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Abstract

There is a strong demand for innovation and efficiency within operations, life cycle services,
and design of maritime systems. Modern vessels operate increasingly autonomously through
strongly interacting sub-systems. These systems are dedicated to a specific, primary objective
of the vessel or may be part of the general essential ship operations. The sub-systems exchange
data and make coordinated operational decisions, ideally without any user interaction. The
task of designing, operating, and integrating life cycle services for such vessels is a complex
engineering task that requires an efficient development approach, which must consider the mu-
tual interaction between the inherent multi-disciplinary on-board sub-systems. Digitalization
thus has become a key aspect of making the maritime industry more innovative, efficient, and
fit for future operations.

However, no one simulation tool is suitable for all purposes and the plethora of modeling
tools within different disciplines exists for very good reasons. Issues related to integration
of heterogeneous systems and hardware, memory, and CPU utilization makes implementing
complex-cyber-physical systems, like vessels, in a monolithic or centralized manner undesirable.
Co-simulation alleviates this issue, allowing different sub-systems to be modeled independently,
but simulated together. Co-simulation refers to an enabling technique, where different sub-
systems making up a global simulation are being modeled and run in a distributed fashion.
Each sub-system is a simulator and is broadly defined as a black box capable of exhibiting
behavior, consuming inputs, and producing outputs. A crucial point is that it allows users
to simulate models exported from different tools in a unified manner. Compared to more
traditional monolithic simulations, co-simulation encourages re-usability, model sharing, and
fusion of simulation domains.

Co-simulation can be expanded into the realm of digital twins by feeding sensor data
measured from the real world into the models, which in turn closes the loop by providing
actionable feedback. A digital twin can be defined as a virtual representation of a physical
asset enabled through data and simulators for real-time prediction, optimization, monitoring,
controlling, and improved decision making. As the digital twin mimics its physical counterpart,
it can be used to estimate a vessels performance before running any tests in the real world.
This not only offers flexibility, but also cuts down costs to a great extent. These proxies of
the physical world will help companies in the maritime industry in developing enhancements
to existing products, operations, and services, and can even help drive business innovation.

This dissertation aims to drive adoption of co-simulation standards and development of use-
cases by providing software that makes co-simulation simpler and more intuitive. This includes
enabling technology for building standard-conforming models and systems, and subsequent
tools for simulating them. The case studies presented show the effectiveness of the proposed
approach.
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1
Introduction

No one simulation tool is suitable for all purposes, and complex heterogeneous models may
require components from several different domains, perhaps developed in separate, domain-
specific tools. Co-simulation refers to an enabling technique, where different sub-systems mak-
ing up a global simulation are modeled and run in a distributed fashion. Each sub-system is
a simulator and is broadly defined as a black-box capable of exhibiting behavior, consuming
inputs, and producing output [2]. This dissertation is heavily application-oriented and focuses
mainly on how to use co-simulation as a tool for building and simulating complex heterogeneous
systems, like vessels, creating tools that make the process easier along the way.

1.1 Background and motivation

There is a strong demand for innovation and efficiency within operations, life-cycle services,
and design of maritime systems. Modern vessels operate increasingly autonomously through
strongly interacting sub-systems. These systems may be dedicated to a specific, primary ob-
jective of the vessel or may be part of the general essential ship operations. The sub-systems
exchange data and make coordinated operational decisions, ideally without any user interaction.
The task of designing, operating, and integrating life cycle services for such vessels is a complex
engineering task that requires an efficient development approach, which must consider the mu-
tual interaction between the inherent multi-disciplinary on-board sub-systems. Digitalization
thus has become a key aspect of making the maritime industry more innovative, efficient, and
fit for future operations [3, 4].

The concept of digital twins, characterized by the high fidelity with which they mimic
their physical counterpart, provides a potential solution for the next generation of advanced
ships. A digital twin can be defined as a virtual representation of a physical asset enabled
through data and simulators for real-time prediction, optimization, monitoring, controlling,
and improved decision making [5]. The digital twin should be able to take advantage of all
digital information available for an asset, such as the system and data information models, 3D
models, mathematical models, dependability models, condition and performance indicators,
and data analytics. Digital twin technology, together with data-driven prognostics and health
management systems, allows analysis of data and monitoring of maritime systems to detect
faults before they occur through condition monitoring and predictive maintenance [6], and
plan for the future by using simulations. However, issues related to integration of heterogeneous
systems and hardware, memory, and CPU utilization makes implementing such a digital twin in
a monolithic or centralized manner undesirable. Co-simulation as a technology mitigates some
of these issues by facilitating an inherently distributed black-box modeling and simulation
approach. Furthermore, as maritime systems such as ships are becoming increasingly complex
and consist of many sub-systems from different engineering domains, traditional simulation
approaches are too inflexible, too costly, and too inefficient [7].
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CHAPTER 1. INTRODUCTION

The maritime industry will benefit from co-simulation as a tool for virtual prototyping [8,
9, 10] and as an enabler for digital twins [11]. These proxies of the physical world will help
maritime companies in developing enhancements to existing products, operations, and services,
and can even help drive innovation. In [12], the authors details additional benefits for the
maritime industry as a whole.

The goal of this work is to develop auxiliary tools and an open framework to assist the
development of digital twins that will aid users to more easily develop components or sub-
system models, and combine them in a full system for the purpose of maritime industry design,
operation, service, and maintenance, as shown in Fig. 1.1. The core framework, allowing
simulations to be designed and carried out, as well as a number of reference models are open-
sourced. Additional models, applications, tools and services designed for or built on top of the
core framework may or may not be open-source depending on the intent of the provider.

Master 
Algorithm

Configuration
Tool

Scenario 
managment

Core Models

DNV GL

Kongsberg
Martime CM

NTNU

Reference
models

Open source

Apps/tools

HIL
Simulation

I/O tools

Design/sales
tool

Visualization

Training
simulator

Services

Classification

Advisory

Training

Product
development

Education

Open digital twins platform structure

Figure 1.1: Open software framework and system architecture.

The flexibility of simulator frameworks available on the market today with respect to
integration and mixing of models from different sources is very limited, and coupling with a
physics engine may not be possible. Limited or no support for existing standards is also a
major challenge in existing solutions. This prompts the first three research questions of this
dissertation:

• Which standards related to co-simulation are applicable?

• How can components from different sources be combined effectively?

2



CHAPTER 1. INTRODUCTION

• How can co-simulation be made more accessible?

In order to answer these questions it is necessary to investigate existing co-simulation stan-
dards and select the ones that are identified as the most promising in terms of enabling co-
simulations for demanding maritime operations. Furthermore, it is necessary to establish what
co-simulation can and cannot do, thus the following research question is raised:

• Which drawbacks comes with co-simulation?

Some of the main challenges related to combining components from different sources are re-
lated to accuracy & stability [13, 14], timing & data-exchange, and security & protection of
Intellectual Property Rights (IPR) [15]. This leads to the next research question:

• How to facilitate accurate and stable co-simulations?

This area is well studied in literature; see for example [16, 17, 18, 19, 13] for work on master
algorithms and [14] on stability. Thus further work may draw on the existing body of knowledge.

In order to ensure simulation scalability and model interoperability, simulation models may
be distributed and processed within a dedicated process, either locally or remotely. Remote
model execution also provides secondary benefits, as it alleviates the security concerns of the
user and further protects the IPR of the model owner. However, existing solutions either lacks
this ability or forces the user to commit fully to them, often in a non-transparent way. This
leads the following research questions:

• How might we facilitate seamless distributed model execution?

Ideally, the user should not be required to possess deep knowledge of the network stack in order
to run distributed simulations, nor should the user be forced to either run all models in a single
process or run all models in a distributed fashion.

Building upon the previous research questions, a more practical question related to usabil-
ity emerges:

• How can a co-simulation approach be used to support maritime digital twins
and simulation of demanding maritime operations?

To address this, a plausible case-study must be developed to verify its applicability.
Moreover, most frameworks today, including 20Sim, SimulationX, MATLAB and other

typical engineering tools, are focused on modeling behavior and behavior only. This makes
it difficult, if not impossible, to change the fidelity or characteristics of the simulation in an
intuitive way while at the same time preserving state. This prompts the following research
question:

• How can simulation behavior and state be separated, effectively and intu-
itively?

To address this question it is imperative to investigate and test different software architectures.
The architecture should not only make it possible, but also provide the necessary usability to
be practically viable.

3



CHAPTER 1. INTRODUCTION

Existing tools might not be very flexible when it comes to presenting and controlling a
simulation. If possible at all, interaction and presentation of simulations is provided within that
software, with limited or no options for custom access/control from the outside. This leads to
the final research question:

• How can the simulation be presented to the user in an intuitive way?

Answering these questions should lead to a sound conceptual framework as illustrated by
Fig. 1.2, which should aid the development and simulation of maritime equipment, operations,
and digital twins, thereby benefiting the surrounding maritime industry.

Design (VP)
Design system 
integration
Model based 
enterprise
Product 
lifecycle 
management

Manufacturing
Sensor enabled 
management
Manufacturing 
execution systems
Model 
consumption

Operation
Operational 
cost reduction
Model reuse
Quality & 
efficiency 
improvement

Maintenance & 
service

Condition based 
maintenance
Field services 
automation
Business & operations 
optimization

Suppliers Customers

Models Optimization Co-
simulation

Machine 
learning 

Figure 1.2: A plausible development procedure of digital twins system for the maritime industry.

1.2 Objectives

In seeking to answer the above research questions, this dissertation seeks to obtain the following
research objectives (ROs):

� RO1: Making co-simulation more accessible and user-friendly through the
development of supplementary software packages.

It is very useful that multiple standards for co-simulation has been developed. However, stan-
dards require software to actually implement them. While such implementations do exists for
most sets of standards, they might be deficient, difficult to use, or only available in a limited
number of languages. Therefore it is important to establish supplementary software packages
to support further developments. The development of these packages are covered in part by
papers A1, A2, A3, and A4. Together they act as fundamental enablers for the development
and usage of the framework proposed by the next research objective:

4



CHAPTER 1. INTRODUCTION

� RO2: Propose an open-source simulation framework focusing on co-simulation
and digital twin technology, with the main goal of supporting maritime use
cases.

The goal is to create a generic open-source simulator framework, with a strong focus on maritime
use-cases that can provide full flexibility for the user in terms of what to simulate, how to
simulate, and how to present and control simulations. The solution should provide the ability
to define simulation scenarios where the user can easily select/change which behavior models
to be used. Behavior models may be be Functional Mock-up Units (FMUs) generated with
third-party tools, sensor data from hardware devices, or provided as source code in selected
languages.

The quality of any co-simulation framework is largely dependent on the provided master
algorithms. However, implementing every state-of-the art master algorithm imaginable is com-
plex, time-consuming, error-prone, and tedious work. In order to raise the quality of the overall
system during the early development phases of a new framework, it might be beneficial to only
offer a single or limited set of algorithms. Nonetheless, it is vital to facilitate the inclusion
of such algorithms in the future. If this process is to attract outside collaborators, it should
be as seamless as possible. Papers A5 and A6 covers the development and utilization of the
co-simulation frameworks used in this work. However, an elaborate framework filled with ad-
vanced features loses some of its value if some of the models it is designed for cannot be run or
if the system simply cannot handle the workload exerted on it in a timely manner. This leads
to the following research objective:

� RO3: Propose a method for enabling interoperable and scalable simulations
through distributed model access.

Obtaining a simulation model does not mean that it is necessarily viable in its current form.
The model might not run on the desired platform or tool due to misaligned specifications or
missing software components. Furthermore, a user may want to instantiate multiple instances of
a model that lacks this ability. As the simulation grows large, scalability might also be an issue.
Thus, papers A2 and A3 explore an innovative, flexible, and efficient way of solving these issues.
Furthermore, improvements and refinements for this solution are laid out in Section 3.2.6.

� RO4: Making co-simulations intuitively presentable to the user.

Certain simulation tools offer little more than the ability to save time-series data to a file
after the simulation has ended, while others offer built-in visuals and plotting capabilities. As
long as simulation data is somehow accessible, no solution is necessarily better than any other;
the purpose of the tool in question will determine what is most useful. However, the ability
to present comprehensible data while a simulation is running certainly has advantages. The
solution proposed in Paper A6 allows 3D visuals and 2D plots to be easily configured and shown
during simulation. Furthermore, this presentation is available both locally on desktop and
remotely using web technologies. To allow flexibility, advanced users may choose to implement
their own hooks into the simulation, using either the Application Programming Interface (API)
or remote end-point, instead of using the provided solutions.
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CHAPTER 1. INTRODUCTION

1.3 List of publications

This thesis is based on the research published in three journal papers and three conference
papers. The six papers are included in the appendix section of this thesis. In the following list
of publications, the papers are listed chronologically by the date of publication, from the oldest
one to the most recent.

[Paper A1] L. I. Hatledal, H. Zhang, A. Styve, and G. Hovland, “FMI4j: A Software Package
for working with Functional Mock-up Units on the Java Virtual Machine”, The 59th Conference
on Simulation and Modelling (SIMS 59), vol. 153, no. 6, pp. 37–42, 2018.

This paper introduces FMI4j, a software package for dealing with FMUs on the Java
Virtual Machine (JVM), which makes using and developing FMUs on this platform easier. It is
the only open-source JVM library to offer support both for model exchange and co-simulation,
and later revisions of the package offers much better performance than the alternatives.

[Paper A2] L. I. Hatledal, H. Zhang, A. Styve, and G. Hovland, “FMU-proxy: A Framework
for Distributed Access to Functional Mock-up Units”, Proceedings of the 13th International
Modelica Conference, vol. 183, pp. 240–251, 2019.

This paper introduces FMU-proxy, a framework that aims to solve some of the practical
deficiencies of the Functional Mock-up Interface (FMI) standard. In practice, an FMU may not
run on a particular system due to an incompatible operating system, licensing issues, or missing
software components. Furthermore, some FMUs can only be instantiated once per process.
FMU-proxy solves these issues by wrapping FMUs in a server program that exposes the FMI
API through language and platform independent Remote Procedure Call (RPC) interfaces over
multiple protocols.

[Paper A3] L. I. Hatledal, A. Styve, G. Hovland, and H. Zhang, “A Language and Platform
Independent Co-simulation Framework Based on the Functional Mock-up Interface”, IEEE
Access, vol. 7, pp. 109328-109339, 2019.

This paper expands on the work introduced in Paper A2, most notably providing the results
of a performance benchmark that compares different RPC technologies in terms of performance
in the context of FMU-proxy.

[Paper A4] L. I. Hatledal, F. Collonval, and H. Zhang, “Enabling Python Driven Co-
Simulation Models with PythonFMU”, Proceedings of the 34th International ECMS-Conference
on Modelling and Simulation-ECMS 2020, vol. 34, no. 1, 2020.

This paper introduces PythonFMU, a framework for exporting Python code as FMI 2.0
compatible co-simulation FMUs. This work aims to lower the barrier of entry for model creators
by providing an easy-to-use to use tool for exporting FMUs from source code. As Python and its
vast ecosystem of libraries allows the development of models that are connected to web services
or utilize machine learning, PythonFMU was specifically developed to allow data scientist with
little or no background in co-simulation or software engineering to contribute with models
related to the development of digital twins.

[Paper A5] L. I. Hatledal, R. Skulstad, G. Li, A. Styve, and H. Zhang, “Co-simulation as a
Fundamental Technology for Twin Ships”, in Modelling Identification and Control, vol. 41, no.
4, pp. 297-311, 2020.
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This paper presents ongoing work related to the development towards a digital twin of
the NTNU-owned research vessel (RV) Gunnerus. The work makes use of the FMI-based co-
simulation library libcosim, which was developed as part of the Open Simulation Platform
(OSP) initiative. The paper also introduces cosim4j, which makes it possible to interact with
the software from within the JVM. A model of the Gunnerus was developed and described using
the System Structure and Parameterization (SSP) standard, then subsequently simulated using
the presented co-simulation software.

[Paper A6] L. I. Hatledal, Y. Chu, A. Styve, and H. Zhang, “Vico: An Entity-Component-
System Based Co-simulation Framework”, Simulation Modelling Practice and Theory, vol. 108,
April 2021.

This paper introduces Vico, a novel co-simulation framework based on the Entity-Component-
System (ECS) software architecture. This work may be regarded as the culmination of the work
conducted as part of this dissertation, connecting the various software components together in
one unified package. That is, PythonFMU and FMI4j may be used to aid in model devel-
opment, SSPgen may be used to aid in the development of the system to be simulated, and
FMU-proxy may be used to enable distributed execution of FMUs or merely as an enabling
technology for adapting otherwise incompatible simulation models. Vico, which also provides
a Command Line Interface (CLI), scriptable scenarios, 3D visuals, plotting, data export, and
web access in one unified package, is then used to run the global simulation.

Other works

The following papers are not included in this thesis but might be considered relevant due to
co-authorship and similar topics:

i Y. Chu, L I. Hatledal, V. Æsøy, E. Sören, and H. Zhang, “An Object-Oriented Model-
ing Approach to Virtual Prototyping of Marine Operation Systems Based on Functional
Mock-Up Interface Co-Simulation”, in Journal of Offshore Mechanics and Arctic Engi-
neering, vol. 140, no. 2, 2018.

ii Y. Chu, L I. Hatledal, H. Zhang, V. Æsøy, and E. Sören, “Virtual prototyping for maritime
crane design and operations”, in Journal of marine science and technology, vol. 24, no.
4, pp. 754-766, 2018.

1.4 Structure of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces co-simulation as a fun-
damental technology for enabling simulation and digital twins related to demanding maritime
operations. Chapter 3 introduces established standards in the field and provides an overview
of the standards selected for this work. It also presents on the various enabling tools that have
been developed, expanding on the work published in Papers A1 through A4. Chapter 4 relates
to Paper A5 and A6, and gives an overview of currently existing co-simulation platforms as
well as an introduction to the two co-simulation platforms that have been developed, and con-
tributed to, as part of this work. Chapter 5 presents the various case studies performed, which
include a generic co-simulation case-study related to simulation accuracy and performance pub-
lished in Paper A6, as well as case studies related to the research vessel Gunnerus, one of which
appeared in Paper A5. Chapter 6 concludes the dissertation, summarizes the contributions,
and indicates objectives for future work.
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2
Co-simulation to support demanding maritime operations

This chapter introduces co-simulation as a fundamental technology for enabling effective simu-
lation of demanding maritime operations. Effective, in this context, means that the process of
creating the overall simulation should be easy enough, the simulation results should not produce
unexpected results, and the run-time performance should be adequate. Finally, it should be
possible to both passively and actively interact with the simulation. Passive interaction would
mean interaction with tools that provides apprehensible feedback about the ongoing simulation,
like plots and 3D visuals. Active interaction should allow the user to influence the simulation
while it is running, in order to facilitate more than just pure data-centric use-cases.

Figure 2.1: Key properties of co-simulation.

2.1 Co-simulation fundamentals

Co-simulation refers to an enabling technique, where different sub-systems making up a global
simulation are being modeled and run in a (logically) distributed fashion. Each sub-system is
a simulator and is broadly defined as a black-box capable of exhibiting behavior, consuming
inputs, and producing outputs [20]. Key-properties affiliated with co-simulation are illustrated
in Fig. 2.1. A crucial point is that co-simulation allows users to simulate models exported from
different tools together. Compared to more traditional monolithic simulations, co-simulation
encourages re-usability, model sharing and fusion of simulation domains. Thus, the idea of using
co-simulation to simulate maritime vessels and auxiliary equipment seems promising. Modeling
a cyber-physical-system (CPS) as complex as a vessel will naturally consist of components from
several different domains [7]. The plethora of modeling tools within different disciplines exists
for very good reasons, and there might never be a single tool that is suitable for every stage and
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every branch of the design process [21]. Fig. 2.2 illustrates a possible co-simulation scenario
for a vessel, which requires models from several different domains. Co-simulation is absolutely
imperative for this scenario to succeed, not only because models from different domains need
to be coupled, but also because the models may originate from different, perhaps competing
companies that would not be willing to share their models in any form other than a black-box
model due to concerns around exposing IPR [15]. As the business logic can be distributed as
binary code, the black-box approach should relieve this concern somewhat. However, additional
resources bundled within the model may not be protected, so this approach may not completely
hide IPR. On the other hand, it is easy to interface with black-box models that use standardized
interfaces. Thus it is quite manageable to establish a remote interface to such models, which
in turn makes it possible to hide unintentional IPR leaks by only exposing the API, and not
the resources within.

Co-simulation

Figure 2.2: The vessel model depicted in the figure is an aggregate of several different
sub-components, which are integrated and solved together using co-simulation. Vessel sub-
component figures courtesy of the Virtual Prototyping of Maritime Systems and Operations
project (Research Council of Norway, grant nr. 225322).

Co-simulation can be expanded into the realm of digital twins by feeding sensor data
measured from the real world into the models, which in turn closes the loop by providing
actionable feedback, as illustrated by Fig. 2.3. A crucial attribute of a digital twin model is
that, since it mimics its physical counterpart, it can approximate a vessel’s performance through
simulation prior to running tests in the real world [9]. This not only offers flexibility; it also
cuts down costs to a great extent. Performance, shipbuilding, and maintenance of the vessel are
three vital areas where a digital twin acts as a valuable asset [22]. The maritime digital twin
could be used to track information for all relevant parameters to define how each individual sub-
module behaves over its entire useful life. Using digital twins to enhance maritime engineering
could have the following advantages, and should be considered for future research.

1. Reduce development time and enhance production efficiency: Provide an in-
tegrated view on the vessel’s various physical and behavioral aspects in all stages; allow
simultaneous optimization of all functional performance requirements throughout the en-
tire development cycle, from early concept to detailed engineering and commissioning;
and reduce design tolerances, manufacturing uncertainties, and stochastic variabilities of
vessel operation.

10
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2. Improve operational flexibility and reduce cost : Execute day-ahead and long-term
planning for improved operations; and reuse the sub-system models, data, and operational
sources.

3. Enhance the life-cycle value chain and improve the system performance and
health condition : Allow data exchange between different sub-systems, modules, and
proprietary applications; enable remote access to on-board systems; assure system avail-
ability via digital twins; and utilize early warnings for short time technical support. For
example to improve response time related to changing components and software updates.

4. Improve quality and efficiency of maritime product and operation approval
and certification processes: Combine simulation models and sensor data on an open
platform; facilitate the design and verification of cyber-physical systems; and allow classi-
fication societies to replace periodical surveys with condition- and event-based inspections.

Data streams

Mathematical 
models

Digital twin Simulation Decision making

Situational
parameters

Figure 2.3: The components of a digital twin.

Co-simulation is, however, not a perfect solution to overcome all simulation challenges.
In [2], the authors do a good job identifying common challenges related to co-simulation; like
semantic adaptation, modular coupling, stability and accuracy, and finding a standard for
hybrid co-simulation. A common issue with co-simulation is related to stability and accuracy [9,
14], in particular when strongly coupled models are involved. More advanced co-simulation
algorithms with error-control, which are able to roll back and retry the simulation step from a
previously known stable state using a lower time-step, may mitigate this issue [16]. However,
models often do not support such capabilities and the larger the simulation the more likely it
will encounter strongly coupled models. A pragmatic solution to handle the accuracy issue is to
lower the time-step used to drive the simulation forward, at the cost of run-time performance.
Unfortunately, this is not always sufficient and the models needs to be adapted by introducing
elements such as spring-dampers systems at connection points to soften a stiff system. However,
adapting the models naturally alters the characteristics of the intended simulation and thus it
may not be an optimal solution. System designers then must re-think which parts of the overall
simulation may be split into co-simulation units, making sure to avoid splitting parts of the
simulation that are deemed too tightly coupled [21].
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2.2 Literature review

A stand-alone literature review revolving around generic co-simulation technology and its appli-
cation to virtual prototyping and digital twin development targeting for the maritime industry
has not been published in conjunction with this thesis. Rather, literature search and reviews
has been conducted and included in its individual papers. Papers A1 through A4 review the
literature on enabling technologies for co-simulation; Paper A2 and A3 review the literature
on the distributed part of co-simulation; and Paper A5 and A6, which are more application-
oriented, include reviews of the literature on its use of the technology. Paper A5 in particular
addresses digital twins.

2.2.1 Benefits and challenges of co-simulation

Benefits

• Co-simulation allows models generated from different tools and designed for different
domains to be coupled and simulated together [23]. Each black box incorporates its
own simulation algorithm, which is usually the most appropriate for its domain [24].
This enables heterogeneous simulations to be realized, including complex cyber-physical-
systems like vessels [11].

• Co-simulation allows competing companies to share models towards realizing a common
goal, without having to expose IPR thanks to the black-box modeling approach [15, 24, 9].

• The use of open standards encourages re-usability and collaboration [24], which saves cost
and drives innovation [25].

• Co-simulation enables simulation-based commissioning of vessels and virtual sea trials to
remove design flaws and implementation errors at an early stage [9].

• The inherent property of distribution-friendliness makes it viable to execute the model
on a remote resource, potentially protecting the user from malicious attacks and further
protecting the model owner’s IPR by not physically re-distributing the model [15]. This
also allows for large-scale parallel simulations [26, 27].

• Co-simulation naturally enables the realization of digital-twins due to the inherent dis-
tributed and component-based structure as it allows models using different run-time sys-
tems to be executed together [28].

Challenges

• In order to achieve trustworthy, reliable, and relevant simulations, one naturally needs
access to sufficiently good and relevant models. Additionally, acquired models need to be
coupled. This process is often a source of error even if the models themselves are working
as intended [25], especially if documentation is inadequate or missing altogether [24].

• Model interfaces often exposes a large number of variables, which, when coupled with
non-intuitive variable names, makes the process of connecting variables difficult to reason
about. This is can be illustrated using the quarter-truck system described in Section 5.1.
Here, the output variable named p.e from the chassis model should be connected to the
input variable named p1.e belonging to the wheel model. Deducting this just by looking
at the model definitions is not necessarily obvious.
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• When designing co-simulations, there might be issues related to causality when two mod-
els, which theoretically would be a good match for coupling, have inputs and outputs
flowing in the wrong direction compared to each other [9, 2]. This can be alleviated by
proper communication between model designers, but there might still be an issue when
using legacy models.

• Naively connecting inputs to outputs between black-boxes does not necessarily imply
that the resulting behavior mimics the actual couplings of the sub-system models [24].
Actually, co-simulation often leads to less accurate simulations than monolithic ones, as
each sub-system is solved individually. This changes the eigenvalues of the total system,
which can cause instabilities in the local solvers [29, 14]. This can be alleviated to some
extent by good master algorithms, but such algorithms might not always be available,
nor applicable due to lacking model implementations or real-time requirements.

• Challenges associated with the development of digital twins relates to insufficient syn-
chronization between the physical and the digital world to establish closed loops, a lack
of high-fidelity models for simulation and virtual testing at multiple scales, lacking un-
certainty quantification for such models, difficulties related to the prediction of complex
systems, and challenges related to the gathering and processing of large data sets [30].

2.3 Scope of work

The realization of the proposed co-simulation framework can be divided into three main parts,
as illustrated by Fig. 2.4. The first layer represents the underlying standards for co-simulation,
with the second layer representing the tools and utilities that enables actual usage of these
standards. Finally, the third layer represents the integration layer, which is responsible for
connecting all the pieces and perform the actual co-simulation. This dissertation is not aim-
ing to propose new competing standards for co-simulation, which would likely lead to more
fragmentation of the space or might just end up in the shadows of existing and more promi-
nent standards. Rather, the objective is to select suitable standards to use as the foundation
for realizing a streamlined co-simulation experience and then develop enabling tools around
them. The novelty of this work lies in the enabling technologies that allows individual mod-
els and complete co-simulation systems to be more easily and intuitively realized and later
simulated. These technologies are then used to prototype a plausible and coherent framework
for the development of digital twins for the maritime industry. In order to create a suitable
environment for co-simulation that can provide the necessary accuracy and stability required
to support trustworthy simulations, it is necessary to investigate applicable master algorithms
for co-simulation. Furthermore, it is imperative that the proposed solution can accommodate
such algorithms to be seamlessly implemented by anyone who wishes to do so. The solution
must therefore be extensible in this regard.

The interconnection between the research objectives and the papers published are shown in
Fig. 2.5. In order to fulfill RO1, a set of libraries and tools are developed that simplify, enhance,
and make the use of the underlying co-simulation standards more accessible. Paper A1 and A4
both introduce libraries that makes interaction with the FMI standard easier, using the Java
and Python platforms respectively. Furthermore, Paper A2 and A3 propose a framework to
improve interoperability between models and tools, and to enable scalable simulations through
distributed model access as suggested by RO3. These libraries are subsequently used to aid
development and usage of the framework set out to be established by RO2. This work is covered
by Paper A5 and A6. The framework introduced in Paper A6 also tries to accommodate the
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Standardization Layer

Enabling Layer

Integration Layer

SSPgen

FMI4j

FMI4cpp

PythonFMU

FMU-proxy

OSP-IS OSP-SS

Figure 2.4: Co-simulation layers considered in this work.

14



CHAPTER 2. CO-SIMULATION TO SUPPORT DEMANDING MARITIME
OPERATIONS

Topics

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Enabling tecnologies
for co-simulation

Co-simulation 
frameworks

Digital twins for 
maritime operations

PublicationsResearch objectives

RO1:
 Make co-simulation more 

accessible and user-friendly 
through the development 

of supplementary software 
packages.

RO2: Propose an open-
source simulation 

framework focusing on co-
simulation and digital twin 
technology, with the main 

goal of supporting maritime 
use cases.

RO4: Making co-simulations 
intuitively presentable to 

the user.

RO3: Propose a method for 
enabling interoperable and 

scalable simulations 
through distributed model 

access.

Distributed
co-simulation

Paper I

Paper II

Paper III

Paper IV

Paper V

Paper VI

Publications Topics

Enabling tecnologies
for co-simulation

Co-simulation 
frameworks

Digital twins for
maritime operations

Distributed
co-simulation

Research objectives

RO1:
Make co-simulation more 

accessible and user-friendly 
through the development

of supplementary software
packages.

RO2: Propose an open-
source simulation 

framework focusing on co-
simulation and digital twin 
technology, with the main

goal of supporting maritime 
use cases.

RO4: Making co-simulations
intuitively presentable to 

the user.

RO3: Propose a method for 
enabling interoperable and 

scalable simulations
through distributed model 

access.

Figure 2.5: Interconnection of published papers in the thesis.

issue of presenting co-simulations as suggested by RO4, while Paper A5 looks more into how
co-simulation technology can be adapted and used towards enabling digital twins for maritime
operations.

2.4 Model accumulation, limitations, and assumptions

Access to relevant models are paramount in order to demonstrate the capabilities of the pro-
posed co-simulation approach. Model development is, however, not within the scope of this
work and models have been expected to already be available or to be provided by others, in a
standardized and supported format. It has been assumed that the models provided are working
as intended and does not provide erroneous results. In most cases models are provided as black-
boxes without any attached sources. In the event that a model is not working as expected or
the model interface needs adjustments, it must be updated by the body that supplied it. This
might not be possible, or it could be time consuming. However, using the tools developed as
part of this work, it has been possible to create supplementary models to be used in conjunction
with the already provided models.

2.4.1 Maritime reference models

One of the goals of the OSP project was to produce a set of publicly available maritime reference
models. These models have been published online, and an overview can be found at the following
location: https://open-simulation-platform.github.io/demo-cases1. The models have
been developed by different suppliers, including SINTEF, NTNU, Kongsberg and DNV-GL,
using a diverse range of tools, targeting different versions of the FMI standard. Most relevant
to this work are the models used in relationship with the RV Gunnerus, listed in Table. 2.1,

1Date accessed 15-Jan-2021
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which were utilized, and further described, in the case study presented in Paper A5.

Table 2.1: OSP reference models utilized by the Gunnerus case study presented in Paper A5.

Component Tool Vendor FMI version
ThrusterDrive 20sim SINTEF Ocean 1.0
PowerPlant 20sim SINTEF Ocean 1.0
VesselFmu VeSim SINTEF Ocean 1.0
PMAzimuth VeSim Kongsberg Maritime 1.0
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3
Fundamental technologies for co-simulation

This chapter introduces existing standards for co-simulation as well libraries and tools developed
as part of the dissertation to support the most promising standards.

3.1 Open standards for co-simulation

This section provides an overview of existing and open standards related to co-simulation that
could serve to support demanding maritime operations. Both standards for executing (how)
and defining (what) co-simulations are considered. The obvious benefit of taking advantage of
established standards is that it builds on previous knowledge, fosters collaboration, and enables
re-usability [24]. Ad-hoc solutions using some kind if messaging protocol is not considered as
they are not standardized in terms of co-simulation functionality. Furthermore, the interfaces
developed for ad-hoc co-simulation depend on the simulators it connects; therefore, the re-
usability of models and interfaces is not always evident [31] and might contribute to vendor
lock-in as the interfaces may not be sufficiently generalized.

3.1.1 The Functional Mock-up Interface

The FMI [23] is a tool-independent standard that supports both model exchange (ME) and
co-simulation (CS) of dynamic models. A model implementing the FMI standard is known
as an FMU. The main goal of the FMI standard is to allow the sharing of simulation models
across tools. To accomplish this, FMI relies on a combination of XML-files and compiled C-
code packaged in a zip archive. The FMI standard consists of two main parts, both of which a
single FMU may support:

• FMI for ME: Models are exported without a solver, as illustrated by Fig. 3.1, and are
described by differential, algebraic, and discrete equations with time-, state-, and step-
events.

• FMI for CS: Models are exported with a solver, as illustrated by Fig. 3.2, and data is
exchanged between sub-systems at discrete communication points. In the time between
two communication points, the sub-systems are solved independently from each other.

Figure 3.1: FMI for model exchange
(from [1]). Figure 3.2: FMI for co-simulation

(from [1]).
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Complex cyber-physical systems, like vessels, require models from several different do-
mains, likely developed in separate, domain-specific tools. The FMI enables such models to be
integrated in a standardized way. Supported by over 140 tool vendors to date, it has become
the de facto standard for co-simulation and model exchange. Moreover, a recent survey showed
that experts consider the FMI standard to be the most promising standard for continuous time,
discrete event, and hybrid co-simulation [24]. Although this standard has reached acceptance
in industry, it provides only limited support for simulating systems that mix continuous and
discrete behavior, which are typical for cyber-physical systems [32]. A future version of the
standard (FMI 3.0) will introduce clocks for synchronization of variable changes across FMUs,
allowing co-simulation with events.

3.1.2 High Level Architecture

The High Level Architecture [33] (HLA) is an open international IEEE standard for distributed
simulation. It focuses on interoperability and re-usability of the components (called federates)
and offers time management interoperability as well as sophisticated data distribution con-
cepts [34]. HLA was initially developed in the 1990s under the leadership of the US Department
of Defense. However, due to its openness and generic character it has also had large impact
on non-military distributed simulation applications. While the FMI and the HLA seems to be
competing standards, they are not mutually exclusive as demonstrated in [35, 36], where FMUs
are incorporated as HLA federates. Similarly, it should be possible to wrap an HLA federate as
an FMU using the federate object model (FOM) as the basis for the FMI modelDescription.xml.
When HLA simulations are executed in time unconstrained mode, the resulting FMU might be
treated as a live-stream of data in a real-time synchronized FMI simulation.

3.1.3 System Structure and Parameterization

As an extension of the FMI standard, the SSP [37] standard aims to facilitate the design,
simulation and execution of a network of components (e.g., FMUs). It is a tool independent
standard to define complete systems consisting of one or more components, including its param-
eterization, which can be transferred between simulation tools. The structure of a simulation is
defined in an XML configuration file. At least one configuration file named SystemStructure.ssd
must be present. However, additional configurations may optionally be defined, allowing a sin-
gle SSP archive to contain multiple simulation configurations. Simply explained, an .ssd defines
which models make up a simulation (components), which variables are exposed (connectors),
how they are connected (connections), and how they are parameterized (parameter-sets). An-
notations are used to define tool-specific features. The .ssd files are packed, together with any
resources required, like FMUs, in a zip archive with an .ssp extension. The main use of this
standard is to:

1. Define a standardized way to store and apply parameters to these components.

2. Define a standardized format for representing the interconnections between components.

Thus, the SSP allows complete systems to be defined, shared, and re-used in a tool-independent
manner. Much as the FMI allows decoupling from the simulation tools, the SSP allows decou-
pling from the co-simulation master.
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3.1.4 Open Simulation Platform - Interface Specification

The OSP interface specification (OSP-IS) is an addition to the FMI 2.0 standard for co-
simulation, which provides a method for adding semantic meaning to model interface variables.
The OSP-IS aims to enable faster construction of co-simulation system by simplifying the model
connection process, and validation of semantically correct simulations. Basically the OSP-IS
allows model creators to bundle an additional XML document alongside an FMU with the
intent of easing the process of connecting inputs and outputs between two compatible models.

3.1.5 Open Simulation Platform - System Structure

The OSP system structure (OSP-SS) is an alternative to the SSP standard, developed alongside
the libcosim library for co-simulation introduced in Section. 4.2.1. It re-uses parts of the SSP,
like unit definitions, and uses a similar structure. A major difference lies in how connections
are defined. The OSP-SS natively supports OSP-IS connections, allowing groups of variables
to be connected between models that supports it. Furthermore, it enables the declaration of
custom functions. Functions in the context of OSP-SS are pre-defined code blocks that are
placed between FMUs in order increase or decrease the number of outgoing signals and/or
to manipulate their value. This allows more advanced variable transformations than the few
generic mapping functions found in SSP, but requires more effort to support.

3.1.6 Distributed Co-simulation Protocol

The Distributed Co-simulation Protocol (DCP) [38] is an FMI-compatible standard for real-time
and non-real-time system integration and simulation. Thus, the DCP is a promising solution for
realizing digital twin systems and other systems that require real-time interaction with physical
components. However, the standard seemingly lacks adoption and is more involved than the
FMI standard.

3.1.7 Standards considered in this work

Going forward, the subsequent work chose to focus on the FMI and SSP standards. Since its
inception, the FMI has gained far more traction than the HLA with regards to co-simulation, as
the sheer amount of tools that support it suggests 1. As noted by [24] experts also consider it to
be the most promising standard for continuous time, discrete event, and hybrid co-simulation.
It is worth noting that some efforts have been devoted towards combining the FMI and HLA
standards, as demonstrated in [35, 36]. However, this approach is too complex in terms of
usability for the current study’s purpose. The SSP is chosen as it fits naturally together with
the FMI in order to define standardized co-simulation systems. It is chosen over the OSP-SS
as it has been adopted by multiple tools, thus allowing a single SSP archive to be simulated in
more than one tool as demonstrated in Chapter. 5. Furthermore, the SSPGen tool introduced
in Section 3.2.5 minimizes verbosity and enables usage of the OSP-IS in an SSP context. Two
major reasons for the OSP-SS to exist. Usage of the DCP is not considered at the moment.
However, given its close relationship and compatibility with the FMI standard, future research
should consider the possibility of adopting it in order to facilitate real-time requirements of
distributed components.

1https://fmi-standard.org/tools/
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3.2 FMI-based co-simulation libraries and tools

This section gives an overview of existing libraries enabling FMI import, as well as a presentation
of the various libraries and tools that have been developed as part of this dissertation in order
to promote, simplify, and improve upon FMI-based co-simulation. The ultimate goal, however,
is to support the co-simulation platforms described in Chapter 4, and subsequent use-cases
realized through their employment.

3.2.1 Overview of existing libraries

Table. 3.1 shows an overview of existing open-source software libraries that enable import
of FMUs. This means that the library should be able to unzip the FMU archive, parse the
modelDescription XML and interact with the underlying C code distributed as platform-specific
binaries.

Table 3.1: Software libraries providing FMI import.

FMI support
Language CS ME

Name C C++ Java Python v1.0 v.2.0 v1.0 v2.0 Version License
FMI Library x x x x x 2.2.3 BSD
FMU SDK x x x x x 2.0.6 BSD
FMI++ x xa xa x x xb xb - BSD
FMI4cpp x x x x 0.8.0 MIT
PyFMI x x x xb xb 2.8.5 LGPLv3
FMPy x x x xb xb 0.2.26 BSD
JFMI x x x 1.0.2 MIT
JavaFMI x x x 2.26.3 LGPLv3
FMI4j x x x x 0.36.4 MIT
a Through SWIG.
b Can solve ME FMUs.

3.2.2 FMI4j

FMI4j, introduced in Paper A1, is a software package for dealing with FMUs on the JVM that
supports import of models compatible with FMI 1.0 & FMI 2.0 for CS & ME as well as export of
models compatible with FMI 2.0 for CS. Since the paper on FMI4j was published, the library
has gone through some changes. Rather than using Java Native Access (JNA) to interact
with native code, it now uses the Java Native Interface (JNI), which is significantly faster.
Furthermore, FMI4j is now capable of exporting Java code as FMUs compatible with the FMI
2.0 for CS. Similarly, some features have also been removed: the ability to wrap ME models
as CS models and FMU2Jar, a tool for transforming FMUs into regular Java libraries. The
ability to wrap ME models was removed due to the fact that users themselves should perform
this task to meet their specific needs, such as the use of specialized solvers or to solve multiple
ME models together. Furthermore, the solution was dependent of the JVM, and standalone
solutions exist that can turn ME FMUs into tool-independent CS FMUs. The point of FMU2Jar
was to simplify the interaction with individual FMUs on the JVM by automatically generating
a customized high-level API for interacting with it, for example to provide named getters and
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setters for each exposed variable. However, this use-case is more or less nonexistent, as it is
more natural to simulate FMUs together using some kind of readily available tool, where one
does not interact with individual FMUs directly. However, the work provided some valuable
insights into how one could leverage the build-system to inject auto-generated source code into
Java applications. Compared to JavaFMI, which also runs on the JVM, FMI4j is much faster
at interacting with imported FMUs and also exports FMUs that runs significantly faster, both
of which are crucial for realizing efficient co-simulations. Listing. 3.1 shows how FMI4j may be
used in order to develop FMI 2.0 compatible CS models using Java. FMI4j also integrates with
Gradle, which makes the process of actually building the FMUs easier.

Listing 3.1: Minimal code example showing how to write FMI 2.0 compatible simulation models
using FMI4j.
@SlaveInfo ( author = "John Doe" )
public class JavaSlave extends Fmi2Slave {

@ScalarVar iable ( c au s a l i t y=Fmi2Causality . output )
private double realOut = 2 . 0 ;

public JavaSlave (Map<Str ing , Object> args ) {
super ( args ) ;

}

@Override
public void doStep (double currentTime , double dt ) {

realOut += dt ;
}

}

3.2.3 FMI4cpp

FMI4cpp is an open-source C++ library for importing models adhering to the FMI 2.0 for
CS standard. Written in modern C++, it was developed as an easier to use alternative to the
commonly used FMI Library written in C. Looking at the activity on its GitHub page, one could
guesstimate that this library has been adopted by more than a couple of dozen users, which
is a fair amount. Unfortunately, unlike the other tools presented here, it has not been used to
support the thesis in any substantial way, although it was used in earlier stages by FMU-proxy,
introduced in Section 3.2.6, to support a C++ based build. Nonetheless, the lessons learned
while developing it have proven essential for supporting the libcosim library developed as part
of the OSP, introduced as part of the following chapter.

3.2.4 PythonFMU

PythonFMU, introduced in Paper A4, is a framework for developing FMI 2.0-compatible models
from regular Python 3.x code, which was mainly developed in order to enable data scientists
with the Intelligent Systems Lab at NTNU in Ålesund to more easily contribute with models.
Python benefits from a vast number of high quality software libraries, and PythonFMU allows
the utilization of them within a co-simulation context. Listing. 3.2 shows how PythonFMU can
be used in order to develop FMI 2.0 compatible simulations using Python.

Listing 3.2: Minimal code example showing how to write FMI 2.0 compatible simulation models
using PythonFMU.
class PythonSlave ( Fmi2Slave ) :

author = "John Doe"

def __init__( s e l f , ∗∗ kwargs ) :
super ( ) . __init__(∗∗ kwargs )
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s e l f . realOut = 3 .0
s e l f . r e g i s t e r_va r i a b l e ( Real ( " realOut " , c a u s a l i t y=Fmi2Causality . output ) )

def do_step ( s e l f , current_time , s tep_s ize ) :
return True

Another feature of PythonFMU is the ability to wrap comma-separated-values (CSV) files
as co-simulation FMUs. While crude, this feature makes it trivial to supplement a co-simulation
with historical or pre-genenerated inputs. Furthermore, FMUs generated from CSV data are
able to interpolate real valued data points. PythonFMU also support more advanced, though
context-dependent, FMI features like getting/setting and serializing/deserializing state, which
allows it to be used in conjunction with more advanced co-simulation algorithms that depends
on this feature.

3.2.5 SSPgen

SSPgen is a Kotlin-based Domain Specific Language (DSL) designed for creating SSP 1.0 com-
patible systems. Using SSPGen, SSP systems may be distributed as single, easily modifiable,
and executable source files rather than zipped archives (.ssp). Instead of writing large, com-
plicated XML documents defining the simulation structure, it allows the same document to
be written using a simplified Kotlin DSL. This has several advantages over manually writing
XML, such as the ability to compute parameter values. For example, it is possible to set the
value of a parameter as the result of some function invocation, like realParameter = PI/2.0.
Furthermore, entries may be copied and subsequently modified, leading to less verbose and
error prone documents. SSPgen also automatically validates the content and handles the pack-
aging of the required XML, together with any additional resources required, into a ready-to-use
SSP archive. Resources can be both local files and URLs, thus allowing FMUs to be fetched
directly from a remote repository. Listing. 3.3 demonstrates how SSPgen can be used to define
the quarter-truck simulation system used as part of the case-study presented in Paper A6. As
shown, SSPgen also allows OSP-IS connections to be formed, simplifying the model connec-
tion process, and enables validation of semantically correct simulations. This is achieved by
transforming the OSP-IS variable groups into corresponding scalar connections supported by
the SSP.

Listing 3.3: Complete SSPgen definition for the quarter-truck system.

@f i l e : Repos i tory (" https :// dl . b int ray . com/ntnu−ihb/mvn")
@ f i l e : DependsOn("no . ntnu . ihb . sspgen : d s l : 0 . 4 . 1 " )

import no . ntnu . ihb . sspgen . d s l . ssp

ssp (" QuarterTruck ") {

r e s ou r c e s {
f i l e (" fmus/ cha s s i s . fmu")
f i l e (" fmus/wheel . fmu")
f i l e (" fmus/ground . fmu")

}

ssd (" QuarterTruck ") {

author = "John Doe"
d e s c r i p t i o n = "A quarter−truck co−s imula t i on system"

system (" QuarterTruckSystem ") {

elements {
component (" c h a s s i s " , " r e s ou r c e s / c h a s s i s . fmu") {

connectors {
r e a l ("p . e " , output )
r e a l ("p . f " , input )

}
parameterBindings {

parameterSet (" i n i t i a lV a l u e s ") {
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r e a l ("C. mChassis " , 400)
r e a l ("C. kChass is " , 15000)
r e a l ("R. dChass is " , 1000)

}
}

}

component (" wheel " , " r e s ou r c e s /wheel . fmu") {
connectors {

r e a l ("p . f " , input )
r e a l (" p1 . e " , input )
r e a l ("p . e " , output )
r e a l (" p1 . f " , output )

}
parameterBindings {

parameterSet (" i n i t i a lV a l u e s ") {
r e a l ("C.mWheel" , 40)
r e a l ("C. kWheel " , 150000)
r e a l ("R. dWheel " , 0)

}
}

}

component (" ground " , " r e s ou r c e s /ground . fmu") {
connectors {

r e a l ("p . e " , input )
r e a l ("p . f " , output )

}
}

}
<−− SSPGen a l l ows not only r egu l a r SSP connect ions , . . . −−>
connect ions {

" ch a s s i s . p . e" to "wheel . p1 . f "
"wheel . p1 . f " to " ch a s s i s . p . f "
"wheel . p . e" to "ground . p . e"
"ground . p . f " to "wheel . p . f "

}

<−− but a l s o OSP−IS type connect ions −−>
ospConnections {

" cha s s i s . l i n e a r mechanical " port to "wheel . c h a s s i s port "
"wheel . ground . port " to "ground . l i n e a r mechanical port "

}

}

}

} . bu i ld ( )

3.2.6 FMU-proxy

FMU-proxy, introduced in Paper A2 and further expanded on in Paper A3 is a framework that
allows distributed execution of single FMUs. In some cases, users may encounter issues when
trying to run an FMU that are related to one of the following:

1. The FMU does not support the current operating system.

2. The user has security concerns regarding the content of the FMU.

3. The FMU requires a license that is not available on the target computer, but is readily
available on another.

4. The FMU may not instantiate more than one slave instance within a single process.

5. The FMU conforms to the FMI 1.0 specification, while the importing environment only
supports version 2.0.

FMU-proxy can solve these issues by wrapping the original FMU in a server program, which
is then accessed using platform-independent RPCs. In this way, the FMU may either run in a
sandbox or on a different computer altogether that meets the requirements. This should solve
issues 1-3, or run in a separate processes on the same computer, which would solve issue 4. The
server program is able to handle FMUs targeting both version 1.0 and 2.0 of the FMI standard,
which subsequently share the same remote API, thus resolving issue 5.
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Figure 3.3: Overview of the initial FMU-proxy structure.

Proxy-FMU

FMU-proxy server (localhost)

Original FMU

FMU-proxy server (remote)

Original FMU

FMU-proxy 
client

Figure 3.4: Overview of the current FMU-proxy structure.

The current version of FMU-proxy is quite different from the initial versions described in
the papers published. An illustration of the initial structure can be seen in Fig. 3.3. Initially,
users would interact with an FMU-proxy server using a client compatible with one of the
available RPC technologies used. This approach required tools that wanted to interact with
FMU-proxy to implement additional client-side code. Although FMU-proxy leverages schema-
based RPCs that auto-generate most of this code, this approach is not plug-and-play. Currently,
however, FMU-proxy itself is packaged as an FMU, as illustrated by Fig. 3.4. Using the fmu-
proxify CLI tool, it is possible to specify an existing FMU, adhering to either FMI 1.0 or 2.0
for CS, and wrap it inside a new FMI 2.0-compatible FMU, which internally communicate
with the original FMU. FMI4j is used to produce the FMU, thus a JVM is required to run
the model. Networking is realized using Thrift over the TCP/IP protocol, and was chosen
based on previous experience due to ease of use and performance. However, this is an internal
implementation detail that can be changed without knowledge to the users. The generated FMU
bundles a server, so the FMU is self-contained and works without any user configuration when
targeting localhost. It is also possible to start an FMU-proxy server on a different computer and
configure the generated FMU to connect to the remote server. This is achieved by modifying
a configuration text file inside the FMU. This new solution is immensely powerful as it allows
models to run distributed as an implementation detail of the model itself. Thus, the solution
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can be used by any FMI 2.0-compatible tool without any modifications, allowing existing co-
simulation systems to interact with previously unsupported models.
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4
Open-source co-simulation platforms

The previous chapter introduced various standards, supporting libraries, and tools for co-
simulation. However, complex interconnected co-simulations, such as simulations for demand-
ing maritime operations, require a capable co-simulation platform. The platform should be able
to import all models required, connect them, and simulate them together using some suitable
master algorithm. This chapter provides an overview of available and open-source co-simulation
platforms that supports the FMI. Additionally, it introduces the OSP and Vico platforms, the
development of which has been a focus during the dissertation work.

4.1 Overview of open-source FMI based co-simulation platforms

Table. 4.1 shows an overview of currently existing and open-source co-simulation platforms.
In order to count as a platform in this respect, the tool must be able to solve systems of
interconnected FMUs using some form of master algorithm. The master is responsible for both
coordinating the overall simulation and transferring data [16]. The FMI is flexible enough to
allow both simple and advanced master algorithms to be implemented. Which algorithm to
choose depends on the availability of algorithms on the platform in question as well as the
capabilities of the models participating in the simulation. While more advanced co-simulation
algorithms would be preferable for accuracy reasons, in practice very few models implement
the optional capabilities that make such algorithms possible, like the ability to save and restore
state and acquire directional derivatives. Thus, more basic algorithms like variations of a
iterative fixed-step algorithm are often chosen. Together with libcosim and Vico introduced
below, case-study based comparisons of the tools that support the SSP standard are provided
in Chapter 5. Only SSP compliant tools are considered in order to ensure that the case-study
is defined in a standardized manner and also to show the benefits of standardizing simulations
on a system level.

4.2 The open simulation platform

The OSP [39] is an open-source industry initiative for co-simulation of maritime equipment,
systems, and entire ships. Developed in collaboration between DNV-GL, Kongsberg Maritime,
SINTEF Ocean, and NTNU, the project aims to create a maritime industry ecosystem for
co-simulation of black-box simulation models and plug and play configuration of systems. The
OSP relies on the FMI standard and the OSP-SS in conjunction with the OSP-IS for defining
the simulation structure and connections. This facilitates the effective building of digital twins,
which in turn can be used to solve challenges with designing, building, integrating, commis-
sioning, and operating maritime systems. The OSP is an umbrella for several independently
maintained projects, which are as follows:

1. libcosim – A C++ co-simulation library.
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Table 4.1: Open-source co-simulation platforms supporting the FMI.

FMI support
CS ME

Name v1.0 v2.0 v1.0 v2.0 SSP Distri-
buted API CLI GUI Last

update License

Coral � � � � � Dec. 2018 MPLv2
DACCOSIM � � � Feb. 2020 AGPL
FMI Go! � � � � �a � � Nov. 2019 MIT
Maestro � � �b � Oct. 2020 GPLv3
MasterSim � � � � � Oct. 2020 LGPLv3
Ptolemy II � � � � � � Jun. 2018 MIT
FMPy � � � � �a � � � Oct. 2020 BSD
OMSimulator � � � � � � Jan. 2019 GPLv3
a Draft version
b HTTP API

2. libcosimc – A simplified C interface to libcosim.

3. cosim4j – A Java wrapper for libcosim.

4. cosim – A CLI for libcosim.

5. cosim-demo-app – Server-client demo application for libcosim.

6. OSP-SS – A standard for defining the structure of a co-simulation similar to the SSP.

7. OSP-IS – An addition to the FMI 2.0 standard for co-simulation, which provides a method
for adding semantic meaning to model interface variables.

8. osp-validator — A tool for validating FMUs and simulation configurations against the
OSP-IS.

9. Kopl – A graphical user interface for setting up simulations.

The above software modules are all open-source, with the exception of Kopl, which is closed-
source, but free to use. With common tools, standards, and specifications, the OSP seeks to
foster co-simulation collaboration within the industry.

In order to support this dissertation, a JVM wrapper for libcosim, named cosim4j, as well
as improvements to the SSP support, were contributed to the project. Proper support for SSP
is crucial in order to enable re-usability between tools, while cosim4j makes the underlying
library more accessible to a wider audience.

4.2.1 libcosim

libcosim is a C++ library that orchestrates the co-simulation of models that conform to FMI
1.0 & 2.0 for CS and serves as the cornerstone of the OSP project. The design of libcosim
is centralized, with all data flowing through the master. This makes for a less complicated,
easier to maintain, easier to debug, and more flexible design compared to similar co-simulation
engines such as Coral [7], where data flows directly between slaves. For instance, entities that
want to observe or manipulate the simulation can do so directly as all data is available from
a single source. Pure distributed co-simulation masters such as Coral and FMI Go! dictate
that all slaves are to be run distributed, whereas libcosim makes this entirely optional. Support
for this is currently implemented through integration with FMU-proxy. The structure of the
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system to be simulated can be defined using either the SSP or the OSP-SS standards. The
main benefit of the OSP-SS, provided that the FMU supports the OSP-IS, is the possibility
to define FMU interconnections at a higher level, i.e. variable group connections rather than
single scalar connections.

4.2.2 cosim4j

cosim4j is a JVM wrapper for libcosim that has been developed by the author and contributed
to the OSP specifically to support the work conducted during this dissertation. C++ can be
a challenging language to learn. Especially compared to higher-level languages like Python or
Java. For instance Java has fewer features to learn, is garbage-collected and comes with a richer
standard library. Additionally, the tooling, in the form of integrated development environments
(IDEs), build systems, and package managers, is state-of-the-art. All of this makes developing
for the JVM generally easier than developing for C/C++. The goal of the Java API is to
be generally easier to use and provide more high-level features than its native counterpart.
To make the library more accessible, it is made available through Maven. Furthermore, the
artifacts include pre-built native binaries for 64-bit Windows and Linux systems, which means
that no prior installation of libcosim is required.

4.3 Vico

Vico, presented in Paper A6, is a generic co-simulation platform developed by the author
that is based on the ECS software architecture [40, 41, 42, 43]. The platform has been under
development in various forms for many years, serving as a test-bed for different architectural
approaches to enable flexible co-simulations. For example an early prototype was presented
in [44] and further developed in [45]. In the end, the ECS architectural pattern, illustrated by
Fig. 4.1, was chosen, as it offers a powerful, intuitive, and clean way of separating behavior and
state. Separating behavior and state allows, for example, workflows where the fidelity of the
simulation can be more easily changed, even during run-time. The ECS follows the composition-
over-inheritance principle, which allows for greater flexibility in terms of defining simulation
objects than alternatives afford. Rather than having objects inheriting data and functionality
from a parent object (object-oriented programming), the object (entity) is composed of data
(components). Every entity consists of one or more components which contain data. Therefore,
the behavior of an entity can be changed during run-time by systems that add, remove, or
mutate components. This eliminates the ambiguity problems of deep and wide inheritance
hierarchies that are difficult to understand, maintain, and/or extend. For a more in-depth
description of the employed ECS architecture, the reader is referred to Appendix. F.

Vico allows co-simulation not only between FMI components, but also between physics
components and other generic components. Additionally, 3D visualization and 2D plotting are
integrated as part of the framework, and time-series data can be exported as CSV files. Some
of the highlights of this framework are as follows:

1. Separation between state (components) and behavior (systems).

2. Support for FMI 1.0 & 2.0 for co-simulation.

3. Support for SSP 1.0.

4. Integrated 2D plotting.

5. Integrated (implementation independent) 3D visualization and physics.
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Figure 4.1: High-level overview of the ECS architecture.

6. Scriptable scenarios using a Kotlin DSL.

7. Integration with FMU-proxy, providing support for (optional) distributed model execu-
tion.

Vico is written in Kotlin, a JVM language that is 100% interoperable with Java. This
means that Vico benefits from the vast number of libraries developed for the JVM as well as
industry-leading tooling. Kotlin also provides scripting capabilities, which means that Vico can
be run in a scripting context. Vico provides support for scriptable scenarios that utilizes this
feature. In the context of Vico, scenarios are pre-configured actions that should be executed
at a certain time or are triggered by an event. Vico can be used both as a library or as an
application through the available CLI. This CLI can be used to run single FMUs or a system of
FMUs described using the SSP standard. In both cases, configurations for visuals, plots, and
data export as well as scenario files can be supplied in order to enhance the simulation.

4.3.1 FMI & SSP support

A module named fmi adds support for FMI 1.0 & 2.0-based co-simulation, and relies on FMI4j
for interacting with FMUs. Since FMI4j was initially released, it has changed the way it
interacts with native code, making it the fastest open-source JVM library for simulating FMUs.
The library also supports export of FMUs compatible with FMI 2.0 for co-simulation and
provides a Gradle plugin to simplify the usage of this feature. This allows for a workflow
where slaves can be automatically exported to FMUs during the build process and loaded by
Vico, or any other JVM based framework, within the same project. The fmi module adds a
system named SlaveSystem that takes an instance of MasterAlgorithm, which is an interface,
as a constructor parameter. The idea is that users should be free to develop their own master
algorithm with as little cognitive overhead as possible. However, the module also provides
a ready-to-use implementation of a fixed step-size master algorithm, which allows users to
configure slaves to run at different rates. Due to the fact that FMUs consists of both behavior
and state, they are difficult to fit into an ECS architecture, as an FMU is neither a component
nor a system. This is solved in Vico by creating a component that represents the location of an
FMU as well as a variable buffer. The system then loads the FMU from the component path
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and continuously updates the buffer. As an optimization, only variables the user explicitly
requested or that are used in connections are buffered. The use of I/O buffers significantly
improves performance when dealing with distributed models. This is evident by comparing the
results of the Gunnerus case-study presented in Section 5.2.

SSP support is also provided by the fmi module. Like OMSimulator and libcosim, Vico
supports a limited set of the SSP 1.0 standard, where additional features might be implemented
as use-cases appear. Worth noting is that both Vico and libcosim support a special kind of com-
ponent that enables distributed execution of FMUs using FMU-proxy. Distributed execution of
FMUs is required in cases where the FMU for example cannot be instantiated more than once
per process or when it has been built for an incompatible system architecture. This particular
feature was required in order for FMU-proxy to work prior to its update. With the current
version of FMU-proxy, however, it is no longer necessary to implement explicit FMU-proxy
support in code. It is retained for backwards compatibility only.

4.3.2 3D visuals

The 3D capabilities of Vico are quite powerful and allow visualization of primitives as well as
generic tri-meshes, water planes, lines, tubes, and various helper objects like axes and arrows.
3D models in selected formats, including textures, may also be imported. Furthermore, the API
is agnostic to the underlying 3D rendering framework used, allowing different rendering back-
ends to be employed. Data related to visualization is available through a web interface, allowing
3D graphics to be shown in the browser as well as on the desktop. Naturally, visualization
properties may be configured in code, but it is also possible to use XML. Thus simulations
loaded using the CLI can also be visualized. Listing. 4.1 shows how the variables of an FMU
may be mapped to a visual entity.

Listing 4.1: Configuring visualization properties for use by Vico using XML
<?xml version=" 1.0 " encoding="UTF−8"?>
<v i co :V i sua lCon f i g xmlns :v i co=" ht tp : // github . com/NTNU−IHB/Vico/schema/ Visua lConf ig ">

<vico :Trans form name=" vesse lModel ">
<vico:Geometry>

<vico :Shape>
<vico:Mesh source=" . . / obj /Gunnerus . obj "/>

</ vico :Shape>
</vico:Geometry>
<v i c o :Po s i t i onRe f>

<v i co :xRe f name="cgShipMotion . ned . ea s t "/>
<vico :yRe f name="cgShipMotion . ned . down">

<vico :L inearTrans fo rmat ion f a c t o r="−1"/>
</ v i co :yRe f>
<v i co : zRe f name="cgShipMotion . ned . north "/>

</ v i c o :Po s i t i onRe f>
<vico :Rotat i onRe f>

<v i co :xRe f name="cgShipMotion . angularDisplacement . p i t ch "/>
<vico :yRe f name="cgShipMotion . angularDisplacement . yaw">

<vico :L inearTrans fo rmat ion o f f s e t="180"/>
</ v i co :yRe f>
<v i co : zRe f name="cgShipMotion . angularDisplacement . r o l l "/>

</ v ico :Rotat i onRe f>
</ vico :Trans form>

</ v i co :V i sua lCon f i g>

4.3.3 Scenarios

Scenarios in Vico are predefined actions to be executed at specific points in time or when certain
conditions are met. Scenarios can be written inline using the API or supplied as standalone
files. These files are written using an intuitive Kotlin DSL, which are parsed and compiled by
the environment and passed to the simulation as if it was written as regular code. That is,
there is no conversion between the passed-in script and the running byte code, which would be
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necessary if the scenario were written using a typical configuration format like JSON, XML, or
YAML. This enables the script to access simulation objects and evaluate expressions. This is
immensely powerful, and allows script expressions to be evaluated during run-time with little
or no additional performance overhead compared to inline configuration of the simulation. An
example scenario script is shown in Listing. 4.2 for demonstration purposes.

Listing 4.2: Example scenario configuration.
@f i l e : Repos i tory (" https :// dl . b int ray . com/ntnu−ihb/mvn")
@ f i l e : DependsOn("no . ntnu . ihb . v i co : core : 0 . 3 . 3 " )

import no . ntnu . ihb . v i co . d s l . s c ena r i o

s c ena r i o {

invokeAt ( 1 . 0 ) {
r e a l (" e1 . l o c a lP o s i t i o n . x") . s e t ( 1 . 0 )

}

invokeWhen {
pr ed i ca t e {

r e a l (" e1 . l o c a lP o s i t i o n . x") > 3 .0
}. `do` {

r e a l (" e2 . speed ") . s e t ( 5 . 0 )
}

}

}

4.4 Differences between the OSP and Vico

Vico is a product of this thesis, serving as a constraint-free environment for implementing
various approaches towards realizing a generic and flexible co-simulation platform. OSP, on
the other hand, is a collaboration project involving several industrial partners, including NTNU,
that aims to realize a more conservative goal of enabling FMI based co-simulation. There are
clear differences between the two, like implementation language and scope, but both the OSP
and Vico are co-simulation platforms suitable for simulating systems of FMUs, and they are not
necessarily mutually exclusive. Vico is a generic high-level co-simulation framework built upon
the ECS software architecture, while the OSP is more closely dependent on FMI and uses a more
traditional object-oriented software architecture. In fact, the core Vico module does not know
how to process FMUs at all. Rather, it provides functionality that enable generic co-simulations
to be orchestrated using the ECS architectural pattern. Support for FMI & SSP is explicitly
opt-in unless the CLI is used, which for convenience includes all available functionality. Due
to the generic nature of Vico, libcosim, or rather cosim4j, may actually be integrated into it.
Furthermore, Vico provides access to features like a CLI, web-access, and visualizations as part
of the same project that are updated in unison. The OSP is a set of packages, individually
versioned, that collectively provides some of the same features. A feature only the OSP possess,
however, is support for the OSP-SS, an alternative to the SSP, featuring native support for the
OSP-IS connection scheme and functions. However, as mentioned, SSPgen allows the OSP-IS
to be applied in a SSP context, making the difference between the SSP and the OSP-SS less
apparent.
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Case studies

This chapter present the results of a set of co-simulation case studies, namely an accuracy
and performance benchmark using a quarter-truck simulation system and various case studies
involving the RV Gunnerus. The simulations are defined using the SSP standard, thus only
tools that support this standard are included in the case studies. The use of SSP ensures that
the simulation setup is standardized across the participating tools.

5.1 Accuracy and performance benchmark

This section presents a summary of the simulations results provided in Paper A6 in terms of
accuracy and performance. The tools listed in Table. 5.2 are used to load and simulate the same
set of models that collectively represent a simplified quarter-truck system, also known in the
literature as a quarter-car system [46, 47, 48]. The system for simulation is defined using the
FMI and SSP standards in order to test performance in terms of accuracy and efficiency and
was chosen as it has been previously studied in the literature for the same purpose [49, 13]. The
co-simulation system representing the quarter-truck is comprised of three models: the chassis
including the suspension, the wheel including the tyre, and the ground. The system is illustrated
by Fig. 5.1, with mw and mc representing the mass of wheel and chassis, respectively. Both
masses have a single vertical degree of freedom coupled with a linear spring-damper system
representing the chassis suspension and wheel tyres. The ground profile is given as external
input and is excited by a jump of 0.1m in vertical direction at 1s. The input and output
variables used to connect these models are given in Table. 5.1. The analytical model is further
derived in Appendix F.

Figure 5.1: Illustration of the quarter-truck system.

The suspension force and the tyre force are given by Eq. 5.1, while the equations of motion
for the chassis and wheel are given by Eq. 5.2.

Fsusp = kc(zw − zc) + dc(żw − żc)

Ftyre = kw(zg − zw) + dw(żg − żw)
(5.1)
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Table 5.1: Input and output variables of the quarter-truck models used for connections.

FMU Variable Input/output Description

chassis Fsusp output Chassis suspension force applied to the wheel.
żw input Velocity of the wheel from the wheel model.

wheel

Fsusp input Chassis suspension force from the chassis part.
żw output Velocity of the wheel sent to the chassis part.

Ftyre output Tyre force applied to the ground.

żg input Ground profile, given as vertical velocity variation
from the ground model.

ground Ftyre input Tyre force from the truck wheel.

żg output Ground profile, given as vertical velocity variation
sent to the wheel.

Table 5.2: Summary of tools included in the case study.

Tool Main impl.
language

Platform
support

FMI
version

SSP
version

FMPy Python Win, Linux, Mac 1.0 & 2.0 for CS Draft20171219
FMIGo! C++ Win, Linux, Mac 2.0 for CS & ME Draft20170606
libcosim C/C++ Win, Linux 1.0 & 2.0 for CS 1.0

OMSimulator C/C++ Win, Linux, Mac 1.0 & 2.0 for ME & CS 1.0
Vico Kotlin/JVM Win, Linux 1.0 & 2.0 for CS 1.0

mcz̈c = Fsusp −mcg

mwz̈w = Fsusp − Ftyre −mwg
(5.2)

A reference solution was computed using a Runge Kutta 4 solver, with the integration time step
set to 0.001s. Additionally, the FMUs are exported with the same type of solver. Simulation
results are shown using both a 100hz and 1000hz fixed-step-size for the master algorithms used.
Chassis responses are shown in Fig. 5.5 and Fig. 5.6, and wheel responses are shown in Fig. 5.2
and Fig. 5.3. Except for the first second of the 100Hz simulation, the trend is practically
the same for each participating tool. However, FMPy appears to constantly provide output
timestamped one time-step earlier than the other tools and libcosim and FMPy both appear to
generate stronger oscillations during this time period. This response can be seen more in detail
through Fig. 5.4. The authors of libcosim have been made aware of this issue, and it should
be fixed in a later release if it turns out to be some kind of initialization issue. Simulating the
system at 1000Hz show a clear improvement in accuracy over using only 100Hz. In this case
there are only small differences regarding simulation results between the tools and the reference
solution. The improvement with respect to the root mean square error (RMSE) can be seen in
Table. 5.3. The increase in accuracy comes, however, with a run-time cost. Nevertheless, using
the co-simulation approach still provides less accuracy than the reference solution, even when
using the same step-size. This shows one of the inherent weaknesses of co-simulation compared
to monolithic simulations. A distributed system has trade-offs and will likely exhibit different
behavior than the original system [14]. While it is clear that the simulation results differentiates
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Figure 5.2: Wheel response when simu-
lated at 100hz.
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Figure 5.3: Wheel response when simu-
lated at 1000hz.

more from the reference as the time-step grows, none of the other tools demonstrated better
results than Vico using their default solver.

Table 5.3: Root mean square error of the computed vertical displacement of the wheel.

Tool RMSE
100hz 1000hz

FMPy 0.0300358 0.0019367
FMIGo! 0.030062 0.0018814
libcosim 0.030109 0.0018815
OMSimulator 0.030062 0.0018814
Vico 0.030062 0.0018814

The results of a performance benchmark appear in Fig. 5.7 in the form of box plots.
The benchmark is performed on a 64-bit Windows 10 system equipped with a Intel Core
i5-3570 CPU with four logical processors. Each tool has been run 15 times, simulating the
system for 1000s with a step-size of 0.001s. FMI Go! and FMPy both exports a handful of
variables to CSV. libcosim, OMSimulator and Vico is run both with and without exporting all
121 available variables to CSV. Additionally, OMSimulator also exports in MATLAB format.
Vico is implemented on the JVM, which involves some overhead because it must cross the
native bridge when it communicates with FMUs, but is nevertheless the fastest of the tools
participating in the benchmark. OMsimulator is the second fastest, ahead of FMIGo!. The
results of FMIGo! are quite impressive, considering that it is the only one of the tools to
run distributed. Next is libcosim, followed by FMPy. It is not surprising that FMPy is the
slowest tool, as Python is not known to be a particularly fast language. OMSimulator and
Vico are configured to run this particular system single-threaded, which libcosim has no option
to do, which may explain its poor performance. As the individual models in the system are
computationally light, it would seem that the inherent overhead of handling threads/fibers/co-
routines is actually degrading performance. Both OMSimulator and Vico were tested with
multiple threads, and Vico in particular showed over a 2x performance increase when running
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Figure 5.4: Detailed view of the the first second of simulation presented in Fig. 5.2 (100hz).

single-threaded. Note, however, that the performance indicators presented here are only valid
for this particular system and should not be used as a general pointer to how well the various
tools perform.

5.2 Co-simulation of the RV Gunnerus

This section presents the main research findings and important discussions concerning the
conducted simulations utilizing a model of, and data from, the NTNU-owned RV Gunnerus.
The vessel, which can be seen in Fig. 5.8, is equipped with the latest technology for a variety of
research activities within biology, technology, geology, archaeology, oceanography, and fisheries
research. In addition to research, the ship is used for educational purposes and is an important
platform for maritime courses at all levels and disciplines.

Figure 5.8: Starboard view of the
RV Gunnerus.

This dissertation has included extensive experimenta-
tion with creating co-simulations involving the Gunnerus.
Given the existence of high-quality maritime reference mod-
els and the considerable potential that lay in modeling and
simulation of the Gunnerus, it is clearly an excellent test-
bed to demonstrate and test co-simulation capabilities. The
aggregated co-simulation model of the Gunnerus makes ex-
tensive use of readily available models, which are provided as
part of the OSP repository of reference models. Additional,
complementary, models have been developed as needed. Ac-
tually, the need to simplify model creation for the data sci-
entist in the team was one of the main reasons PythonFMU
was created. The various simulation configurations are described using SSP, which allows the
system to be imported and simulated in a standardized way. This encourages re-usability and
it allows relative validation of simulation results by comparing the output from different tools.

Paper A5 presents some of this work by introducing the strategy and preliminary results
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Figure 5.5: Chassis response when simu-
lated at 100hz.
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Figure 5.6: Chassis response when simu-
lated at 1000hz.

Table 5.4: FMUs involved in the case study utilizing the RV Gunnerus presented in Paper A5.

Component Tool Vendor FMI
version

canBeInstantiated-
OnlyOncePerProcess

HeadingController FMI4j NTNU 2.0 False
SpeedController FMI4j NTNU 2.0 False
Gunnerus FMI4j NTNU 2.0 False
VesselModelObserver FMI4j NTNU 2.0 False
ThrusterDrivea 20sim SINTEF Ocean 1.0 True
PowerPlanta 20sim SINTEF Ocean 1.0 True
VesselModela VeSim SINTEF Ocean 1.0 Trueb

PMAzimutha VeSim Kongsberg Maritime 1.0 Trueb

a OSP reference model.
b Additionally, only one instance of any model generated by this tool may be instantiated by the

same process.

towards realizing a digital twin of the Gunnerus. The point of this case study is not to go into
detail about how these models are implemented, which in general are black-boxes that could hide
proprietary information. Rather, the point is to showcase how co-simulation technology, open-
source software, open standards and a library of readily available maritime reference models
can be used to develop a digital twin scenario. An overview of the models used to implement
the case study is shown an Table. 5.4. Furthermore, each of the models are described in more
detail below:

1. Gunnerus - This model contains previously recorded sensor data measured during oper-
ation of the Gunnerus. The time-series data is sampled at 1Hz and includes information
such as:

• Heading angle and percent-wise commanded RPM of the tunnel-thruster in the bow
as well as the two azimuth thrusters in the aft.

• Longitude and latitude.
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Figure 5.7: Performance of the various tools when considering the presented quarter-truck
system. Simulation time=1000s, step-size=0.001s, number of runs=15.

• Surge, sway, and heave.
• Yaw, pitch, and roll.
• Wind direction and speed.
• Positional and rotational velocities.

The FMU implements linear interpolation of the recorded data, which is convenient given
the low sample rate of the sensor data relative to the simulation, which runs at 20 Hz.
In this work, the model acts as a stand-in for what eventually should become a stream of
data originating from the real asset.

2. VesselModel - This model computes the vessel hydrodynamics such as the radiation
forces, mass, and restoring forces as well as manoeuvring forces (resistance and cross flow
drag as well as semi-empirical corrections). The equations of motions are solved by this
model, summing up all the external forces acting on the vessel. SINTEF Ocean originally
implemented the VesselModel to model the Gunnerus as part of the SimVal [50] project.
It was later updated to better approximate an elongated Gunnerus vessel as part of the
MAROFF Knowlege-building Project for Industry (KPN): Digital Twins for Vessel Life
Cycle Service (TwinShip). While the model was validated during the SimVal project, it
has yet to be validated against the elongated version of the vessel.
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VesselModel
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Figure 5.9: Diagram showing the logical relationship of the components involved with the case
study presented in Paper A5.

3. VesselModelObserver - A simple model that computes the direction of travel and
speed over ground of the VesselModel based on its current and previous position.

4. SpeedController - A general-purpose proportional-integral-derivative (PID) controller.
It is used to regulate the force required by the ThrusterDrives so that the speed of the
VesselModel and the Gunnerus are aligned.

5. HeadingController - A special-purpose proportional–integral–derivative controller where
the input data used to compute the controller error is treated as angles in the range
[−180°, 180°]. This unwinds any input angles that lie outside of the specified range.

6. PMAzimuth - The hydrodynamic model of the azimuth thrusters without actuator/-
motor, implemented by Kongsberg Maritime using VeSim as part of the ViProMa project.
Given a certain RPM command (issued by the ThrusterDrive FMU), location on the hull,
azimuth angle, vessel speed, and the loss factor, the model will output the 3DOF (surge,
sway, heave) force generated.

7. ThrusterDrive - A drive that converts force commands from the SpeedController into

39



CHAPTER 5. CASE STUDIES

RPMs for the PMAzimuth, developed as part of the ViProMa project [9].

8. PowerPlant - A maritime power plant with two equally large gensets, including auxiliary
load and circuit breakers, developed as part of the ViProMa project. Further implemen-
tation notes can be found in [51].

Their logical relationship are illustrated by Fig. 5.9. As illustrated by Fig. 5.10, the system is
far from trivial, with a total of 48 variable connections between the models involved.
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Figure 5.10: Connections between the components used in the Gunnerus system presented in
Paper A5.

Fig. 5.11 shows the real and simulated path of by the Gunnerus during the presented case
study. The blue line represents the real path undertaken by the Gunnerus, while the red line
represents the motion of the twin ship. The arrow represent the relative magnitude of the
wind speed and wind direction measured by the real vessel. The real data is a 33 minutes
excerpt from the data recorded from the Gunnerus while performing maneuvers outside of
Trondheim, in which it performs a U-turn. The idea of the case study is to compare the power
consumption of the real vessel and the preliminary digital twin. This is done by feeding the
speed and true heading of the real vessel into a set of controllers used to regulate the motion
of the twin. To simplify the case study, the equipped thunnel-thruster is not utilized and the
command signals to both azimuth thrusters in the aft are equal. Ideally, the power consumption
should be comparable, which would indicate a good model fit. However, environmental effects
such as current and waves, which are very difficult to measure, could introduce discrepancies
between the real and simulated vessel. Under the assumption of constant or slowly varying
environmental effect, a possible way to mitigate this in future works could be to estimate these
effects using a Kalman filter [52, 53, 54].
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Figure 5.11: Northeast plot showing the trajectory and heading of the vessels during the
experiment. The blue arrow indicates the wind direction according to north and normalized
magnitude of the speed.

The power consumption is shown in Fig. 5.13, while both the course and speed can be
observed in Fig. 5.12. As seen from the last figure, speed transients for the twin directly relates
to changes in course. Interestingly, the power consumption calculated from the twin is showing
higher correlation with the speed than that of the real vessel. After approximately 1100s, the
power measurement for the real vessel is actually reduced as the speed increases. This could
indicate that the vessel is affected by external forces that the model is not aware of, such as
current. Therefore, the full magnitude of the observed discrepancy does not necessarily indicate
a weakness in the model, but actually provides potentially valuable information regarding
external environmental forces acting on the real hull. Nonetheless, it is clear that some of the
underlying models could be more accurately tuned to better reflect the current vessel design.
The case study makes use of a hull model, supplied by an external entity, that has yet to
be thoroughly validated after the Gunnerus underwent an elongation prior to 2019. Doing so
might improve the observed difference in terms of overall power consumption. Recently, model
towing tests in the scale 1:9.13 were performed on the hull of the Gunnerus at SINTEF Oceans
towing tank in Trondheim. The resulting data might be used to further improve this model.
Additionally, other teams members are investigating additional ways of improving the overall
simulation model.

Work has also been conducted in order to test models for ship maneuvering and other
tasks. Fig. 5.14 shows an attempt to see how the digital model of the Gunnerus would react
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Figure 5.12: Twin surge speed with respect to course changes by the Gunnerus.

when provided with thruster commands recorded by the Gunnerus during real operations. This
was done using data from a number of different docking attempts recorded at the harbor in
Ålesund. During this time, a drone video-recorded the Gunnerus. The resulting video, with
matching time-stamp, is subsequently overlaid on-top of the simulation rendering. The green
line represents the actual path recorded by the Gunnerus, while the blue line and silhouette of
the vessel represents the motion of the modeled ship. The structure of the simulation is similar
to that found in Fig. 5.9, but without the PowerPlant, ThrusterDrive(s), HeadingController,
SpeedController, and VesselModelObserver. Rather, the measured values from the Gunnerus is
fed directly into the model without the use of intermediate controllers. From the simulations,
it was observed that some cases would provide better fits than others. However, this approach
has some limitations. Because there are so many unknown or incomplete variables from the
real world that the model cannot detect, it is not plausible to validate a model using this
approach. Even with a perfect model of the vessel and environment, a small deviation in initial
values due to low resolution sampling or noise in the recording would make the two trajectories
diverge. However, this case highlights the usefulness and effectiveness of the visual capabilities
of the Vico system, which provides immediate visual feedback to aid the user. The underlying
uncertainties, however, leads to the power-consumption approach to the model validation, as
demonstrated earlier. However, the general trend observed in the docking simulation was that
the model moved slower than the real vessel, which actually corresponds with the results from
the power consumption case study, where it was observed that in order to keep the same speed,
the model consistently consumes more power than the real vessel. This enforces the belief that
the Gunnerus model is in need of adjustments.

Another simulation case makes use of the Gunnerus hull model to a perform trajectory
tracking simulation, as illustrated by Fig. 5.15. The visualization displayed is generated using
the XML shown in the previous chapter through Listing. 4.1. The green cylinder represents the
current way-point that the Gunnerus should navigate towards, while the blue line trailing the
vessel shows the path used to get there. Once the vessel is within a set radius of the current
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Figure 5.13: Power consumption comparison. The power output shown is the sum of the two
azimuths.

way-point, another way-point appears that the Gunnerus should now try to reach. The list
of way-points are specified in advance through a text file. This simulation of the Gunnerus
is simpler than the ones introduced above as it does not make use of real data. The purpose
of the simulation is to test the basic capabilities of the Gunnerus model in order to learn
how the model behaves. In this example, the simulation makes use of the visual capabilities
of Vico, which provides immediate and comprehensible feedback on how the model behaves.
Furthermore, no coding is involved in making this simulation. The system is described using
SSP and the visualization properties are configured by means of XML. These files are then
passed to the Vico CLI and subsequently simulated.

Fig. 5.16 shows the performance of Vico compared to libcosim and OMSimulator when
simulating the Gunnerus system. FMU-proxy is used in order to make the system, which
originally consisted of both FMI 1.0 & 2.0 FMUs, compatible with OMSimulator. An attempt
were made in order to run the system in the same set of tools as for the quarter-truck, but
adopting the SSP file to the obsolete versions used by FMPy and FMIGo! proved difficult
and attempts to simulate the system in those frameworks were unsuccessful. The benchmark
is performed on a 64-bit Windows 10 system equipped with a Intel Core i7-8700 CPU with
twelve logical processors. The simulation is run 10 times, simulating the system for 1000s
with a step-size of 0.05s. Vico and libcosim performs the simulation both with and without
exporting available time-series data, while OMSimulator is configured to not record such data.
The reason for this is that the system contains a total of 3006 variable values that must
be retrieved from the various model instances at each time-step and later written to disk.
Furthermore, the use of FMU-proxy means that networking is involved. Both Vico and libcosim
implements a strategy to optimize variable reads and writes, however, it seems OMSimulator
does not. Because of this, OMSimulator is not able to simulate the system in a timely manner
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Figure 5.14: Simulation with synchronized video overlay of the real operation.

when also set to export time-series data. For example, it took OMSimulator approx. 250s to
simulate 40s. To compare, Vico used approx. 58s to simulate 1000s. Furthermore, Vico runs
the simulation both single- and multi-threaded. Compared to the quarter-truck system, this
simulation benefits from parallel execution in terms of performance. The difference between
Vico and libcosim is less in this case, but Vico still performs better when utilizing multiple
threads. Even with the additional overhead of exporting time-series data, both Vico and
libcosim perform better than OMSimulator. This is related to how variable reads and writes
are handled by the frameworks. Basically, OMSimulator seems to perform variable reads and
writes on individual variables, while libcosim and Vico execute these operations in bulk. This
puts the performance of OMsimulator, which runs in parallel, in the vicinity of Vico in single-
threaded mode. Assuming that accuracy and stability is maintained, higher performance is
naturally beneficial as it allows more demanding simulations to be run in real-time mode, for
example when used as, or as part of, a training simulator, for the purpose of integrating with
sensor measurements, or when performing many simulations in bulk, saving time and decreasing
cost.
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Figure 5.15: Demonstration of a vessel path following simulation running in Vico with 3D
visualization and plotting enabled.
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Figure 5.16: Performance of the various tools when considering the presented Gunnerus trajec-
tory tracking scenario. Simulation time=1000s, step-size=0.05s, number of runs=15.
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6
Conclusion

This dissertation has proposed and discussed enabling tools and frameworks for co-simulation
driven development. All contributions in this dissertation aim to enhance the area of co-
simulation and further aid towards the development of simulations related to demanding mar-
itime operations, including digital-twins, using co-simulation. While co-simulation is not a
new technology, the advances in and adoption of open standards in recent years has made it
more relevant. The work presented here hopes to further drive adoption in order to keep the
momentum going.

6.1 Summary of contributions

Making co-simulation more accessible and user-friendly through the development of supplemen-
tary software packages as stated by RO1 has been a key goal of this dissertation. Not only to
serve this work, but any tool that in some way make use of the FMI and SSP standards. This
has been realized through the development of FMI4j, FMI4cpp, PythonFMU, FMU-proxy and
SSPgen. These are all open and standalone tools that in some way make realizing the building
blocks needed by co-simulations easier. SSPgen allows standardized systems to be defined using
an intuitive DSL. These system may then be simulated in a growing number of SSP compatible
tools. FMI4j and PythonFMU enables source code, written in Java and Python respectively,
to be seamlessly exported as FMUs. FMI4j in particular serves as the foundation for realizing
Vico. The open-source co-simulation framework, with the main goal of enabling digital twins
and supporting maritime use cases proposed by RO2. Vico aims to serve this goal by providing
a novel and flexible framework for orchestrating and running co-simulations. The OSP, which
the author also has contributed to, may also be used for this purpose. However, the novel ECS
architecture applied by Vico additionally allows models from different sources to be more easily
and dynamically combined, and provides an intuitive way to separate behavior and state, which
will allow the fidelity of simulations to be changed during run-time. Vico also tries to accom-
modate the goal of making co-simulations intuitively presentable to the user, as stated by RO4,
by enabling user configurable 3D visualizations and 2D plots. It also allows the simulation to
be accessed from a web interface, all in one unified package. Furthermore, Vico allows users to
interact with the simulation using peripheral devices, enabling user controllable and dynamic
simulations. However, even with open standards, like the FMI, model re-use, interoperability
and scalability is still an issue in practice. FMU-proxy aims to solve these challenges, thus
fulfilling RO3. By packaging existing FMUs into enhanced FMUs with network capabilities,
models otherwise incompatible with some tool becomes usable. This feature is shown to be
necessary in order to realize the Gunnerus system presented in Chapter 5, not only in Vico,
but other frameworks like the OSP and OMSimulator.

The main contributions of this thesis are as follows:
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� Development of tools that simplify interaction with the FMI and SSP standards, driving
adoption:

(a) FMI4j introduced in Paper A1 enables import and export of FMUs on the JVM,
adding very little performance overhead compared to native solutions.

(b) PythonFMU introduced in Paper A4 allows exporting of FMUs from Python code,
lowering the barrier for model creation.

(c) SSPgen makes creating systems that conform to the SSP standard easier through
a type-safe scripting context. Additionally, it allows the OSP-IS features, currently
only available to libcosim users, to be applied within an SSP context.

(d) FMI4cpp eases the process of simulating FMUs using C++, by providing a library
that is both easy to build and use, due to usage of modern C++ idioms.

� FMU-proxy, covered by Papers A2 and A3, solves practical challenges related to FMUs,
including

(a) instantiating multiple instances of a model that otherwise would not allow it;

(b) interaction with models that would otherwise not work on a particular system, due to
an incompatible operating system, missing software components or missing software
licences;

(c) interaction with FMI 1.0 models in tools that only support version 2.0;

(d) effectively hiding IP by potentially only providing access to the model trough a
remote API; and

(e) remote execution of FMUs, enabling scalability and protection from potential mali-
cious code.

� Contributions to the OSP project that include general insights into discussions and issues
in addition to

(a) minor contributions to the overall code-base;

(b) integration with FMU-proxy, enabling additional use-cases;

(c) enhancements to the SSP support; and

(d) development of the cosim4j package, enabling use of the underlying libcosim library
from within the JVM.

� Developments toward realizing a digital twin of the R/V Gunnerus using open co-simulation
standards as shown in Paper A5 that presents

(a) usage of pre-existing reference models in combination with supplementary models
developed as part of this work; and

(b) preliminary simulation results utilizing the OSP co-simulation platform.

� Development of novel co-simulation framework based on the ECS architecture presented
in Paper A6 that

(a) supports the FMI 1.0 & 2.0 for co-simulation and SSP 1.0;
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(b) enables generic co-simulation couplings between components;

(c) intuitively separates behaviour and state;

(d) integrates with physics engines;

(e) provides 3D visual and plotting capabilities; and

(f) allows fully scriptable scenarios.

6.2 Directions for future work

• Among other things, this work has introduced FMI4j and PythonFMU, which enables the
building of FMUs in Java and Python respectively. While easy to use, they are limited
to their respective languages. Additionally, FMUs implemented in Java and especially
Python are slower than comparable models implemented in C/C++. However, no open-
source alternative currently exists that allows FMUs to be seamlessly written in C/C++.
FMUSDK [55] and CPPFMU [56] make this process easier, but neither delivers a complete
package. Rather, they simplify the process of generating the shared library required, but
do not generate the modelDescription.xml or package the model into a ready-to-use FMU
archive. Therefore it would be beneficial to expand the scope of FMI4cpp to also include
FMU export, which would further a key goal of the thesis, which is to drive adoption and
deliver enabling technology for co-simulation.

• The co-simulation platform Vico, developed by the author to support this thesis, is written
in Kotlin and is targeting the JVM. However, Kotlin is actually a multi-platform language
that also supports native and web targets. With some additional work, it would be
possible to also make the core parts of Vico multi-platform, meaning that one could
utilize Vico in a native application using Kotlin/Native and in a browser using Kotlin/JS
in addition to Kotlin/JVM. This would certainly make Vico stand out, however there
should be use-cases available to support such an effort.

• The effectiveness of a co-simulation platform is largely dependent on the quality of the
master algorithm(s) provided. So far, both Vico and libcosim only provides a fixed-step
type algorithm with no ability to roll-back the simulation. Further work should focus on
adding more advanced algorithms in order to take advantage of the potential benefits for
systems that supports it.

• FMI 3.0 has been under development for quite some time and its release is expected in
the near future. At this point the tools developed here should be updated to support the
new standard. The changes between version 3.0 and 2.0 are, however, much bigger than
those between version 1.0 and 2.0, so implementing 3.0 while retaining compatibility with
older versions will be challenging. Nonetheless, version 3.0 brings some much awaited
features, like arrays, that should make working with FMUs more natural.
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Abstract
This paper introduces FMI4j, a software package for
working with Functional Mock-up Units (FMUs) on the
Java Virtual Machine (JVM). FMI4j is written in Kotlin,
which is 100% interoperable with Java, and consists of
programming APIs for parsing the meta-data associated
with an FMU, as well as running them. FMI4j is compat-
ible with FMI version 2.0 for Model Exchange (ME) and
Co-Simulation (CS). Currently, FMI4j is the only software
library targeting the JVM supporting ME 2.0. In addition
to provide bare-bones access to such FMUs, it provides
the means for solving them using a range of bundled fixed-
and variable-step solvers. A command line tool named
FMU2Jar is also provided, which is capable of turning any
FMU into a Java library. The source code generated from
this tool provides type-safe access to all FMU variables
explicitly through the API (Application Programming In-
terface). Additionally, the API is documented with key
information retrieved from the FMU meta-data, allowing
essential information such as the description, causality and
start value of each variable to be seamlessly exposed to
the user through the Integrated Development Environment
(IDE).

Keywords: FMI, Co-Simulation, Model Exchange, JVM

1 Introduction
Recently, several research projects at NTNU Aale-
sund (Hatledal et al., 2015; Chu et al., 2017, 2018) and
others (Skjong et al., 2017; Sadjina et al., 2017) involve
co-simulation and virtual prototyping. Virtual prototyping
refers to a vision where models, or virtual prototypes, of
complex systems can be developed, tested, and amended
with a trial-and-error approach. As computer technology
develops it becomes possible to make an increasing part
of the necessary tests based on simulations. However, as
complex models often require components from several
different domains, perhaps developed in separate domain-
specific tools, a standard is required to fit them all together.

FMI (Blochwitz et al., 2011, 2012) is a tool independent
standard to support both Model Exchange (ME) and Co-
Simulation (CS) of dynamic models. The first version of
the standard, FMI 1.0, was released in 2010. In 2014,
version 2.0 was released, which merged the two standards

and incorporated some major enhancements compared to
the initial release. As such, version 2.0 is not backwards
compatible with version 1.x.

A model implementing the FMI standard is known as a
Functional Mock-up Unit (FMU), and is distributed as a
zip-file with the extension .fmu. It contains:

• An XML-file containing meta-data of the packaged
model, named modelDescription.xml.

• C-code implementing a set of functions defined by
the FMI standard.

• Other optional resources required by the implemen-
tation.

FMI4j, the software package introduced in this pa-
per, aims to simplify interaction with FMUs, and consists
of easy to use software APIs for parsing and simulating
FMUs on the JVM, as well as a tool for wrapping FMUs
into Java libraries, named FMU2Jar. Kotlin was chosen as
the implementation language as it is 100% interoperable
with Java, while offering several language improvements
such as null safety and less boilerplate code. From a us-
ability perspective, invoking FMI4j code from Java feels
no different than calling any other Java library.

The source code is published online under the permis-
sive open-source MIT license and can be accessed through
GitHub1. Here, pre-compiled FMU2Jar binaries are also
available. The APIs are available on maven central2. Only
version 2.0 and upwards are planned to be supported.

The rest of the paper is organized as follows. First some
related work is given, followed by a presentation of the
FMI4j software package. Finally, a conclusion and future
work are given.

2 Related work
Since the release of the FMI standard, several software li-
braries implementing the standard have been published.
An overview of such libraries for importing/invoking
FMUs is given in Table. 1.

1https://github.com/SFI-Mechatronics/fmi4j
2http://mvnrepository.com/artifact/no.

mechatronics.sfi.fmi4j
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Table 1. Software libraries providing FMI import

FMI support
Language CS ME

Name C C++ Java Python v1.0 v.2.0 v1.0 v2.0 Version License
FMI Library x x x x x 2.0.3 BSD

FMU SDK x x x x x 2.0.4 BSD

FMI++ x xa xa x x xb xb - BSD

PyFMI x x x xb xb 2.4 LGPLv3

FMPy x x x xb xb 0.2.5 BSD

JFMI x x x 1.0.2 MIT

JavaFMI x x x 2.24.5 LGPLv3

a Through SWIG
b Can solve ME FMUs

The FMI Library (FMIL) (JModelica, 2017) and FMU
SDK (QTronic, 2014), written in C and C++ respectively,
provide basic access to low-level FMI functions and is of-
ten used as base for creating more high-level libraries.

FMI++ (Widl et al., 2013) is a high level utility package
for FMI based on FMIL for ME and CS, written in C++,
that aims to bridge the gap between the basic FMI spec-
ification and the typical requirements of simulation tools.
Interfaces for Python and Java can be generated using
the Simplified Wrapper and Interface Generator (SWIG).
While the Python interface for Windows comes pre-built,
other packages must be built from source.

PyFMI (Andersson et al., 2016) is a high-level python
library for interacting with FMUs, maintained by Mode-
lon AB. It contains co-simulation masters for simulation
of weakly coupled systems and provides a connection to
the simulation package Assimulo (Andersson et al., 2015),
a Python package for solving first or second order explicit
ordinary differential equations (ODEs) or implicit ordi-
nary differential equations (DAEs). PyFMI is available
as a stand-alone package or as part of the JModelica.org
distribution.

FMPy (Dassault Systems, 2017) is a free python library
from Catia Systems for simulating FMUs. FMPy sup-
ports both FMI 1.0 and 2.0 for ME and CS. Using solvers
from the Sundials package, FMPy can be used to solve
ME FMUs. It also features both a command line utility
and a GUI for running and presenting simulation results.
FMPy and PyFMI may seem very similar, however there
is a major difference in that FMPy is implemented in pure
Python, whereas PyFMI acts as a wrapper for FMIL, with
additional high-level features.

JFMI (Broman et al., 2013b) is a low-level wrapper for
FMI 1.0 for CS and ME. The latest version, 1.0.2, was
released in 2013. Although the library supports both FMI-
CS and FMI-ME, a flexible solving mechanism for FMI-
ME is not provided.

JavaFMI (Cortes Montenegro, 2014) is a set of com-
ponents for working with the FMI standard using Java,
developed by SIANI institute (Las Palmas University).
JavaFMI is still actively maintained and offers cross plat-

form support for FMI version 1.0 and 2.0 for CS. A neat
feature of JavaFMI is the ability to export Java code as CS
FMUs.

While several FMI implementations exist, also for the
JVM. Only JavaFMI is maintained, however it lacks FMI
for ME support. It could be argued that FMI++ is avail-
able on the JVM by means of SWIG bindings, however,
the library must be built from source which is not straight-
forward and requires a number of native dependencies.

As such, it can be argued that there is still room for an
alternative, easy to use FMI implementation for the JVM
that supports both CS and ME FMUs.

3 FMI4j
This section introduces FMI4j, a software package for
working with Functional Mock-up Units on the JVM, de-
veloped by researchers at NTNU Aalesund. It is imple-
mented from scratch in Kotlin and provides a high-level
API for interacting with FMUs on the JVM (Java, Scala,
Groovy, Kotlin etc.) that implements FMI 2.0 for CS
and/or ME. When provided with an solver, FMI4j is able
to solve ME FMUs. Such instances share a common in-
terface with ordinary CS FMUs, that expose the most im-
portant FMI functions related to stepping a FMU forward
in time.

Furthermore, FMI4j through the FMU2Jar tool is, to the
best of the authors knowledge, the only publicly available
software that utilizes the provided meta-data in an FMU
in order to generate a high-level API tailored towards it.
E.g provide type-safe and documented access to named
variables directly through the API.

The different components available in the package is:

1. fmi-modeldescription - A library for parsing the
meta-data found in the modelDescription.xml located
within an FMU.

2. fmi-import - A library for loading and running FMUs
on the JVM. Supports FMI 2.0 for CS and ME.

3. FMU2Jar - A command line tool for turning an FMU
into a Java library (.jar).
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FMU2Jar is dependent on fmi-import, which again de-
pend on fmi-modeldescription. Artifacts from both li-
braries are hosted on The Central Repository3 hosted by
Sonatype. A collection of the most notable FMI4j classes
are shown in Figure. 1, some of which are described in
more detail in the following sections.

3.1 fmi-modeldescription
fmi-modeldescription is a lightweight API for parsing the
meta-data found in the modelDescription.xml located in-
side an FMU. Useful when only static information about
the FMU is required. For instance if you only want to
display static information about the FMU in a web-app or
when generating source code tailored towards a particular
FMU, as in the case for FMU2Jar.

FMI4j can parse the model-description given both a file
and URL reference to the FMU location. It can also handle
raw XML input. Usage is demonstrated in Listing. 1. For
brevity, code snippets are provided in Kotlin.

As seen in Figure. 1 there are several different inter-
faces representing the model-description. The Common-
ModelDescription interface represents common meta-data
found in both CS and ME FMUs, while the SpecificMod-
elDescription interface contain additional common infor-
mation found in the <ModelExchange> and <CoSimula-
tion> XML elements for ME and CS FMUs respectively.
Furthermore, the ModelExchangeModelDescription and
CoSimulationModelDescription interfaces contains type-
specific information located within the same entries.

Listing 1. Parsing the model-description file from an FMU.

File fmuFile = File("path/to/fmu.fmu")

//includes common FMI entries only
val md = ModelDescriptionParser.parse(

fmuFile)

//includes also CS specific entries
val cs_md = md.

asCoSimulationModelDescription()

//includes also ME specific entries
val me_md = md.

asModelExchangeModelDescription()

3.2 fmi-import
fmi-import is responsible for loading and simulating
FMUs. It relies on fmi-modeldescription for parsing
and Java Native Access (JNA) for invoking the native
FMI functions written in C. For integration of differen-
tial equations, it relies on the Apache Commons Math li-
brary (Apache, 2017).

The API for reading and writing variables is given in
Listing. 2 and 3 respectively. For convenience, FMU vari-
ables can be accessed through the ScalarVariable instance
representing the variable entry from the XML. As seen,
variables can also be accessed in a more FMI idiomatic

3https://search.maven.org/

way using the variableAccessor handle found within an
FMU implementation.

Listing 2. Read API.

val instance: FmiSimulation = ...
val speed: Double

= instance.variableAccessor
.readReal("speed")

Listing 3. Write API.

val instance: FmiSimulation = ...
val speedVariable: RealVariable = ...
val status: FmiStatus

= speedVariable.write(1.0)

// or
val status: FmiStatus

= instance.variableAccessor
.writeReal("speed", 1.0)

A description of some of the most notable classes found
within the fmi-import module are given below.

• Fmu - Represents an FMU file on disk. Responsible
for extracting the FMU, and acts as a factory for new
FMU instances. This allows extracted FMU content
to be re-used across instances. On JVM shutdown, it
will handle any necessary clean-up related to previ-
ously instantiated FMU instances and will also delete
the extracted FMU contents.

• FmuInstance - Represents a generic FMU instance,
exposing some of the most common functions.

• FmiSimulation - Extends the FmuInstance interface
with time stepping. Common interface for CS FMUs
and self-integrating ME FMUs.

• AbstractFmuInstance - Base class for all imple-
mented FMU classes. Wraps the model description
and a handle to the underlying native code belonging
to the loaded FMU. Also contains common boiler-
plate code.

• CoSimulationFmuInstance - Represents a CS FMU
instance. Implements the FmiSimulation interface.
Example usage is given in Listing. 4. Implements
the FMI extension for predictable step sizes proposed
in (Broman et al., 2013a), enabling step-size negoti-
ation between FMUs. More specifically, the exten-
sion adds the capability flag canProvideMaxStepSize
and a CS specific C procedure, fmiGetMaxStepSize,
which is an upper bound on the step-size that the
FMU can accept.

• ModelExchangeFmuInstance - A bare-bones class
for interacting with instances of ME FMUs. The re-
sponsibility of solving the FMU is left to the user,
as the class simply provides access to the underlying
FMU functions. Instantiated as seen in Listing. 5.

• ModelExchangeFmuStepper - Wraps an instance of
a ModelExchangeFmuInstance, while implementing
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Figure 1. Simplified UML view of core FMI4j classes.

the FmiSimulation interface. Allows ME FMUs to
be treated similar to CS FMUs. As seen in List-
ing. 6, it is instantiated very similarly to the Mod-
elExchangeFmu, although a solver is required. For
this purpose, FMI4j comes bundled with the Apache
Commons Math package, which includes a range of
both fixed and adaptive step-size solvers. A complete
overview of the available solvers is given in Table. 2
and 3.

Listing 4. Loading and running an CS FMU

val fmuFile = File("path/to/fmu.fmu")
val slave = Fmu.from(fmuFile)

.asCoSimulationFmu()

.newInstance()

// assign start values here

slave.init() //throws on error

val dt = 1.0/100
val stop = 10.0
while (slave.currentTime < stop) {

slave.doStep(dt)
}
slave.terminate()

Listing 5. Instantiating an ME FMU.

val file = File("path/to/fmu.fmu")
val slave = Fmu.from(file)

.asModelExchangeFmu()

.newInstance()

Listing 6. Instantiating an self-integrating ME FMU.

...
val solver = EulerIntegrator(1E-3)
val slave = Fmu.from(file)

.asModelExchangeFmu(solver)

.newInstance()

Table 2. Fixed-step solvers available in the Apache Commons
Math package.

Name Integration Order
Euler 1

Midpoint 2

Classical Runge-Kutta 4

Gill 4

3/8 4

Luther 6

Table 3. Adaptive step-size solvers available in the Apache
Commons Math package.

Name Order Error Estimation
Order

Higham and Hall 5 4

Dormand-Prince 5 5 4

Dormand-Prince 8 8 5 and 3

Gragg-Bulirsch-Stoer variable variable

Adams-Bashforth variable variable

Adams-Moulton variable variable

3.3 FMU2Jar
FMU2Jar is a command line tool for packaging an FMU
into a Java library, allowing the FMU to be used as any
other Java library. The generated library also exposes all
variables from the FMU through a type-safe API. That is,
named functions for getting and setting typed variable val-
ues are generated for each accessible variable in the FMU.
These are documented with information retrieved from the
associated entry in the model-description. This makes it
easier to use the FMU, as all variables and associated doc-
umentation can be browsed from within an IDE, as seen in
Figure. 2. Also, variables are grouped by causality for eas-
ier look-up. Both CS and ME FMUs are supported, with
ME FMUs being wrapped as CS FMUs and subsequently
solved using the solver provided on initialization, as seen
in Listing. 7.
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Figure 2. FMU named ControlledTemperature wrapped as a Java library using FMU2jar, then imported into IntelliJ IDE. From
within the IDE, the user can browse and read documentation on all available variables.

Listing 7. Instantiating both a CS and a self-integrating
ME FMU generated by FMU2Jar.

// Given an FMU that supports
// both CS & ME:
// First instantiate a CS FMU
ControlledTemperature

.newInstance()

.use { fmu ->
...

}

// and then a self-integrating ME FMU
val solver = EulerIntegrator(1E-3)
ControlledTemperature

.newInstance(solver)

.use { fmu ->
...

}

The Command Line Interface (CLI) is shown in List-
ing. 8. When supplying -mavenLocal as an argument, a
maven artifact is published to the local maven repository
(.m2 folder). This allows the user to easily include the
library in a software project using a build system such as
Apache Maven or Gradle. The user may also save the gen-
erated .jar into a specified folder and reference it explicitly.

Listing 8. FMU2Jar CLI

-fmu <arg> Path to the FMU
-help Prints this message
-mavenLocal Should the library be

published to maven local?
-out <arg> Specify where to copy the

generated .jar

FMU2Jar is most useful when working with FMUs pro-
grammatically, as its advantages such as variable look-up,
type-safe variable access and in-IDE documentation has
little to no function in common GUI based simulation en-
vironments such as OpenModelica, SimulationX, etc.

3.4 Performance
Table. 4 shows how FMI4j compares to some of the other
FMI libraries in terms of performance. The table shows
the time required in order to step two different test FMUs

Table 4. Performance comparison

Execution time [ms]
Library bouncingBall.fmu TorsionBar.fmu
FMIL 4 2801

JavaFMI 54 5843

FMI4j 53 5979

FMPy 60 9662

forward in time. Both FMUs implements the CS standard
and was downloaded from the official SVN repository for
test FMUs. A step-size of 1E − 2 and target time equal
to 100 seconds is used for the bouncingBall.fmu exported
from FMUSDK, while a step-size of 1E − 5 and target
time equal to 12 seconds was used for the TorsionBar.fmu
exported from 20Sim. For each time-step, a read call on
a real-valued output variable is performed. The tests were
performed on a i7-4770 CPU running Windows 10. From
the results we see that the native FMIL library is faster
than FMI4j by a good margin. This is to no surprise as
there is some overhead related to calling native functions
from Java (Kurzyniec and Sunderam, 2001). Performance
wise, FMI4j and JavaFMI are practically identical as they
both relies on JNA to handle native code execution. FMPy,
which runs in an interpreted language, is slower in both
test cases.

4 Conclusion and Future Work
This paper presents a high-level software package for
working with FMUs on the JVM platform. It includes
both a library for parsing the model-description file and
also for running the FMUs, as well as a tool for wrap-
ping FMUs as Java libraries, named FMU2Jar. Both FMI
2.0 for Co-simulation and Model-Exchange is supported.
Currently, it is the only library implemented for the JVM
to support version 2.0 of the ME standard. Using one of
the bundled solvers from the Apache Commons Math li-
brary, such FMUs can be solved directly by the library.

The FMU2Jar tool makes it easier to work with a spe-
cific FMU by wrapping it as a Java library, and generate
maven artifacts for it, which facilitates easy integration
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with popular build tools such as Maven and Gradle. Fur-
thermore, variables are exposed through the API as type-
safe method calls with documentation retrieved from the
model-description.

Recently, the FMI steering committee released a feature
list for version 3.0 of the FMI standard (FMI steering com-
mittee, 2018). As a future work, we aim to support this
standard some time after it has been officially released.

In the future FMI4j may also include the option to ex-
port FMUs from Java byte-code.

A request to list FMI4j on the official FMI tools page
has been submitted, and is pending approval. If or when
new features are added to the software, the capabilities
shown in this entry will be updated accordingly.
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Abstract
The main goal of the Functional Mock-up Interface (FMI)
standard is to allow simulation models to be shared across
tools. To accomplish this, FMI relies on a combination
of XML-files and compiled C-code packaged in a zip
archive. This archive is called an Functional Mock-up
Unit (FMU) and uses the extension .fmu. In theory, an
FMU can support multiple platforms, however this is not
always the case and depends on the type of binaries the
exporting tool was able to provide. Furthermore, a library
providing FMI support may not be available in a particular
language, and/or it may not support the whole standard.
Another issue is related to the protection of Intellectual
Property (IP). While an FMU is free to only provide the
C-code in binary form, other resources shipped with the
FMU may be unprotected.

In order to overcome these challenges, this paper
presents FMU-proxy, an open-source framework for ac-
cessing FMUs across languages and platforms. This is
done by wrapping one or more FMUs behind a server pro-
gram supporting multiple language independent Remote
Procedure Call (RPC) technologies over several network
protocols. Currently, Apache Thrift (TCP/IP, HTTP),
gRPC (HTTP/2) and JSON-RPC (HTTP, WebSockets,
TPC/IP, ZeroMQ) are supported. Together, they allow
FMUs to be invoked from virtually any language on any
platform. As users don’t have direct access to the FMU or
the resources within it, IP is more effectively protected.

Keywords: RPC, FMI, Co-simulation, Model Exchange

1 Introduction
No one simulation tool is suitable for all purposes, and
complex heterogeneous models may require components
from several different domains, perhaps developed in sep-
arate domain specific tools. How such components could
be integrated in a standardized way is a problem the Func-
tion Mock-up Interface (FMI) (Blochwitz et al., 2012)
aims to solve. More specifically, FMI is a tool indepen-
dent standard to support both Model Exchange (ME) and
Co-Simulation (CS) of dynamic models. Currently at ver-
sion 2.0, the standard was one of the results of the MOD-
ELISAR project and is today managed by the Modelica
Association.

A model implementing the FMI standard is known as
an Functional Mock-up Unit (FMU), and is distributed as
a zip-file with the extension .fmu. This archive contains:

• An XML-file that contains meta-data about the
model, named modelDescription.xml.

• C-code implementing a set of functions defined by
the FMI standard.

• Other optional resources required by the model im-
plementation.

The FMI standard consists of two main parts:

• FMI for Model Exchange (ME): Models are exported
without solvers and are described by differential, al-
gebraic and discrete equations with time-, state- and
step-events.

• FMI for Co-Simulation (CS): Models are exported
with a solver, and data is exchanged between subsys-
tems at discrete communication points. In the time
between two communication points, the subsystems
are solved independently from each other.

It’s worth noting that a single FMU may support both
ME and CS, and that the former may be wrapped by an
importing tool into the latter.

FMI has seen high adaption rates since it’s inception in
2011. The official tools page at fmi-standard.org/
tools currently shows about 120 tools supporting FMI
in one way or another. Clearly, the standard is solving
a real problem. However, there are still some practical
challenges related to it.

• FMI is cross platform in theory, but in practice
this depends on the exporting tools ability to cross-
compile native binaries. This is often not the case,
making some FMUs unavailable for a certain plat-
form.

• While FMI has been implemented in several lan-
guages, such as C (JModelica, 2017; QTronic,
2014), C++ (Widl et al., 2013; Hatledal, 2018),
Python (Dassault Systems, 2017; Andersson et al.,
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2016) and Java (Hatledal et al., 2018; Cortes Mon-
tenegro, 2014; Broman et al., 2013), out-of-the-box
support for FMI is still missing in many languages.

• An FMU may require a license or pre-installed soft-
ware on the target computer, making the FMU un-
available on many systems.

• Some FMI implementations only supports CS, mak-
ing parts of the standard unavailable. Others may
support ME also, but may not provide an easy way of
solving them. Thus, some users may find the thresh-
old for utilizing this feature too high.

• IP protection is not covered by the standard, however,
model exporters are free to implement such mecha-
nism as they see fit. Regardless, some model owners
may worry about leaking IP and might be reluctant
in sharing FMUs with others.

In order to resolve these issues, we present FMU-proxy,
a framework for accessing FMUs compatible with FMI
2.0 for CS and ME in a language and platform indepen-
dent way. The language and platform independent nature
of the framework is achieved using well established RPC
technologies, allowing clients and servers for FMU-proxy
to be written in almost any language, on any platform. As
noted by (Durling et al., 2017), server solutions such as
presented in this paper are effective at protecting IP and
unintended distribution. Furthermore, they allow FMUs
with special requirements, such as pre-installed software
and licence requirements, to be utilized on other systems.

Server implementations already exist for C++ and for
the Java Virtual Machine (JVM), while client imple-
mentations exist for C++, Python, JavaScript and the
JVM. Thanks to the stub generation capability of selected
RPC frameworks, additional implementations in other lan-
guages are easy to realize as most of the code will be gen-
erated by the RPC compiler.

FMU-proxy is different from other similar frameworks
offering distributed execution of FMUs in that it com-
pletely separates itself from the master algorithm. It is a
completely standalone project which provides the infras-
tructure required to invoke FMUs over the wire. And just
that.

Rather than having a number of tools creating their
own, perhaps non-modular or internal, distribution mech-
anism, we hope FMU-proxy can be considered as an alter-
native or drop-in replacement for existing solutions. Pos-
sibly, creating a eco-system of remotely available FMUs
in the process.

The source code of FMU-proxy is available online1 un-
der a permissive MIT license.

The rest of the paper is organized as follows. First some
related work is given, followed by a presentation of the
high-level architecture of the framework and subsequent

1https://github.com/NTNU-IHB/FMU-proxy

implementation notes. Finally, a conclusion and future
works are given.

2 Related work
Since the inception of the FMI standard, a multitude of
libraries and software tools supporting the standard has
been implemented. As of November 2018, the official
FMI web page lists 120 such tools. Most of which sup-
ports invocation of FMI 2.0 compatible simulation mod-
els. A list of open-source tools with FMI import capabil-
ities are given in Table. 1. Of these tools, four support
distributed invocation of FMUs. These are:

DACCOSIM (Distributed Architecture for Controlled
CO-SIMulation) (Galtier et al., 2015; Dad et al., 2016),
a FMI compatible master algorithm, that lets the user
design and execute a simulation requiring the collabora-
tion of multiple FMUs on multi-core computation nodes
or clusters. DACCOSIM is implemented in Java and is
built on-top of the Eclipse Rich Client Platform, which
provides the user with a GUI for setting up and running
co-simulations. For complex scenarios with many FMUs
and/or connections, a DSL can be used to replace the GUI.
JavaFMI (Cortes Montenegro, 2014) is used for simulat-
ing and building FMUs. For communications, the Ze-
roMQ middleware is used. DACCOSIM is released under
the AGPL license and is available for both Windows and
Linux.

Coral (Sadjina et al., 2017) is a free and open-source
software for distributed FMI based co-simulation, licensed
under the MPL 2.0. Coral support FMI 1.0 and 2.0
for CS and was developed as part of the R&D project
Virtual Prototyping of Maritime Systems and Operations
(ViProMa) (Hassani et al., 2016). According to the au-
thors, Coral is primarily a C++ library, but also acts as
a tool as it requires setting up and running several pro-
grams in a distributed fashion. Additionally, it comes with
a Command Line Interface (CLI) for running simulations.
Coral works by installing a server program called a slave
provider on each of the machines that should participate
in a simulation. This program is responsible for publish-
ing information on which FMUs are available on that ma-
chine, and exposes a subset of the FMI standard, com-
patible with both FMI 1.0 and 2.0, over the network. It
also handles loading and running FMUs at the request of
the master software, which acts as a client. Coral relies on
the FMI Library (JModelica, 2017) to interact with FMUs,
while networking is facilitated by the ZeroMQ middle-
ware. Google Protocol Buffers are used for encoding/de-
coding messages sent over the network. A special feature
of Coral is that slaves run in parallel, with variable val-
ues passed between them in a distributed fashion. Loggers
and visualizers must therefore be implemented as FMUs
themselves.

FMI Go! (Lacoursière and Härdin, 2017) is an open-
source (MIT) distributed software infrastructure to per-
form distributed simulations with FMI compatible com-
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Table 1. Open Source Software tools for simulating FMUs

FMI support
CS ME

Name v1.0 v2.0 v1.0 v2.0 Standalone Plugin Distributed API CLI GUI Version License
Coral x x x x x x 0.9.0 MPLv2

DACCOSIM x x x x 2.1.0 AGPL

FMI Go! x x x x x x x - MIT

FIDE x x x - -

FUMOLA x x x x x x x alpha -

Hopsan x x x 2.10.0 GPLv3

INTO-CPS x x x - MIT

MasterSim x x x x x x 0.5.0 LGPLv3

Ptolemy II x x x x x x x 10.0.1 MIT

Xcos FMU wrapper x x x x x 0.6 CeCILL

λ -Sim x x x - -

OpenModelica x x x x x 1.12.0 GPLv3

ponents, that runs on Windows, Linux and Mac OS X.
Both CS and ME FMUs are supported, where ME FMUs
are wrapped into CS FMUs. ME FMUs are preferred, as
then the FMI Go! run-time environment can provide roll-
back and directional derivatives of the FMU. In CS FMUs,
these features are considered optional and are often lack-
ing, but may be required to achieve accurate and or stable
simulations. FMI Go! used a client-server architecture,
where a server hosts an individual FMU. Google Protocol
Buffers are used for mapping the various FMI functions to
messages that are transmitted using the ZeroMQ middle-
ware. The Message Passing Interface (MPI) is also sup-
ported. The global stepper is then a client, consuming re-
sults produced by the FMUs. For applications that would
want access to the simulation data, such as loggers, visual-
ization etc., the global stepper serves also as a server. The
System Specification and Parameterization (SSP) (Köhler
et al., 2016) is used for defining the structure of a simula-
tion. Additionally, a bare-bone CLI for this purpose also
exists.

λ -Sim (Bonvini, 2016) is a tool implemented on top
of Amazon Web Services (AWS) that converts FMI based
simulation models into REST APIs. Provided with an
FMU bundled with a JSON configuration file, λ -Sim
builds a series of AWS services that will run simulations
upon requests from a RESTful API. A web-based GUI is
available, allowing users to load the generated API, simu-
late the model and visualize the results.

In (Hatledal et al., 2015) a software architecture for
simulation and visualization based on FMI and web tech-
nologies was presented, using the Java only Remote
Method Invocation (RMI) system for distributed access of
FMUs.

Efforts has also been made to integrate the High Level
Architecture (HLA) (Dahmann et al., 1997) and FMI in
the works of (Awais et al., 2013) and (Garro and Falcone,
2015).

Additionally, the emerging standard Distributed Co-
Simulation Protocol (DCP) (Krammer et al., 2018) should
be mentioned. It is subject to proposal as a standard for

real-time and non-real-time system integration and sim-
ulation, and standardization as a Modelica Association
Project (MAP). The DCP is compatible with FMI and just
like FMI, it defines only the slave. The design of a master
is not in scope of the specification.

FMU-proxy is similar to the DSP in that it aims to en-
able distributed Co-Simulation. However, it does not de-
fine a standard, but mimics FMI for function definitions
and leverages existing RPC frameworks and protocols for
serialization and networking. It also makes no special con-
siderations for real-time system integration like DSP does.

FMU-proxy differs from the other tools mentioned
above as it does not actually simulate any FMUs. It merely
provides access to the FMUs in a flexible way, support-
ing multiple RPCs and network protocols. Time stepping,
variable routing, plotting etc. and other typical task per-
formed by a master tool is left implemented by the inte-
grating tool. This is a feature, allowing FMU-proxy to be
lightweight, easy to use and re-usable in different software
tools.

3 Software Architecture
This section introduces the high level concepts of FMU-
proxy. The software architecture is shown in Fig. 1 and
consists of three main parts:

Figure 1. Software architecture.
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1. Discovery Services A discovery service is a web ap-

plication whose main responsibility is to communi-
cate to users information about and the location of
available FMUs. This information can be obtained
visually through a web interface, or programmati-
cally through an HTTP request.

The discovery service has the following three HTTP
services:

• /availablefmus: Called by user applications.
Returns a JSON formatted string containing in-
formation about all available FMUs registered
with the discovery service. The information in-
clude data from the modelDescription.xml as
well as the IP address of the host machine and
the RPC port(s).

• /register: Called by proxy-servers on start-up.
Registers the server with the discovery server.
Transmits network information, and informa-
tion about the modelDescription.xml for each
locally available FMU.

• /ping: Called by the proxy-servers at regular
intervals, otherwise they will be considered to
be offline by the discovery service.

The discovery service is an optional feature and is not
required when the remote end-point of an RPC ser-
vice can be easily obtained. For instance when run-
ning the server on a physically accessible machine,
allowing the IP address and RPC port(s) to be man-
ually obtained. Another use case could be running
both the client and server on localhost to enable in-
vocations on FMUs from an otherwise unsupported
language.

Multiple discovery services may be online at any
given time.

2. Proxy-server

A proxy-server is responsible for making available
one or more FMUs over a set of RPCs. At the very
least, an implementation should support both Thrift
and gRPC. Additional RPCs, such as JSON-RPC are
optional.

In addition to the RPC support, an implementation
must be able to communicate with the discovery ser-
vice over HTTP. Upon starting the server, the remote
address of a discovery service should be specified.
In order to ensure that the list of available FMUs are
kept up to date, a heartbeat connection to the dis-
covery service is established. At regular intervals,
the server sends a ping - or heartbeat - over HTTP
signalling that it is still online. When enough time
has passed without such a notification, the server is
considered offline and it’s listing is subsequently re-
moved from the discovery service.

FMU-proxy supports both ME and CS FMUs run-
ning on the back-end, but the user is only provided
with a CS API, as ME models are wrapped. Which
solver and parameters to use are configurable by the
user, however the availability of certain solvers are
dependent on the server implementation.

3. Proxy-clients
Proxy clients are used to connect with the FMUs
hosted by the remote server(s). FMU-proxy aims
to provide flexibility, such that clients can be imple-
mented in a wide variety of languages and platform.

Using Thrift or gRPC, the process of generating
the required source-code for interacting with an re-
mote FMU is quite straightforward. Listing. 1 shows
the command required for generating the required
sources when targeting Thrift in JavaScript. Simi-
larly, Listing. 2 shows how C++ sources for gRPC
are generated.

Listing 1. Generating JavaScript sources for interfacing
with remote FMUs using Thrift.

thrift -js service.thift

Listing 2. Generating C++ sources for interfacing with
remote FMUs using gRPC.

protoc -I=. --plugin=protoc-gen-grpc=
grpc_cpp_plugin --cpp_out=. --
grpc_out=. service.proto

The framework accomplishes several things, such as:

• Additional language support. FMUs can be ac-
cessed in previously unsupported languages with low
effort, as no XML has to be parsed and no C-code has
to be interfaced. Depending on the RPC used, stubs
are auto-generated.

• Cross platform access to any FMU. FMUs can be
invoked from unsupported platforms, i.e an FMU
compiled only for Windows can be invoked from a
Linux system. Naturally, a server running on a plat-
form supported by the FMU is required.

• FMI compliance without FMU packaging. It al-
lows models to be compliant with the FMI standard
without actually being packaged as an FMU. From a
client’s perspective, there is no difference between
a "physically backed" FMU and one implemented
in-memory. All the client sees is the RPC interface
mimicking FMI.

• Relaxed run-time constraints. FMUs that require
special software and/or licenses can be invoked from
otherwise incompatible systems.

• Re-usability. As the framework is decoupled from
the master algorithm, it can be used by any software
tool with a centralized master architecture that wants
to support distributed execution of FMUs.
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4 Implementation
This section describes some of the implementation details
related to FMU-proxy. Currently, it comes with server im-
plementations for C++ and the JVM. Client implementa-
tions exist also for C++ and the JVM. Additionally, proof
of concept implementations for Python and JavaScript are
bundled. In addition to the servers and clients, FMU-
proxy comes bundled with an implementation of a discov-
ery service.

4.1 The Discovery Service
The discovery service has been implemented in Kotlin, a
statically typed language 100% interoperable with Java.
The front-end seen in Fig. 2 has been implemented using
PrimeFaces, a UI component framework for Java Server
Faces (JSF). It offers basic functionality such as the ability
for users to download available RPC schemas and to view
information about available FMUs in a structured way.

Figure 2. The discovery service’s web interface. Here available
FMUs are listed, showing network information and data from
the modelDescription.xml.

4.2 Proxy-server
Two server implementations have been realized, each de-
scribed more in detail below. Which one to deploy in pro-
duction depends on the users need for RPCs supported,
stability, stability, quality of the available ME solvers,
memory foot-print and performance. No one implemen-
tation will excel at everything.

4.2.1 JVM

The JVM implementations is written in Kotlin and rely on
FMI4j (Hatledal et al., 2018) for interacting with FMUs.
FMI4j supports FMI 2.0 for CS and ME. ME models can
be wrapped as CS ones using solvers from Apache Com-
mons Math.

The implementation supports Thrift (TPC/IP - binary,
HTTP - JSON), gRPC (HTTP2 - protocol buffers) as well
as JSON-RPC (HTTP, TCP/IP, WebSockets, ZeroMQ). Of

the two current implementations, this one is considered
the most stable and feature rich.

4.2.2 C++

The C++ implementation is cross-platform and is written
in C++17. All dependencies are available using the library
manager vcpkg, making it easy to build on any platform.
Currently, Thrift (TPC/IP - binary, HTTP - JSON) and
gRPC (HTTP2 - protocol buffers) are supported RPCs.

FMI4cpp (Hatledal, 2018) is used for interacting with
FMUs. It supports FMI 2.0 for CS and ME. ME mod-
els can be wrapped as CS ones using solvers from Boost
odeint.

4.3 Proxy-client
FMU-proxy comes bundled with client implementations
for C++, the JVM, Python and JavaScript. The two lat-
ter are crude and ought to be considered as proof of con-
cept. They are, however, bundled with the source code to
showcase how easy it is to interface with FMU-proxy from
new languages. A MATLAB demo using JSON-RPC over
HTTP is also available.

The C++ and JVM implementations are more elabo-
rate, providing a unified, higher level API for the users.
No matter which RPC is used, there is no difference be-
tween a remote and local FMU slave for the user. As il-
lustrated by Figure. 3, they all share the same interface,
defined by FMI4cpp and FMI4j for C++ and JVM imple-
mentations respectively. Assuming a tool is using one of
these FMI implementations, support for distributed execu-
tion can be seamlessly added with minimal changes to the
existing code base.

Figure 3. FMI4cpp and FMI4j’s slave interface could hide
slaves stemming from either an in-memory implementation or
an actual FMU. A slave in any language supported by the cho-
sen RPC could also be implemented directly behind the RPC
layer.

5 Conclusion and Future Work
In this paper an open-source framework for working with
FMUs across languages and platforms, named FMU-
proxy, has been presented. It has been designed to allow
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distributed execution of FMUs, which also enables access
to FMUs in previously unsupported languages and on in-
compatible platforms. Since FMU-proxy is independent
of the master algorithm, it can be re-used across software
projects.

Some features of FMU-proxy include:

• Brings FMI capabilities to previously unsupported
languages and otherwise incompatible platforms.

• By implementing the RPC functions directly, FMI
compliant models can be implemented without hav-
ing to package them into FMUs.

• Allows code re-use between projects that requires
distributed execution of FMUs, independent of im-
plementation language.

• Enables companies to securely share FMUs. By
hosting their own proxy server and directory service,
neither the FMUs nor the knowledge about them
leaves the company controlled servers.

• A unified slave interface for C++ and JVM users. On
these platforms, local and remote slaves implement
the same interface.

Server implementations exists for C++ and the
JVM, while client implementations exists for JavaScript,
Python, C++ and the JVM. Due to the language inde-
pendent nature of the RPC frameworks and protocols
used, and especially the code-generation feature of se-
lected RPC frameworks, further client implementations in
additional languages require little effort.

Several enhancements to FMU-proxy is planned for the
future, including:

1. Automatic distribution of FMUs over the network.
It should be possible to upload an FMU to the Dis-
covery Service, which in turn should find a suitable
server for it to run on.

2. Manual distribution of FMUs over the network. It
should be possible for the user to directly upload an
FMU to an available proxy-server.

3. Publication of the C++ implementation to the cross-
platform C++ library manager vcpkg.

4. Benchmark results, comparing the different imple-
mentations, RPCs and local vs. distributed execution
of FMUs.

5. Once released, FMI 3.0 support will be added.

FMU-proxy is available from GitHub at
https://github.com/NTNU-IHB/FMU-proxy.
Here, pre-built server executables can be obtained. Client
libraries for Java are available through maven at https:
//jitpack.io/#NTNU-IHB/FMU-proxy, while
client libraries for C++ will be available through vcpkg.
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ABSTRACT The main goal of the Functional Mock-up Interface (FMI) standard is to allow the sharing
of simulation models across tools. To accomplish this, FMI relies on a combination of XML-files and
compiled C-code packaged in a zip archive. This archive is called a Functional Mock-up Unit (FMU).
In theory, an FMU can support multiple platforms, but not necessarily in practice. Furthermore, software
libraries for interacting with FMUs may not be available in a particular language or platform. Another issue
is related to the protection of intellectual property (IP). While an FMU is free to only provide the C-code
in its binary form, other resources within the FMU may be unprotected. Distributing models in binary form
also opens up the possibility that they may contain malicious code. In order to meet these challenges, this
paper presents an open-source co-simulation framework based on FMI, which is language and platform
independent thanks to the use of well-established remote procedure call (RPC) technologies. One or more
FMUs are wrapped inside a server program supporting one or more language independent RPC systems over
various network protocols. Together, they allow cross-platform invocation of FMUs frommultiple, including
previously unsupported, languages. The client-server architecture allows the effective protection of IP while
also providing a means of protecting users from malicious code.

INDEX TERMS Co-simulation, distributed simulation, FMI, FMU, model exchange, RPC.

I. INTRODUCTION
No one simulation tool is suitable for all purposes, and com-
plex heterogeneous models may require components from
several different domains, perhaps developed in separate,
domain-specific tools. Co-simulation refers to an enabling
technique, where different sub-systems making up a global
simulation are being modeled and run in a distributed fash-
ion. Each sub-system is a simulator and is broadly defined
as a black box capable of exhibiting behavior, consuming
inputs, and producing outputs [1]. Co-simulation is a hot
topic in research fields such as automotive [2], [3], mar-
itime [4]–[6] and power systems [7]. Compared to more
traditional monolithic simulations, co-simulation encourages
re-usability, model sharing and fusion of simulation domains.

The associate editor coordinating the review of this manuscript and
approving it for publication was Orazio Gambino.

A crucial point is that it allows users to simulate mod-
els exported from different tools together, enabling simula-
tion of the type of complex cyber-physical systems found
in areas such as the automotive and maritime industry.
Fig. 1 illustrates a possible co-simulation scenario for a ves-
sel, which requires models from several different domains.
Co-simulation is absolutely imperative for this scenario to
succeed, not only because models from different domains
need to be coupled, but also because themodels may originate
from different, perhaps competing companies that would not
be willing to share their models in any other form than as a
black-box model.

Distributed co-simulation refers to the idea that a
co-simulation can be distributed not only logically, but phys-
ically across a network. There are several reasons to perform
a co-simulation with one or more remote simulators. For
instance, a simulator may impose one or more requirements

109328 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019
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FIGURE 1. Simulation of a complex cyber-physical system in the maritime domain. The complete vessel model is
constituted by the individual sub-modules connected through FMI for Co-simulation. Sub-model figures courtesy of the
Virtual Prototyping of Maritime Systems and Operations project (Research Council of Norway, grant nr. 225322).

onto the simulation environment, such as a platform, soft-
ware, or license requirement, that is for some reason impos-
sible to meet. In such a case, the simulator can run in a
compatible environment and accessed remotely. Also, if the
overall simulation is suited for parallelization, it may be more
efficient to balance the workload over several computation
nodes. Another use-case is to prevent the execution of mali-
cious code on a sensitive system by accessing it from a sand-
boxed environment. Physically distributed co-simulation is
also an excellent way of protecting intellectual property (IP),
as clients would not have direct access to the simulation
model. It’s also worth noting that distributed co-simulations
are vital for enabling digital twin technology, which requires
the integration of industrial internet of things devices.

Multi-domain co-simulation is not without its chal-
lenges [8]. However, the FunctionalMock-up Interface (FMI)
standard [9] tries to make this task easier and more accessible
by defining a standard way of interfacing simulation models.
More specifically, FMI is a tool independent standard that
supports both model exchange (ME) and co-simulation (CS)
of dynamic models. A model implementing the FMI standard
is known as a Functional Mock-up Unit (FMU). Many tools
support FMUs, and it has become the de-facto standard for
ME and CS. However, it does not solve everything and itself
brings some problems. These issues are:

• Open-source FMI implementations exist for relatively
few programming languages, like C, C++, Java and
Python.

• FMI is cross-platform in theory, but not necessarily in
practice. It depends on the exporting tools’ ability to
cross-compile.

• An FMU may require a particular software or license.
• An FMUmay only support instantiating a single model-
instance per process.

• The binary code within an FMU may contain malicious
code.

• Reluctance to share FMUs even if the source code is
provided in binary form, due to IP concerns.

Fortunately, distributed access can solve these issues.
In describing how and presenting a benchmark, this paper

builds on the work presented in [10], which introduced a
framework for accessing models compatible with FMI 2.0 for
CS and ME in a language and platform-independent manner.
This is achieved using well-established remote procedure
call (RPC) technologies, allowing cross-platform clients and
servers to bewritten inmost major languages, overcoming the
issues listed above. For instance, this kind of architecture pro-
tects IP and prevents unintended distribution [11]. Further-
more, it allows the use of FMUs with special requirements,
such as pre-installed software and license requirements, from
otherwise incompatible systems.

Server and client implementations have been realized for
both C++ and the Java Virtual Machine (JVM). Proof of
concept clients also exists for Python, JavaScript and MAT-
LAB. Thanks to the stub generation capability of selected
RPC systems, such as Apache Thrift and gRPC, additional
implementations are easy to realize as the selected RPC’s
compiler will auto-generate most, if not all, of the code
required to interact with the remote FMUs.

The rest of the paper is organized as follows. Section II
introduces recent and related work on FMI and distributed
co-simulation. A presentation of the high-level architecture
of the framework, as well as an introduction of the necessary
background on the RPC standards and technologies refer-
enced in this work, is provided in Section III. Implementation
details follows in Section IV. A case study is presented
in Section V along with a discussion of relevant findings.
Finally, Section VI concludes the paper and provides direc-
tions for future work.

II. RELATED WORK
This section presents a brief summary of the current state of
the FMI standard and distributed FMI based co-simulation.

A. THE FUNCTIONAL MOCK-UP INTERFACE
FMI is a tool independent standard that supports both (ME)
and (CS) of dynamic models. Currently at version 2.0,
the standard was one of the results of the MOD-
ELISAR project and the Modelica Association manages
it today. A key goal of FMI is to improve the exchange
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TABLE 1. Open-source software libraries providing FMI import capabilities.

of simulation models between suppliers and original equip-
ment manufactures (OEMs).

An FMU is a model that implements the FMI standard
that is distributed as a zip-file with the extension .fmu. This
archive contains:

• An XML-file that contains meta-data about the model,
named modelDescription.xml.

• C-code implementing a set of functions defined by the
FMI standard.

• Other optional resources required by the model
implementation.

The FMI standard consists of twomain parts, both of which
a single FMU may support:

• FMI for ME: Models are exported without solvers and
are described by differential, algebraic, and discrete
equations with time-, state-, and step-events.

• FMI for CS:Models are exported with a solver, and data
is exchanged between subsystems at discrete communi-
cation points. In the time between two communication
points, the subsystems are solved independently from
each other.

The first version of the standard, FMI 1.0, was released
in 2010. Version 2.0 of the standard, was released in 2014.
This version merged the two types of FMI standards and
incorporated some major enhancements compared to the ini-
tial release. As a result, version 2.0 is not backwards com-
patible with version 1.0. In December 2017, the Modelica
Association released a preliminary feature list for version
3.0 that includes:

• Meta-data for ports and icons, allowing for a more con-
sistent representation across tools.

• Support for multi-dimensional variables (arrays).
• Co-simulation with events.
• Inclusion of a binary data type.
• Access of intermediate output values between commu-
nication points.

• Better support for source code FMUs.
Since the inception of the FMI standard, a multitude of

libraries and software tools that support it have been imple-
mented. As of March 2018, the official FMI web page lists

108 such tools, 71 of which support invocation of FMI
2.0 compatible simulation models. Table. 1 provides a sum-
mary of open-source libraries with FMI import capabilities.
Clearly, the standard is solving a real problem. However,
practical challenges persist.

• FMI is cross platform in theory, but in practice can only
be used cross-platform if the exporting tools have the
ability to cross-compile native binaries. Many do not.

• While FMI has been implemented in several languages,
such as C [12], [13], C++ [14], [15], Python [16], [17]
and Java [18]–[20], out-of-the-box support for FMI is
still missing in many languages.

• An FMUmay require a license or pre-installed software
on the target computer, making the FMU unavailable on
many systems.

• Some FMI implementations only support CS, making
parts of the standard unavailable. Others may also sup-
port ME but may not provide an easy way of solving
them. Thus, some users may find the threshold for uti-
lizing this feature too high.

• The standard does not cover IP protection. While, model
exporters can implement protection as they see fit. Some
model owners may worry about leaking IP and might be
reluctant to share FMUs with others.

• As an FMU’s application code can be delivered in binary
form, end-users may be afraid to use it because it could
contain malicious elements.

B. DISTRIBUTED FMI BASED CO-SIMULATION
Table. 2 provides a list of open-source tools for simulating
FMUs. Among these, the ones that support distributed invo-
cation of FMUs are as follows.

DACCOSIM (Distributed Architecture for Controlled
co-simulation) [21], is an FMI-based co-simulation environ-
ment written in Java. DACCOSIM lets the user design and
execute a simulation requiring the collaboration of multi-
ple FMUs on multi-core computation nodes or clusters. For
complex scenarios with many FMUs and/or connections,
a domain specific language can be used to replace the graph-
ical user interface (GUI). It also includes a command line
interface (CLI) for running co-simulations. JavaFMI [19] is

109330 VOLUME 7, 2019



L. I. Hatledal et al.: Language and Platform Independent Co-Simulation Framework Based on the FMI

TABLE 2. Open-source software tools for simulating FMUs.

used for simulating FMUs. DACCOSIM is released under
the LGPLv3 license and is available for both Windows and
Linux.

Coral [6] is a free and open-source software for distributed
FMI based co-simulation. It supports FMI 1.0 and 2.0 for
CS and is licensed under the MPL 2.0. Coral was developed
as part of the R&D project Virtual Prototyping of Maritime
Systems and Operations [5]. According to its creators, Coral
is primarily a C++ library, but also acts as a tool as it requires
setting up and running several programs in a distributed
fashion. It also comes with a CLI for running simulations.
Coral works by installing a server program called a slave
provider on each of the machines that should participate
in a simulation. This program is responsible for publishing
information on which FMUs are available on that machine
to the network, as well as loading and running FMUs at the
request of the master software, which acts as a client. Coral
relies on the FMI Library to interact with FMUs, while the
ZeroMQmiddleware facilitates networking. Google Protocol
Buffers are used for encoding/decoding messages sent over
the network.

FMI Go! [22] is an MIT-licensed software infrastructure
designed to perform distributed simulations with FMI com-
patible components, that runs on Windows, Linux and Mac
OS X. It supports CS as well as ME FMUs by wrapping these
into CS FMUs. ME FMUs are preferred, as they allow the
FMI Go! run-time environment to provide rollback and direc-
tional derivatives of the FMU. In CS FMUs, these features
are considered optional and are often absent, but in fact they
may be required to achieve accurate and or stable simulations.
FMI Go! uses a client-server architecture, where a server
hosts an individual FMU. Google Protocol Buffers are used
for mapping the various FMI functions to messages, which
are transmitted using the ZeroMQ middleware. The message
passing interface is also supported. The global stepper is then
a client, consuming results produced by the FMUs. For appli-
cations that would want access to the simulation data, such as
loggers, visualization etc., the global stepper serves also as a
server. The system specification and parameterization (SSP)
is used for defining the structure of a simulation. A bare-
bones CLI for this purpose also exists.

λ-Sim is a tool implemented on top of Amazon Web Ser-
vices (AWS) that converts FMI based simulation models into
REST APIs. Provided with an FMU bundled with a JSON
configuration file, λ-Sim builds a series of AWS that will
run simulations upon requests from a RESTful API. Two
services are provided. Lambda, a service that operates on-
demand servers for running simulations and return meta-
data associated to the requested model, and Apigateway - the
service that exposes the server via a public RESTAPI. Aweb-
based GUI is available, allowing users to load the generated
API, simulate the model and visualize the results.

A software architecture for simulation and visualization
based on FMI and web technologies was presented in [23].
This work leveraged the Java specific RPC technology
Remote Method Invocation [24] for distributed access to
FMUs.

The proposed framework differs from the ones mentioned
above in that it totally separates itself from the master algo-
rithm. It is a completely standalone project that provides the
infrastructure required to invoke FMI compatible models,
such as FMUs, remotely using RPCs. Multiple RPC systems
over several network protocols are supported. Time stepping,
variable routing, plotting, and tasks typically performed by a
master tool are left implemented by the integrating tool. This
creates a lightweight framework that is easy to use and is re-
usable.

Rather than having several tools implementing their own,
perhaps non-modular or internal, distribution mechanism,
we hope that the solution offered here can be considered as
an alternative or drop-in replacement for existing solutions.
However, this work can only be integrated into simulation
masters with a centralized design. Data must flow through
the master, and not directly between slaves.

Highly related to the work presented in this paper is the
Distributed Co-Simulation Protocol (DCP) [25], which is
a standard for real-time and non-real-time system integration
and simulation. The DCP is compatible with FMI, and just
like FMI, it defines only the slave. The design of a master
is not in scope of the specification. Recently it was adopted
by the Modelica Association as a Modelica Association
Project (MAP)
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This work is similar to the DSP in that both initiatives
aim to enable and promote distributed co-simulation. How-
ever, this work does not define a standard, but mimics
FMI for function definitions and leverages existing cross-
platform RPC frameworks for serialization and networking.
This makes it less complex, more accessible and easier to
use. However, this work relies on reliable network commu-
nication and no special considerations have been made for
real-time system or hardware-in-the-loop integration, making
DSP more suited for these kinds of co-simulation tasks.

III. THE PROPOSED FRAMEWORK
This section introduces the high-level concepts of the
proposed framework. The framework uses a client-server
architecture and embraces cross-platform and language inde-
pendent RPCs for communication between clients and
servers. Such RPCs have several benefits compared to ad-hoc
message passing systems, such as:

1) Tried and tested.
2) Not having to re-invent the wheel.
3) Built in serialization and networking.
4) Schema based code validation and generation.
5) Large open-source communities surrounding them.
In particular, Apache Thrift and gRPC are supported - both

of which are schema based and available in a wide range
of languages. Additionally, JSON-RPC is supported by one
of the server implementations. JSON-RPC is language and
transport agnostic and can be used to fill any gaps left by
the other RPCs regarding language, transport and/or platform
support, effectively making the framework accessible from
virtually any client application.

A. KNOWLEDGE BACKGROUND
This section will introduce the necessary background on
the RPC technologies and standards used by the proposed
framework.

1) REMOTE PROCEDURE CALL
AnRPC is an abstraction for executing a function call (or pro-
cedure) located in a different address space (e.g another com-
puter). RPCs provide more structure than request-response
message-passing systems. Typically, a RPC request demands
a response and error handling is baked into the proto-
col. Many RPCs also rely on a pre-definition of available
functions and types, either through schema definitions or
language interfaces. This allows statically typed languages
to verify the message-passing logic at compile time, making
bugs less likely to appear in production code.

2) PROTOCOL BUFFERS
Protocol buffers [26], or protobuf, are Google’s mecha-
nism for serializing structured data. Compared to common
alternatives for data serialization over the wire, such as
XML and JSON, protobuf generate much smaller data pack-
ages because they use a binary format. Messages are com-
piled using a predefined schema, allowing messages to be

more compact. The schema is specified in a file with a
.proto extension. Both regular messages and RPC services
can be defined using the protobuf interface definitions lan-
guage (IDL). However, the RPC feature requires a 3rd
party plugin because the protobuf library itself does not
implement it.

3) gRPC
gRPC [27] is a language- and platform-neutral open-source
RPC system, initially developed at Google, with support for
a wide range of programming languages. Official support
exists for C/C++, C#, Node.js, PHP, Ruby, Python, Go and
Java. It relies on HTTP/2 for transport and protobuf for
data serialization. gRPC is essentially an implementation of
the protobuf RPC. Listing. 1 demonstrates an example RPC
service definition using gRPC/protobuf.

Listing. 1. Example protobuf schema with service definitions.

4) APACHE THRIFT
Apache Thrift [28] is a cross-platform RPC framework that
supports several protocols and transports, e.g. binary over
TCP/IP and JSON over HTTP. Initially developed at Face-
book, it is now an open source project maintained by the
Apache Software Foundation. A variety of programming lan-
guages are supported, including C++, Java, Python, PHP,
Ruby, Erlang, Perl, Haskell, C#, Cocoa, JavaScript, Node.js,
Smalltalk, OCaml and Delphi. It is schema-based, with def-
initions and services declared in .thrift files. A analogous
example to the protobuf definition in Listing. 1 is shown in
Listing 2.

Listing. 2. Example Thrift schema.

5) JSON-RPC
JSON-RPC [29] is a stateless, light-weight RPC proto-
col. The protocol uses JSON as the data format and is
designed to be simple. JSON-RPC is only a specification
and is totally transport agnostic. An example of a JSON-RPC
call is given in Listing. 3. Here, a method called sayHello is
given a single parameter ‘‘World!’’. The result sent back to the
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FIGURE 2. The high level software architecture of the proposed framework. The client-server
architecture relies on RPCs for communication. The Discovery Service is optional, and serves
as a centralized hub for locating available FMUs.

Listing. 3. Example JSON RPC call.

invoking part is ‘‘Hello, World!’’. In case of errors, the result
part of a response is replaced by an error object containing a
code and a explanatory message.

B. FRAMEWORK OVERVIEW
The software architecture is shown in Fig. 2 and consists of
three main parts, each of which is described in more detail
below.

1) The Discovery Service
The discovery service is a web application whose main
responsibility is to redistribute information about and the
location of available FMUs. This information can be obtained
visually through a web interface, or programmatically
through HTTP requests. The following HTTP services are
defined:

• /availablefmus: Called by user applications. Returns a
JSON formatted string containing information about all
available FMUs registered with the discovery service.
The information include data from the modelDescrip-
tion.xml as well as the IP address of the host machine
and the RPC port(s).

• /register: Called by proxy-servers on start-up. Registers
the server with this discovery service. Transmits network
information and information about the modelDescrip-
tion.xml for each locally available FMU.

• /ping: Called by a proxy-server at regular intervals. Oth-
erwise the discovery service will consider it to be offline.

The discovery service is an optional feature and is not
required when the remote end-point of an RPC service is
known to the client application, for instance when running
the server on a physically accessible machine.
Multiple discovery services may be online at any given

time. They may be public or used internally in a restricted
network.

2) PROXY-SERVERS
A proxy-server is responsible for making available one or
more FMUs over a set of RPCs. Implementations should
support Thrift and or gRPC. Additional RPCs, such as JSON-
RPC can also be supported.
In addition to the RPC support, a full implementation

must be able to communicate with the discovery service over
HTTP. Upon starting the server, the address of a discovery
service should be specified. In order to ensure that the list
of available FMUs is up to date, the server must ping the
discovery service over HTTP, signaling that it is still online.
When enough time has passed without such a notification,
the server is considered offline and is removed from the
discovery service.
The framework supports both ME and CS FMUs running

on the back-end, but the user is only provided with a CS API,
as ME models are wrapped. The user can configure which
solver will be used for wrapping the ME model, subject to
availability of certain solvers, which depends on the server
implementation.

3) PROXY-CLIENTS
A proxy-client is used to connect with the FMUs hosted
by the remote server(s), and can be implemented in a wide
variety of languages.
Using Thrift or gRPC, the process of generating the

required source-code for interacting with an remote FMU is
quite straightforward. Listing. 4 shows the command required
for generating the required sources when targeting Thrift in
JavaScript. Similarly, Listing. 5 shows how C++ sources
for gRPC are generated. The same recipes apply to targeting
other languages.
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Listing. 4. Generating JavaScript sources for interfacing with remote
FMUs using Thrift.

Listing. 5. Generating C++ sources for interfacing with remote FMUs
using gRPC.

The framework accomplishes several things, such as:
• Additional language support. FMUs can be accessed
in previously unsupported languages with low effort,
as no XML must parsed and no C-code has to be
interfaced. Depending on the RPC used, stubs are
auto-generated.

• Cross-platform access to any FMU. FMUs can be
invoked from unsupported platforms, i.e an FMU com-
piled only for Windows can be invoked from a Linux
system. Naturally, a server running on a platform sup-
ported by the FMU must be available.

• FMI compliance without FMU packaging. It allows
models to be compliant with the FMI standard with-
out actually being packaged as an FMU. From a
client’s perspective, there is no difference between
a ‘‘physically backed’’ FMU and one implemented
in-memory. All the client sees is the RPC interface
mimicking FMI.

• Relaxed run-time constraints. FMUs that require spe-
cial software and/or licenses can be invoked from
otherwise incompatible systems, granted that a server
fulfilling the needs is available.

• Re-usability. As the framework is decoupled from the
master algorithm, it can be used by any software tool
with a centralized master architecture that wants to sup-
port distributed execution of FMUs.

• Protection against malicious code. Non-source code
FMUs could possibly contain malicious software. This
framework makes it easy to place FMUs in a sand-
boxed environment and invoke them remotely and
safely.

• Multiple instances of models that cannot share pro-
cesses. Some FMUs can only be instantiated once per
process. One of the common reasons for this is the use
of global variables. Distributed access allows the master
to circumvent this restriction.

IV. IMPLEMENTATION DETAILS
This section describes some of the implementation details
related to the proposed framework. Currently, it comes
with server implementations for C++ and the JVM. Client
implementations exist for C++ and the JVM. Additionally,
proof of concept implementations for Python, JavaScript and
MATLAB exists. A web-server for keeping track of avail-
able RPC servers, known as the discovery service, is also
bundled.

A. THE DISCOVERY SERVICE
The discovery service is implemented in Kotlin, a statically
typed language 100% interoperable with Java. The front-
end offers basic functionality such as the ability for users to
download available RPC schemas and to view information
about available FMUs in a structured way. The user interface
is somewhat crude but serves its purpose.

B. PROXY-SERVER
Two server implementations have been realized, each
described more in detail below. Which one to deploy in
production depends on factors like:

1) Which RPC to use.
2) Memory footprint and performance.
3) Maturity and stability of the implementation.
4) The quality of the available solvers for wrapping ME

models.
No one implementation will excel at everything.

1) JVM
The JVM implementation is written in Kotlin and rely on
FMI4j [18], an FMI implementation for JVM languages that
supports FMI 1.0 and 2.0 for CS and ME. Out of the box,
MEmodels can be wrapped as CS ones using solvers from the
Apache Commons Math3 [30] package. Compared to other
open-source FMI implementations targeting the JVM, such
as JFMI [20] and JavaFMI [19], FMI4j is the only one to
support ME for 2.0. Furthermore, FMI4j uses the Java Native
Interface (JNI) rather than Java Native Access (JNA) for
interfacing with the native FMI functions, which significantly
improves performance. The calling overhead for a single
native call using JNA can be an order of magnitude greater
than equivalent JNI [31].

The implementation supports Thrift (TCP/IP - binary,
HTTP - JSON), gRPC (HTTP2 - protocol buffers) as well as
JSON-RPC (HTTP, TCP/IP and WebSockets), and is consid-
ered as the reference implementation.

2) C++
The C++ implementation is cross-platform and is written in
modern C++17. All dependencies are available using the
cross-platform package manager conan, making it easy to
build. Currently, Thrift (TCP/IP - binary, HTTP - JSON) and
gRPC (HTTP2 - protocol buffers) are supported RPCs.

FMI4cpp [15], an FMI 2.0 implementation for C++,
is used for interacting with FMUs. It supports both CS
and ME, where the latter can be wrapped as the former
using solvers from Boost odeint [32]. The main goal of the
FMI4cpp library is to be as easy to use and install as possi-
ble. To achieve this, it makes use of modern C++ features
and supports installation using the vcpkg and conan package
managers.

C. PROXY-CLIENTS
The framework comes bundled with client implementations
for C++, the JVM, Python and JavaScript. The two latter
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FIGURE 3. FMI4cpp and FMI4j’s slave interface could hide slaves derived
from either an in-memory implementation or an actual FMU. Slaves in
any language supported by the chosen RPC could also be implemented
directly behind the RPC layer.

are somewhat crude and ought to be considered as proof of
concept. They are, however, bundled with the source code
to showcase how easy it is to interface with the frame-
work from new languages. A MATLAB demo using JSON-
RPC over HTTP is also available. In the case of MATLAB,
it is worth noting that one of the existing Java clients can
be used.

The C++ and JVM implementations are more elaborate,
providing a unified, higher level API for its users. No matter
which RPC is used, there is no difference between a remote
and local co-simulation slave for the user. As illustrated
by Figure. 3, they all share the same interface, defined by
FMI4cpp and FMI4j for C++ and JVM implementations
respectively. Assuming a tool is using one of these FMI
implementations, support for distributed execution can be
seamlessly added with minimal changes to the existing code
base. See Listing. 6 for an example.

Listing. 6. JVM Thrift example, written in Kotlin.

After running the JavaScript code generation using the
command shown earlier in Listing. 4, the code shown in
Listing. 7 can be written. Here, Thrift is configured to use
HTTP transport and JSON encoding. Subsequently an FMU
slave is instantiated on the remote server and stepped for 1s
until termination. The process is similar for the 14+ other
languages supported by Thrift, as well as gRPC and its many
supported languages.

Listing. 7. Invoking an FMU from JavaScript using Thrift over HTTP.

V. CASE STUDY AND DISCUSSION
The following presents a case study to illustrate the per-
formance of the various RPCs when running a somewhat
representative selection of FMUs using different network
topologies. These are:

1) Client and server running on localhost.
2) Client and server running on separate computers con-

nected directly by Ethernet.
3) Client and server running on separate computers con-

nected by Ethernet through a switch.

The different topologies are illustrated in Fig. 4.
The setup was as follows. A laptop running Ubuntu

18.04 and a desktop computer running Windows 10 was
utilized. Both are 64-bit systems. The laptop is fitted with
an Intel i7-6600U with four logical cores, while the desktop
is equipped with an Intel core i7-4770 with eight logical
cores. As the desktop is the most powerful of the two, it was
selected as the server. The switch used during the experiment
was a ZyXEL GS-1055 v2 Gigabit Ethernet Switch. The
JVM implementation of the proposed framework were used
by both the client and server. While a C++ version is also
available, there are two main reason for running the JVM

FIGURE 4. The different network topologies used in the case study.
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TABLE 3. Performance of running the 33 FMUs listed in Table. 4 on the JVM. FMI4j is used to run the API version, which serves as a baseline. The
execution time required to step the FMUs using the Thrift and gRPC RPCs over the different communication mediums are shown as a multitude of this.

implementation on both client and server. First, the JVM
version is more mature and second, using a JVM language
like Kotlin to set up the test case was deemed easier.

In order for an exporting tool to prove compliance with
the FMI standard it must upload a number of FMUs to the
FMI cross-check [33] repository. As these FMUs are publicly
available and represent a wide variety of models, they are
suited for testing in this experiment.

In this case-study, 33 of the 133 FMUs compatible with
64-bit Windows at the time of the test were selected. The
requirements for selection were as follows.

1) A non-zero step-size must be defined.
2) In order to run on the test system, the FMUmust require

neither an execution tool nor a license.
3) In order not to skew the tests, the step-size must be

greater or equal than 0.0001 with a stop time less than
20 seconds.

4) The FMUs must not write files to the current directory,
as this proved to cause run-time issues in parallel and/or
subsequent runs.

Some vendors provide many similar FMUs, exported only
with different versions of the software. In order to keep a
more well-balanced set of FMUs, exported FMUs from no
more than two versions from the same vendor were included.
All FMUs that were included in the experiment are listed
in Table. 4.

The experiment was conducted as follows. For each con-
figuration, all 33 FMUs were first run sequentially, then
in parallel. Table. 4 also shows how long it took to step
each FMU using the specified step-size and stop time when
invoking the FMU directly using FMI4j (in-memory), as well
as through the framework using Thrift and gRPC. Not sur-
prisingly, calling the FMI API directly is much faster than
distributed invocation. As would be expected, we observe that
running both client and server on localhost is faster than a
point-to-point Ethernet connection between two computers,
which again is generally faster than having to go through a
network switch.

A more compact representation of the results are shown
in Table. 3, which also features results from simulating the
FMUs in parallel. Figure. 5 presents the data shown in this
table as well. From the results, it is clear that, at least on
the JVM and for this particular set of FMUs, Thrift is a
considerably faster than gRPC. However, even when running
the client and server on the samemachine Thrift is about 9.5x
slower on average than in-memory API calls.

Running in parallel provides quite a significant perfor-
mance gain, moving from a ∼ 9.5× to a ∼ 3.6× performance

FIGURE 5. Bar plot of the results shown in Table. 3.

loss compared to local API calls. By parallelizing the test
case onto a computer cluster with the same per-FMU com-
putational power as the desktop used in this particular test,
one could in theory achieve similar or even better results
than running in-memory. It took 87.5s to run the Thrift
case sequentially using a network switch. Using a computer
cluster, one could distribute each FMU onto a computation
node. Theoretically, this should yield a total computation time
of 87.5s/33 = 2.65s, which in this case is comparable to
running non-distributed.

Although distributed co-simulation in general comes with
a significant performance overhead, it’s worth remembering
that this approach is required to accommodate certain use-
cases, such as overcoming license and software requirements,
access from unsupported platforms or languages and safe
invocation of an FMU by running it in a sand-boxed environ-
ment. And as pointed out above, in cases were performance is
crucial, the FMUs can be distributed to several computational
nodes and stepped in parallel, provided the models involved
allows the simulation to be parallelized.

Also worth noting is how FMUs that are computational
heavy, such as the 20Sim TorsionBar were only marginally
slower to run distributed. This makes such FMUs prime can-
didates for distribution. With a more powerful host system,
the overall performance would actually increase compared
to local execution. For FMUs that require low step-sizes
the results tell another story though. In such cases, such as
for the SimulationX DoublePendelum model, where 30000
invocations is required to simulate 3s, the overhead of a
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TABLE 4. Overview of FMUs and settings used for the experiment, as well as performance results.
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network call becomes painfully obvious. Compare this to
the 20Sim model, which only requires 126 invocations to
simulate 12.56s. As a result, distributed execution of models
that require low time-steps should ideally be avoided when
performance is important.

VI. CONCLUSION AND FUTURE WORK
This paper has presented a language- and platform- indepen-
dent co-simulation framework based on the FunctionalMock-
up Interface.

It has been designed to easily allow distributed execution
of FMI compatible models such as FMUs. The client server
architecture allows FMUs to be invoked from previously
unsupported languages and on incompatible platforms. It also
makes it possible to shield the user from malicious code,
while still being able to integrate models on a local machine.
Since the framework is independent of the master algorithm,
it can be re-used in different software projects.

Some of the highlighted features of the presented frame-
work are:

• Brings FMI capabilities to previously unsupported lan-
guages and otherwise incompatible platforms.

• By implementing the RPC functions directly, FMI com-
pliant models can be implemented without having to
package them as FMUs.

• Allows code re-use between projects that requires dis-
tributed execution of FMUs, independent of implemen-
tation language.

• By hosting their own FMUs, companies may share their
models without worrying about leaking IP.

• A unified slave interface for C++ and JVM users.
On these platforms, local and remote slaves imple-
ment the same interface. This makes it trivial to switch
between local and remote execution of a particular FMU.

The results provided in Section V clearly show that there
is some considerable performance overhead related to dis-
tributed co-simulation. However, parallelizing the work make
it possible to minimize this overhead. In any case, one should
not decide to run distributed co-simulations for its own sake.
Running the scenario locally, using regular API calls, should
be the preferred approach. This framework provides an alter-
native when that’s not feasible.

Server implementations exist for C++ and the JVM, while
client implementations exist for JavaScript, Python, C++
and the JVM. Due to the language independent nature of
the RPC frameworks and protocols used, and especially
the code-generation feature of selected RPC frameworks,
additional client implementations require little effort. For
instance, FMU-proxy was recently integrated into one of the
deliverables of the Open Simulation Platform, a joint industry
project initiated by DNV GL, Kongsberg maritime, SINTEF
Ocean andNTNU [34]. Using the Thrift RPC, integrationwas
easily and quickly realized by taking the generated RPC code
from the Thrift compiler and writing a thin wrapper, stitching
the two APIs together. Furthermore, this integration supports
the up-and-coming SSP standard [35].

Several enhancements to the framework are planned for the
future, including:

• Authentication. Some form of authentication should be
added, restricting who may interact with a particular
proxy-server and or discovery service.

• Wrap client as FMU. It would be beneficial to be able to
wrap one of the available clients as an FMU. This would
allow FMI compliant tools to benefit from distributed
simulation with zero modifications.

• FMI 3.0 support. Support for the next version of the
standard will be added.

Additionally, the framework should be more thoroughly
documented and continuously maintained.

Pre-built server executables for Linux and Windows
can be found at https://github.com/NTNU-IHB/FMU-proxy.
Client libraries for Java are available through maven at
https://jitpack.io/#NTNU-IHB/FMU-proxy, while C++ arti-
facts are available as conan recipes. There are no immediate
plans to publish the Python and JavaScript clients through any
type of package managers. However, they are easily obtained
from the publicly available source repository.
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ABSTRACT

This paper introduces PythonFMU, an easy to
use framework for exporting Python 3.x code as co-
simulation compatible models compliant with version
2.0 of the Functional Mock-up Interface (FMI). The
framework consists of a set of helper classes and
a command line utility for transforming compliant
python source into ready to use cross-platform FMUs.
PythonFMU seamlessly takes care of a number of low-
level FMI functions such as getting and setting variable
values, and state handling, including serialization and
deserialization. Furthermore it provides pre-built bi-
naries for Windows and Linux 64-bits, generates the
required modelDescription.xml containing meta-data
about the model and packages all related files into a
Functional Mock-up Unit (FMU) - ready to be im-
ported into any FMI compatible simulation tool. The
framework can be effortlessly installed using de-facto
standard Python package managers pip and conda.
While PythonFMU is more geared towards ease of use
and enabling Python driven co-simulation models, it
is shown to have adequate performance compared to
much more low-level alternatives targeting other pro-
gramming languages.

INTRODUCTION

The Functional Mock-up Interface (FMI) [Blochwitz
et al., 2012] is a tool independent standard managed
by the Modelica Association that supports both Model
Exchange (ME) and Co-Simulation (CS) of dynamic
models. A key goal of FMI is to improve the exchange
of simulation models between suppliers and original
equipment manufacturers (OEMs). The current ma-
jor version of the standard is 2.0, which was released in
2014. A minor revision, 2.0.1, was released in 2019.
An FMU is a model that implements the FMI stan-

dard and is distributed as a zip-file with the extension
.fmu. This archive contains:
• An XML-file that contains meta-data about the
model, named modelDescription.xml.

*Corresponding author. E-mail: laht@ntnu.no

• C-code implementing a set of functions defined by
the FMI standard.
• Other optional resources required by the model im-
plementation.
The FMI standard consists of two main parts, both

of which a single FMU may support:
• FMI for ME: Models are exported without solvers
and are described by differential, algebraic, and discrete
equations with time-, state-, and step-events.
• FMI for CS: Models are exported with a solver, and
data is exchanged between subsystems at discrete com-
munication points. In the time between two communi-
cation points, the subsystems are solved independently
from each other.
The work presented in this paper, however, is only

concerned about the co-simulation part of the standard.
Many tools support importing co-simulation FMUs,

however, fewer tools supports exporting such FMUs.
Many of whom are commercial and or domain specific.
Furthermore, FMUs generated with these tools may
not support the optional parts of the standard such
as state handling, which are required by some more
advanced co-simulation algorithms in order to achieve
better numerical accuracy and stability during simula-
tions[Broman et al., 2013, Cremona et al., 2016, Tavella
et al., 2016].

Fig. 1: Possible use of PythonFMU in realizing complex
cyber-physical systems using FMI based co-simulation.

Python [Van Rossum et al., 2007] is one of the most
popular programming language today [O’Grady, 2020].
The major reasons for that are the ease of learning the
language, the huge spectra of libraries covering fields
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such as video game, machine learning, web server or
scientific computing and the recent explosion of data
science in which Python plays a central role. Of partic-
ular importance for scientific computing is the creation
of the Numpy [Oliphant, 2007] library that bridge the
gap between efficient code in C or Fortran languages
and the ease of a scripting language. That library is
now at the heart of all major scientific Python libraries
from Pandas for data analysis to Scipy for classical alge-
bra operators or Scikit-learn for machine learning anal-
ysis.

This paper introduces PythonFMU, an easy to use
Python based framework that allows plain Python code
to be exported as FMI compatible co-simulation FMUs.
Figure. 1 shows how PythonFMU could potentially be
used to implement complex cyber-physical systems that
are aggregates of models from different simulation do-
mains.

The paper is organized as follows. Firstly some re-
lated works are given. After which PythonFMU is in-
troduced. Then some benchmark results are presented.
Finally some concluding remarks and notes on future
works are provided.

RELATED WORK

A number of open-source software frameworks for ex-
porting FMUs from source-code have been developed in
the recent years. While many more tools are capable of
exporting FMUs like 20Sim, OpenModelica, MATLAB
and SimulationX, this paper is more focused on frame-
works that allows the generation of FMUs from plain
source-code. Each of these are described in more detail
below.

CPPFMU [SINTEF Ocean, 2017] is a set of inter-
faces and helper functions for writing FMI-compliant
model/slave code in C++ using high-level features
such as exceptions and automatic memory manage-
ment, rather than having to implement the low-level C
functions specified by FMI. However, while CPPFMU
makes implementing and compiling the shared library
required by an FMU, it does not handle generating
the modelDescription.xml nor packaging of the FMU.
CPPFMU was developed as part of the R&D project
Virtual Prototyping of Maritime Systems and Opera-
tions (ViProMa) Hassani et al. [2016], and is currently
maintained by SINTEF Ocean.

FMUSDK [QTronic, 2017] is a free, BSD licensed,
software development kit (SDK) provided by QTronic
to demonstrate basic use of FMUs for ME and for CS
as defined by FMI version 1.0 and 2.0. The software is
written in C++, but models are to be implemented in
C. The first version of FMU SDK was released already
in 2010, with the latest version, 2.0.6, being released in
2018.

Like CPPFMU, FMUSDK does not auto-generate
the modelDescription.xml. The main difference be-
tween these tools is that CPPFMU provides a more
high level and structured API in C++, whereas
FMUSDK requires source-code to be written in quite
low-level C. On the other hand, FMUSDK supports

ME and provides utilities for packaging the model as
an FMU, whereas CPPFMU only provides helper func-
tions to aid in development.

JavaFMI [Galtier et al., 2017] is a set of compo-
nents for working with the FMI standard using Java,
developed by SIANI institute (Las Palmas University)
and funded by the European Institute for Energy Re-
search (EIFER). It support both import and export
of FMUs. For export, it support FMI 2.0 for Co-
simulation. Generated FMUs runs both on Linux and
Windows. JavaFMI has been actively maintained since
its inception in 2013 and is licensed under the LGPLv3.

FMI4j [Hatledal et al., 2018] is a MIT licensed soft-
ware package for dealing with Functional Mock-up
Units (FMUs) on the JVM. It support both import
and export of FMUs. For export, it support FMI 2.0
for Co-simulation. FMI4j is written in Kotlin, which
is 100% interoperable with Java. On the native side,
FMI4j makes use of CPPFMU to implement the FMI
functions. FMUs generated using FMI4j can run on
both Linux and Windows.

While both JavaFMI and FMI4j allows FMUs to be
created using the Java language, they differ quite a
bit in their implementation and usage. JavaFMI uses
message-passing to bridge Java and the underlying C
functions defined by FMI, while FMI4j relies on the
Java Native Interface (JNI) for this. Consequentially,
FMI4j generates much faster executables. Another key
difference is how users define their model. JavaFMI is
imperative, e.g meta-data is defined using API func-
tions. FMI4j on the other hand is declarative, with
meta-data defined using annotations.

Evidently, some open-source software for generating
FMUs from source code already exists. See Table. I
for a summary. However, only the ones targeting the
JVM can be said to be easy to use as these manages
everything related to the creation of an FMU. Still, the
JVM may not be a natural choice for many for imple-
menting models and the barrier for using these tools are
high for non Java developers. CPPFMU and FMUSDK
both eases the process within the realm of C/C++, but
still requires significant know-how in order to produce a
ready to use FMU. Furthermore, these tools only covers
a small subset of available programming languages.

TABLE I: Open-source framework for exporting source-
code as FMUs.

Tool
Target

language
Target

platform
FMI

version
JavaFMI JVM Win, Linux 2.0
FMI4j JVM Win, Linux 2.0

CPPFMU C++ Wina, Linuxa 1.0 & 2.0

FMUSDK C
Wina, Linuxa,

OSXa 1.0 & 2.0

a Binaries are only built for the current platform.



PYTHONFMU

PythonFMU is a MIT licensed framework that en-
ables the packaging of Python 3.x code as co-simulation
FMUs, currently maintained in collaboration between
NTNU and Safran Tech. The library required by users
to implement their own FMI co-simulation slaves as
well as the Command Line Interface (CLI) required
to build the actual FMU is easily retrieved using ei-
ther the pip or conda package managers. Unlike some
FMU exporters, FMUs built with PythonFMU runs
out of the box on both Windows and Linux 64-bit sys-
tems. PythonFMU has been implemented using the
limited Python API, which makes it compatible with
any Python 3.x version. However, PythonFMU does
not bundle a Python distribution, which means that a
compatible Python distribution must be present on the
target system for the FMU to work. The same is true
for any imported 3rd party libraries. Consequentially,
if the slave makes use of e.g. the numpy package for sci-
entific computing, this library must already be present
on the target system. To remedy this, PythonFMU al-
lows users to specify any dependency it should have on
3rd party libraries. This information is bundled with
the FMU as a standard requirements.txt for use with
one of Python’s package managers. Thus allowing end-
users to easily figure out what kind of libraries that
must be installed for it to run on a particular machine.

Listing 1: Writing FMI 2.0 compatible slaves in Python
using PythonFMU.

from pythonfmu import ∗

c l a s s PythonSlave ( Fmi2Slave ) :

author = ”John Doe”
d e s c r i p t i o n = ”A simple d e s c r i p t i o n ”

de f i n i t ( s e l f , ∗∗kwargs ) :
super ( ) . i n i t (∗∗ kwargs )

s e l f . realOut = 0 .1
s e l f . r e g i s t e r v a r i a b l e ( Real (” realOut ” ,

c a u s a l i t y=Fmi2Causal ity . output ) )

de f do s tep ( current t ime , s t e p s i z e ) :
r e turn True

Listing. 1 shows the minimal required code to write
FMI 2.0 compatible co-simulation models in Python
using PythonFMU. Additional FMI functions like e.g.
setupExperiment, enterInitializationMode, exitInitial-
izationMode and terminate have default no-op im-
plementations and may be overridden on demand.
PythonFMU automatically handles getting and set-
ting variables, logging, resetting, state handling, se-
rialization and deserialization as well as generating
the required modelDescription.xml. The fact that
PythonFMU handles state handling makes it possible
to use with advanced co-simulation master algorithms
that depends on rollback capabilities, like variable step
algorithms. This is important in order to achieve nu-
merically stable and accurate simulation results. List-

ing. 2 shows how to build an FMU from Python source
that implements the PythonFMU API using the accom-
panying CLI. Additional options may be specified, such
as documentation and associated project files. The
FMU built by PythonFMU contains pre-built binaries
for Windows and Linux 64-bit. This lowers the thresh-
old for using it tremendously compared to many ex-
porting tools as a C++ compiler does not have to be
installed and the user does not have to figure out how
to cross-compile.
Like FMI4j, PythonFMU makes use of CPPFMU

for implementing the C functions required by the FMI
standard. This shows a clear utility for CPPFMU as
an enabler for higher-level applications to support the
export of FMI compatible co-simulation models.

Listing 2: Building an FMU from Python source using
the PythonFMU CLI.

pythonfmu−bu i l d e r −f PythonSlave . py

RESULTS

In the following some performance metrics for
PythonFMU is given.
Table. II show the performance of PythonFMU com-

pared to other similar tools. The FMUs used all imple-
ments the same model. The model does no computa-
tion during stepping, but defines a single real, integer,
boolean and string variable. These variables are read
by the importing tool after each iteration. 100.000 iter-
ations were run. That makes for a total of 400.000 calls
through the FMI API. The benchmark was performed
on a computer running Windows 10 fitted with an Intel
i7-8700k processor.

TABLE II: Time required to step a simple FMU with
one integer, real, string and boolean variable 100.000
times. All variables are read after each step.

Tool Version Time[s]
FMUSDK 2.0.6 4.6
CPPFMU - 4.6
FMI4j 0.30.0 6.1
JavaFMI 2.6.0 40
PythonFMU 0.6.0 7.9/7.3a

a Using lambdas for getters, as
demonstrated in Listing. 3.

From the results we can see that FMUSDK and
CPPFMU are equally fast, and as expected, faster than
both FMI4j and PythonFMU. This is natural as both of
these uses CPPFMU internally and have an additional
overhead from having to cross the native bridge using
JNI and the Python C API respectively. JavaFMI is
by far the slowest contender, due to it’s choice of us-
ing message passing over direct API calls through JNI.
Note that PythonFMU provides two results. By sup-
plying a lambda function to the optional getter and
setter parameters of PythonFMUs ScalarVariable as



demonstrated in Listing. 3, users may increase per-
formance of variable read/write. When not specifying
lambda functions for the getter and setter, PythonFMU
defaults to using the built in Python functions getattr
and setattr respectively. Furthermore, the use of lamb-
das allows non Python fields to be used as variables.

Listing 3: Supplying a lambda for increased flexibil-
ity and performance at the cost of a slight increase in
verbosity.

s e l f . r e g i s t e r v a r i a b l e ( Real (” realOut ” ,
c a u s a l i t y=Fmi2Causal ity . output
g e t t e r=lambda : s e l f . r e a l ) )

Note that the results presented here does not neces-
sarily translate to more complex models with more code
evaluation, as the presented benchmark it is mainly in-
terested in measuring the performance of raw FMI calls.
As Python is an interpreted language it is naturally
slower to run than e.g. C/C++.

CONCLUSIONS

This paper introduces PythonFMU, an easy to use
framework for exporting Python code as FMI 2.0 for co-
simulation compatible models. The framework is easy
to install and requires very little boilerplate code, allow-
ing users to focus on the problem at hand. This coupled
with the fact that Python is an easy to use scripting
language with a strong standard library and a rich set
of 3rd party libraries makes it ideal for fast prototyping.
Furthermore, the position Python has as a language for
scientific computing should make PythonFMU a nat-
ural choice for data scientists that want to take ad-
vantage of or contribute to co-simulation technology.
In fact, PythonFMU was specifically developed to al-
low data scientist with little or no background from
co-simulation or software engineering at NTNU to con-
tribute with models related to the development of dig-
ital twins, as Python and it’s strong ecosystem of li-
braries allows easy integration with e.g. models that is
connected to web services or utilizes neural networks.
While the focus of PythonFMU is ease of use and being
an enabler for Python driven co-simulation models, the
performance is shown to be quite adequate compared
to more low-level implementations.
Future works includes adding more features,

bug-fixes and improving documentation. The
source is available at https://github.com/NTNU-IHB/
PythonFMU, and users are encourage to contribute.
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Abstract

The concept of digital twins, characterized by the high fidelity with which they mimic their physical
counterpart, provide potential benefits for the next generation of advanced ships. It allows analysis of data
and monitoring of marine systems to avoid problems before they occur, and plan for the future by using
simulations. However, issues related to integration of heterogeneous systems and hardware, memory, and
CPU utilization makes implementing such a digital twin in a monolithic or centralized manner undesirable.
Co-simulation addresses this problem, allowing different sub-systems to be modelled independently, but
simulated together. This paper presents the ongoing work towards realizing a digital twin of the Gunnerus
research vessel by applying co-simulation and related standards. The paper does not present a complete,
ready-to-use digital twin. Rather it presents the preliminary results, procedure, and enabling technologies
used towards realizing one. In order to accommodate this goal, a novel co-simulation solution, developed in
cooperation by members of the Norwegian maritime industry, is presented. Furthermore, a maneuvering
case-study is carried out, utilizing pre-recorded sensor data obtained from the Gunnerus. Through a
comparative study with the real maneuver in terms of speed, course, and power consumption, the proposed
approach is verified in simulation.

Keywords: Co-simulation, Digital twin, FMI, SSP, R/V Gunnerus

1 Introduction

There is a strong demand for innovation and efficiency
within operations, life cycle services, and design of ma-
rine systems. Modern marine vessels operate increas-
ingly autonomously through strongly interacting sub-
systems. These systems are dedicated to a specific,
primary objective of the vessel or may be part of the
general essential ship operations. The sub-systems ex-
change data and make coordinated operational deci-
sions, ideally without any user interaction. The task
of designing, operating, and integrating life cycle ser-
vices for such vessels is a complex engineering task
that requires an efficient development approach, which

must consider the mutual interaction between the in-
herent multi-disciplinary on-board sub-systems. Digi-
talization thus has become a key aspect of making the
maritime industry more innovative, efficient, and fit
for future operations Sanchez-Gonzalez et al. (2019);
Sullivan et al. (2020).

A digital twin can be defined as a virtual repre-
sentation of a physical asset enabled through data
and simulators for real-time prediction, optimization,
monitoring, controlling, and improved decision mak-
ing Rasheed et al. (2020). The digital twin should be
able to take advantage of all digital information avail-
able for an asset, such as the system and data infor-
mation models, 3D models, mathematical models, de-

doi:10.4173/mic.2020.4.2 � 2020 Norwegian Society of Automatic Control
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Figure 1: A plausible development procedure of digital
twins system for marine industry.

pendability models, condition and performance indica-
tors, and data analytics.

The maritime industry will benefit from digital twin
technology Perabo et al. (2020). These proxies of the
physical world will help maritime companies in devel-
oping enhancements to existing products, operations,
and services, and can even help drive the innovation
of new businesses. Additional benefits for the mar-
itime industry as a whole is highlighted in Bekker
(2018). The eventual goal of this research is to de-
velop digital twins of maritime systems and operations,
not only allowing configuration of systems and verifi-
cation of operational performance, but also to provide
early warning, life cycle service support, and system
behaviour prediction. As illustrated in Fig. 1, the use
of co-simulation together with data related optimiza-
tion, like data purification, and machine learning meth-
ods will be seamlessly combined from the design phase
to maintenance phase to achieve heterogeneous sim-
ulation, data analytics and behavioural prediction of
maritime systems.

As stated in Schleich et al. (2017), the scientific lit-
erature has reported that challenges persist in the vi-
sion of the implementation of the digital twin, such as
insufficient synchronization between the physical and
the digital world to establish closed loops, a lack of
high-fidelity models for simulation and virtual testing
at multiple scales, lacking uncertainty quantification
for such models, difficulties related to the prediction of
complex systems, and challenges related to the gather-
ing and processing of large data sets. Overcoming these
limitations will require a sound conceptual framework
and comprehensive reference models. An open plat-
form would ensure that all companies in the surround-
ing maritime cluster could potentially benefit from and
contribute to it. The platform should allow companies
to benefit from each other’s models and data without
necessarily exposing their intellectual property Durling

et al. (2017).

In this paper we seek to promote an open-source
framework that can leverage the possibilities provided
by a digital twin in order to support ongoing work in
the Knowledge-building Project for Industry (KPN)
Digital Twins for Vessel Life Cycle Service (Twin-
Ship) 1. In order to establish such an open framework
for digital twins that enables users to easily develop, in-
tegrate, and combine their own components into a com-
plete system, e.g. for the purpose of maritime industry
design, operation, service, and maintenance, it is essen-
tial to realize effective co-simulation mechanisms and
related auxiliary tools. To support the KPN project,
DNV GL, Kongsberg Maritime (formerly Rolls-Royce
Marine), SINTEF Ocean, and NTNU initiated a Joint
Industrial Initiative (JIP) nicknamed the Open Simula-
tion Platform (OSP) Open Simulation Platform (2020)
in 2019. The purpose of the OSP is to lay the foun-
dation for an ecosystem where the maritime industry
can perform co-simulation and share simulation mod-
els in an efficient and secure way. The ultimate goal of
the OSP is to facilitate building of digital twin systems
and vessels, making it easier to solve challenges related
to designing, building, integrating, commissioning, and
operating complex integrated systems. Thus it will en-
able the realization of complex cyber-physical-systems
(CPS) like the vessel model illustrated in Figure 2,
where the complete vessel model is an aggregation of
several independent sub-models that connect through
a standardized co-simulation interface.

In this work, we make use of the NTNU owned re-
search vessel (R/V) Gunnerus, as shown in Fig. 1, as
the test-bed to demonstrate a sound conceptual frame-
work that uses co-simulation as a fundamental technol-
ogy towards realizing a digital twin for ship maneuver-
ing. The contributions of the paper include:

1. Employment of a novel co-simulation library as a
platform for digital twins.

2. Utilization of a freely available tool-box of marine
black-box models, provided by the OSP, in order
to accelerate modeling of the Gunnerus.

3. Real-life application of FMU-proxy — enabling co-
simulation of otherwise incompatible simulation
models.

4. Demonstration of the System Structure and Pa-
rameterization (SSP) standard for defining the
structure, connections, and the parameterization
of the full system to be simulated. Addition-
ally, we demonstrate that components other than

1https://org.ntnu.no/intelligentsystemslab/project/

twinship.html
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The Functional Mockup Interface (FMI)

Figure 2: The vessel model depicted in the figure is an aggregate of several different sub-components. Vessel
sub-component figures courtesy of the Virtual Prototyping of Maritime Systems and Operations project
(Research Council of Norway, grant nr. 225322).

Table 1: Open source co-simulation master tools supporting FMI.
FMI support

CS ME
Name v1.0 v2.0 v1.0 v2.0 SSP Distributed API CLI GUI Version License
Coral � � � � � 0.10.0 (Dec. 2018) MPLv2
DACCOSIM � � � 2.4.0 (Feb. 2020) AGPL
FMI Go! � � � � �a � � 0.5.0 (Nov. 2019) MIT

Maestro � � �b � 1.0.10 (Apr. 2020) GPLv3
MasterSim � � � � � 0.8.2 (Dec. 2019) LGPLv3
Ptolemy II � � � � � � 11.0.1 (Jun. 2018) MIT
FMPy � � � � �a � � � 0.2.17 (Feb. 2020) BSD
OMSimulator � � � � � � 2.0.1 (Jan. 2019) GPLv3
a Draft version
b HTTP API

Functional Mock-up Units (FMUs), such as FMU-
proxy, may be used within the context of SSP.

5. Implementation of a preliminary digital-twin
model of the Gunnerus, together with subsequent
simulation results comparing the power consump-
tion of the model and its real-life counterpart.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some related work for co-simulation
and digital twin platforms. An introduction to the
employed co-simulation framework is given in Section
3. The following section provide some implementation
notes on the work towards realizing a digital twin of the
Gunnerus. Section 5 introduces the case-study, with
results and discussions following in Section 6. Finally,
some concluding remarks are provided in Section 7.

2 Related work

This section presents an overview of co-simulation tech-
nology and related tools, as well as a brief overview of

digital twin platforms. Co-simulation as a technology
was born out of the idea that no one simulation tool is
suitable for all purposes, and complex heterogeneous
models may require components from several differ-
ent domains, perhaps developed in separate, domain-
specific tools. In a co-simulation, different sub-systems
are modeled separately and composed into a global
simulation where each model is being executed inde-
pendently, sharing information only at discrete time-
points. A comprehensive state-of-the-art survey on this
topic is given in Gomes et al. (2018). Compared to
more traditional monolithic simulations, co-simulation
encourages re-usability, model sharing, and fusion of
simulation domains. Thus it is in line with the OSP’s
vision of establishing an eco-system for model sharing
within the maritime industry.

Two noteworthy standards for co-simulation exist.
The High Level Architecture (HLA) Dahmann et al.
(1997) mainly for discrete event co-simulation and the
Functional Mock-up Interface (FMI) Blochwitz et al.
(2012) for continuous time co-simulation. This work
primarily addresses the latter, due to the high number
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of supporting tools and the ease with which models
can be created and shared. Moreover, a recent survey
showed that experts consider the FMI standard as the
most promising standard for continuous time, discrete
event and hybrid co-simulation Schweiger et al. (2019).
Some efforts have also been devoted towards combining
the two standards as demonstrated in Yilmaz et al.
(2014); Falcone and Garro (2019).

The FMI, currently at version 2.x, is a tool-
independent standard that aims to improve the ex-
change of simulation models between suppliers and
original equipment manufacturers. The standard sup-
ports both model exchange (ME) and co-simulation
(CS) of dynamic models. The key difference between
these two variants is that CS models embed a solver,
making it easier to deploy at the cost of flexibility. An
FMU is a model which implements the FMI standard.
It is distributed as a zip-file with the extension .fmu.
This archive contains:

� An XML-file that contains meta-data about the
model, named modelDescription.xml.

� C-code implementing a set of functions defined by
the FMI standard.

� Other optional resources required by the model
implementation.

Since the inception of the FMI standard, a myriad of li-
braries and software tools have been created or adapted
to support it. At the time of writing, the official FMI
web page lists over 140 tools, which clearly shows that
the standard is being adopted in force. Examples of
FMI based co-simulation applied within the maritime
domain can be found in Bulian and Cercos-Pita (2018);
Hassani et al. (2016); Chu et al. (2018, 2019). Although
this standard has reached acceptance in industry, it
provides only limited support for simulating systems
that mix continuous and discrete behavior, which are
typical for CPS Cremona et al. (2018). A future ver-
sion of the standard (FMI 3.0) will introduce clocks
for synchronization of variables changes across FMUs,
allowing co-simulation with events.

The Distributed co-simulation protocol
(DCP) Krammer et al. (2018) is a standard for
real-time and non-real-time system integration and
simulation, which the Modelica Association has
adopted as a Modelica Association Project. The
DCP is compatible with FMI, and just like FMI, it
leaves the design of the master out of scope from the
specification.

FMU-proxy Hatledal et al. (2019a,b) is an open-
source framework that enables language and plat-
form independent access to FMUs. In short, FMU-
proxy provides remote procedure call (RPC) mapping

to the FMI 2.0 for co-simulation interface. This is
achieved by wrapping one or more FMU in a server pro-
gram supporting multiple schema-based and language-
independent RPC systems over several network pro-
tocols. The use of schema-based RPCs allows users to
easily auto-generate client/server code for a wide range
of common programming languages. The framework is
independent of the master algorithm, and can therefore
be re-used in different software projects.

The System Structure and Parameterization
(SSP) Köhler et al. (2016) is a tool-independent
standard to define complete systems consisting of
one or more components (such as FMUs) including
their parameterization, which can be transferred
between simulation tools. Version 1.0 of the standard
was released in March 2019. The SSP standard is
closely aligned with the FMI standard, using the same
definition of units and variable types. While FMI is
the only model format explicitly mentioned in the
standard, a component, which is a blueprint for a
model in this context, does not necessarily need to
be an FMU. This allows other model formats to be
referenced within a SSP archive, such as FMU-proxy
or DCP.

Table. 1 provides an overview of open-source tools
that are able to orchestrate and run systems of
FMUs Gómez et al. (2019); Liu et al. (2001); Nico-
lai (2017); Lacoursière and Härdin (2017); Ochel et al.
(2019); Thule et al. (2019); Catia-Systems (2019); Sad-
jina et al. (2019). This excludes low-level libraries like
the FMI Library JModelica (2017), JavaFMI Galtier
et al. (2017), and similar, which only handle load-
ing of individual FMUs. Although a number of ex-
isting co-simulation master tools exist and usage of co-
simulation to facilitate the digital twin has been pre-
sented in, e.g., Yun et al. (2017); Jung et al. (2018);
Scheifele et al. (2019); Negri et al. (2019), the OSP
partners decided to develop their own alternative, in-
troduced in the following section, due to requirements
related to the licensing model, performance, implemen-
tation language, maritime ontology, distributed model
execution and support for key technologies like FMI
1.0 & 2.0, DCP, and SSP. None of the tools listed sup-
port DCP and only FMPy, FMIGo! and OMSimula-
tor support SSP. However, the SSP draft version used
by FMPy and FMIGo! is outdated and incompati-
ble with the 1.0 version. Due to the inner workings of
some of the models involved, not all models can co-exist
within the same process. To overcome this, distributed
model execution is required. Neither, FMPy nor OM-
Simulator supports this. In this way there is sufficient
reasoning behind developing an alternate solution that
among other things supports SSP 1.0, enables optional
distributed execution of FMUs, and which plans to sup-
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Figure 3: The OSP architecture, with the scope lib-
cosim highlighted. Figure courtesy of the
Open Simulation platform.

port the DCP standard in the future. However, a sig-
nificant reason for developing yet another co-simulation
platform is to maintain control over the software, which
allows the collaborators to decide on issues regarding
licensing, which features to support and so on.

3 Co-simulation environment

This section introduces the co-simulation environment
employed for this research, termed the OSP. The OSP
is a collection of software packages developed in col-
laboration by DNV-GL, SINTEF Ocean, Kongsberg
Maritime, and NTNU to facilitate co-simulations and
building of digital twin systems and vessels. One of
the fundamental deliverables of the OSP is a software
library for orchestrating and performing co-simulation
named libcosim, which is described further below.

3.1 libcosim

libcosim is a cross-platform C/C++ library enabling
co-simulations to be orchestrated and run. The scope
of libcosim within the context of the overall vision of
the OSP is illustrated by the framed region in Fig. 3.
The OSP will create the foundation for an ecosystem
where the maritime industry can perform co-simulation
and share simulation models in an efficient and secure
way to facilitate building of digital twin systems and
vessels. libcosim is the cornerstone of the system, en-
abling users to easily integrate and combine their own
components into a complete system, e.g. for the pur-
pose of maritime industry design, operation, service,
and maintenance. The co-simulation interface is based
on the FMI, with both FMI 1.0 and 2.0 for CS be-
ing supported. ME models are not directly supported,
however such models may be converted to CS using
some appropriate stand-alone tool. Additionally, dis-
tributed execution of FMUs is supported through inte-
gration with FMU-proxy. Support for the DCP is also

planned, which will enable hard real-time integration
of hardware devices.

The libcosim is written in modern C++, making
heavy use of features found in C++11 and above. In or-
der to more easily support integration with other tools,
a separate C library is maintained that provides access
to most of the functions found in the C++ library.
The library is loosely based on Coral with some ele-
ments added from CyberSea developed by DNV-GL.
Both of whom were developed by collaborating part-
ners. Compared to similar co-simulation libraries and
frameworks, libcosim is mostly concerned with estab-
lishing a solid API that can be embedded in higher-
level applications developed by end-users. For conve-
nience, a CLI, which makes the software accessible to
non-developers and that simplifies the realization of a
number of use-cases, has been developed.

Some of the features of libcosim are:

Integration with Conan dependency manager—
making building and distributing the software eas-
ier.

A separate C-API for easier integration with other
applications.

Support for both version 1.0 & 2.0 of the FMI
standard for CS.

Basic support for version 1.0 of the SSP standard,
which allows complete simulation systems to be
represented in a standardized way.

Bulk read/write and caching of variable data for
efficient access.

FMU-proxy integration, enabling (optional) dis-
tributed execution of FMUs. This in turn enables
models to be run regardless of platform, license
and software dependencies.

An extensible design, where master algorithms,
slaves, observers, and manipulators are pluggable–
allowing library users more control over the simu-
lation.

The ability to specify events, inline or through
configurations files, to occur at specified trigger
points, through so-called scenarios.

The design of libcosim is centralized, with all data
flowing through the master. This makes for a less com-
plicated, easier to maintain, easier to debug, and more
flexible design compared to similar co-simulation en-
gines such as Coral, where data flows directly between
slaves. For instance, entities that want to observe or
manipulate the simulation can do so directly as all data
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Listing 1: Specifying FMU-proxy sources using libcosim & SSP. Components can be loaded from either an URL,
the file system, or using the guide of an already-loaded FMU.

<ssd:Component name=”model1” source=”fmu−proxy: // l o c a l h o s t : 9 0 9 0 ? f i l e=Component . fmu”>
<ssd:Component name=”model2” source=”fmu−proxy: // l o c a l h o s t : 9 0 9 0 ? guid=85bb6608−13d0−46b8−9b8e”>
<ssd:Component name=”model3” source=”fmu−proxy: // l o c a l h o s t : 9 0 9 0 ? u r l=ht tp : // example . com/Component . fmu”>

is obtainable from a single source. Pure distributed co-
simulation masters such as Coral and FMI Go! dictate
that all slaves are to be run distributed, whereas lib-
cosim makes this entirely optional. Support for this is
currently implemented through integration with FMU-
proxy, which communicates with remote FMUs us-
ing Thrift over TCP/IP. Listing. 1 shows how FMU-
proxy components are configured using SSP. A plug-in
based system is used to resolve component URIs, al-
lowing custom component sources like FMU-proxy to
be added with ease. The support for SSP is not fea-
ture complete, but includes the ability to apply linear
transformations to connections and multiple parameter
sets, both defined inline and as external files.

A crucial part of any co-simulation tool is the avail-
able master algorithms. Currently, the library only
ships with a single algorithm. A fixed-step algorithm
that supports individual FMUs to run at separate step-
sizes. However, the API facilitates the creation of addi-
tional master algorithms, and as time passes, hopefully
more algorithms will be added.

C++ can be a challenging language to learn. Espe-
cially compared to higher-level languages like Python
or Java. For instance Java has fewer features to learn,
is garbage-collected and comes with a richer stan-
dard library. Additionally, the tooling, in the form
of integrated development environments (IDEs), build
systems, and package managers, is state-of-the-art.
Therefore, and in order to aid developers that would
rater develop in Java, NTNU has developed cosim4j,
a Java wrapper for libcosim introduced in more detail
below.

3.2 cosim4j

cosim4j is a Java wrapper for libcosim. The goal
of the Java API is to be generally easier to use
and provide more high-level features than its na-
tive counterpart. It uses the Java Native Inter-
face to efficiently interact with the native library.
To make the library accessible, it is made avail-
able as a Maven artifact at https://bintray.com/

open-simulation-platform/maven/cosim4j. Fur-
thermore, the artifact include pre-built native binaries
for Linux and Windows, which means that no prior
installation of libcosim is required.
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Figure 4: Proposed structure for digital twin imple-
mentation.

4 Implementation

Inspired by the overall vision of the OSP in Fig.3, a
plausible digital twin framework based on libcosim is
proposed, as shown in Fig. 4. In the following, im-
plementation details for the proposed framework are
provided.

The workflow used towards realizing a digital twin
model of the Gunnerus, or digital twins in general, is
as follows.

1. Establish the purpose of the model. What should
it communicate?

2. Any existing models related to the vessel are col-
lected.

3. Any missing pieces of the puzzle are mapped
and consequently implemented using the appro-
priate software, e.g. FMI4j, PythonFMU or some
domain-specific tool, and exported as FMUs.

4. Define the structure of the simulation using the
standardized SSP format.

5. Run the simulation using an appropriate tool.

Currently, cosim4j is used to run the simulation.
The configuration of the system to be simulated is done
using SSP. Much as FMI allows us to decouple from the
modeling tools, SSP allows us to decouple from the
co-simulation master. However, as some of the models
currently in use by the digital twin dictate that the full
simulation may not run within a single process, the SSP
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implementation should support components that can
run in separate processes such as FMU-proxy or DCP.
An alternative approach to solve this issue, is to run all
models in a distributed fashion like e.g. FMIGo! does.
However, selective distributed execution, as found in
the proposed implementation, has some benefits like
easier debugging and less communication overhead in
the general case.

As it stands, a complete public overview of avail-
able tools that supports SSP is lacking, and imple-
mentations, as they become available, will most likely
only support FMUs loaded from the file-system—the
basic requirement of such an implementation. Using
SSP, the structure of a simulation is defined in an
XML configuration file. At least one configuration file
named SystemStructure.ssd must be present. How-
ever, additional configurations may optionally be de-
fined, allowing a single SSP archive to contain multiple
simulation configurations. Simply explained, an .ssd
defines which models make up a simulation (compo-
nents), which variables are exposed (connectors), how
they are connected (connections), and how they are pa-
rameterized (parameter-sets). Annotations are used to
define tool-specific features. The .ssd files are packed,
together with any resources required, like FMUs, in a
zip archive with an .ssp extension. While SSP makes
it easier to configure systems that can be simulated
in a standardized way, it may still be challenging to
manually create valid SSP archives due to the shear
amount of XML that might have to be written and the
packaging of files that goes into the archive. To ease
this process, NTNU has developed SSPgen Hatledal
(2020)—a domain specific language for generating self
validating SSP archives. Aside from getting the SSP
archive validated prior to simulation, SSPgen drasti-
cally reduces the amount of code required.

Also embedded in the workflow for realizing the dig-
italization of the Gunnerus is the use of a set of in-
house developed open-source tools for creating FMI
2.0-compatible models in Java (FMI4j) and Python
(PythonFMU). Their ease of use makes them ideal
for rapid prototyping. FMI4j is an open-source cross-
platform Java framework for importing and exporting
FMUs. Initially created with FMI import in mind, it
has been updated to enable Java code to be exported
as FMUs in order to support the work addressed in
this paper. Compared to the similar JavaFMI package,
FMI4j relies on the Java Native Interface rather than a
message passing system making it significantly faster.
A Gradle plugin and an easy-to-use CLI that exports
conforming Java code as cross-platform FMUs is pro-
vided. Listing. 2 shows the minimal required code to
write FMI 2.0 compatible models in Java using FMI4j.
PythonFMU Hatledal et al. (2020) is a lightweight,

open-source, and cross-platform Python 3.x framework
for building FMUs readily available through the pip
package manager. It has been specifically designed to
enable data scientists in the team to contribute with
models as the work progresses. Listing. 3 shows the
minimal required code to write FMI 2.0 compatible
models in Python using PythonFMU.

Listing 2: Writing slaves in Java using FMI4j.

pub l i c c l a s s JavaSlave extends Fmi2Slave {

@ScalarVar iable ( c a u s a l i t y=output )
p r i va t e double realOut ;

pub l i c JavaSlave (Map<Str ing , Object> args ) {
super ( args ) ;

}

@Override
pub l i c void doStep ( double t , double dt ) {

realOut = . . .
}

}

Listing 3: Writing slaves in Python using PythonFMU.

c l a s s PythonSlave ( Fmi2Slave ) :

de f i n i t ( s e l f , ��kwargs ) :
super ( ) . i n i t (�� kwargs )

s e l f . realOut = 0 .0
s e l f . r e g i s t e r v a r i a b l e ( Real ( ” realOut ” ,

c au s a l i t y=output ) )

de f do s tep ( s e l f , t , dt ) :
s e l f . realOut = . . .
r e turn True

When designing co-simulations, there might be is-
sues related to causality when two models, which the-
oretically would be a good match for coupling, have
inputs and outputs flowing in the wrong direction com-
pared to each other. Thus, declaring causalities when
writing models like shown in Listing. 2 and 3 must be
done with great care and in collaboration with other
model developers.

5 Case study

Here, the configuration of a case study utilizing the
Gunnerus is presented. Its purpose is to test possible
applications of digital twin for ship maneuvering and
on-board decision support.

The Gunnerus, as seen in Fig. 5, is equipped with
the latest technology for a variety of research activ-
ities within biology, technology, geology, archaeology,
oceanography, and fisheries research. In addition to
research, the ship is used for educational purposes and
is an important platform for marine courses at all lev-
els and disciplines. Some main dimensions of the vessel
are given in Table 2.
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Figure 5: Starboard view of the R/V Gunnerus.

Table 2: Main dimensions of the Gunnerus.

Parameter Value
Length overall (Loa) 36.25 m
Length between pp (Lpp) 33.90 m
Waterline length (Lwl) 29.90 m
Breadth middle (Bm) 9.60 m
Breadth extreme (B) 9.90 m
Depth mld. Main deck (Dm) 4.20 m
Draught, mld (dm) 2.70 m
Deadweight 165 t

In this preliminary work, pre-recorded data from the
Gunnerus in the form of comma-separated values files
are used, as neither the infrastructure for establishing a
live link to the vessel nor the means to access recorded
data from the cloud are ready. The pre-recorded data
from the Gunnerus is wrapped in an FMU, hiding this
particular implementation detail and making it possi-
ble to add a cloud-connected drop-in-replacement in
the future. For this, the plan is to leverage the Cog-
nite2 cloud platform for data cleaning, analytics, and
contextualisation.

One of the deliverables of the OSP is a set of free-of-
charge reference models, including models of the most
common marine systems and ship dynamics compo-
nents. The case-study makes use of a number of these
models to realize the digital twin. The point of this
case study is not to go into detail about how these
models are implemented, which in general are black-
boxes that could hide proprietary information. Rather,
the point is to showcase how co-simulation technology,
open-source software, open standards and a library of
readily available marine models can be used to develop
a digital twin scenario.

The following list briefly describes each of the FMUs
used to create the digital Gunnerus.

2https://www.cognite.com/

VesselModel

Azimuth0 Azimuth1

ThrusterDrive0 ThrusterDrive1

PowerPlant

Gunnerus

HeadingController

SpeedController

VesselModel
Observer

Figure 6: Diagram showing the logical relationship of
the involved components.

1. Gunnerus - This model contains previously
recorded sensor data measured during operation
of the Gunnerus. The time-series data is sampled
at 1Hz and includes information such as:

� Heading angle and percent-wise commanded
RPM of the tunnel-thruster in the bow as
well as the two azimuth thrusters in the aft.

� Longitude and latitude.

� Surge, sway, and heave.

� Yaw, pitch, and roll.

� Wind direction and speed.

� Positional and rotational velocities.

The FMU implements linear interpolation of the
recorded data, which is convenient given the low
sample rate of the sensor data relative to the
simulation, which runs at 20 Hz. In this work,
the model acts as a stand-in for what eventually
should become a stream of data originating from
the real asset.

2. VesselModel - This model computes the vessel
hydrodynamics such as the radiation forces, mass,
and restoring forces as well as manoeuvring forces
(resistance and cross flow drag as well as semi-
empirical corrections). The equations of motions
are solved by this model, summing up all the ex-
ternal forces acting on the vessel. SINTEF Ocean
originally implemented the VesselModel to model
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Table 3: FMUs involved in the case study.

Component Tool Vendor FMI version
canBeInstantiated-

OnlyOncePerProcess
HeadingController FMI4j NTNU 2.0 False
SpeedController FMI4j NTNU 2.0 False
Gunnerus FMI4j NTNU 2.0 False
VesselModelObserver FMI4j NTNU 2.0 False
ThrusterDrivea 20sim SINTEF Ocean 1.0 True
PowerPlanta 20sim SINTEF Ocean 1.0 True

VesselModela VeSim SINTEF Ocean 1.0 Trueb

PMAzimutha VeSim Kongsberg Maritime 1.0 Trueb

a OSP reference model.
b Additionally, only one instance of any model generated by this tool may be instantiated within the
same process.

the Gunnerus as part of the SimVal Hassani et al.
(2015) project. It was later updated to better ap-
proximate an elongated Gunnerus vessel as part of
the MAROFF KPN: Digital Twins for Vessel Life
Cycle Service (TwinShip). While the model was
validated during the SimVal project, it has yet to
be validated against the elongated version of the
vessel.

3. VesselModelObserver - A simple model that
computes the direction of travel and speed over
ground of the VesselModel based on its current
and previous position.

4. SpeedController - A general-purpose
proportional-integral-derivative (PID) con-
troller. It is used to regulate the force required
by the ThrusterDrives so that the speed of the
VesselModel and the Gunnerus are aligned.

5. HeadingController - A special-purpose PID
controller where the input data used to compute
the controller error is treated as angles in the range
[−180�, 180�]. This unwinds any input angles that
lie outside of the specified range.

6. PMAzimuth - The hydrodynamic model of the
azimuth thrusters without actuator/motor, im-
plemented by Kongsberg Maritime using VeSim
as part of the ViProMa project. Given a cer-
tain RPM command (issued by the ThrusterDrive
FMU), location on the hull, azimuth angle, vessel
speed, and the loss factor, the model will output
the 3DOF (surge, sway, heave) force generated.

7. ThrusterDrive - A drive that converts force
commands from the SpeedController into RPMs
for the PMAzimuth.

8. PowerPlant - A marine power plant with two
equally large gensets, including auxiliary load and
circuit breakers.

Fig. 6 shows the logical relationship of the different
FMUs, with additional information about the FMUs
being provided in Table 3. As illustrated by Fig. 7, the
system is far from trivial with a total of 48 variable
connections between the models involved. Note that,
instances of the ThrusterDrive and PowerPlant mod-
els generated by 20Sim, using an early version of their
FMI exporter, cannot co-exist within the same pro-
cess. This is also true for VeSim Fathi (2013) generated
FMUs like the VesselModel and PMAzimuth. More-
over, these models cannot co-exist within the same pro-
cess as any other models generated by this tool due to
shared library symbol conflicts. To overcome this chal-
lenge, execution of the various model instances that
cannot co-exist within the same process are split across
multiple processes. This is easily solvable using FMU-
proxy. Running two instances of FMU-proxy provides
two additional processes, which is sufficient for this sce-
nario to run. The distribution of FMUs across the
available processes can be seen in Table 4.

To realize the simulation, cosim4j is used. The case
study presented in this paper is challenging to execute
due to the fact that some of the FMUs cannot co-exist
within the same process. This makes it impossible to
run in non-distributed co-simulation software. This

Table 4: Distribution of FMUs across processes.

Process FMUs

libcosim
PowerPlant, Gunnerus,
VesselModel, VesselModelObserver,
SppedController, HeadingController

fmu-proxy1 PMAzimuth, ThrusterDrive

fmu-proxy2 PMAzimuth, ThrusterDrive
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Figure 7: FMU connection graph.

challenge can be solved by means of FMU-proxy, which
allows FMUs to be selectively chosen for distributed
execution. This enables other parts of the simulation
to run within the main application process, which pro-
vides the benefit of faster execution times and easier
debugging. As noted, when taking the requirements
for distributed model execution and the use of SSP 1.0
for creating a standardized system representation, lib-
cosim is currently the only library that is applicable of
the libraries presented in Section 2.

The idea of the case study is to compare the power
consumption of the real vessel and the preliminary dig-
ital twin, using data collected from the Gunnerus while
performing experiments in the open sea near the city of
Trondheim. This is done by feeding the speed and true
heading of the real vessel into a set of controllers used
to regulate the motion of the twin. To simplify the case
study, the equipped thunnel-thruster is not utilized and
the command signals to both azimuth thrusters in the
aft are equal. Ideally, the power consumption should
be comparable, which would indicate a good model fit.
However, environmental effects such as current, which
are very difficult to measure, could introduce discrep-
ancies between the real and simulated vessel. Yet, the
Gunnerus is able to measure and record both wind di-
rection and speed, which are being fed into the model.
These measurements are illustrated in Fig. 8. The case
study can be run both with and without 3D visualisa-

tion enabled. When it is enabled, the simulation is
interactive and can be paused/resumed and real-time
simulation can be toggled on/off. With real-time on,
the execution will try to run in real-time. When suc-
cessful, the real-time-index (RTI) of the simulation will
stay close to 1.0. The other option is to run the sim-
ulation as fast as possible. In this preliminary work,
it is not necessary to run in real-time as pre-recorded
data is used. The case study runs with an RTI of about
30 using a 7th generation Intel i7-8700 CPU on Win-
dows 10. This means that the current models should
not be a potential bottleneck once online data becomes
available.

6 Results and Discussion

In the following, the simulation results from the case-
study are shown. The simulation lasts for approx. 33
minutes, in which the Gunnerus is performing maneu-
vers in the open sea outside the city of Trondheim.
Fig. 9 shows the position and heading of the real and
simulation vessel during the case study. Furthermore,
the wind direction and normalized magnitude are also
shown. To see the actual magnitude of the measured
wind speeds, refer to Fig. 8. A comparison of the course
of the two vessels is shown in Fig. 10. As can be seen,
they are aligning quite well during the entire simula-
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Figure 8: Wind speed and direction measurements ob-
tained from the Gunnerus. The arrow indi-
cates the wind direction according to north.

tion. However, the heading controller is a bit aggres-
sive, leading to some oscillations around the set-point,
which the authors have not been able to eliminate with-
out sacrificing accuracy over time. The effect of this
would be that the power consumption of the twin ves-
sel is increased to some extent. Furthermore, a com-
parison of the surge speed is shown in Fig. 11. As
seen in Fig. 12, speed transients for the twin relates to
changes in course made by the Gunnerus. The power
consumption is shown in Fig. 13. Interestingly, the
power consumption calculated from the twin is showing
higher correlation with the speed than that of the real
vessel. After approximately 1100s, the power measure-
ment for the real vessel is actually reduced as the speed
increases. This could indicate that the vessel is affected
by external forces that the model is not aware of, such
as current. Therefore, this discrepancy does not nec-
essarily indicate a weakness in the model, but actually
provides potentially valuable information regarding ex-
ternal environmental forces acting on the real hull.

From these results, it is clear that some of the under-
lying models could be more accurately tuned to bet-
ter reflect the current vessel design. As noted, the
employed hull model used has not been thoroughly
validated after the Gunnerus underwent an elonga-
tion. Doing so might improve the observed difference
in terms of overall power consumption.

In order to improve the usability of the digital twin,
the offline approach of using pre-recorded operational
data should be discarded in favour of a cloud-connected
solution with live access to the real asset. This will en-
able stakeholders and crew members to benefit from
the insights provided by the model. This is perhaps
the most challenging part, as it requires significant up-
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Figure 9: North-east plot showing the trajectory and
heading of the vessels during the experiment.
The blue arrow indicates the wind direction
according to north and normalized magni-
tude of the speed.

grading of the vessel’s infrastructure. Today, data from
the vessel is buffered on board and transmitted in bulk
at intervals measured in minutes. One pragmatic so-
lution to this could be to run the model on board.
Implementation-wise, going from pre-recorded data to
live data is only a matter of performing a drop-in re-
placement of the FMU that emits sensor data from the
vessel. The simulation structure would not have to
be updated as the replacement would share the same
model interface. However, using a model connected
to a real asset would imply that the simulation would
have to be performed in real-time. This mode is sup-
ported by libcosim and the models used in the simu-
lation are all lightweight enough for the simulation to
achieve real-time execution speeds.

7 Conclusion

This paper presents the preliminary results, procedure,
and enabling technologies related to our ongoing work
to establish a fully operational digital twin of R/V
Gunnerus. Co-simulation allows the CPS that the ves-
sel represents to be simulated using models from dif-
ferent vendors and tools. This is absolutely crucial for
an aggregate model in the maritime domain, as many
different vendors and domain-specific tools are usually
involved. Not only does the use of co-simulation allow
building of aggregate systems from different vendors,
it also allows the simulation to be performed in freely
available open-source tools. Furthermore, it makes it
possible to decorate the system with models imple-
mented in the tools that best fit the objective.
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Figure 10: Course of the vessels. Revisit Fig. 9 for an
alternative representation.
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Figure 11: Speed of the vessels.

Using the presented simulation framework, model li-
brary and tools presented in this paper, NTNU will
continue its work towards realizing a digital twin of the
Gunnerus, gradually improving its accuracy. Contin-
ued development of use-cases will provide meaningful
on-board decision support for the crew on-board the
Gunnerus. A plausible next step would be to expand
on the presented case study by applying a force correc-
tion to the hull model in order to offset any differences
in position and/or yaw. The amount of force required
for this correction could be used as an estimation of en-
vironmental forces being applied to the real hull. Being
able to quantity these forces would provide substantial
support for the crew.
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Figure 12: Twin surge speed with respect to course
changes by the Gunnerus.
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Figure 13: Power consumption comparison. The power
output shown is the sum of the two az-
imuths.
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A B S T R A C T

This paper introduces a novel co-simulation framework running on the Java Virtual Machine
built on a software architecture known as the Entity-Component-System. Popularised by games,
this architecture favours composition over inheritance, allowing for greater flexibility. Rather
than using a fixed inheritance tree, an entity is defined by its traits, which can be seamlessly
changed during simulation. The framework supports the Functional Mock-up Interface standard
for co-simulation, as well as the System Structure and Parameterisation standard for defining the
system structure. Furthermore, the employed architecture allows users to seamlessly integrate
physics engines, plotting, 3D visualisation, co-simulation masters and other types of systems
into the framework in a modular way. To show its effectiveness, this paper compares the
framework to four similar open-source co-simulation frameworks by simulating a quarter-truck
system defined using the System Structure and Parameterisation standard.

1. Introduction

This paper introduces Vico, a novel high-level co-simulation framework, which is founded on a software architecture based on
the Entity-Component-System (ECS) architecture [1–4]. The ECS, and variations of it, has roots from the gaming world [5] and
follows the composition over inheritance principle, which allows for greater flexibility in terms of defining simulation objects than
traditional alternatives afford. Rather than having objects inheriting data and functionality from a parent object (object-oriented
programming), the object (entity) is composed of data (components). Every entity consists of one or more components which contains
data. Therefore, the behaviour of an entity can be changed during run-time by systems that add, remove, or mutate components.
This eliminates the ambiguity problems of deep and wide inheritance hierarchies that are difficult to understand, maintain and/or
extend. In an inheritance-based architecture, for example, an instance of class Breakable will always be of type Breakable, while
within an ECS the Breakable component in an entity can be removed or replaced with other components, seamlessly changing the
entity’s characterisation. The ECS architecture should not be confused with the entity-component (EC) architecture employed by
mainstream game engines like Unreal Engine and Unity3D. While similar, the EC architecture does not split behaviour and data
between systems and components. Rather, the component takes the role of both. In the employed ECS architecture, illustrated by
Fig. 1, every object taking part in the simulation is known as an entity. An entity is basically just a container for components. A
component is just state, with no behaviour. Behaviour is added to the simulation through systems that acts on entities within a
certain family. A family is a set of entities with a certain set of components attached. These systems are responsible for acting
upon and/or mutating the state of these components, which then drives the simulation forward. Entities, components, and systems
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Fig. 1. High level overview of the ECS architecture.

may be added or removed from the engine at any time; thus family relationships, what an entity represents, and which entities a
given system acts on are all highly dynamic. Achieving flexibility in terms of how objects in a simulation behaves and what they
represent has always been a key driver for Vico, which was originally developed to support research activities related to virtual
prototyping at NTNU Ålesund. Being able to change the fidelity of a running simulation is beneficial here, for example to intuitively
enable the transformation of a virtual prototype purposed for a real-time training scenario into a more accurate engineering oriented
simulation. In order to accommodate changing the fidelity of a running simulation like this, it is necessary to retain state. The ECS
architecture solves this in a natural way by logically keeping state and behaviour separate. While the related EC architecture allows
flexibility in terms of what an object represents, through adding/removing components just like with ECS, it does not accommodate
state preservation.

Vico focuses on co-simulation and naturally supports the Functional Mock-up Interface (FMI) standard [6], which aims to improve
the exchange of simulation models between suppliers and original equipment manufacturers. Currently at version 2.x, the FMI is a
tool-independent standard that supports both model exchange (ME) and co-simulation (CS) of dynamic models. The key difference
between these two variants is that CS models embed a solver, making them easier to deploy at the cost of flexibility. A model
implementing the standard is called a Functional Mock-up Unit (FMU), and is distributed as a zip-file with the extension .fmu. This
archive contains:

• An XML-file that contains meta-data about the model, named modelDescription.xml.
• C-code implementing a set of functions defined by the FMI standard.
• Other optional resources required by the model implementation.

Since the introduction of the FMI standard, a number of libraries and software tools have been created or adapted to support it. At
the time of this writing, the official FMI web page lists over 140 tools, which clearly shows that the standard has been well received.
A recent survey showed that experts consider the FMI standard to be the most promising standards for continuous time, discrete
event, and hybrid co-simulation [7]. Vico supports both version 1.0 & 2.0 of the FMI for CS. ME models are not directly supported
and should be converted to a CS model a priori in some appropriate tool. Distributed execution is possible using FMU-proxy [8],
which makes it possible to run otherwise incompatible FMUs due to limitations in the FMU or incompatible system requirements.
The System Structure and Parameterisation (SSP) [9] standard is also supported, which enables a tool-independent way of defining
complete systems consisting of one or more components (such as FMUs), including their parameterisation.

Vico has in various forms been developed internally at the Intelligent Systems Lab with NTNU Ålesund for several years, serving
as a test bed for testing software architectures to support simulation & visualisation of cyber-physical systems, virtual prototyping,
and digital twin systems [10,11]. The current focal point is to act as an enabling technology for the MAROFF KPN Project Digital
Twins for Vessel Life Cycle Service (TwinShip),1 with the purpose of developing digital twins of maritime systems and operations,
which allows for not only configuration of systems and verification of operational performance, but also the provision of early
warning, life cycle service support, and system behaviour prediction. As illustrated in Fig. 2, the use of co-simulation together with
data-related optimisation, like data purification, and machine learning methods will be seamlessly combined from the design phase
to the maintenance phase to achieve heterogeneous simulation, data analytics and behavioural prediction of maritime systems.

The rest of the paper is organised as follows. Firstly, some related work is presented in Section 2, followed by a description of the
software architecture in Section 3. Case-studies are presented in Section 4, and some concluding remarks and future works appear
in Section 5.

1 https://org.ntnu.no/intelligentsystemslab/project/twinship.html.
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Fig. 2. A plausible development procedure of digital twins system for the marine industry.

2. Related work

The following presents existing open-source FMI based co-simulation frameworks, which also support the SSP standard. While
the FMI standard enables the same model to be simulated in different tools, the SSP standard enables the same system to be simulated
in different tools. This seems attractive, but in practice there are only a few tools that actually support the SSP standard. These are
as follows:

FMIGo! [12] is a software infrastructure to perform distributed simulations with FMI-compatible components that run on all
major platforms. Both CS and ME FMUs are supported, where ME FMUs are wrapped into CS FMUs. FMI Go! uses a client–server
architecture, where a server hosts an individual FMU. The server and clients components are implemented using C++. The software
supports a draft version of the SSP standard. Unfortunately, the development of FMIGo! is currently stagnant and pre-built binaries
are not available. On the plus side, FMIGo! provides some quite advanced co-simulation algorithms that could provide better
accuracy and/or performance than other frameworks.

FMPy [13] is a free Python library from Catia Systems for simulating FMUs. FMPy supports both FMI 1.0 and 2.0 for ME and
CS. Using solvers from the Sundials package, FMPy can be used to solve ME FMUs. It also features both a command line utility and
a graphical user interface for running and presenting simulation results. Like FMIGo! the software support the SSP standard, but
only a draft version.

libcosim [14] is a cross-platform C++library for performing co-simulation. The library was open-sourced in 2020 and ships with
support for FMI 1.0 & 2.0 for CS as well as basic SSP 1.0 support. Additionally, libcosim provides a reference implementation of
the OSP-IS [15], a newly introduced standard for defining the co-simulation structure. Furthermore, libcosim provides a C interface
for easier integration with other languages, as well as a Java wrapper (cosim4j), command line interface (CLI) tool (cosim), and a
client/server demo application (cosim-demo-app) provides a basic web interface and plotting capabilities.

OMSimulator [16] is an FMI-based co-simulation tool that supports ordinary (i.e., non-delayed) and Transmission Line Modelling
connections. It provides a C-API and language wrappers for this API in Lua and Python. The OMSimulator is available both as a
standalone and through OpenModelica [17], which also provides it with a user interface. Additionally a CLI is available.

Other open-source co-simulation tools worth mentioning here are DACCOSIM [18], Maestro [19], Coral [20] and MasterSim [21].
However, these tools does not provide a standardised way of defining the system to be simulated as the SSP standard provides.

It should be noted that neither FMPy nor FMIGo! support version 1.0 of the SSP standard. Rather, they support an older draft
version of the standard, which is no longer publicly available and that is not compatible with the released version. This makes the
SSP feature quite complicated to use and defeats some of the purpose of the SSP as no other tool can load the system.

The frameworks mentioned above use traditional software architectures centred around a master algorithm and FMI-compatible
models. The ECS architecture applied to military simulators are considered in [5,22]. What differentiates the framework introduced
in this paper from any of the systems mentioned above is how it integrates co-simulation with an ECS architecture. It allows
integration of components handled by different systems to be connected in a co-simulation fashion, with data transfer occurring at
discrete communication steps. A system could be generic or represented by more tangible concepts like an FMI master or a physics
engine. By adding or removing systems and components the nature of simulation can be changed seamlessly during execution. As
behaviour and state are logically separated between systems and components, state is retained even if the behaviour changes.

However, with great flexibility comes great responsibility. Vico does not define any sort of ontology [23]. Thus, there are no
pre-defined set of rules related to how a simulation is designed or what a certain set of components represent. In [2] the authors
applied the concept of semantic traits to their ECS, in order to perform compile time checks and to detect an entity’s class affiliation
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Fig. 3. Anatomy of an entity. An entity is a collection of components. Components can be seamlessly added and removed, which effectively changes what the
entity represents.

and allow functionality changes during run-time. Similarly, using the family concept described later, Vico handles run-time detection
of entity types without the need of pre-declaring an ontology. As Vico puts no restraint on the type of objects created, it is the users
responsibility to avoid ill-formed simulations. However, much of this responsibility can be delegated using a standardised format
like the SSP. Another related standard is the ontology based OSP-IS, which provides the means of adding semantic meaning to model
interface variables. Ontology is also applied in [24] to describe simulation model parameters in a simulation system independent
way.

3. Software architecture

This section introduces Vico, a high-level co-simulation framework based on the ECS software architecture. Implementing Vico
around an ECS architecture provides a number of benefits, such as a clear separation between state and behaviour, flexibility, and
extensibility. The framework is designed so that physics engines and other types of systems that are not FMUs can be integrated into
a co-simulation setting. Many students at NTNU Ålesund are also exposed to the related EC architecture from using Unity3D, which
should make the concept of ECS easier to reason with. Vico is written in Kotlin/JVM, a strongly typed language 100% interoperable
with Java, which in turn allows it to be used as a library by any JVM language. The fact that Vico runs on the JVM makes it
very accessible and easy to extend with the vast amount of high quality libraries covering most needs imaginable. It also makes
the system more approachable to students at NTNU Ålesund, which has a long history of teaching Java in their courses. Building
and developing software is generally easier on the JVM, especially for many students, compared to a native tool-chain, which is
often employed by simulators. Not only that, but with the recent developments of GraalVM [25], a JVM run-time with support for
polyglot programming, it is possible to extend or embed Vico using JavaScript, R, or Python code without any additional run-time
overhead.

Some of the main features of Vico are as follows:

1. ECS-based software architecture that allows discrete connections between components.
2. Support for FMI 1.0 & 2.0 for co-simulation.
3. Support for SSP 1.0.
4. A CLI for simulating single FMUs and systems of FMUs described using SSP.
5. 3D visualisation and 2D plotting capabilities.
6. Modular, easy to extend framework.
7. Implemented in Kotlin, 100% interoperable with other JVM languages like Java.

A description of some of the core elements used within the context of Vico is given below.

3.1. Entity

An entity is basically just a collection of components as illustrated by Fig. 3. By adding the correct components to an entity,
any type of simulation object can be created. In a pure ECS, entities may be represented simply by an integer. In Vico, however, an
entity is an object with a (unique) name and an optional tag. This makes it possible to look up an entity once it has been added to
the simulation. An entity is a concrete class and cannot be extended.

3.2. Component

A component contains data. Additionally, a Vico component can define so-called properties, which can be used in connections
between components. While the data within a component can be of any type, properties can only be of type integer, double, boolean
or strings. This ensures compatibility with the FMI standard. Only data that are meant to be plotted, exported to file, or used in
connections need to be mapped to a property.



L.I. Hatledal et al.

3.3. Family

In naive ECS implementations, every system iterates through the complete list of all entities, and selects only those entities that
should be processed. This work is repetitive and cumbersome for the user. Furthermore, it makes systems difficult to reason about as
their ontology is not explicit. The concept of families found in ECS implementations such as Ahsley [26] are a way to mitigate this.
A family is a list of entities that all contain or exclude a specific set of component types. As components are added or removed from
an entity, its family changes. Subsequently, this triggers an add/remove event that is pushed to subscribers, e.g. systems, which
act accordingly. This process ensures that a system only iterates through the relevant entities. This might increase performance,
especially when component changes are infrequent. However, the main reason for incorporating this feature is to improve usability.
Families provides an ontology to systems that ensures that the entities available are limited to those it has explicitly asked for. This
helps reducing code-bloat as certain assertions are made superfluous and enables self-documenting code.

3.4. System

A system subscribes to a given family of entities, and is responsible for acting upon or mutating the state of the relevant
components belonging to the entities in those families. For example, a PhysicsSystem may subscribe to a family of entities that
hold a Transform, Geometry, and a Rigidbody. Adhering to the laws of physics, this system will then update the position and rotation
of the component during each simulation step. As behaviour and state is separated between systems and components, this allows
use-cases where the physics implementation can be changed on the fly simply by replacing the system. Some ECS architectures let
each system run in a separate thread, continuously updating components. In Vico, however, systems are stepped forward in time
explicitly by the engine to ensure determinism. As systems might potentially act on the same set of components, systems are assigned
a priority, which ensures that changes are performed in a user determined order.

3.5. Engine

The engine is the heartbeat that controls and connects every part of the architecture together. As illustrated by Fig. 4, the
engine consists of an EntityManager, a SystemManager, a ConnectionManager and a InputManager, which, as the naming suggest,
handles aspects related to entities, systems, connections, and peripheral input respectively. The EntityManager also plays a role as
the ComponentManager found in some ECS implementations. Unlike common game engines with an ECS architecture, Vico’s rate of
simulation is not dependent on the variable rendering speed of the graphics processing unit. Rather it may only be stepped using
a user provided step-size. In order to achieve real-time execution of the simulation, the engine provides access to a wrapper class
called EngineRunner that allows the user to control the real-time factor (RTF) of the simulation. By setting the RTF to 1.0, the system
will try to synchronise the wall-clock and simulation-clock—slowing down the simulation if necessary.

3.6. Connections

Component properties can be connected, allowing data transfer between components during discrete communication intervals.
This allows FMI components to be connected with other types of components that are not FMUs, such as rigid bodies. It is possible to
apply modifier functions to connections that will modify the output value before it is applied to the output, for example to convert
a unit or to apply a filter.

3.7. Scenarios

Scenarios in the context of Vico are pre-configured actions to be executed at specific time points or events during the simulation.
Scenarios can be specified to last for a limited time period only, after which any variables that may have changed will be reset
to its original value, e.g. to simulate a fault. Scenarios are written in Kotlin, even when provided as standalone input files, which
are interpreted as scripts. Unlike typical configuration file formats like JSON, XML or YAML, Kotlin allows users to use logical
expressions and otherwise use the full potential of the JVM when writing scenario logic.

3.8. Add-on modules

An overview of the available software modules for Vico are shown in Fig. 5. Much like a game engine, the core Vico module does
not provide much functionality other than providing the infrastructure to develop generic co-simulations. However, a number of
complementary components and systems are provided. The Transform for instance, holds a position and rotation in 3D space. These
components can be parented to another so that when the parent transform changes, the child will move with it. In order to add 3D
representation to an entity, a Geometry is available. Both of these components are required for rendering. A GeometryRenderer is also
available, which transform the data provided by the components to actual objects rendered on the screen. 3D visualisation can be
configured in code or through an XML configuration file, which is especially useful as this allows users to enable 3D visuals when
invoking Vico through the provided CLI, described in more detail later. As the 3D graphics window allows for capturing mouse and
keyboard events, these inputs could potentially be used, for example to interact with the simulation dynamically in order to more
intuitively understand how a system behaves.
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Fig. 4. Composition of the various elements found in the Vico ECS implementation.

Fig. 5. Overview of available software modules.

Vico also provides a set of generic physics components, such as rigid bodies and constraints through the physics-api module. For
example, the Rigidbody makes an entity subject to the laws of physics. However, as components have no logic, an entity with a
Rigidbody will not fall to the ground unless some sort of PhysicsSystem is added to the simulation. However, in order for the rigid
body to move, it needs a position (Transform) and in order for it to collide it needs a 3D representation (Collider). A system that
makes use of these physics components, adding behaviour to the entities holding them, have been implemented using the Bullet [27]
physics engine, which is available through a module named bullet-physics.

A module named fmi adds support for FMI 1.0 & 2.0-based co-simulation, and relies on FMI4j [28] for interacting with FMUs.
Since FMI4j was initially released, it has changed the way it interacts with native code, making it the fastest open-source JVM
library for simulating FMUs. The library also supports export of FMUs compatible with FMI 2.0 for co-simulation and provides a
Gradle plugin to simplify the usage of this feature. This allows for a workflow where slaves can be automatically exported to FMUs
during the build process and loaded by Vico within the same project. The fmi module adds a system named SlaveSystem that takes
an instance of MasterAlgorithm, which is an interface, as a constructor parameter. The idea is that users should be free to develop
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their own master algorithm. However, the module also provides a ready-to-use implementation of a fixed step-size master algorithm,
which allows users to configure slaves to run at different rates. Now, due to the fact that FMUs comprise both behaviour and state,
they are difficult to fit into an ECS architecture, as they fit into neither a component nor a system. This is solved in Vico by creating
a component that represents the location of an FMU. This component also contains a buffer for variable writes and a cache for
variable reads. The system then loads the FMU from the path specified and continuously updates the cache/buffer. This enables
read and write operations to be performed in bulk and access to variable values are cached, which help maintain performance as
simulations become more complex. This is especially true if the underlying FMU operations are slow due to internal implementation
details such as networking. SSP support is also provided by the fmi module. Currently, there is no up-to-date list of tools that support
the SSP standard, and the authors are only aware of two other non-commercial tools that support version 1.0, namely OMSimulator
and libcosim. None of these support the entire standard, but they support enough features to support common use-cases. FMPy and
FMIGo!, mentioned in the previous section, only supports an out-of date draft version, from which the documentation is no longer
publicly available. Furthermore the draft version is different between the tools, both of which are incompatible with each other. Like
OMSimulator and libcosim, Vico supports a limited set of the SSP 1.0 standard, where additional features might be implemented as
use-cases appear.

Being able to make sense of a simulation while it unfolds or immediately afterwards is quite valuable, which is why Vico offers
support for plotting time-series and XY charts. The properties of these plots can be defined using an XML input file or configured
in code. The plots can be configured to be shown and updated live or at the end of a simulation run.

3.9. Command line interface

To allow non-programmers and to enable easier access to the software in general, Vico ships with a pre-built and cross-platform
CLI. The top-level commands are presented in Listing 1. In turn, these takes additional parameters, which may be investigated by
invoking the command with no arguments provided.

Listing 1: Vico command line interface

Usage : <main c la s s > [−h] [COMMAND]
−h , −−help Display a help message .
−v , −−vers ion P r i n t s the vers ion of t h i s app l i ca t i on .

Commands :
s imulate−fmu Simulate a s i ng l e FMU.
simulate−ssp Simulate an SSP co−s imulat ion system .

The simulate-fmu command takes an FMU as input and simulates it. This is mostly useful for testing an FMU that would normally
be used as a building block in a larger system, whereas the simulate-ssp command takes an SSP archive as input and simulates it. In
both cases, the simulation can be decorated with 2D plots, 3D visualisations, and scenarios by specifying additional input files.

3.10. Scripting

Vico itself does not provide scripting, but the implementation language Kotlin does. This makes it natural to use Vico in a
scripting context. A scripting example is provided in Listing 2. This example shows the modularity of Vico, as modules are included
as required. The script file can be executed within the context of IntelliJ IDE or in a shell on any system with a stand-alone Kotlin
compiler. This could be an easier way to develop and distribute use-cases than creating Maven or Gradle projects, as is common
when developing on the JVM. A custom Domain Specific Language (DSL) is also available, aimed at easing the creation of Vico
simulations.

Listing 2: Using Vico with Kotlin scripting.

@fi le : Reposi tory ( " h t tp s : // dl . b in t ray . com/ntnu−ihb/mvn" )

@fi le : DependsOn ( " no . ntnu . ihb . vico : core : 0 . x . x " )
@fi le : DependsOn ( " no . ntnu . ihb . vico : char t : 0 . x . x " )
@fi le : DependsOn ( " no . ntnu . ihb . vico : jme−render : 0 . x . x " )

import no . ntnu . ihb . vico . core .∗

Engine ( ) . use { engine −>
. . .

}

4. Case studies

This section describes two case-studies to show the effectiveness of the Vico framework. The first case-study is used to compare
the accuracy and performance of Vico against other SSP compatible co-simulation frameworks using a simple quarter-truck system.
The second case-study shows a more complex co-simulation of the NTNU owned research vessel Gunnerus, demonstrating parallel
performance as well as the 3D and plotting capabilities of Vico.
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Fig. 6. Illustration of the quarter-truck system.

Table 1

Input and output variables of the quarter-truck models used for connections.

FMU Variable Input/output Description

Chassis
𝐹𝑠𝑢𝑠𝑝 Output Chassis suspension force applied to the wheel.
�̇�𝑤 Input Velocity of the wheel from the wheel model.

Wheel

𝐹𝑠𝑢𝑠𝑝 Input Chassis suspension force from the chassis part.
�̇�𝑤 Output Velocity of the wheel sent to the chassis part.
𝐹𝑡𝑦𝑟𝑒 Output Tyre force applied to the ground.
�̇�𝑔 Input Ground profile, given as vertical velocity variation from the ground model.

Ground
𝐹𝑡𝑦𝑟𝑒 Input Tyre force from the truck wheel.
�̇�𝑔 Output Ground profile, given as vertical velocity variation sent to the wheel.

Table 2

Summary of tools included in the case study.

Tool Main implementation language Platform support FMI version SSP version

FMPy Python Win, Linux, Mac 1.0 & 2.0 for CS Draft20171219
FMIGo! C++ Win, Linux, Mac 2.0 for CS & ME Draft20170606
libcosim C/C++ Win, Linux 1 .0 & 2.0 for CS 1.0
OMSimulator C/C++ Win, Linux, Mac 1 .0 & 2.0 for ME & CS 1.0
Vico Kotlin/JVM Win, Linux 1 .0 & 2.0 for CS 1.0

4.1. Quarter-truck case-study

In the following case study, the tools listed in Table 2 are used to load and simulate the same models representing a simplified
quarter-truck system, also known in the literature as a quarter-car system [29–31]. The system for simulation is defined using the
FMI and SSP standards in order to test performance in terms of accuracy and efficiency [32]. The model for the quarter-truck system
is illustrated in Fig. 6 with 𝑚𝑤 and 𝑚𝑐 representing the mass of wheel and chassis respectively. Both masses have a single vertical
degree of freedom coupled by a linear spring–damper system representing the chassis suspension and wheel tyres. The ground
profile is given as external input. The co-simulation system representing the quarter truck is comprised of three models: the chassis
including the suspension, the wheel including the tyre and the ground. The input and output variables used to connect these models
are given in Table 1.

As a benchmark for the simulation accuracy, the analytical model for the system is derived. The suspension force and the tyre
force are given by Eq. (1), while the equations of motion for the chassis and wheel are given by Eq. (2).

𝐹𝑠𝑢𝑠𝑝 = 𝑘𝑐 (𝑧𝑤 − 𝑧𝑐 ) + 𝑑𝑐 (�̇�𝑤 − �̇�𝑐)
𝐹𝑡𝑦𝑟𝑒 = 𝑘𝑤(𝑧𝑔 − 𝑧𝑤) + 𝑑𝑤(�̇�𝑔 − �̇�𝑤)

(1)

𝑚𝑐�̈�𝑐 = 𝐹𝑠𝑢𝑠𝑝 − 𝑚𝑐𝑔

𝑚𝑤�̈�𝑤 = 𝐹𝑠𝑢𝑠𝑝 − 𝐹𝑡𝑦𝑟𝑒 − 𝑚𝑤𝑔
(2)

Vico, OMSimulator, and libcosim load the same .ssp, while FMPy and FMIGo! both require a slightly modified version that is
compatible with the draft version they use. In practice, however, there is no practical difference. The system is simulated using the
default master algorithm for each tool, which in all cases is some form of a fixed-step algorithm. Each tool comes with a CLI, which
is used to run the simulation. A reference solution has been computed by means of Euler method, with the integration time step set
to 0.001 s. Co-simulation results are shown using both a 100 hz and 1000 hz fixed-step-size for the master algorithms. Fig. 7 and
Fig. 8 shows the vertical displacement of the wheel and chassis respectively when simulated at 100 hz. In this case, none of the tools
are very accurate and they highlight one of the inherent weaknesses of co-simulation compared to monolithic simulations. FMPy
also appears to constantly provide output timestamped one time-step earlier than the other tools. libcosim and FMPy both appear
to generate stronger oscillations during the first second of simulation. This response can be seen more in detail through Fig. 9. The
authors of libcosim have been made aware of this issue, and it should be fixed in a later release if it turns out to be some kind of
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Fig. 7. Wheel response when simulated at 100 hz. The simulation starts from equilibrium state where 𝑧𝑤 = 0. The ground profile is defined as a step function
excited by a jump of 0.1 m in vertical direction at 1 s.

Fig. 8. Chassis response when simulated at 100 hz.

Table 3

Root mean square error of the computed vertical displacement
of the wheel.

Tool RMSE

100 hz 1000 hz

FMPy 0.0300358 0.0019367
FMIGo! 0.030062 0.0018814
libcosim 0.030109 0.0018815
OMSimulator 0.030062 0.0018814
Vico 0.030062 0.0018814

initialisation issue. Naturally, simulating the system at 1000 hz shows a clear improvement in accuracy as can be seen in Figs. 10
and 11. In this case there are barely any differences regarding simulation results between the tools and the reference solution. The
improvement with respect to root mean square error (RMSE) can be seen in Table 3. The increase in accuracy comes, however, with
a run-time cost.
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Fig. 9. Detailed view of the first second of simulation presented in Fig. 7.

Fig. 10. Wheel response when simulated at 1000 hz.

The results of a performance benchmark appear in Fig. 12 in the form of box-plots. The benchmark is performed on a 64-
bit Windows 10 system equipped with a Intel Core i5-3570 CPU with four logical processors. Each tool has been run 15 times,
simulating the system for 1000 s with a step-size of 0.001 s. FMI Go! and FMPy both exports a handful of variables to CSV. libcosim,
OMSimulator and Vico is run both with and without exporting all 121 available variables to CSV. Additionally, OMSimulator also
exports in MATLAB format.

Although Vico is implemented on the JVM, which involves some inherent overhead due to the fact that it must cross the native
bridge when it communicates with FMUs, it is the fastest of the tools participating in the benchmark. OMsimulator is the second
fastest, ahead of FMIGo!. The results of FMIGo! are quite impressive, considering that it is the only one of the tools to run distributed.
Next is libcosim, followed by FMPy. It is not surprising that FMPy is the slowest tool, as Python is not known to be a particularly
fast language. OMSimulator and Vico are configured to run this particular system single-threaded, which libcosim has no option to
do, which may explain its poor performance. As the individual models in the system are computationally inexpensive, it would seem
that the inherent overhead of handling threads/fibers/co-routines is actually degrading performance. Both OMSimulator and Vico
were tested with multiple threads, and Vico in particular showed over a 2x performance increase when running single-threaded. A
couple of things should be noted about OMSimulator. When exporting simulations results to .csv rather than .mat, the performance
deteriorates significantly—going from a mean 19.2 s to about 150 s. Note, however, that the performance indicators presented here
are only valid for this particular system and should not be used as a general pointer to how well the various tools perform.



L.I. Hatledal et al.

Fig. 11. Chassis response when simulated at 1000 hz.

Fig. 12. Performance of the various tools when considering the presented quarter-truck system. Simulation time = 1000 s, step-size = 0.001 s, number of runs
= 15.

4.2. Gunnerus case-study

Fig. 13 demonstrates how Vico’s built in 3D graphics and plotting capabilities are used to support ongoing research projects at
NTNU Ålesund, such as the TwinShip KPN project. Here, a model of the research vessel Gunnerus is performing a path following
simulation. The blue line in the 3D visualisation shows the most recent trajectory of the vessel, while the green cylinder shows
the current way-point that the vessel should navigate towards. As the vessel comes within reach of the target way-point, a new
one appears and the process continue. The modelled Gunnerus vessel is an aggregation of eight FMUs, including a hull model,
thrusters, controllers, and power utilities, the structure of which are defined using the standardised SSP format. The properties of the
visualisation and file logging are specified through separate XML configuration files. The SSP along with the run-time configurations
can then be supplied as arguments to the Vico CLI. This example makes use of several Vico features, including FMI, SSP, 3D visuals,
and distributed execution of FMUs. Distributed execution is facilitated using FMU-proxy, which is compatible with any FMI 2.0 based
tools and works by wrapping an existing co-simulation FMU into a new one that internally employs a client/server architecture.
Some FMUs, like the thruster used in this example can only be instantiated once per process. This is clearly an issue as the hull
requires two thrusters. However, FMU-proxy overcomes this by running model instances in separate processes.

Fig. 14 shows the performance of Vico compared to libcosim and OMSimulator when simulating the Gunnerus system. FMU-
proxy is used in order to make the system, which originally consisted of both FMI 1.0 & 2.0 FMUs, compatible with OMSimulator.
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Fig. 13. Demonstration of a vessel path following simulation running in Vico with 3D visualisation and plotting enabled. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Performance of libcosim and Vico when considering the Gunnerus system. Simulation time = 1000, step-size = 0.05 s, number of runs = 10.

An attempt were made in order to run the system in the same set of tools as for the quarter-truck, but adopting the SSP file to
the obsolete versions used by FMPy and FMIGo! proved difficult and attempts to simulate the system in those frameworks were
unsuccessful. The benchmark is performed on a 64-bit Windows 10 system equipped with a Intel Core i7-8700 CPU with twelve
logical processors. The simulation is run 10 times, simulating the system for 1000 s with a step-size of 0.05 s. Vico and libcosim
performs the simulation both with and without exporting available time-series data, while OMSimulator is configured to not record
time-series data. The system contains a total of 3006 variable values that must be retrieved from the various model instances at
each time-step and later written to disk. Furthermore, the use of FMU-proxy means that networking is involved. Both Vico and
libcosim implements a strategy to optimise variable reads and writes, however, it seems OMSimulator does not. Because of this,
OMSimulator is not able to simulate the system in a timely manner when also set to export time-series data. For example, it took
OMSimulator approx. 250 s to simulate 40 s. To compare, Vico used approx. 58 s to simulate 1000 s. Furthermore, Vico runs the
simulation both single- and multi-threaded. Compared to the quarter-truck system, this simulation benefits from parallel execution
in terms of performance. The difference between Vico and libcosim is less in this case, but Vico still performs better when utilising
multiple threads. Even with the additional overhead of exporting time-series data, both Vico and libcosim perform better than
OMSimulator. This is related to how variable reads and writes are handled by the frameworks. Basically, OMSimulator seems to
perform variable reads and writes on individual variables, while libcosim and Vico execute these operations in bulk. This puts the
performance of OMsimulator, which runs in parallel, in the vicinity of Vico in single-threaded mode.
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5. Conclusions and future work

This paper introduced Vico, a novel co-simulation framework based on the ECS software architecture most commonly found in
games. The proposed architecture provides a number of benefits, such as flexibility, extensibility, and a clear separation between
state and behaviour. Furthermore, the framework has been designed so that physics engines and other types of systems that are not
FMUs can be integrated into a co-simulation setting. Choosing to implement Vico using a JVM language also brings benefits, such
as strong tooling, a simple build process, and a vast number of available libraries. Additionally, NTNU Ålesund has a long history
of teaching Java in their courses, which should make the framework more approachable to students here. Furthermore, many of
these students are exposed to the related EC architecture from game engines like Unity3D, which should make the concept of ECS
easier to relate to.

The presented case-studies showed that Vico is effective compared to other open-source co-simulation tools and demonstrated
support for the well established FMI standard for co-simulation, as well as the newer, less established SSP standard for defining the
simulation structure. Moreover, a number of built-in features like support for 3D visualisation, 2D plotting, export of time-series data
as CSV files and distributed execution of FMUs was shown. In the presented quarter-truck case-study Vico was shown to be the fastest
tool and provided no-less of an accuracy than the other co-simulation frameworks using their default solver. The Gunnerus case-study
showed the visual capabilities and parallel performance of Vico, and also demonstrated the importance of efficient variable handling
in larger, more complex co-simulations.

Vico is under continuous development and further work includes:

1. Implementation of additional state-of-the-art co-simulation masters.
2. Adding a web-server plugin that allow web-clients to monitor and modify the simulation.
3. Implementation of additional SSP features as use-cases appear.
4. Integration with additional physics engines available on the JVM.

Furthermore, it would be interesting to explore the multi-platform capabilities of the Kotlin language in order to allow the core
Vico engine to support not only the JVM, but also JavaScript and native targets. While plausible, this would require some effort
and should therefore be motivated by a sound use-case, which has not emerged to date.

The source code of Vico is hosted at https://github.com/NTNU-IHB/Vico under a permissive MIT license.
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