 16d that 𝜇 and 𝜆 increase slightly
as 𝜉 increases for both cases A1 and C4. For the spilling breaker, the
𝑏
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Fig. 17. CDF fits in the Weibull scale for the normalized crest front steepness 𝜀̂ for
(a) case A1 (𝑠 = 0.0142, 𝑚 = 1:25); (b) case C4 (𝑠 = 0.0623, 𝑚 = 1:45). Black dots
for numerical data; black dashed line for Weibull fit; solid black line for lognormal fit
(for details of the CDF fits, see Table A.1 in Appendix).

Fig. 18. CDF fits in the Weibull scale for the normalized crest rear steepness 𝛿 for (a)
case A1 (𝑠 = 0.0142, 𝑚 = 1:25); (b) case C4 (𝑠 = 0.0623, 𝑚 = 1:45). Black dots for
numerical data; black dashed line for Weibull fit; solid black line for lognormal fit (for
details of the CDF fits, see Table A.1 in Appendix).

front and rear faces of the wave crest become steeper with a gradual
slight increase of the vertical asymmetry, and the forward wave trough
flattens at wave breaking. For the plunging breaker, the front face of the
wave crest becomes very steep without much change in the rear face
of the wave crest due to more offshore wave breaking and undergoes
less deformation.

3.5.2. Statistics for breaker shape parameters
Figs. 17 and 18 present the CDFs for the normalized crest front

steepness (𝜀̂) and the normalized crest rear steepness (𝛿) for cases A1
and C4, i.e. 𝜀 and 𝛿 are normalized with their rms values 𝜀𝑟𝑚𝑠 and 𝛿𝑟𝑚𝑠,
respectively. Figs. 17a and 17b indicate that the lognormal distribution
12
Fig. 19. CDF fits in the Weibull scale for the normalized vertical asymmetry factor 𝜆̂
for (a) case A1 (𝑠 = 0.0142, 𝑚 = 1:25); (b) case C4 (𝑠 = 0.0623, 𝑚 = 1:45). Black dots
or numerical data; black dashed line for Weibull fit; solid black line for lognormal fit
for details of the CDF fits, see Table A.1 in Appendix).

able 2
ignificance of wave crest parameters with respect to the sea state (Myrhaug and
jeldsen, 1984, 1986).
Wave crest geometry parameters Wave height Sea state

High Low Choppy sea
Low High Heavy swell
High High Rough sea with breaking waves

gives the best fit for 𝜀̂ for cases A1 and the Weibull distribution is better
suited for case C4 (spilling breaker, the Weibull and lognormal parame-
ters as well as the 𝐿𝐿 values for 𝜀̂ and 𝛿 are given in Table A.1). For the
crest rear steepness (𝛿), the lognormal distribution is more appropriate
and fits the numerical data in a satisfactory manner for both cases A1
and C4 as observed in Fig. 18. Myrhaug and Kjeldsen (1984) reported
that the Weibull distribution is the best fit for the normalized crest front
steepness for the given field data in deep water. This suggests that the
crest front steepness follows different distributions in deep and shallow
water which can be attributed to the wave transformations originated
by the changing water depths close to the coasts.

Fig. 19 presents the CDFs for the normalized vertical asymmetry
factor (𝜆̂) for cases A1 and C4, where 𝜆 is normalized with the rms
value 𝜆𝑟𝑚𝑠. The lognormal distribution is better suited for 𝜆̂ for case
A1 (plunging breaker) and the Weibull distribution is better suited
for case C4 (spilling breaker) as seen in Fig. 19. For the normalized
horizontal asymmetry factor (𝜇̂), none of the distributions give a good
fit. Therefore, the figures are not presented here. Myrhaug and Kjeldsen
(1984) reported that the lognormal distribution gives the best fit for the
normalized vertical asymmetry factor for deep water waves measured
in the field. According to Peregrine et al. (1980), the water accelera-
tions exceed the acceleration of gravity (𝑔) in a thin region on the front
face of the wave (up to about 5 𝑔) in the subsequent development of
the overturning wave crest. The region on and beneath the rear slope
of the wave has low fluid accelerations. This region ensures that the
high pressure gradients and wave asymmetry required to produce the
acceleration near the wave crest front can exist. The wave crest and
asymmetry parameters in combination with the breaker indices (which
gives information about 𝐻𝑏 and 𝑑𝑏) are important in describing the
rough sea state. They can further be used to assess the probability
of occurrence of steep and asymmetric waves in shallow water. The
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Table A.1
Table listing the details for different statistical parameters for the Weibull and lognormal distributions.

Distribution Parameters Case A1 Case C4

Normalized breaker depth index 𝛾̂𝑏

Weibull
a 1.05 1.05
b 2.93 2.85
LL −55.4 −49.4

Lognormal
𝜇𝑙 −0.12 −0.12
𝜎𝑙 0.37 0.37
LL −52.5 −44.8

Normalized breaker height index 𝛺̂𝑏

Weibull
a 1.06 1.06
b 3.20 4.80
LL −37.5 7.2

Lognormal
𝜇𝑙 −0.10 −0.06
𝜎𝑙 0.31 0.26
LL −25.9 −5.4

Normalized crest front wave steepness 𝜀̂

Weibull
a 0.99 1.04
b 2.07 2.89
LL −87.5 −53.8

Lognormal
𝜇𝑙 −0.26 −0.15
𝜎𝑙 0.55 0.49
LL −85.8 −80.9

Normalized crest rear wave steepness 𝛿

Weibull
a 0.15 0.97
b 1.42 1.79
LL 163.4 −88.8

Lognormal
𝜇𝑙 −2.26 −0.30
𝜎𝑙 0.74 0.52
LL 176.4 −69.5

Normalized vertical asymmetry factor 𝜆̂

Weibull
a 0.80 1.01
b 1.31 2.12
LL 106.85 −83.75

Lognormal
𝜇𝑙 −0.67 −0.26
𝜎𝑙 0.95 0.60
LL −106.2 −97.9
different combinations of the wave crest parameters suggest different
sea states (Table 2) (Myrhaug and Kjeldsen, 1984, 1986). It could be
important for the coastal and naval engineers for the performance and
reliability analysis of coastal structures and ships under severe sea
conditions (Ploeg, 1982).

4. Conclusions

A two-phase CFD model is used to investigate some unexplored
aspects of breaking irregular waves over sloping seabeds. The numer-
ical model is first validated for modelling of breaking irregular waves
over a submerged bar by comparing with the Beji and Battjes (1993)
experimental data at different wave gauge locations along the wave
tank during the complex wave transformation processes involving wave
shoaling and wave breaking.

An extensive numerical analysis is performed to study breaking
irregular waves over slopes using the setup similar to Ting and Kirby
(1996). The investigation is carried out for multiple incident irregular
wave trains propagating over different slopes. The wave breaking pro-
cess is initiated by an increase of wave crest height which is followed
by an overturning motion of the jet, resulting in the downward directed
motion of the water jet with an enclosed air pocket. First, the energy
transfer from the spectral peak region towards higher-frequencies is
investigated and its role in influencing the free surface elevation skew-
ness and spectral bandwidth during wave shoaling and wave breaking
processes is also highlighted. The incident wave parameters and sloping
sea bed play major roles in affecting the breaking wave characteristics
and wave crest geometric parameters. The wave crest deformation is
mainly affected by the length and steepness of the slope. The waves
with larger incident wave steepness undergo less deformation due to
farther offshore wave breaking at larger water depths. Further, cumu-
lative distribution fits are estimated for breaker indices and wave crest
geometric parameters. The following conclusions can be drawn from
the study:
13
• As expected, the percentage of breaking waves in the irregular
wave train increases as the spectral wave steepness or the steep-
ness of the slope over which the waves are propagating increases;
39% of the wave components in the steepest incident irregular
wave train (𝑠 = 0.0623) break during the propagation over the
steepest slope (𝑚 = 1:25). Most of these waves break farther
offshore at larger water depths.

• The non-linear energy transfer from the spectral peak region
(𝑓∕𝑓𝑝 = 0.9–1.1) to the above peak region (𝑓∕𝑓𝑝 = 1.2–1.5) and
higher-frequency region (𝑓∕𝑓𝑝 = 1.5–2.5) during the wave trans-
formation process governs the changes in free surface elevation
skewness and spectral bandwidth. The waves with lower incident
spectral wave steepness tend to have a higher skewness value
after breaking. The bandwidth of the wave spectrum increases
until wave breaking and decreases after breaking. The bandwidth
is mainly affected by the incident irregular wave parameters
rather than the seabed slope.

• For a steeper seabed slope (𝑚 = 1:25), most of the waves in the
wave spectrum with the lower spectral wave steepness break as
plunging breakers. For the wave spectrum with a higher spectral
wave steepness propagating over milder slopes (𝑚 = 1:45), the
number of waves breaking as spilling breakers increases.

• For the irregular waves with a lower spectral wave steepness (𝑠
= 0.0267) propagating over a steep seabed slope (𝑚 = 1:25), few
waves in the irregular wave train exceed 𝐻𝑠𝑜 during the shoaling
process and have a breaking height 𝐻𝑏 higher than 𝐻𝑠𝑜. For
the incident wave spectrum with a larger spectral steepness (𝑠
= 0.0623) over a milder slope (𝑚 = 1:45), none of the waves in
the irregular wave train have a higher 𝐻𝑏 than 𝐻𝑠𝑜 during the
shoaling process. The Weibull and lognormal distributions can be
used to predict the statistics of the breaker height and the breaker
depth indices, respectively.

• The crest front wave and crest rear wave steepnesses decrease as
the surf similarity parameter increases at breaking. The steepness
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of the forward face of the wave crest increases as the waves
approach the shore. The wave crest becomes more steep and
skewed when the irregular wave train propagates over milder
slopes (for spilling breakers) as compared to steeper slopes (for
plunging breakers). The low frequency waves (long waves) prop-
agate faster and undergo more deformation. In case of the high
frequency (shorter) waves, they interact less with the slope and
the wave crest becomes relatively less deformed. In general, the
lognormal distribution is suitable for determining the statistics of
wave steepness and asymmetry factors.
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