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Geometrically derived efficiency of slow immiscible displacement in porous media
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The efficiency of a displacement is the fraction of applied work over the change in free energy. This displace-
ment efficiency is essential for linking wettability to applied work during displacement processes. We quantify
the efficiency of slow immiscible displacements in porous media from pore space geometry. For this end, we
introduce pore-scale definitions for thermodynamically reversible (ison) and irreverisble (rheon) processes. We
argue that the efficiency of slow primary displacement is described by the geometry of the pore space for porous
media with a sufficient number of pore bodies. This article introduces how to calculate such geometry-based
efficiency locally, and integrating this local efficiency over the pore space yields an aggregate efficiency for
the primary displacement in the porous medium. Further, we show how the geometrical characterization of
the displacement efficiency links the efficiency to the constriction factor from transport processes governed by
the Laplace equation. This enables estimation of displacement efficiency from traditional and widely available
measurements for porous media. We present a thermodynamically based wettability calculation based on
the local efficiency and a method to approximate this thermodynamically based wettability from traditional
experiments.
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I. INTRODUCTION

Wettability is the relative adherence of different fluid
phases to the substrate. For a system of two fluid phases,
the phase with the largest affinity to the solid is called the
wetting phase, while the other is called the nonwetting phase.
In the first modern account of capillary action, going back
more than 200 years, Leslie noted that heat is liberated when
water or oil is added to paper or linen [1]. Paper and linen are
porous media, and air has a larger interfacial tension with the
solid surface inside these porous media than both water and
oil. The interfacial tension can be defined in terms of surface
energy per area, thus paper and linen filled with air have a
higher energy than when they are filled with water or oil. This
energy difference leads to liberation of heat when water or
oil is imbibing. Two decades after Leslie the link between
interfacial tensions and heat of wetting was further quantified
when different temperature increases was reported for a range
of fluid and solid combinations [2].

The wettability between two fluid phases can be regarded
as a force balance between the interfacial tensions, a perspec-
tive taken by Young a couple of years after the seminal work
of Leslie [3]. For a flat solid surface, the force balance in
direction of the surface includes the contact angle, i.e., the
angle between the fluid-fluid surface and the solid surface at
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the three-phase contact line. This contact angle is considered
a measure of wettability. In contrast to the force-balance per-
spective of Young, wettability can be viewed as an energy
balance of free energies of interfaces, a slightly newer view
tracing back to Gauss [4].

The energy-balance equation of Gauss can be extended by
including the free energy of three-phase contact lines [5], as
suggested in a footnote by Gibbs [[6], p. 455]. If one assumes
that the Hadwiger theorem holds for free energy in porous
media, then the free energy is described as a linear combina-
tion of intrinsic volumes of the fluid and solid phases [7,8].
This gives a free-energy description by fully 27 variables,
fortunately geometrical dependencies reduce the number to
seven independent geometrical descriptors consisting of the
interfacial areas, three-phase contact lines, interface curva-
tures and the Euler characteristic [9]. However, the interfacial
energies are often considered dominant in porous media with
μm-size pores. In the following we will therefore equate the
free energy with the interfacial energies, assuming that other
contributions to the free energy are of minor importance.

When equating the free energy of a system consisting of
two fluid-phases inside a porous medium with the interfacial
energies, the work applied to the system during a reversible
displacement process can be equated with changes in the
interfacial energies [10,11]. When one incompressible phase
is entering the porous medium, displacing another incom-
pressible phase leaving the medium, the pressure difference
between the entering and produced fluids times the volume
change of the fluids yields the work applied to the system.
When equating this applied work to the changes in interfa-
cial energies, several authors have estimated the wettability
from measurements of applied work and changes in interfaces
[9,12,13].
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The applicability of using this thermodynamic relationship
to infer wettability in porous media has been hampered by the
assumption of a reversible displacement. The efficiency of the
displacement, i.e., the fraction of change in interfacial energy
to applied work, is dependent on flow rate and pore structure
[10,14]. Except for simplified pore structures and slow flow,
the displacement is nonreversible, yielding an efficiency lower
than one. Nonreversible pore-scale processes induce pressure
signals that have been interpreted to infer pore structure and
wettability information [15,16]. However, traditional empiri-
cal wettability measurements, such as the Amott and USBM
tests, do not adjust for pore structure effects [17]. For these
methods the pore structure is then a determining factor for
the measured wettability. Recent developments in imaging
enable description of the pore structure at a resolution which
makes possible reliable computation of transport properties
and displacement processes [18–20]. This has opened up new
possibilities for describing transport properties of porous me-
dia by geometrical descriptors [21]. In this article we will
investigate the correspondence between pore structure and
efficiency, thereby untangling pore structure from wettability.

Displacement and transport in porous media is of impor-
tance for a wide range of industrial processes, including fluid
flow in partially saturated soils and displacement of hydrocar-
bons by injected water [22]. Wettability has a first-order effect
on such multiphase flow. In previous work [10,23] the effi-
ciency of displacement processes has been estimated based on
images of interface areas during displacement. In the present
work we show that the efficiency of slow immiscible displace-
ment can be obtained from the static pore structure through a
pore geometry description. Our derivations will yield a local
efficiency, which is applied to a set of three-dimensional pore-
scale images and models to predict efficiency as a function
of saturation. Further, the derived efficiency is applied to an
imaged displacement experiment for estimation of wettability.
We also investigate cross-correlations between our developed
pore-structure-based displacement efficiencies and other pore-
structure descriptors, which open up the possibility to estimate
displacement efficiency based on more readily available mea-
surements.

II. THERMODYNAMICALLY REVERSIBLE
AND IRREVERSIBLE DISPLACEMENT PROCESSES

In this section we will introduce pore-scale definitions
for thermodynamically reversible and irreverisble processes.
These definitions will be used in the remainder of the article.
Assume a porous medium V of length �s in direction of
an applied pressure difference �p. The porous medium V
consists of matrix and pore space � ⊂ V , where the pore
space � is filled with two immicible incompressible fluids.
For our considerations we assume that the length scales are
small enough to disregard gravity, however, all derivations in
this article can be extended to include gravity. We assume
that the interfaces between the two fluids are infinitesimally
thin, and we allow for discontinuity of the pressure field at
the interface. The fluids might have different viscosity μi

(and density ρi, only of importance for our calculations when
gravity is included), where the index i = 1, 2 indicates the two
different fluids. We assume a slow flow, where the interstitial

velocity field �u is governed by the Stokes equation with a
no-slip condition at the fluid-solid interface.

In our system an external total flow rate Q is imposed
on the system. This flow rate induces the pressure difference
�p = pout − pin over the porous medium, where we assume
that the inlet pressure pin and outlet pressure pout are constant
over their respective end-face for any given time. When the
total flow rate is Q and the pressure difference is �p, then the
rate of applied energy is −�pQ (note that �p is negative).
The potential driving the interstitial fluid flow is the interstitial
pressure gradient ∇p, and the rate of work done by this pres-
sure gradient is given by −∇p · �u, where �u is the interstitial
velocity.

In Appendix A we show that [see Eq. (A2)]

−�pQ = −
∫

�

∇p · �udV +
∫

δ� f

p�u · �ndS, (1)

where �n is the outward pointing unit normal field of the fluid-
fluid boundaries δ� f . Note that these fluid boundaries δ� f are
on both sides of the fluid-fluid interfaces, with one unit normal
pointing out of fluid 1 and the corresponding pressure inside
fluid 1, while the inverted unit normal is pointing out of fluid 2
with pressure in fluid 2. Thus, each fluid-fluid interface gives
two fluid boundaries. The left side of Eq. (1) is the applied
power, while the first term on the right side equals the viscous
dissipation inside the pore space. The last term yields the rate
of change in (Helmholtz) free energy in the system, i.e., the
rate of change in free energy from the interfacial tensions (and
possibly other energies, e.g., energy from the contact lines).

The free energy associated with the placement of an in-
dividual fluid-fluid interface can either increase or decrease.
Let us start by considering the case where the free energy
increases for all internal interfaces. Then the interstitial fluid
flow is driven by the externally applied pressure drop only.
Consider an infinitesimal external flow rate Q → 0 (slow
flow). Due to linearity in the Stokes equation, ∇p → 0 and
�u → 0 at the same rate as Q → 0, while the pressure drop over
the fluid-fluid interfaces can result in a �p �� 0 when Q → 0.
Then for the nontrivial case (i.e., �p �� 0 when Q → 0) we
see that

∫
�

∇p · �udV goes to zero faster than �pQ, thus
we get ‖�pQ‖ � ‖ ∫

�
∇p · �udV ‖ when Q → 0. Rearranging

Eq. (1) then gives∫
δ� f

p�u · �ndS =
∫

�

∇p · �udV − �pQ � −�pQ. (2)

Thus, in this slow-flow limiting case viscous dissipation
vanishes, and the externally applied energy is expended on
increasing the free energy related to the placement of the
fluid-fluid interfaces.

For higher flow rates Q, some energy will be expended on
viscous flow in addition to the increase in free energy of the
surfaces. This will give a nonzero second term in Fig. 2, con-
sisting of nonreversible viscous dissipation of energy. Thus,
the assumption of a reversible displacement only holds for
slow flow. In the following we will assume that the flow
is slow enough, that the wettability is constant and without
sub-resolution heterogeneity and that the solid surfaces are
smooth, such that the similarity in Eq. (2) holds when the free
energy of all internal surfaces increase. See Appendix A for
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FIG. 1. Illustrations of the sinusoidal tubes for the case of 3 (left figure) and 10 (right figure) tubes. Fluid 2 enters the tubes from the left.
The illustrations include the fluid-fluid interfaces before (full drawn line) and after (dashed line) the first Haines jump in the case of a zero
contact angle. The first interface is moving forward, while the remaining interfaces are moving backwards, as indicated by the arrows.

further discussion on sub-resolution heterogeneity and surface
roughness.

We define a displacement where
∫

δ� f

p�u · �ndS = −�pQ, (3)

as an ison, loosely following the terminology in Ref. [10]. In
other words, when the similarity in Eq. (2) holds, we have
an ison displacement. An ison displacement is a reversible
process. During an ison displacement one can use the ther-
modynamic relationship between applied work and changes
in interfaces to infer the wettability.

We will now turn to irreversible processes. For the re-
versible case the change in free energy was positive for all
fluid-fluid interfaces. Contrary to the reversible case, assume
that there exists at least one fluid-fluid interface releasing
energy. Let {δ�i

f | i ∈ S} be the set of individual fluid-fluid

interfaces. Thus, assume there exists an i ∈ S such that the
integral of p�u · �n over the two sides of the interface δ�i

f

is negative;
∫
δ�i

f
p�u · �ndS < 0. This release of energy will

induce fluid flow, thus �u �� 0. As we consider a slow dis-
placement, Q � 0. Thus, the induced flow leads to ‖�pQ‖ 

‖ ∫

�
∇p · �udV ‖, which implies that

∫
δ� f

p�u · �ndS =
∫

�

∇p · �udV − �pQ �
∫

�

∇p · �udV. (4)

With infinitesimal external flow, Q � 0, we can assume
that no external work is applied to the system during the time
span of an internal redistribution of fluids. Thus, the excess
free energy of the system must decrease during this internal

FIG. 2. Plots of the applied work, change in free energy and the pressure difference between the two fluids versus the saturation of fluid 1
for the models with 3 (left figure) and 10 (right figure) tubes as illustrated in Fig. 1. The individual Haines jumps are rheons, seen as a drop in
pressure for a fixed saturation value, one rheon for each tube. The rest of the curve corresponds to the reversible isons. The efficiency for the 3
tubes is η = 0.973, while the efficiency for the 10 tubes is η = 0.795.
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redistribution of fluids due to the second law of thermody-
namics. This yields∫

δ� f

p�u · �ndS �
∫

�

∇p · �udV � 0. (5)

Thus, for a displacement where movement of one fluid-fluid
interface leads to release of energy, then the movement of all
the fluid interfaces will lead to a decrease in the total free
energy of all the interfaces.

We will define a rheon displacement as a displacement
where ∫

δ� f

p�u · �ndS =
∫

�

∇p · �udV, (6)

again loosely following the terminology in Ref. [10]. A rheon
displacement is thus a thermodynamically irreversible inter-
nal movement of interfaces at a constant saturation. Haines
jumps are examples of rheon displacements [14]. The energy
expended during a rheon displacement is extracted from the
interfacial energies, thus this dissipated energy must be sub-
tracted from the applied work when estimating the wettability
from the correspondence between applied work and interfacial
energies. This will be applied in Sec. VIII.

III. TWO-PHASE DISPLACEMENT IN SIMILAR
CIRCULAR PORE TUBES

In this section we will consider two-phase primary dis-
placement in bundles of pore tubes to illustrate how the
amount of fluid-fluid interfaces affect the efficiency of the
displacement process. By primary displacement, we mean the
displacement process which starts with the porous medium
filled by a single fluid and then displaced by another immisci-
ble fluid. In all our examples only one fluid, i.e., the displaced
fluid, will leave the medium at one side, while the injected
fluid will be injected at the opposite side.

We will now consider a set of tubes with varying cross-
sectional area. As an example case, these tubes are 200 μm
long with a sinusoidal shape, where the largest cross-sectional
radius is 20 μm while the smallest radius is 10 μm, as de-
picted in Fig. 1. We assume that the tubes are initially filled
with fluid 1, while connected to fluid 1 at the right side and
fluid 2 at the left side. Fluid 1 is wetting the solid, thus the
solid-fluid interfacial tension between fluid 2 and the surface,
σ2s, is assumed to be larger than between fluid 1 and the
surface; σ2s > σ1s. Thus, there is a higher excess free energy
of the system when fluid 2 is in contact with the surface than
when fluid 1 is in contact with the surface.

As the flow is infinitesimally slow the pressure in each
connected fluid phase can be considered constant during the
reversible isons. Further, the fluid-fluid interfaces can be con-
sidered at equilibrium, so the pressure difference between
the two fluids is assumed to be given by the Young-Laplace
equation,

p2 − p1 = σκ, (7)

where σ is the fluid-fluid interfacial tension, while κ = 1/r1 +
1/r2 is the mean curvature, with r1 and r2 being the principal
radii of curvature. As the cross-section of our sinusoidal tubes

are assumed to be circular, the principal radii of curvature will
be equal, say r1 = r2 = r, thus the mean curvature is κ = 2/r.

Initially there is no pressure difference between the two
fluids, corresponding to a flat fluid-fluid interface at the left
inlet (κ = 0). We will inject fluid 2 at an infinitesimal but
constant rate Q. This will give the surface a spherical shape,
where the radius of curvature is decreasing with increasing
pressure. This pressure increase is seen at the right side of the
pressure plots in Fig. 2.

Eventually, the contact line between the fluid-fluid inter-
face and the solid will start moving into the sinusoidal tube.
As we are moving the fluids at an infinitesimal rate, and there-
fore are assuming equilibrium conditions, we assume that the
contact angle between the fluid-fluid interface and the solid
surface is given by Young’s equation:

cos(θ ) = σ2s − σ1s

σ
= σd

σ
, (8)

where σis is the interfacial tension between the two fluids i =
1, 2 and the solid s, while σd = σ2s − σ1s is the difference in
fluid-solid tensions. Note that if σ2s − σ1s = σd > σ , then it
is more energetically beneficial to leave a thin layer of fluid 1
to coat the surface after fluid 2 has filled the bulk of the tube,
and we can assume that the contact angle is zero. One could
consider the fraction ωi = σd/σ as a wetting index in its own
right, with this wetting index being indicative of changes in
wetting properties also in the extreme cases where ‖ωi‖ > 1.

When the three-phase contact line is at the smallest con-
striction, as indicated by the full-drawn red line in Fig. 1, then
the fluid configuration is unstable. An infinitesimally larger
cross-sectional radius for one tube (or any other disturbance
to the system) will lead to the fluid-fluid interface moving for-
ward in this tube, while the interfaces in the remaining tubes
will move backward. This is a Haines jump, and it is a rheon
displacement according to the definition given by Eq. (6).
The end-state of the Haines jump has a lower free energy
than the initial state. This reduction in excess free energy will
partly be expended on viscous fluid flow between the tubes
where the interface is moving backward and the tube where
the interface is moving forward.

The resulting fluid configuration after the first Haines jump
is illustrated by the dashed lines in Fig. 1. We observe that
the resulting interfaces have a smaller curvature in the three-
tube case than in the ten-tube case, which is indicative of the
larger pressure drop during the Haines jump in the three-tube
case. This is reflected in the larger pressure drops at constant
saturation in the left plot versus the right plot in Fig. 2, i.e.,
the vertical parts of the pressure curve is longer in the left plot
than in the right plot.

Figure 2 also contains the change in free energy �F =
F − Fi from the initial free energy Fi, calculated as

�F = (A12 − Ai )σ + A2sσd , (9)

where Ai is the initial fluid-fluid interfacial area, i.e., the sum
of the leftmost cross-sectional areas of the tubes. Note that we
do not associate any energy to the three-phase contact line nor
the curvature, in contrast to, e.g., Ref. [9]. In Fig. 2 we have
also plotted the applied work calculated as

�W =
∫

�pdV2 =
∫

p2 − p1dV2, (10)
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where we integrate over the injected volume V2 of fluid 2.
When all the fluid-fluid interfaces move from the inlet towards
the outlet, we have∫

δ� f

p�u · �ndS =
∫

δ1� f

p1�u · �n1dS +
∫

δ2� f

p2�u · �n2dS

= (p2 − p1)
∫

δ2� f

�u · �n2dS = −�pQ, (11)

since �p = p1 − p2 and the last integral of the fluid-fluid
interfaces gives Q. Thus, according to our definition given
by Eq. (3), this is an ison displacement. During the ison dis-
placement the external work equals the change in free energy,
dW = dF . Observe that the applied work and free energy
curves in Fig. 2 are identical until the first rheon displace-
ment, indicating that this part of the displacement process is a
reversible ison displacement. The two curves have a constant
separation for all subsequent ison displacements.

The applied work stays constant during the Haines jump,
as the change in volume of fluid 2 is zero. During a single
rheon displacement, the distance traversed by the backward
moving fluid interfaces are shorter for the ten-tube case than
for the three-tube case. Thus, the pressure difference between
the progressing and regressing interfaces are larger for the ten-
tube case than the three-tube case. The loss of free energy will
therefore be larger for the ten-tube case than the three-tube
case. This is visible when comparing the two plots in Fig. 2.

IV. PRIMARY DISPLACEMENT EFFICIENCY

The efficiency of an immiscible two-phase primary dis-
placement in a porous medium relates how the externally
applied work �W driving the displacement divides itself into
a change in free energy �F and energy dissipation (heat
production). This can be written as

η = �F

�W
, (12)

where the displacement efficiency η is expressed as the frac-
tion of the change in free energy �F to the externally applied
work to the system �W [10].

Let us consider different numbers of sinusoidal tubes from
those depicted in in Fig. 1. In the case of a single tube, there
will be no Haines jumps. As we assume no surface roughness
and constant wettability, the displacement process will be
fully reversible, i.e., η = 1 (see Appendix A). For an example
with two tubes, the movement of the interfaces forward from
the first constriction will be reversible, due to the increase
in free energy associated with the increase in interfacial area
when the interfaces move from the constricted pore throat into
the pore bodies.

For three or more tubes the rheons are associated with a
reduction in free energy, and part of this energy is expended
on the viscous fluid flow during the redistribution of the fluids.
As evident from Figs. 1 and 2, a higher number of tubes leads
to a larger pressure difference between the set of backward
moving interfaces and the single forward moving interface,
and thereby a larger drop in excess free energy. Thus, a higher
number of tubes will decrease the efficiency of the displace-
ment process.

FIG. 3. Simulated efficiency for our example cases consisting of
a set of sinusoidal tubes in full-drawn line. The plot also includes the
calculated theoretical efficiency as given by Eq. (13).

For a high number of tubes the backward moving interfaces
will move only slightly, thus we might approximate the back-
ward moving interfaces as stagnant, residing at the smallest
constrictions. By the Young-Laplace equation, Eq. (7), com-
bined with Young’s equation, Eq. (8), the displacement of
fluid 1 by fluid 2 in the larger pore after the first constric-
tion then occurs at a pressure difference of �p = p1 − p2 =
2σd/r � 2σd/rt , where rt is the cross-sectional radius of the
tube at the pore throat. A reversible ison displacement of
the same pore body would have occurred at �p = 2σd/r
for the varying cross-sectional area r of the tube. Thus, the
displacement efficiency in the setting of a high number of
tubes will be

η = �F

�W
=

∫ 2σd
r dV∫ 2σd
rt

dV
=

∫
1
r dV∫
1
rt

dV
. (13)

For the last equality we have used the earlier assumptions
that the fluid-solid interfacial tension difference σd is constant.
We thus see that for a homogeneous fluid-solid property, this
property does not affect the efficiency of the displacement
process. In general, when the fluid-solid interfacial tension
difference σd is uncorrelated with the radius r, Eq. (13) holds
for sufficiently large samples.

The efficiency in the limiting case of a large number of
tubes is thus a purely geometrical property. Note that this
equation is not restricted to our sinusoidal model, any set
of tubes with varying cross-sectional area and where the
fluid-solid interfacial tension difference σd is uncorrelated to
the cross-sectional area will be described by the geometrical
property given by Eq. (13).

Calculating Eq. (13) for our set of sinusoidal tubes gives
a theoretical limiting efficiency of η = 0.7188. The simulated
efficiency for different number of tubes are shown in Fig. 3.
We observe that the simulated efficiency converges to the
theoretical efficiency when the number of tubes increases.

Already around 100 tubes the simulated efficiencies are
similar to the theoretical efficiency. This indicates that for a
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medium where the displacement front covers more than 100
individual pores, one can expect the displacement efficiency
η for an event filling a single pore body to be close to the
geometrical efficiency given by Eq. (13). While many pores
bodies can be filled during a single rheon, natural porous
media have fluid-fluid interfaces residing in small pores, in
crevasses and in pendular rings, increasing the fluid-fluid area.
This large fluid-fluid area sustain a small pressure drop during
the rheons.

The transition to smaller pressure drop with increasing
system size is supported by experiments and pore-scale sim-
ulations. For porous media with a small number of pores
the rheons are clearly observable on a plot of the pressure
difference curve; see, e.g., Ref. [24]. For slightly larger rock
samples, still even as small as in the millimeter range, one
needs experimental setups with an extreme resolution to ob-
serve the rheons [25]. This indicates that the geometry-based
efficiency given by Eq. (13) will be a good approximation for
settings such as soil and hydrocarbon reservoirs. Conversely,
efficiencies measured or calculated on too small sample sizes
are not representative for the displacement efficiencies in pore
structures consisting of a high number of pore bodies, e.g.,
soil and hydrocarbon reservoirs.

Now consider a pore structure large enough so that the
pressure drop during rheons can be neglected. We continue
to assume constant fluid-fluid interfacial tension σ and con-
stant fluid-solid interfacial tensions, where σd is the difference
between the two fluid-solid interfacial tensions as given in
Eq. (8). An infinitesimal displacement right before a rheon is
assumed to be an reversible ison, thus the pressure difference
between the two fluids momentarily before the rheon is given
by

pr = dW

dV
� dF

dV
= dA12σ + dA2sσd

dV
, (14)

where the subscript r indicates that this is the pressure dif-
ference during the subsequent rheon. Since we have assumed
smooth surfaces, the change in fluid-fluid area is considered
second order versus the change in fluid-solid area momentar-
ily before a rheon. We thus get the following approximation:

pr = dA12σ + dA2sσd

dV
� dA2sσd

dV
. (15)

Employing Eq. (8), the fraction

pr

σd
� dA2s

dV
(16)

can be determined by geometrical considerations. For the
sinusoidal tubes in Fig. 1 we then have pr/σd � 2/rt , where
rt is the cross-sectional area of the pore-throat.

Let �Vr be the volume filled by fluid 2 during a single
rheon. Locally, the work done to fill this volume is �Wr =
pr�Vr , while the local change in free energy during the dis-
placement of volume �Vr is

�Fr = �Ar
12σ + �Ar

2sσd , (17)

where �Ar
12 and �Ar

2s is the change in the surfaces when fluid
2 fills �Vr . The efficiency of filling �Vr is then given by

ηr = �Fr

�Wr
= �Fr

pr�Vr
= σ�Ar

12 + σd�Ar
2s

pr�Vr

�
1

cos(θ )�Ar
12 + �Ar

2s

2
rt
�Vr

, (18)

where we have employed pr/σd � 2/rt . In the extreme wet-
ting case, where cos(θ ) = 1 so that σ = σd , then all the
components of Fr can be determined geometrically. When
�Ar

12 is small compared to �Ar
2s there is only a weak depen-

dency between the efficiency and wetting. As an example, for
the sinusoidal tubes we have �A12 = 0, thus

ηr = σd�A2s

pr�Vr
� rt�A2s

2�Vr
, (19)

and the efficiency ηr is independent of wetting. We expect
�Ar

12 to be small compared to �Ar
2s for primary displacement

in a range of pore space geometries.
For a volume filled by an ison the efficiency is 1, corre-

sponding to a reversible process. We can thus consider a local
efficiency ηl , where ηl = ηr for the rheon volumes �Vr , while
ηl = 1 elsewhere. Integrating the local efficiencies will then
give the displacement efficiency as

η =
∫

�

ηl dV. (20)

The local efficiency can be calculated for any subspace �′ ⊂
�, e.g., the subspace spanned by the invading fluid at different
saturation steps during an invasion process.

V. GEOMETRICALLY DERIVED PRIMARY
DISPLACEMENT EFFICIENCY

We will now turn to complex geometries given by natural
porous media and calculate the displacement efficiency based
on the local efficiency ηl as given in Eq. (20). For simulating
the primary drainage process, we will use a pore-morphology-
based simulation as introduced in Ref. [26], and later modified
in Ref. [27]. For simplicity, we will assume perfect wetting
as given by cos(θ ) = 1. The methodology can be extended
to other contact angles as in Ref. [28]. There are some well-
known drawbacks with this pore-morphology methodology;
the main drawback is that it assumes that the two principal
curvatures of the fluid-fluid surface are equal and not infinite,
which leads to errors in the Laplace pressure, especially for
wetting phase pendular rings between spherical grains. De-
spite known weaknesses, the methodology was chosen for its
efficiency and accuracy for most of the drainage process [27].
The method is based on some basic morphological operations,
which can be found in Appendix B.

To calculate the fluid distribution at the different pressures
[equivalent to Eq. (B3) in the Appendix], we start by calcu-
lating the distance transform dt , giving the Euclidean distance

dt (x) = min{‖x − s‖ | s ∈ V \�}, (21)

between any point x ∈ V and the closest point in the solid
phase s ∈ V \� (note that dt (x) = 0 for all x ∈ V \�). While
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FIG. 4. The white circles give the solid, while the colors indicate
the pore space in this simple two-dimensional model. The color bar
indicates the values of the distance transform dt , as given by Eq. (21).

all calculations can be conducted in three dimensions (as
they will be in the remainder of this article), the example
case used in this section, shown in Figs. 4–6, was restricted
to a two-dimensional example for better visualization. The
distance transform dt for this simple two-dimensional model
is illustrated in Fig. 4.

We then calculate a critical path radius rp(x) for a path from
the inlet to point x, that is the minimal distance dt along the
path with the largest minimal distance:

rp(x) = max{min{dt (y) | y ∈ S} | S ∈ S}, (22)

FIG. 5. This is the same two-dimensional pore space as in Fig. 4.
The colors represent the values of the critical path radii rp as given by
Eq. (22), where the inlet is the upper boundary. Note that the values
in this figure and in Fig. 4 are equal close to the inlet, while away
from the inlet the values in this figure are controlled by the smallest
pore throats.

FIG. 6. Local displacement efficiency ηl calculated as in
Eq. (25). Note the trend of higher efficiency close to the inlet bound-
ary at the top and at the pore throats.

where S is the set of paths from x to the inlet. Note the
similarity with the percolation threshold used in Ref. [29],
giving a characteristic length for permeability prediction. We
solved for rp with a slightly modified version of Dijkstra’s
algorithm [30], with Fig. 5 showing the resulting critical path
radii for the two-dimensional example case.

We can now look at the balls (or disks in two dimensions)
spanned by the value of the distance transform and the critical
radii. A point x is assigned to the largest ball covering it as

cdt (x) = max{dt (y) | ‖x − y‖ < dt (y)},
cr p(x) = max{rp(y) | ‖x − y‖ < rp(y)}. (23)

These values can be related to morphological operators as (see
Appendix B)

{x | cdt (x) � r} = [� � S(r)] ⊕ S(r) = X (r),

{x | cr p(x) � r} = C[X (r)]. (24)

Thus, Eq. (24) relates our calculated values for cr p to the
morphological description C[X (r)] for fluids at different pres-
sures, as given by Eq. (B3). The values of cdt are plotted in
Fig. 14, while the values of cr p are shown in Fig. 15, both
figures in the Appendix.

From our pore-morphological calculations, we then have
that cr p(x) is proportional to the pressure difference when
fluid 1 is displaced by fluid 2 at point x. This value is then
dependent on our choice for inlet of fluid 2. However, the
values cdt (x) are proportional to the pressure difference one
would have observed if fluid 1 was displaced by fluid 2 at
point x in a reversible process. These values are independent
of the defined inlet for fluid 2, since the distance transform dt

in Eq. (21), and thereby cdt , is independent of the inlet.
The local displacement efficiency, i.e., the relative differ-

ence between the irreversible and reversible displacement, is
then given by

ηl (x) = cr p(x)/cdt (x). (25)
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FIG. 7. The local displacement efficiency ηl , as given by
Eq. (25), for the Fontainebleau sandstone sample with 21% porosity.
Note the higher efficiencies close to the inlet at the top of the model.

We observe that the local efficiency ηl (x) is always smaller or
equal to one, as cr p(x) � cdt (x). A plot of the local displace-
ment efficiency is shown in Fig. 6.

In Fig. 6 we observe that the local efficiency ηl is highest
at the inlet side and in the smaller pore tubes. This holds in
general; since dt � rp for small values of dt , we see that cdt �
cr p, and thereby ηl � 1, for small values of dt . Thus, points
with small dt values are expected to give high efficiency, hence
we expect high efficiency for pore throats, pendular rings, in
small crevasses, in the cavities of rough surfaces and other
small dead-end pores.

VI. DISPLACEMENT EFFICIENCY FOR DIFFERENT
POROUS MEDIA

Using the methodology outlined in Sec. V, we have cal-
culated the local displacement efficiency ηl given by Eq. (25)
for a set of three-dimensional models and images of natural
porous media. The models are Fontainebleau sandstone at
different porosity, as used in Ref. [31]. The images are col-
lected from the website of the Imperial College PERM group
[32], and consist of both sandstone, sand pack and carbonate
samples. Additionally, we have one image of sintered soda
lime beads used in Refs. [9,33], which we will return to in the
next section.

The calculated local efficiency values for one of the three-
dimensional Fontainebleau sandstone models are displayed
in Fig. 7, with the middle cross-section shown in Fig. 8(a).
We observe the same overall effects in this realistic structure
as in the simple two-dimensional example in the previous
section; close to the inlet and in small pores and crevasses we
have a higher efficiency. The differential pressure (capillary
pressure) between the two immiscible phases for different
saturation values are shown by the colored curve in Fig. 8(c).
The colors correspond to the local efficiency for the different
saturation values. The black curve corresponds to the dis-
placement efficiency of the drainage process up to the given
saturation. The U-shape of the black curve and the colors of

the pressure-curve indicate that the efficiency is highest at the
beginning (i.e., high saturation values) and at the end (i.e.,
low saturation values) of the drainage process. As already
mentioned, at the end of the drainage process we are filling
up the smaller pores and crevasses with high efficiency. At the
beginning we are filling pores close to the inlet, an end effect
with high efficiency.

The lower efficiency at the inlet, as reflected by the high
efficiency values for low saturation values in Fig. 8(c), is
an end effect that will affect our effective displacement ef-
ficiency for small sample sizes. We will therefore introduce
a method correcting for the end effect close to the inlet. For
this end, the porous medium can be extended in the direction
of applied pressure difference by mirroring. The pressure dif-
ference when entering the second copy (and all subsequent
copies) of the porous medium will be given by the maximal
critical path value at the outlet of the original medium. We
will denote the pressure associated to the maximal critical path
value at the outlet as the percolation pressure. As indicated by
the name, this is the pressure needed for the invading phase to
percolate the sample in the direction of the applied pressure.
The end effect of high efficiency at the inlet can be removed
by assuming that the smallest pressure difference when fluid
2 is entering the medium is given by the percolation pressure.
Such a calculation is shown in Fig. 8(b). We observe that there
are no end effects in the upper part of the plot, in contrast to
Fig. 8(a). The corresponding capillary pressure and efficiency
curves are shown in Fig. 8(d). We see the lower efficiency and
higher pressure difference for the high saturation values com-
pared to the calculations with end effect shown in Fig. 8(c).
For this sample the displacement efficiency is η = 0.65 when
using a percolation threshold, compared to a value of 0.67
with the end effect. Thus, this sample is sufficiently large
to suppress the influence of the end effect. In general, the
calculated displacement efficiency when the starting pressure
is given by the maximal percolation path is expected to be
more representative for large scale porous media, such as
soils and oil reservoirs, as it reduces small size effects. In the
remainder of this article all the calculated efficiencies will use
the percolation pressure as the minimum injection pressure.
However, all samples where large enough to ensure that the
end effect had minor impact.

In Fig. 9 we have plotted the displacement efficiency η

given by Eq. (20) for the considered models and images. One
can observe a trend in the plot, where lower-porosity samples
have a lower efficiency. Large pore bodies give large values for
cdt , while small pore throats give small cr p values. Thus, from
Eq. (25) we see that a large aspect ratio between pore bodies
and pore throats leads to low efficiency. The trend seen in
Fig. 9 can be linked to larger aspect ratios between pore bodies
and pore throats for the lower porosity samples. There is a
clear trend for the Fountainebleau samples, which is indica-
tive of a single rock type, created by the same rock forming
process [31]. The other samples are more scattered, still there
is an overall trend of lower porosity yielding lower efficiency.

VII. CROSS-PROPERTY RELATIONS

As mentioned in the end of the previous section, the ef-
ficiency is linked to the aspect ratio between pore bodies and
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(a) (b)

(c) (d)

FIG. 8. Efficiency calculations for the three-dimensional Fontainebleau sample shown in Fig. 7. The right figures include a percolation
threshold which removes the finite size end effect. (a) shows a cross-section of the local displacement efficiency ηl shown in Fig. 7. The color
bar indicates the efficiency values. We observe an end effect with high efficiency close to the inlet at the top of the image. (b) shows the same
cross-section as in a), this time using the percolation threshold as a lowest injection pressure when calculating the local displacement efficiency.
This removes the end effect with high efficiency close to the inlet. (c) shows the capillary pressure curve for the slow drainage in the same
Fontainebleau sample as displayed in Fig. 7. We note the end effect as low pressures and high efficiencies for high saturation values. Finally,
(d) capillary pressure curve when using the percolation threshold for the slow drainage, as visualized in (b). In contrast with (c) we observe
lower efficiencies and higher pressures for the high saturation values.

pore throats. It is therefore assumed that efficiency would have
a stronger correlation with measures for this aspect ratio than
with porosity. Slow flow through a cylindrical tube, as given
by the solution to the Stokes equations in Eq. (A1), is propor-
tional to the cross-sectional area squared, thus permeability
does not have a linear correspondence to the body-throat as-
pect ratio. A pore-structure description of permeability k as

k = τ 2
s L2

hφ

8Cs
(26)

was derived in Ref. [31], where τs is a streamline-based tor-
tuosity, Lh is a characteristic length for the porous medium,

while Cs is a constriction factor. For a circular pore tube with
varying cross-sectional area A(x), the constriction factor is
given by

Cs = 1

L2

∫ L

0
A(x)2dx

∫ L

0

1

A(x)2
dx, (27)

thus the constriction factor is related to the variation of the
square of the cross-sectional area, and thereby to the square
of the body-throat aspect ratio. Despite that the Stokes equa-
tions describe the flow during slow displacement, the resulting
constriction factor from this slow flow regime is not linearly
linked to the aspect ratio suspected to correlate with the slow
flow displacement efficiency.
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FIG. 9. Displacement efficiency η, as given by Eq. (20), calcu-
lated for a range of different porous media versus their porosity. The
black markers indicate Fontainebleau models, the red markers indi-
cate CT-images of different pore structures, while the blue marker is
a single sintered soda lime bead sample used in Sec. VIII.

A solution to the Laplace equation, ∇2 f = 0, would yield
a flux ∇ f that is proportional to the cross-sectional area
for a cylindrical tube. Many physical processes are governed
by the Laplace equation, such as electrical conductance and
steady-state diffusion. For electrical conductance, the frac-
tional relation between the effective conductivity σe of a
porous medium to the constant conductivity in the pore space
σ can be described as

σe

σ
= τ 2

c φ

Cc
, (28)

where τc is an electric field line-based tortuosity, while Cc is a
constriction factor [34]. The inverted fractional relation σ/σe

is called the formation resistivity factor [35]. For a circular
pore tube the constriction factor is

Cc = 1

l2

∫ l

0
A(x)dx

∫ l

0

1

A(x)
dx, (29)

thus the electrical constriction factor is related to the variation
in cross-sectional area A(x), and thereby to the pore body-
throat aspect ratio.

The electrical constriction factor and the displacement ef-
ficiency for the primary drainage process is thus related to the
same geometrical feature of the pore space, i.e., the aspect
ratio between pore throats and pore bodies. We can therefore
expect that the electrical constriction factor and the displace-
ment efficiency are related to each other. Consequently we
cross-plotted the electrical constriction factor versus the pri-
mary drainage displacement efficiency, as shown in Fig. 10.
As seen from this plot, there is a clear correlation between
the constriction factor and the displacement efficiency. It is
therefore postulated that the electrical constriction factor can
be used to estimate the displacement efficiency.

For natural porous media, the variation in tortuosity τc is
limited and correlated to porosity, while the porosity φ and

FIG. 10. The displacement efficiency versus the electrical con-
striction factor, together with a linear fit to the cross-plot for the
Fontainebleau models. The marker colors are equal to the ones used
in Fig. 9.

formation resistivity factor σ/σe can be measured by conven-
tional laboratory measurements or estimated from well logs.
Thus, we can obtain estimates for the electrical constriction
factor Cc, both through laboratory measurements and from
well logs, and Cc can sequentially be used to estimate the
displacement efficiency.

VIII. THERMODYNAMICALLY BASED WETTABILITY
MEASUREMENTS

In this section we will return to the thermodynamically
based estimation for the wettability. During an immiscible dis-
placement the applied work �W can be measured externally.
Through the calculated displacement efficiency η we then get
an estimate for the change in the free energy �F through
Eq. (12):

�F = η�W. (30)

The change in free energy from the change in surface areas is
given as [see Eq. (9)]:

�F = �A12σ + �A2sσd . (31)

Combining Eq. (30) and Eq. (31) we get

η�W = �A12σ + �A2sσd . (32)

The fluid-fluid interfacial tension σ can be considered a pure
fluid-fluid property which can be measured outside the porous
medium. Through pore-scale imaging the surface areas can
be considered known, and from external pressure and flow
rate measurements also �W is known. If we assume that the
there is a weak dependency between the efficiency η and the
contact angle, then η can be considered a geometrical property
obtainable from the images. In this case the only unknown is
σd :

σd = η�W − �A12σ

�A2s
. (33)
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FIG. 11. A cross-section of the sintered soda lime beads. The
core holder is indicated by the hatched part on each side of this
image, while the inlet is on top and the outlet is at the bottom. We
have also plotted the inverse of the external pressure (in Pa−1) when
the injected phase is displacing the original fluid in place.

This yields a thermodynamically based wettability index as

ωi = σd

σ
=

η�W
σ

− �A12

�A2s
, (34)

with the contact angle θ obtained from cos(θ ) = ωi.
We will now consider an imaged two-phase displacement

experiment [33]. In this experiment a sample of sintered soda
lime beads are mounted into a core holder, and placed inside
a micro-CT for imaging. The experiment started with the
sample being completely filled with water, and then slowly
displaced by n-dodecane. The external fluid pressures were
continuously monitored, and the fluid distribution was imaged
at different saturation steps. For a more in-depth description
of the experiment, we refer to Ref. [33]. A cross-section of
the sintered soda lime beads sample is visualized in Fig. 11.
This pore space was also included in the calculations shown
in Figs. 9 and 10. In Fig. 11 we have also plotted the
inverse of the measured external pressure when the differ-
ent parts of the pore space was invaded by the injected
n-dodecane.

The core holder is shown as a hatched area in the left and
right boundary of Fig. 11. One can observe that the displace-
ment pressure is lower along the core holder, and one could
argue that the contact angles on the core holder is different
from the contact angles on the beads. For our calculations we
therefore assumed the beads to be water wet, while the core
holder was assumed intermediate wet.

We simulated the displacement similar to the process de-
scribed in Sec. V. However, we used a contact angle of
90 degrees versus the core holder. The resulting connected
parts for different radii values r are plotted in Fig. 12. Note
the correlation with the inverse pressures shown in Fig. 11.

FIG. 12. The calculated cr p(r) values, as given by Eq. (23), for
different radii values r. The inlet is at the top of the three-dimensional
image. Note the correlation between these calculated values and the
pressures plotted in Fig. 11.

The efficiency η for the different drainage steps in the
experiment was obtained as

ηs =
∫

�s

ηl (x)dV, (35)

where �s ⊂ � is the subspace of the pore space � where n-
dodecane replaces water during saturation step s. The external
work is estimated as �W s = φ�ss

w�ps, where �ps is the
externally measured pressure difference at the end of step s,
while φ�ss

w is the change in water volume. The changes in
surfaces �A12 and �A2s are also measured from the three-
dimensional images of the fluid distribution.

We can then calculate the wettability index as given by
Eq. (34) for the displacement process. The resulting contact
angles θ = cos−1(wi ) are plotted in Fig. 13. In the same plot
we have the resulting contact angles without including the
efficiencies ηs. Even though this sample has a high efficiency,
as seen in Fig. 10, there is still a significant difference between
the results when invoking the efficiency and without.

The inclusion of efficiency seems to reduce the spread in
contact angles, however, there is a significant spread for the
low and high saturation values. For the low values more of
the displacement occurs close to the core holder, and might
be affected by our assumption of the difference in wettability
between the beads and the core holder. For the high saturation
values the displacement is short movements of a high number
of interfaces, which is expected to be more prone to imaging
errors.

The average contact angle is found as 59 degrees, which
is just inside the value range 30–60 degrees in reported in
Ref. [33], while significantly different from the thermodynam-
ically based wettability calculation in Ref. [9] giving a contact
angle of 43 degrees. Excluding the efficiency we obtain a
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FIG. 13. The calculated contact angles during the displacement
of water by n-dodecan in the pore structure shown in Fig. 11. The
blue circles are the angles when using the displacement efficiency
ηs for the different drainage steps, while the open red circles are the
same calculations with η = 1.

contact angle of 46 degrees. This is close to the thermody-
namically derived contact angle of 48 degrees obtained for
the same material without taking into account the efficiency
[13]. The same study measured the contact angles just before
displacement events, which led to averages of 64 and 68
degrees [13], which is close to the contact angles obtained
by our method. The difference between the contact angles of
64 and 68 degrees and the thermodynamically derived contact
angle of 48 degrees might be assigned to the efficiency, and in
this respect match our results quite well.

We now want to estimate the wettability from measures
available from traditional experiments. We then use a full pri-
mary drainage cycle to approximate the thermodynamically
based wettability from Eq. (34) as

ωi = σd

σ
=

η�W
σ

− �A12

�A2s
� η�W

σAs
, (36)

where η is the drainage efficiency for the total pore space,
while As is the surface area. Note that from imaging of the
pore space of a sample we can obtain estimates for both
η and As. We can also use the correspondence shown in
Fig. 10 to estimate the displacement efficiency from electrical
measurements. The surface area can also be estimated by
several different methods, e.g., from adsorption experiments
[36–38], or from two- or three-dimensional imaging. Last, the
externally applied energy �W is obtained by integrating the
pressure difference curve as

�W = φV
∫

pcdV. (37)

Thus, all parameters in the approximation in Eq. (36) can be
obtained by traditional experiments. Using this approximation
on the drainage experiment in the soda beads we obtain a
contact angle of 63 degrees, which is then compared to the
value of 59 degrees given by the calculations above. Thus,

for our experiment the wettability approximation given by
Eq. (36) with input values which are available from traditional
experiments gives a fair match with the more complete calcu-
lations.

IX. SUMMARY

In this article we have introduced pore-scale definitions for
thermodynamically reversible and irreversible displacement
processes, called isons and rheons. These definitions are based
on the Laplace pressure �p over fluid-fluid interfaces with
relation to the interface movement, as given by the integral∫

δ� f

�p�u · �ndS. (38)

When the integral in Eq. (38) equals the externally applied
work, then the displacement process is an ison, while it is a
rheon when the integral in Eq. (38) equals the internal rate of
energy dissipation.

We have investigated the energy efficiency of displacement
processes in simplified porous media consisting of sinusoidal
tubes, and observed that for a high number of tubes the en-
ergy efficiency converges towards a geometrically determined
efficiency. This observation together with experimental and
simulated results indicate that for pore structures with a high
number of pore bodies, the efficiency of primary displacement
processes is a function of the pore space geometry.

The geometry of the pore structure is thus linked to a
local displacement efficiency factor, which can be integrated
to give the primary displacement efficiency for the full porous
medium. We have calculated this efficiency for a range of
natural porous media. While the fluid flow in the displacement
process is described by the Stokes equation, we argue that
the displacement efficiency has a cross-property relation with
transport processes described by the Laplace equation. This
opens up for estimating the primary displacement efficiency
from traditional and widely available measurements.

We have used the local displacement efficiency to obtain a
thermodynamically based wettability index for an experiment
with pore-scale images of the drainage process. The obtained
wettability index is in the vicinity of values obtained by other
authors. We also showed how our methodology can be used
to approximate the wettability index from traditional experi-
ments, namely from the electrical conductance, the capillary
pressure curve and surface area approximation. For our exper-
iment, the obtained approximation is similar to the calculated
value.
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APPENDIX A: DERIVATION OF PORE-SCALE
EQUATIONS FOR ISONS AND RHEONS

In this Appendix we will derive pore-scale equations
used for describing the thermodynamically reversible and
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irreversible displacement processes, i.e., the ison and rheon
processes. At the interstitial scale, i.e., inside the pore space,
a slow (creeping) flow �u is assumed governed by the Stokes
equation supplemented by the continuity equation:

μ∇2�u = ∇p, (A1a)

∇ · �u = 0, (A1b)

where �u is the interstitial (pore-scale) fluid velocity, p is the
pressure, and μ is the viscosity of the fluid [22,39]. In the
following we will refer to Eqs. (A1) simply as the Stokes
equations. We assume a no-slip condition at the fluid-solid
interface.

As the pressure is discontinuous at the fluid-fluid inter-
faces, the Stokes equations are not well defined at these
interfaces. Further, movement of fluid-fluid interfaces lead to
movement of three-phase contact lines. This will give nonzero
fluid velocity at the solid surface, contradicting our no-slip
condition. This conflict between the no-slip condition and the
moving three-phase contact line leads to singularities in the
solution of the Stokes equation [40]. This classical problem is
still not fully solved [41]. We will not delve into this problem;
we assume that the no-slip condition is relaxed in the vicinity
of the three-phase contact line. For all internal points in the
two fluids the pressure and thereby the Stokes equations are
well defined. As we want the continuity equation to hold
universally, we can define the velocity of both fluids equal at
the interface. Under this assumption the velocity field �u will be
smooth, also over the interfaces. Due to possible differences
in viscosity, the gradient of the pressure field is not necessarily
smooth.

Applying the divergence theorem, and invoking that the
fluid velocity �u is a solenoidal vector field from the continuity
equation Eq. (A1b), we obtain

∫
�

∇p · �udV =
∫

�

∇p · �u + p(∇ · �u)dV

=
∫

�

∇ · (p�u)dV =
∫

δ�

p�u · �ndS

=
∫

δ�e

p�u · �ndS +
∫

δ�s

p�u · �ndS

+
∫

δ� f

p�u · �ndS

= (poutQ − pinQ) + 0 +
∫

δ� f

p�u · �ndS

= �pQ +
∫

δ� f

p�u · �ndS, (A2)

where �n is the outward pointing unit normal field of the
boundary δ�. The boundary δ� = δ�e ∪ δ�s ∪ δ� f can be
decomposed into the external boundaries of the pore space
δ�e, the fluid-solid boundaries δ�s, and the fluid-fluid bound-
aries δ� f . Note that the fluid-fluid boundaries δ� f are on both
sides of the fluid interfaces, with one unit normal pointing
out of fluid 1 and the corresponding pressure inside fluid
1, while the inverted unit normal is pointing out of fluid 2
with pressure in fluid 2. Thus, each fluid-fluid interface gives

FIG. 14. A simple two-dimensional example of a pore space �

and the corresponding solid phase V \� shown in white. This figure
shows X (r) = [� � S(r)] ⊕ S(r) for different radii values r, where
the r values are shown in the color-bar. This is equivalent to cdt (x) as
given by Eq. (23).

two fluid-boundaries. In Eq. (A2) we use that �u · �n = 0 at the
fluid-solid boundaries δ�s.

Let {δ�i
f | i ∈ S} be the set of individual fluid-fluid inter-

faces, where an integral over these fluid-fluid interfaces will
be conducted for both sides. If ni is the unit normal pointing
out of fluid i, since n1 = −n2 we have

∫
δ�i

f

p�u · �ndS =
∫

δ1�
i
f

p1�u · �n1dS +
∫

δ2�
i
f

p2�u · �n2dS

=
∫

δ2�
i
f

(p2 − p1)�u · �n2dS. (A3)

Here δi indicates that we are integrating over the boundary for
fluid i, thus on only one side of the fluid-fluid interface.

Surface properties can be considered scale dependent, e.g.,
surface roughness can be considered as an effective property
representing small scale surface geometry, similarly small
scale wettability variation can be treated as an effective sur-
face property. We are only considering heterogeneities at
a scale larger than the range of the van der Waals forces,
still smaller than what is resolved by our pore structure
description � ⊂ V . Surface roughness and wettability hetero-
geneity can then be represented by contact angle hysteresis
[42,43]. With such effective representation of smaller scale
heterogeneities, the increase in free energy for the fluid-fluid
surfaces will have a nonreversible component as given by
the hysteresis model. Both surface roughness and varying
wettability induce small and fast release of energy from the
surfaces, thus violating the assumption of increase in free
energy for all interfaces used for the pore-scale definition
of an ison process [Eq. (3)]. Such release of energy will in-
crease local flow rates, and thereby contradict that ‖�pQ‖ �
‖ ∫

�
∇p · �udV ‖. Additionally, incompressibility would be a
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FIG. 15. The connected part C[X (r)] of the subsets X (r) shown
in Fig. 14, equivalently cr p(x) as given by Eq. (23). By connected
part, we mean the part that is connected to the top of this two-
dimensional model.

too simple fluid description for representing these rapid ir-
reversible processes. In our derivations we considered these
effects of second order, i.e., the process is considered close to
reversible.

One could construct a pore space geometry where the free
energy released from one fluid-fluid interface was exactly
balanced by the increase in free energy of all the other inter-
faces. This would lead to a thermodynamic reversible internal
redistribution of fluids, contradicting that this is a rheon dis-
placement. For such a reversible process we can no longer
assume a limited time horizon for the internal redistribution of
fluids, thus the external work on the system during the internal
displacement is no longer negligible, and thereby violating the
assumption ‖�pQ‖ 
 ‖ ∫

�
∇p · �udV ‖ used in Eq. (4). This

is only of theoretical interest, in practice the release of energy
from moving a fluid-fluid interface would lead to a thermody-
namically irreversible process, and the release of energy from
this process would be fast compared to the increase in energy
from the externally applied work.

APPENDIX B: MORPHOLOGICAL OPERATIONS
FOR SIMULATING PRIMARY DRAINAGE

This Appendix will introduce some basic morphological
operations underlying the primary drainage simulations pre-
sented in Sec. V. For a set X and a structuring element B (e.g.,
a sphere of unit radius), the erosion of X by B is defined as

X � B = {x | Bx ⊆ X }, (B1)

where Bx = {b + x | b ∈ B} is the translation of B by x. The
dilation of X by B is defined by

X ⊕ B =
⋃
b∈B

Xb. (B2)

As before, the model we are considering is a porous
medium consisting of a pore space � ⊂ V inside the total
volume V . The pore space is initially filled with fluid 1 (the
wetting phase), while one side of the porous medium is con-
nected to a reservoir of fluid 2. For a subset of the pore space
X ⊂ �, we define C(X ) as the part of X that is connected to
the side-plane of the porous medium connected to the fluid 2
reservoir.

For a pressure difference �p, the corresponding curvature
rc from the Young-Laplace equation is given by rc(�p) =
2/(σ�p). From the pore-morphology approach, the portion
of the pore space filled by fluid 2 at pressure �p is given by

C({� � S[rc(�p)]} ⊕ S[rc(�p)]), (B3)

where S(r) is the sphere with radius r [27]. Observe that rp(x),
as defined in Eq. (22), is the smallest value r so that x ∈
C({y | dt (y) < r}).

To illustrate the process, consider the simple 2D exam-
ple from Sec. V. The X (r) = [� � S(r)] ⊕ S(r) for different
radii values r are shown in Fig. 14. Note that X (r) = {x |
cdt (x) � r}, where cdt is given by Eq. (23). Observe that for
the larger radii r the subset X (r) ⊂ � is not connected to the
top-side of the figure, which here is considered the inlet. Thus,
C[X (r)] will be an empty set for larger values of r, as seen
in Fig. 15. This simulates the pressure difference needed for
invading the different parts of the porous medium.
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