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Abstract
In this work, we calculate contact angles in X-ray tomography images of two-phase flow in 
order to investigate the wettability. Triangulated surfaces, generated using the images, are 
smoothed to calculate the contact angles. As expected, the angles have a spread rather than 
being a constant value. We attempt to shed light on sources of the spread by addressing the 
overlooked mesh corrections prior to smoothing, poorly resolved image features, cluster-
based analysis, and local variations of contact angles. We verify the smoothing algorithm 
by analytical examples with known contact angle and curvature. According to the analyti-
cal cases, point-wise and average contact angles, average mean curvature and surface area 
converge to the analytical values with increased voxel grid resolution. Analytical examples 
show that these parameters can reliably be calculated for fluid–fluid surfaces composed 
of roughly 3000 vertices or more equivalent to 1000 pixel2. In an experimental image, by 
looking into individual interfaces and clusters, we show that contact angles are underes-
timated for wetting fluid clusters where the fluid–fluid surface is resolved with less than 
roughly 500 vertices. However, for the fluid–fluid surfaces with at least a few thousand ver-
tices, the mean and standard deviation of angles converge to similar values. Further inves-
tigation of local variations of angles along three-phase lines for large clusters revealed that 
a source of angle variations is anomalies in the solid surface. However, in the places least 
influenced by such noise, we observed that angles tend to be larger when the line is convex 
and smaller when the line is concave. We believe this pattern may indicate the significance 
of line energy in the free energy of the two-phase flow systems.

Keywords  Porous media · Wetting · Variable contact angle · Measurement uncertainty · 
Line energy

1 � Motivation

Wettability of a solid surface in contact with two fluids is traditionally defined by the angle 
the interface of the two fluids create with the solid. If the free energy associated with the 
solid–fluid and fluid–fluid interfaces depend only on interface areas, the contact angle � 
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will depend on the interfacial tensions between the two fluids ( �21 ) and fluids with solid 
( �2s, �1s ) through Young’s equation (1), (Young (1805) and Laplace (1806))

The applicability of Eq. (1) is restricted to ideal smooth surfaces of a homogeneous solid 
material, and the corresponding contact angle is sometimes referred to as an intrinsic con-
tact angle (Sun et al. 2020a). The effect of rough surfaces can be included in the surface 
tensions �1s and �2s , with a resulting effective contact angle � . Even though the surfaces 
of glass beads in synthetic media are smoother than surfaces in natural porous media, the 
angles measured by means of micro-CT in the micron scale should be categorized as the 
effective angles. However, we expect the effective interfacial tensions to be fairly constant 
throughout the medium. We refer to Appendix 1 of reference (Berg et al. 2020), for further 
reading about sub-resolution roughness.

Accordingly, the contact angle is expected to be close to constant in a single material 
porous medium, such as sintered glass beads. Similarly, the mean curvature of fluid–fluid 
interfaces, �H,f  , depends on the pressure difference, Pc , across the interface and the interfa-
cial tension through Laplace’s equation,

and hence, the fluid–fluid interfaces are expected to have constant curvature.
The contact angle, as an important means of measuring wettability Anderson (1986), 

influences fluid distribution in two-phase flow. It is also an important input parameter in 
pore scale simulations (Ramstad et  al. 2019). With recent advances in micro-computed 
X-ray tomography, configurations of two fluids in complex three-dimensional porous 
media have been imaged (Berg et al. 2013; Schlüter et al. 2017). Therefore, one wishes to 
use a contact angle measured in situ from images in the simulations. Andrew et. al. (2014) 
measured contact angles manually, whereas Klise et  al. (2016), Scanziani et. al. (2017) 
and AlRatrout et. al. (2017) performed automated measurements with different methodolo-
gies. However, the measured contact angles at multiple (thousands or tens of thousands) 
contact points in the X-ray images tend to show a wide distribution rather than a single 
value (AlRatrout et  al. 2017, 2018a, b; Alhammadi et  al. 2017). Mixed wetting, surface 
roughness, and advancing/receding contact angles are thought to be sources of the spread 
(AlRatrout et al. 2017, (2018a, b). However, a constant contact angle and surface curvature 
is also not expected if the free energy contains additional contributions related to the length 
of three-phase contact lines or surface curvatures (Khanamiri et  al. 2018), predicted by 
Hadwiger’s characterization theorem (Hadwiger 1957).

User-biased image segmentation, the limited image resolution, and artifacts imposed by 
surface smoothing will contribute to a spread in the measured angles and local interface 
curvature. In order to answer questions related to the relative importance of surface rough-
ness, advancing/receding angles, and additional free energy contributions for the contact 
angle and curvature variations, it is important to minimize and quantify these errors. The 
effect of advancing/receding angles was addressed by Mascini et al. (2020). They proposed 
an event-based approach where they investigated only receding contact angles in pore-fill-
ing events in the drainage process and observed a narrower distribution of the angles. In 
order to solve some of the mentioned issues, a number of averaging schemes have been 
proposed recently. For instance, Blunt et al. (2019) proposed a thermodynamic averaging 

(1)cos � =
�2s − �1s

�21

(2)�H,f =
Pc

2�21
,
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scheme, which was updated later by including the dissipation (Akai et al. 2020; Berg et al. 
2020). In this work, we do not investigate the thermodynamic approach where the effi-
ciency of the displacement process is a major unknown.

In an number of recent works, integral geometry is used as an alternative to the direct 
angle measurement. Sun et  al. (2020b) introduced this approach by linking local curva-
tures and topology of a cluster using the Gauss–Bonnet theorem. Blunt et al. (2020) and 
Sun et al. (2020a, c) elaborated on the methodology. These methods often require calcula-
tion of local curvatures which are typically products of surface smoothing, a common part 
shared between the direct measurement and the integral geometry methods. Addressing the 
sources of angle distribution in the direct method, in this work, can potentially be used in 
improving accuracy of the methods based on integral geometry.

Furthermore, our approach is entirely a mathematical solution to surface smoothing, 
without any assumptions based on the current understanding of a physical equilibrium, 
neither with any assumptions on the possible variables influencing the contact angles. 
We choose this approach in order to avoid smoothing artifacts possibly induced by such 
assumptions. The counterparts of our approach are for instance the work by Raeini et al. 
(2012) or smoothing by the Surface Evolver package. Raeini et al. (2012) ran two-phase 
flow simulation on the experimental images in order to correct the imaging artifacts where 
the simulated velocities were inconsistent with the physical model.

In this work, we present a method for extracting contact angles and curvatures from 
tomography images by smoothing triangulated surface representations of the solid–fluid 
and fluid–fluid interfaces (Khanamiri 2019). High resolution experimental data (Schlüter 
et al. 2016b) of sintered glass beads and simple fluids were investigated to minimize possi-
bility of contact angle spread as a result of mixed wetting or other surface heterogeneities.

2 � Triangular Mesh and Differential Geometry

In this section, a number of properties for a triangular mesh are introduced from differen-
tial geometry. The wire-frame in Fig. 1 shows 1-ring neighborhood N1(i) of vertex xi . N1(i) 
is the triangular domain confined by the immediate neighbor vertices of xi , for instance xj . 
Unit normal vector of each triangular face, placed at centroid of the triangle, is calculated 
by cross product of two edges of the triangle. The cross products should be consistently 

Fig. 1   1-ring neighborhood N1(i) 
of vertex xi with shaded Voronoi 
area
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clockwise or anti-clockwise to ensure all normal vectors pointing from one phase—fluid 
or solid—to another in the entire mesh. Unit normal vector for xi is calculated by Eq. (3),

where Tk is a triangular face in N1(i) , with unit normal vector n̂(Tk).
The shaded region in Fig. 1 is Voronoi area of xi , which is a fraction of the area in the 

N1(i) neighborhood and defined by different methods. One simple method is to connect 
centroids of the triangles to midpoint of the edges. This results in a Voronoi area equals to 
one-third of the entire 1-ring neighborhood of the vertex, Desbrun et al. (1999), and can be 
calculated by,

where angles �ij and �ij are the two angles opposite to the edge ij, as shown in Fig. 1. The 
definition by Meyer et al. (2003) is the same as Eq.  (4) only when �ij, �ij and the angles 
at xi are nonobtuse. In case of obtuse angles, the portion of Avoronoi(xi) from the edge ij in 
triangle T� is area(T�)∕4 if T� is obtuse at xi , and area(T�)∕2 if T� is obtuse in other angles. 
A visual inspection showed that the definition proposed by Meyer et al. (2003) ensures a 
robust smoothing in complex structures, whereas the method by Desbrun et al. (1999) can 
be unstable in neighborhoods with rapidly changing curvatures such as where two glass 
spheres are sintered.

Calculation of curvatures and smoothing a mesh requires finding Laplace–Beltrami 
operator, K for vertices. According to the derivation by Meyer et al. (2003),

Equations (4) and (5) are known as cotangent discretization. For vertex xi , K(xi) and the 
mean curvature �H(xi) are related by K(xi) = 2𝜅H(xi)n̂(xi) . Therefore, using dot product of 
two vectors, we have

For a mesh, say a fluid–fluid interface, the average mean curvature �H  can be calculated 
using

where A is area of the interface and V is the number of vertices on the interface.
The contact angle of solid–fluid and fluid–fluid meshes on a vertex on the three-phase 

contact line xi,3 can be calculated by

where n̂s and n̂f  are unit normal vectors of xi,3 in the solid–fluid and fluid–fluid meshes, 
respectively.

(3)n̂(xi) =

∑
Tk∈N1(i)

n̂(Tk)

�
∑

Tk∈N1(i)
n̂(Tk)�

,

(4)Avoronoi(xi) =
1

8

∑

j∈N1(i)

(cot �ij + cot �ij)|xi − xj|2

(5)K(xi) =
1

2Avoronoi(xi)

∑

j∈N1(i)

(cot �ij + cot �ij)(xi − xj).

(6)𝜅H(xi) =
1

2
K(xi).n̂(xi).

(7)�H =

∑V

i=1
�H(xi)Avoronoi(xi)

A
,

(8)𝜃(xi,3) = arccos(n̂s(xi,3).n̂f (xi,3)),
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Note that in the definition by Meyer et al. (2003), the sum of Voronoi areas for all verti-
ces does not always add up to the total mesh area due to presence of the obtuse angles; and 
in order to obtain an accurate �H  , we should consider using correct mesh area in denomina-
tor of (7). Our calculations in geometries with known curvatures showed that this approach 
ensures correct result in calculating �H  using Voronoi region definitions by both Meyer 
et al. (2003) and Desbrun et al. (1999). Since there is no fundamental and unified defini-
tion of Voronoi regions, the point-wise mean curvatures tend to depend on the choice of 
Voronoi region and are unreliable. However, �H  obtained by integration in (7) is reliable as 
average mean curvature for a mesh. Furthermore, choice of Voronoi region does not have 
a large effect on point-wise contact angle calculation, as �(xi) in (8) is calculated using unit 
normal vectors which only weakly depend on the Voronoi region definition.

3 � Mesh Generation

Segmented tomography images of fluids in porous media are volume data comprising 
voxels on a regular grid, and interfaces are defined on the voxel boundaries. A triangular 
mesh for the interfaces is created by defining triangles on each of the corresponding voxel 
boundaries. Every square face is symmetrically divided into four triangle faces as shown 
in Fig. 2. Using four triangles in the squares instead of two gives sufficient valence to all 
vertices for smoothing and curvature calculations. The resulting mesh will have a stair-case 
configuration with sharp edges and corners and must be smoothed in order to find contact 
angles and other related parameters such as curvatures.

Note that when building a mesh for an interface (say fluid–fluid interface) from a seg-
mented image, it is straightforward to identify the triangular faces and also the orientation 
of these faces, i.e., the normal vectors of the faces. The edges and vertices defining these 
faces are, however, not always to be shared between faces even when they have the same 
coordinates. This occurs when an interface, due to insufficient resolution, touches itself or 
another interface at a vertex or along an edge as shown in Fig. 3. These vertices and edges 
must be identified and duplicated into separate entities for each part of the interface. The 

Fig. 2   a Segmented tomography image with two different fluid voxels on top of two gray solid voxels, a 
triangular mesh grid defined on the square voxel boundaries. Blue and red are solid–fluid and fluid–fluid 
meshes, respectively. Green balls mark the three-phase contact vertices. The vectors are unit normal vectors 
for vertices
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vertices that must be duplicated are called nonorientable since, for a self-touching inter-
face, the surface orientation is undefined at these points if the vertices are not duplicated. 
Nonorientable vertices tend to be abundant near the three-phase contact lines and in nar-
row parts of the pore space, and incorrect treatment of these vertices will lead to errors in 
contact angle and curvature calculations. These errors are especially severe for properties 
of the wetting fluid trapped in narrow regions forming pendular ring structures.

Vertices in the mesh grid correspond to either a center or a corner of voxel boundaries 
in the voxel grid (see Fig. 2). The center vertices are always orientable, whereas the corner 
vertices can be nonorientable. Therefore, we use the correct orientation of center verti-
ces in the 1-ring neighborhood of corner vertices to identify and correct the nonorientable 
ones.

Figure 4 shows examples of nonorientable vertices from experimental images—both far 
from and in the vicinity of three-phase contact line—and how they affect the mesh smooth-
ing with and without corrections. Figure 4d–f shows the nonorientable vertices close to the 
three-phase contact line that, if not corrected, can be falsely classified as contact vertices 
where the contact angles are measured. As an example, in an experimental image with 
232882 vertices on the three-phase contact line, 15181 vertices were nonorientable, and 
8813 of nonorientable vertices were either on the three-phase line or incorrectly considered 
as a part of it before corrections.

4 � Mesh Smoothing

The generated initial mesh has sharp edges and corners and must be smoothed in order to 
find contact angles and other related parameters such as curvatures. The vertices on the three-
phase contact lines belong to both the solid–fluid and the fluid–fluid meshes which must be 
smoothed consistently through smoothing iterations. Different smoothing techniques have 
been proposed; for instance, Akai et al. (2019) fitted surfaces on triangular meshes; and AlRa-
trout et. al. (2017) changed positions of vertices by performing either Gaussian or curvature 
smoothing while keeping the global phase volumes approximately constant. Our approach 
is similar to the work by AlRatrout et al. (2017), in the sense that vertices are displaced to 
minimize the curvatures. However, weights of displacements and the way we use neighbor-
hood of vertices are different in this work. Our methodology is mainly based on isotropic 
smoothing flow by Meyer et al. (2003). We displace the vertices along their unit normal vec-
tors with mean curvature as the weight of disparagement. The constraint on the displacements 

Fig. 3   a Simplified two-dimensional illustration of an interface in reality, b and in a mesh grid. Vertex in 
the marked poorly resolved part is nonorientable
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(a) (d)

(b) (e)

(c) (f)

Fig. 4   a-c solid–fluid mesh, in blue, where two solid grains are close: a five nonorientable vertices are 
marked on solid–fluid mesh before smoothing, vertices lie on the corners of pixels with corner–corner or 
edge–edge contact, b 10 iterations in smoothing without correction where the vertices are pinned avoiding 
proper smoothing, c 10 iterations in smoothing after duplicating vertices— green and red; d–f solid–fluid 
(blue) and fluid–fluid (red) in the vicinity of three-phase contact line: d three nonorientable vertices close 
to the contact line , e a few steps in iterations without corrections, f and with corrections. The corrections 
in (c) and (f) are done by duplicating the nonorientable vertices and assigning the correct neighbor vertices 
and triangles to each duplicate
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is based on voxel length and imaging uncertainty as opposed to the phase volume constraint 
used by AlRatrout et  al. (2017). Furthermore, we represent the surfaces by triangular cells 
whereas AlRatrout et al. (2017) used square cells. The details of smoothing are explained in 
this section.

In principle, smoothing a surface involves solving Laplace’s equation, ∇2f = 0 in general, 
or the Young–Laplace equation, −2�H = ∇.(∇f∕|∇f |) = const in particular for fluid–fluid 
surfaces. Here f is the function expressing the surface. For the Laplace’s equation, smooth-
ing is also equivalent to Euler–Lagrange equation, �H = 0 used for surface area minimiza-
tion (Meyer et al. 2003). In absence of a function, the surface is discretized and the Laplace’s 
equation is solved by a numerical method, e.g., finite difference. A 2-manifold—a mesh—is 
represented by vertices and discrete triangles rather than by an ordinary continuous surface. 
Generalization of Laplace’s equation from surfaces to manifolds is known as Laplace–Belt-
rami method which can be discretized using cotangent scheme in order to calculate Voronoi 
area (see Fig. 1), Laplace–Beltrami operator and mean curvature in Eqs. (4)–(6).

Smoothing is an iterative procedure where in each iteration, all vertices are displaced 
simultaneously after calculating the displacements. A vertex xi is displaced a distance �xi 
along the surface unit normal vector n̂(xi) with �H(xi) as the weight of displacement. Smooth-
ing the solid–fluid and the fluid–fluid meshes are performed in a similar manner, except for the 
vertices lying on the three-phase contact line.

The average mean curvature for individual fluid–fluid surfaces, �H,f  is updated for each 
iteration using Eq. (7). The coefficients 0 < ts < 1 and 0 < tf < 1 in (10) are tuning param-
eters used mainly to avoid too much displacement which can cause smoothing to diverge 
in meshes imitating complex porous structures. We start the smoothing with ts = 0.15 and 
tf = 0.3 and change the values in the iterations following a reward/penalty strategy, mean-
ing that if for instance, solid–fluid mesh improves in one step ts is multiplied by 1.05, and 
if it worsens, ts is multiplied by 0.8 for the next step. Coefficient tf  is tuned with the same 
rule. This procedure was fixed after several test runs, and there is no theoretical reason for 
the choice of values for the coefficients. One can perform the iterations with both different 
initial values and multipliers for ts and tf  and obtain smooth meshes as long as the smooth-
ing does not diverge.

The displacement of all vertices is subject to the following two constraints.

First constraint in (11) ensures that xi does not displace more than 0.2 voxel length at each 
iteration. The displacement is reduced to 0.2 voxel length, if it is larger than that. Second 
constraint ensures that xi does not move farther than 

√
3 voxel length from its initial posi-

tion. This value is the longest distance inside a voxel in the voxel grid. Maximum displace-
ment of 

√
3 is associated with the uncertainty in the experimental images such that xi could 

in reality be anywhere inside one voxel. In the images investigated, only a minor fraction of 

(9)xi,new = xi,previous − �xi

(10)

𝛥xi,s = ts𝜅H,s(xi,s)n̂s(xi,s)

𝛥xi,f = tf (𝜅H,f (xi,f ) − 𝜅H,f )n̂f (xi,f )

𝛥xi,3 = ts𝜅H,s(xi,3)n̂s(xi,3) + tf (𝜅H,f (xi,3) − 𝜅H,f )n̂f (xi,3)

(11)
�𝛥xi� = min(�𝛥xi�, 0.2)

�xi − xi,initial� <
√
3
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the vertices are moved a distance close to 
√
3 in voxel length. For instance, after smooth-

ing a tomography image, mean displacements of vertices in solid–fluid surfaces, fluid–fluid 
surfaces, and three-phase contact lines were approximately 0.30, 0.30, 0.52 voxel length, 
respectively; vertices displaced more than 0.95

√
3 were only 0.20, 0.03, 0.02 percent of all 

vertices in those entities.
As mentioned earlier, for a smooth solid–fluid surface, mean curvatures are being mini-

mized �H,s(xi) → 0 . It should be noted that �H,s(xi) values are not becoming exactly zero 
because of the constraint in Eq.  (11). The geometric implication is that for a solid–fluid 
surface throughout the iteration steps, the unit normal vectors of neighbor vertices align 
more parallel to each other once the surface is being smoothed, and their dot products 
approach unity. Therefore, we use �s,

as the target of smoothing for the solid–fluid mesh, where Vs and Es are the number of ver-
tices and edges in the solid–fluid mesh.

For a smooth fluid–fluid surface, the mean curvatures approach an unknown constant 
value �H,f (xi) → �H,f  . The standard deviation of �H,f (xi) should be locally minimized for 
each interface. Therefore, the target for the entire domain can be minimizing average of 
the standard deviations, std, for all fluid–fluid surfaces, and Eq. (13) serves as the target for 
smoothing the fluid–fluid mesh.

In Eq. (13), M is the number of fluid–fluid interfaces in the mesh grid.
We use � and t variables to stop the iteration. Smoothing iterations continue as long 

as both �s and �f  are reducing. If their minimum values are at the latest step, it means that 
they have not reached a minimum and smoothing is continued. The solid–fluid mesh often 
improves faster, and �s can reach a minimum before �f  . At this point, �f  has not reached 
a minimum and the iterations must be continued. In these conditions, the quality of 
solid–fluid mesh may degrade as �s will start to increase. Therefore, the coefficient ts in 
Eq. (10) reduces automatically to keep the changes in the solid–fluid mesh to a minimum. 
The reason we do not immediately set ts = 0 is that the solid–fluid mesh in every iteration 
needs to be readjusted in the vicinity of the three-phase contact line when fluid–fluid mesh 
improves. With ts = 0 and a changing fluid–fluid mesh, the line will be pulled out of the 
solid–fluid mesh. Once �f  has also passed a minimum and starts to increase, tf  in Eq. (10) 
will automatically reduce. At last, when both �s and �f  have passed minima, and one of 
the tuning coefficients is t < 10−3 , the smoothing stops after five more iterations, and the 
results of iteration with least �f  is picked up as the final result. At the end, the number of 
iterations is approximately in the range of 50–100. Figure 5 shows variations of contact 
angle, �s and �f  , as smoothing progresses in an analytical model of a sphere–plane geom-
etry explained in the next section.

In a smooth mesh grid, �s value is approximately in the order of 10−3 with variations 
between two steps in the order of 10−5 ; �f  is approximately in the order of 10−2 with step 
variations in the order of 10−3 . Smoothing several experimental images showed that 
although cotangent discretization smoothes surfaces, it is not convergent in the sense that 

(12)𝜏s = 1 −
1

Es

Vs∑

i=1

∑

j∈N1(i)

n̂s(xi).n̂s(xj) → 0

(13)�f =
1

M

M∑

m=1

std(�H,f ) → 0
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despite the point-wise values of �H become more uniform, they are not equal (Meyer et al. 
2003; Xu 2013). Improvement slows down as smoothing progresses. The point-wise con-
vergence may depend on the voxel grid resolution. In the next section, using analytical 
examples with known curvature and contact angles, we show that although point-wise �H is 
not convergent, average mean curvatures �H  and point-wise contact angles � are convergent 
when grid resolution is sufficient.

5 � Analytical Examples

We attempt to verify the smoothing algorithm and to investigate the limitations by exam-
ining two examples with known contact angle and curvature. We create synthetic voxel 
images of two different configurations simply by intersecting sphere–plane equations where 
the sphere radius and the distance between the plane and the sphere center are known. Fig-
ure 6 shows the two examples where the solid–fluid interfaces are simply represented by 
planes, and the fluid–fluid interfaces are part of a sphere. For these two configurations, ana-
lytical �H and � are constant. Images with different resolution were created by increasing 
number of the voxels representing the geometry.

Figure 7 shows the calculated error � with respect to inverse of number of vertices in the 
fluid–fluid surface 1∕Vf  . The grid resolution is higher at smaller 1∕Vf  . Figure 7 shows that 
point-wise contact angles � (Eq. (8)), average mean curvature �H,f  (Eq. (7)), and interfacial 
area are converging as 1∕Vf → 0 , whereas point-wise mean curvatures �H,f  (Eq. (6)) are not 
converging.

Vf = 148 ( 1∕Vf = 6.7 × 10−3 ) and Vf = 700 ( 1∕Vf = 1.4 × 10−3 ) for the spherical cap, 
Vf = 540 ( 1∕Vf = 1.8 × 10−3 ) and Vf = 2226 ( 1∕Vf = 4.4 × 10−4 ) for the cluster between 
two parallel planes have not yet captured the contact angles with an acceptable accuracy. 
Furthermore, Af  and �H,f  , which is the inverse of radius for the complete sphere in these 
examples, can also be used as further discriminants to determine if the resolution was ade-
quate in order to find � and �H,f  . Overall, a fluid–fluid interface composed of roughly 3000 

Fig. 5   Evolution of mean contact angle �m, �s and �f  in smoothing a sphere–plane geometry with known 
analytical angle shown by the solid line. Error bars are standard deviations of �
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vertices or more and has roughly �H,f ≤ 0.01 pixel−1 and Af ≥ 103 pixel2 could be reliable 
for computations. According to Fig. 7, both contact angle and average mean curvature are 
for the most part underestimated on poorly-resolved small interfaces.

Furthermore, for interfaces with sufficient resolution standard deviations of � is roughly 
1 − 2◦ ; standard deviation of �H,f  is in the order of 10−3 pixel−1.

6 � Experimental Examples

In this section, we investigate dependency of contact angles on the size of fluid clusters in 
a 3D experimental X-ray tomography image published by Schlüter et al. (2016b). The two-
phase flow experiments were performed with low flow rates at quasi-static equilibrium. 

Fig. 6   Smoothing two synthetic examples resolved by 87 × 87 × 87 voxels where a an imaginary fluid drop-
let in red is in the form of a spherical cap resting on a planar solid surface in cyan, b an imaginary spherical 
droplet in red is intersected with two parallel solid planes in cyan both with the same distance from center 
of the sphere. The black dots mark the three-phase contact points on the smoothed meshes. All original 
voxel meshes are in gray

Fig. 7   Mean % error � for � and �H,f  , and % error � for interfacial mean curvature �H,f  and area Af  as a 
function of 1∕Vf  , where Vf  is the number of vertices on the fluid–fluid surface. Grid resolution increases 
when 1∕Vf → 0 . The green dashed lines show 1∕Vf = 3.3 × 10−4 , equivalent to Vf = 3000 . Note that the 
horizontal axes have a scale of 10−3



546	 H. H. Khanamiri et al.

1 3

The solid was composed of sintered glass beads with two different diameters; the fluids 
were brine and n-dodecane (Schlüter et  al. 2016a). In this paper, we use an image from 
the early main imbibition with water saturation of 15.1 percent. Comparison of mean 
contact angles for individual fluid clusters revealed that the calculated contact angles for 
small clusters are smaller than those for large clusters. Figure 8 illustrates six examples. 
The large clusters (a)–(d) with several thousand vertices in the brine–dodecane interface 
have mean contact angles �m of 68◦ , 69◦ , 71◦ and 74◦ ; whereas smaller clusters with only a 
few hundred vertices have �m of 49◦ and 31◦ . The cluster (f) in Fig. 8, has �m of 31◦ which 
is even smaller than 49◦ for cluster (e). Cluster (f) is a droplet lying on the body of glass 
bead, while cluster (e) is one attempting to encircle the rim between two fused glass beads. 
We found that the small clusters of type (f) have often the least contact angles among the 
poorly resolved clusters. We believe this is a smoothing artifact. Smoothing without a 
constraint on the vertices displacement will eventually flattens a mesh. Displacement con-
straint of 

√
3 , Eq.  (11), is a large degree of change for a small surface which stretches 

considerably to be close to a flat surface. This results in underestimation of both the contact 
angle and the curvature.

Figure 8 shows also number of three-phase contact lines L3 , and Euler characteristic � , 
of 2-manifold of the cluster surfaces. � is calculated by Eq. (14),

where V, E, and F are number of vertices, edges, and triangle faces, respectively, on the 
entire surface of fluid cluster regardless of how fluid–fluid and solid–fluid interfaces cover 
the surface. This � should not be mistaken with Euler characteristic of the cluster as a vol-
ume which is half the value of � . For clusters homeomorphic to a sphere and a torus � is 2 
and 0, respectively (see Fig. 8d, e). More complicated clusters will have � values as nega-
tive even integers, as shown in Fig. 8a–c.

(14)� = V − E + F,

(a) (b)

(c)

(f)(e)

(d)

Fig. 8   Brine clusters with brine–dodecane interface in red and glass–brine in blue; number of vertices in 
fluid–fluid interface, Vf  , Euler characteristic, � , mean contact angle, �m , and number of separate three-phase 
contact lines, L3 , are listed in each figure
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On the size-biased contact angles for poorly resolved small clusters, results also showed 
that very small clusters with a volume of only one or a few voxels have a contact angle of 
near or equal to zero, i.e., smoothing collapses both fluid–fluid and solid–fluid interfaces 
on a plane. Figure 9a shows �m reduces when size of the fluid–fluid, Vf  interface reduces. 
Although the number of three-phase contact vertices on the smaller interfaces is not large, 
prevalence of such interfaces will change the mean contact angle for the whole image. 
Figure 9d shows the histogram of angles for the whole image rises relatively sharply for 
angles close to zero. In the same figure, the blue histogram is drawn after eliminating con-
tributions from interfaces with Vf < 500 . The changes between the two curves for angles 
roughly below 45◦ is noticeable. In Fig. 9d, the blue curve (unfiltered) is result of measure-
ment from 376,827 three-phase contact vertices V3 , with mean angle and standard devi-
ation of 65◦ and 17◦ , respectively. The red curve (filtered) includes 354,362 vertices, 94 
percent of all vertices on the three-phase line, with mean angle and standard deviation of 
68◦ and 11◦ , respectively. Standard deviation of angles std(�) for the individual interfaces 
with respect to Vf  and V3 are illustrated in Fig. 9b, c. std(�) of large clusters is roughly 10◦ , 
whereas it is nearly any value from 0 to 25◦ for smaller ones. Lower std(�) for a group of 
smaller clusters does not imply precise measurements. It only means the angles are closer 
to an average angle at vertices the experimental measurement is highly uncertain. As a rule 
of thumb and in order to be cautious, we recommend finding the mean angle from fluid 

(a) (b)

(c) (d)

Fig. 9   a Mean contact angle �m as a function of number of vertices Vf  for individual fluid–fluid interfaces, b 
standard deviation of contact angles std(�) versus Vf  , c and versus number of vertices on three-phase contact 
lines V3 for individual interfaces, d histogram of contact angles for the entire 3D image with all interfaces 
included (red) and interfaces with Vf < 500 filtered out (blue). �m for entire image originally and after filter-
ing is 65◦ and 68◦ , respectively
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clusters where the fluid–fluid interface has at least a few thousand vertices. This can be 
deducted from Fig. 9a, as well as from the analytical examples.

It should be noted that because of high frequency of very small clusters ( Vf < 100 ) 
and for the sake of better visualization, those clusters are not presented in Fig.  9a–c. 
The trends remain the same with/without such clusters, most of which are a few voxels 
or even one in volume. Furthermore, the largest fluid–fluid interface with Vf = 1,602,085 
and V3 = 168,510 has �m = 67◦ and std(�) = 9◦ which are similar to �m and std(�) of large 
clusters and filtered results of the whole image. These high Vf  and V3 are not presented in 
Fig. 9a–c, again for visualization purposes. The largest interface, which is the one separat-
ing the connected displacing and the connected displaced fluids, has �m value close to the 
mean angles of the well-resolved trapped clusters in Fig. 8.

7 � Contact Angle Variations Along three‑Phase Line

We showed that contact angle is best to be measured or averaged for the larger fluid–fluid 
interfaces where there is less measurement uncertainty compared with the smaller ones. 
In an example, the calculated � for large clusters had similar values of �m ≈ 68◦ and 
std(�) ≈ 10◦ . In this section, we investigate the local variations of contact angles along the 
three-phase lines. We show that 10 degrees standard deviation is partly random caused by 
imaging noise and partly a pattern that we believe is possibly related to the overlooked line 
energies.

We sort the � values of the consecutive vertices along a three-phase line. In this way, 
angles resemble a time series, for which the auto-correlation function ACF can be cal-
culated. Figure  10 shows the ACF, with 100 as number of the lag periods, for multiple 
lines on a single cluster. According to Fig. 10, ACF values are high for smaller values of 
lag, meaning that the variation of � along the lines is smooth. We examine the hypothesis 
that whether or not the variations are related to the line curvature. Therefore, we calculate 
the angle � created by the two edges neighboring each vertex on the three-phase lines. � 
values are a measure of how much the line turns at a vertex and hence proportional to the 
line curvature. Figure 10 shows that lower � values tend to occur when the three-phase line 
curvature is higher.

Fig. 10   ACF of � values as a time series for three-phase lines of a cluster and variations of � with rotation 
angles �—equivalent to the line curvature
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The � − � plots have a high degree of noise and may be affected by the imaging noise 
and the smoothing artifacts in poorly resolved features. We further investigate the varia-
tions by visualizing the original and smoothed solid surfaces and the color-coded � values 
in Fig. 11. As shown in Fig. 11, � is lower at and around kinks (high � ) in the line. The 
kinks occur at surfaces with anomalies in the form of a small whole or a small lump of 
voxels on surface of the glass spheres. These features are certainly not resolved, and the 
resulted � and � values are not reliable.

However, further investigation of � variations along the line, with least noisy image fea-
tures, revealed � values tend to be larger at the convex parts of the three-phase line and 
smaller in the concave parts (see Fig. 12). This can also be explained by the generalized 
Young’s equation Pethica (1977), Boruvka and Neumann (1977),

where � is the line tension and � is the signed line curvature. Convex parts of the line with 
𝜅 > 0 will have larger � , whereas concave parts with 𝜅 < 0 will have smaller � . This pattern 
in the experimental images suggests that the likelihood of line energy playing a role in two-
phase flow should not be ruled out. The variable contact angle correlating with line curva-
ture hints that the free energy of the system should have an extra term for the line energy, 
in addition to contributions from the volumes and the surface areas.

In the following, we will estimate the line tension � based on the changes in contact 
angle along the three-phase contact line. Given the rotation angle � , in Fig. 10, at a vertex 
on a contact line, the line curvature at the vertex is

(15)cos � =
�2s − �1s

�21
−

�

�21
�,

Fig. 11   Color-coded—and 
size-coded—� values along 
three-phase contact line viewed 
from inside the solid; the noise 
in the solid surface represented 
by the kinks in the line results in 
smaller �

Fig. 12   �—color-coded and size-coded—tends to be larger at convex parts of the three-phase line and 
smaller at the concave parts. This pattern was observed when the line neighborhood in the image was not 
noisy
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where �s is the edge length between the two consecutive vertices. �s is in the order of pixel 
length. Assuming effective average values for the tension terms in Eq. (15), one can con-
struct the equation for two vertices on the convex and concave parts of a three-phase line.

Subtracting the two equations in (17), we have

One can calculate � using a pair of vertices with known � and � by mean of Eq.  (18). 
Using five pairs of vertices, all on a single three-phase line, and an interfacial tension of 
�12 = 36 × 10−3 N/m , measured by Schlüter et  al. (2017), the line tension was estimated 
from Eq. (18) as � ≈ 8.7 × 10−7 N . Attempting the procedure on another line results in 
similar value of � ≈ 9.3 × 10−7 N . These two values were calculated from the two lines 
shown in Fig. 12.

The calculated � is close to higher line tension values reported in the literature. Zhang 
et al. (2018) reported that the line tension of sessile droplets obtained from theories vary 
from 10−12 N to 10−10 N whereas experimental measurements vary from 10−12 N to over 
10−5 N , depending on the studied system (Zhang et al. 2018). Further, it has been debated 
that while the line tension at atomic scale is on the order of nN, gravitational effects at 
mm scales can add significant contributions to the line tension (Bruce et al. 2017). In our 
microscale measurements, it is possible that � is influenced by the sub-resolution surface 
roughness and wetting variations.

Now we can estimate the interfacial energy FA12
 and the line energy FL for the fluid clus-

ter for which the statistics is presented in Fig. 10.

The estimated line energy is nearly equal to the interfacial energy. The line energy will 
therefore influence the free energy of the two-fluid system in micro scale. The studied 
experimental system is composed of relatively large and smooth glass beads; thus, we can 
expect stronger effect in natural porous media such as sandstone rocks.

8 � Summary

We calculated the contact angles and curvatures in X-ray tomography images of two-phase 
flow in porous material. Two analytical examples with known contact angles and curva-
tures were used to verify the mesh smoothing method. Analytical cases showed that aver-
age and point-wise contact angles, average mean curvature, and surface area converged 
with increased grid resolution. According to analytical examples, point-wise contact angles 
and average mean curvature for fluid–fluid surfaces resolved by 3000 vertices or more, 

(16)� = �∕�s,

(17)
cos �concave =

�2s − �1s

�21
−

�

�21
�concave

cos �convex =
�2s − �1s

�21
−

�

�21
�convex.

(18)� = �12
cos �concave − cos �convex

−�concave + �convex
.

(19)
FA12

= �12A12 = 1.8 × 10−8J

FL = �L ≈ 1.6 × 10−8J



551Contact Angles in Two‑Phase Flow Images﻿	

1 3

equivalent to an area of 1000 pixel2 , could be calculated accurately. We addressed also the 
impact of poorly resolved small fluid clusters—which can often have high frequency in the 
experimental images—on the contact angle distribution and mean contact angle. We found 
that contact angles were underestimated for wetting fluid clusters where the fluid–fluid sur-
face mesh was resolved with roughly less than 500 vertices. In addition, the cluster-based 
investigation showed that both mean and standard deviation of angles where the fluid–fluid 
surfaces had at least a few thousand vertices converge to similar values. We observed a 
standard deviation of approximately 10 degrees for large fluid clusters. Our investigation of 
the local variations of contact angles along the three-phase contact lines showed that a part 
of the variations is caused by measurement uncertainty. However, a part of variations rep-
resented a pattern in which contact angles tend to be larger at convex parts of the line and 
smaller at concave parts. This suggests that the free energy may have contributions from 
three-phase contact lines, in addition to the volumes and surfaces.
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