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Abstract: Combination therapies have become a standard for the treatment for HIV and hepatitis C
virus (HCV) infections. They are advantageous over monotherapies due to better efficacy, reduced
toxicity, as well as the ability to prevent the development of resistant viral strains and to treat
viral co-infections. Here, we identify new synergistic combinations against severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), echovirus 1 (EV1), hepatitis C virus (HCV) and human
immunodeficiency virus 1 (HIV-1) in vitro. We observed synergistic activity of nelfinavir with
convalescent serum and with purified neutralizing antibody 23G7 against SARS-CoV-2 in human
lung epithelial Calu-3 cells. We also demonstrated synergistic activity of nelfinavir with EIDD-2801
or remdesivir in Calu-3 cells. In addition, we showed synergistic activity of vemurafenib with
emetine, homoharringtonine, anisomycin, or cycloheximide against EV1 infection in human lung
epithelial A549 cells. We also found that combinations of sofosbuvir with brequinar or niclosamide
are synergistic against HCV infection in hepatocyte-derived Huh-7.5 cells, and that combinations of
monensin with lamivudine or tenofovir are synergistic against HIV-1 infection in human cervical
TZM-bl cells. These results indicate that synergy is achieved when a virus-directed antiviral is
combined with another virus- or host-directed agent. Finally, we present an online resource that
summarizes novel and known antiviral drug combinations and their developmental status.
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1. Introduction

Every year, emerging and re-emerging viruses, such as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), Middle East respiratory syndrome (MERS-CoV), Zika virus (ZIKV),
Ebola virus (EBOV), influenza A virus (FLUAV), and Rift Valley fever virus (RVFV) surface from
natural reservoirs to infect, disable, and kill people [1,2]. As of October 2020, the number of people
infected with SARS-CoV-2 continues to rise, with a global death toll of more than 1 million.

Drug combinations are emerging as useful tools to treat infections because of their increased efficacy
and decreased toxicity. Additionally, combinations of two or more antivirals could be administered
in a cocktail to target a broad range of viruses or to prevent the development of drug-resistance,
a common consequence of antiviral monotherapy. For these reasons, antiviral drug combinations could
serve as front line therapeutic options against poorly characterized emerging viruses, re-emerging
drug-resistant viral strains or viral co-infections.

Indeed, antiviral drug combinations have become a standard treatment of rapidly evolving
viruses, such as HIV and hepatitis C virus (HCV) [3,4]. These include abacavir/dolutegravir/
lamivudine (triumeq), darunavir/cobicistat/emtricitabine/tenofovir (symtuza), ledipasvir/sofosbuvir,
sofosbuvir/velpatasvir, and lopinavir/ritonavir (kaletra). Many other drug combinations are currently
in clinical trials against SARS-CoV-2, HCV, HBV, HSV-1, and other viral infections (ChiCTR2000029308,
NCT04291729, ChiCTR2000030894, NCT03111108, NCT01045278, NCT00255034, NCT02480166,
NCT00383864, NCT01023217, NCT00922207, NCT02360592, NCT00922207, etc.).

The individual components of novel antiviral combinations often come from the pool of approved
and investigational drugs that have already passed phase I clinical trials (Figure 1). From there,
in vitro studies can uncover synergism among drug combinations. Once proof-of-concept has been
established, repositioned drugs can enter preclinical and clinical trials. Depending on the existing
body of knowledge around the drug components, these combinations may also directly enter phase
I–II clinical studies in cases of outstanding urgency, allowing for a cheaper and faster path to market.
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Our recent in vitro studies have revealed antiviral synergism across a wide range of compounds
and viruses. We have found that the combination of pimodivir and gemcitabine shows synergism
against FLUAV infection in human macrophages [5]. We have also demonstrated that the combination
of obatoclax and saliphenylhalamide is synergistic against ZIKV infection in retinal pigment epithelium
(RPE) cells [6]. We have also shown that combinations of nelfinavir with salinomycin, amodiaquine,
obatoclax, emetine, and homoharringtonine all exhibit synergistic activity against SARS-CoV-2 in
kidney epithelial cells extracted from an African green monkey (Vero-E6) [7]. These and other
studies suggest that synergy can be achieved when virus-directed agent is combined with another
virus-directed or host-directed agent, while combinations of host-directed agents often have toxic
consequences in cell culture.

The goal for this study was to uncover novel synergistic drug combinations by combining
virus-directed agent with another virus- or host-directed antivirals. We found that combinations of
nelfinavir with convalescent serum, neutralizing antibody, EIDD-2801 or remdesivir were synergistic
against SARS-CoV-2 infection in human non-small cell lung cancer Calu-3 cells. Further, combinations
of vemurafenib together with emetine, homoharringtonine, anisomycin and cycloheximide were found
to be synergistic against EV1 infection in A549 cells. Combinations of sofosbuvir with brequinar and
niclosamide were shown to be effective against HCV infection in Huh-7.5 cells. Finally, combinations of
monensin with lamivudine and tenofovir were shown to have antiviral synergy against HIV-1 infection
in TZM-bl cells. We also present a freely accessible web resource that aggregates known synergistic
interactions between antiviral agents.

2. Materials and Methods

2.1. Drugs

Table S1 lists compounds, their suppliers, and catalogue numbers. To obtain 10 mM stock
solutions, compounds were dissolved in dimethyl sulfoxide (DMSO; Sigma-Aldrich, Hamburg,
Germany) or milli-Q water. Collection of convalescent serum from patients recovered from COVID-19
(SARS-CoV-2_2) has been described in our previous study [7]. The identification, cloning, expression
and purification of human neutralizing antibodies are described elsewhere (“SARS CoV-2 Neutralizing
Antibodies”, patent application number: 63090576). The solutions were stored at −80 ◦C until use.

2.2. Cell Cultures

Calu-3 and RPE cells were grown in DMEM-F12 supplemented with 10% FBS, 100 µg/mL
streptomycin, and 100 U/mL penicillin (Pen–Strep). Human adenocarcinoma alveolar basal epithelial
A549 and Vero-E6 cells were grown in DMEM supplemented with 10% FBS and Pen–Strep. The cell
lines were maintained at 37 ◦C with 5% CO2. ACH-2 cells, which possess a single integrated copy
of the provirus HIV-1 strain LAI (NIH AIDS Reagent Program), were grown in RPMI-1640 medium
supplemented with 10% FBS and Pen–Strep. TZM-bl, previously designated JC53-bl (clone 13) is
a human cervical cancer HeLa cell line, stably expressing the firefly luciferase under control of
the HIV-1 LTR promoter. TZM-bl cells were grown in DMEM supplemented with 10% FBS and
Pen/Strep. The human hepatoma Huh-7.5 cell line was grown in DMEM supplemented with 10% FBS,
non-essential amino acids (NEAA), L-glutamine and Pen–Strep [8]. All cell lines were grown in a
humidified incubator at 37 ◦C in the presence of 5% CO2.

2.3. Viruses

The SARS-CoV-2 hCoV-19/Norway/Trondheim-S15/2020 strain has been described in our previous
study [7]. It was amplified in a monolayer of Vero-E6 cells in the DMEM media containing Pen–Strep
and 0.2% bovine serum albumin. EV1 (Farouk strain; ATCC) was provided by Prof. Marjomäki from
University of Jyväskylä. EV6 was isolated in our laboratory [9]. EV1 and EV6 viruses were amplified in
a monolayer of A549 cells in the DMEM media containing Pen–Strep and 0.2% bovine serum albumin
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(BSA). To produce HIV-1, 6 × 106 ACH-2 cells were seeded in 10 mL medium. Virus production was
induced by the addition of 100 nM phorbol-12-myristate-13-acetate. The cells were incubated for 48 h,
and the HIV-1-containing medium was collected. The amount of HIV-1 was estimated by measuring
the concentration of HIV-1 p24 in the medium using anti-p24-ELISA, which was developed in-house.
Recombinant purified p24 protein was used as a reference. Cell culture-derived infectious HCV
(HCVcc) was produced as described before [10]. Briefly, Huh-7.5 cells transiently transfected with HCV
RNA transcripts of a cell culture-adapted JFH1 genome expressing NS5A-GFP fusion protein (JFH1_5
A/5B_GFP). HCVcc containing medium was collected at 4 days post-transfection. Viral supernatant
was clarified by filtration using a syringe filter with a 0.2 µm pore size (Millipore, Bedford, MA, USA).
All virus stocks were stored at −80 ◦C.

2.4. Neutralization Assay

Approximately 4 × 104 Vero-E6 cells were seeded per well in 96-well plates. The cells were grown
for 24 h in DMEM supplemented with 10% FBS and Pen-Strep. Serum sample was prepared in 3-fold
dilutions at 7 different concentrations, starting from 40 µg/mL in the virus growth medium (VGM)
containing 0.2% BSA and Pen–Strep in DMEM. Virus hCoV-19/Norway/Trondheim-S15/2020 was
added to achieve a multiplicity of infection (moi) of 0.1 and incubated for 1h at 37 ◦C. 0.1% DMSO
was added to the control wells. The Vero-E6 cells were overplayed with VGM containing mixture of
the virus and convalescent serum. After 72 h the medium was removed, and a CellTiter-Glo assay
(Promega, Oslo, Norway) was performed to measure cell viability.

2.5. Drug Test

Approximately 4× 104 Vero-E6, A549, or RPE cells were seeded per well in 96-well plates. The cells
were grown for 24 h in DMEM or DMEM-F12 supplemented with 10% FBS and Pen–Strep. The medium
was replaced with DMEM or DMEM-F12 containing 0.2% BSA and Pen–Strep. The compounds were
added to the cells in 3-fold dilutions at 7 different concentrations, starting from 30 µM. No compounds
were added to the control wells. The cells were mock- or virus-infected at a moi of 0.1. After 24 (EV1)
or 72 (SARS-CoV-2) h of infection, the medium was removed from the cells, and a CellTiter-Glo assay
was performed to measure cell viability.

The half-maximal cytotoxic concentration (CC50) for each compound was calculated based on
viability/death curves obtained on mock-infected cells after nonlinear regression analysis with a
variable slope using GraphPad Prism software version 7.0a (GraphPad Software, San Diego, CA,
USA). The half-maximal effective concentrations (EC50) were calculated based on the analysis of the
viability of infected cells by fitting drug dose–response curves using the four-parameter (4PL) logistic
function f (x):

f (x) = Amin +
Amax −Amin

1 + ( x
m )λ

, (1)

where f (x) is a response value at dose x, Amin and Amax are the upper and lower asymptotes (minimal
and maximal drug effects), m is the dose that produces the half-maximal effect (EC50 or CC50), and λ is
the steepness (slope) of the curve. The relative effectiveness of the drug was defined as the selectivity
index (SI = CC50/EC50).

2.6. Virus Quantification

For testing the production of infectious virions, we titered the viruses as described in our previous
studies [11–13]. In summary, media from the viral culture were serially diluted from 10−2 to 10−7

in serum-free media containing 0.2% BSA. The dilutions were applied to a monolayer of Vero-E6
(for SARS-CoV-2) or A549 (for EV1) cells in 24-well plates. After one hour, cells were overlaid with
virus growth medium containing 1% carboxymethyl cellulose and incubated for 72 (for SARS-CoV-2)
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or 48 h (for EV1). The cells were fixed and stained with crystal violet dye, and the plaques were
calculated in each well and expressed as plaque-forming units per mL (pfu/mL).

2.7. Drug Combination Test and Synergy Calculations

Vero-E6 cells were treated with different concentrations of two drugs and infected with SARS-CoV-2
(moi 0.1) or mock. After 72 h, cell viability was measured using CellTiter-Glo. A549 cells were treated
with different concentrations of two drugs and infected with EV1 (moi 0.1) or mock. After 24 h,
cell viability was measured using CellTiter-Glo. TZM-bl cells were treated with different concentrations
of two drugs and infected with HIV-1 (corresponding to 300 ng/mL of HIV-1 p24) or mock. After 48 h
post infection (hpi), the media was removed from the cells, the cells were lysed, and firefly luciferase
activity was measured using the luciferase assay system (Promega, Madison, WI, USA). In a parallel
experiment, cell viability was measured using CellTiter-Glo. We also examined toxicity and antiviral
activity of drug combinations using GFP-expressing HCV in Huh-7.5 cells by following previously
described procedures [10].

To test whether the drug combinations act synergistically, the observed responses were compared
with expected combination responses. The expected responses were calculated based on the ZIP
reference model using SynergyFinder version 2 [14,15]. We quantified synergy scores, which represent
the average excess response due to drug interactions (i.e., 10% of cell survival beyond the expected
additivity between single drugs has a synergy score of 5).

2.8. Gene Expression Analysis

A549 cells were treated with 10 µM vemurafenib or vehicle at indicated concentrations. Cells were
infected with EV1 at moi 0.1 or mock. After 8 h, total RNA was isolated using RNeasy Plus Mini kit
(Qiagen, Hilden, Germany). Gene expression profiling was done using Human HT-12 v4 Expression
BeadChip Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s recommendation as
described previously [5]. Raw microarray data were normalized using the BeadArray and Limma
packages from Bioconductor suite for R [16]. Normalized data were further processed using variance
and intensity filter. Genes differentially expressed between samples and controls were determined
using the Limma package. Benjamini–Hocberg multiple correction testing method was used to
filter out differentially expressed genes based on a q-value threshold (q < 0.05). Filtered data were
sorted by logarithmic fold change (log2FC). Heatmap was generated using an in-house developed
interface, Breeze [17]. Gene set enrichment analysis was performed using open-source software
(www.broadinstitute.org/gsea).

2.9. Cytokine Profiling

The medium from EV1- or mock-infected, non- or drug-treated A549-cells was collected at
24 hpi and clarified by centrifugation for 5 min at 14,000 rpm. Cytokines were analyzed using
Proteome Profiler Human Cytokine Array Kit (R&D Systems, Abingdon, UK) according to the
manufacturer’s instructions.

2.10. Metabolic Analysis

Metabolomics analysis was performed as described previously [5]. Briefly, 10 µL of labeled
internal standard mixture was added to 100 µL of the sample (cell culture media). Next, 0.4 mL
of solvent (99% ACN and 1% FA) was added to each sample. The insoluble fraction was removed
by centrifugation (14,000 rpm, 15 min, 4 ◦C). The extracts were dispensed in OstroTM 96-well plate
(Waters Corporation, Milford, MA, USA) and filtered by applying vacuum at a delta pressure of
300–400 mbar for 2.5 min on Hamilton StarLine robot’s vacuum station. The clean extract was collected
to a 96-well collection plate, placed under the OstroTM plate. The collection plate was sealed and
centrifuged for 15 min, 4000 rpm, 4 ◦C, and placed in autosampler of the liquid chromatography
system for the injection.

www.broadinstitute.org/gsea
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Sample analysis was performed on an Acquity UPLC-MS/MS system (Waters Corporation,
Milford, MA, USA). The autosampler was used to perform partial loop with needle overfill injections
for the samples and standards. The detection system, a Xevo TQ-S tandem triple quadrupole mass
spectrometer (Waters, Milford, MA, USA), was operated in both positive and negative polarities
with a polarity switching time of 20 ms. Electrospray ionization (ESI) was chosen as the ionization
mode with a capillary voltage at 0.6 KV in both polarities. The source temperature and desolvation
temperature of 120 ◦C and 650 ◦C, respectively, were maintained constant throughout the experiment.
Declustering potential (DP) and collision energy (CE) were optimized for each compound. Multiple
reaction monitoring (MRM) acquisition mode was selected for quantification of metabolites with
individual span time of 0.1 s given in their individual MRM channels. The dwell time was calculated
automatically by the software based on the region of the retention time window, number of MRM
functions and also depending on the number of data points required to form the peak. MassLynx 4.1
software was used for data acquisition, data handling, and instrument control (Agilent, Santa Clara,
CA, USA).

Data processing was done using TargetLynx software (Agilent, Santa Clara, CA, USA),
and metabolites were quantified by calculating curve area ratio using labeled internal standards
(IS) (area of metabolites/area of IS) and external calibration curves. Metabolomics data were log2

transformed for linear modeling and empirical-Bayes-moderated t-tests using the LIMMA package
(https://bioconductor.org/packages/release/bioc/html/limma.html). To analyze the differences in
metabolite levels, a linear model was fit for each metabolite. The Benjamini–Hochberg method was used
to correct for multiple testing. The significant metabolites were determined at a Benjamini–Hochberg
false discovery rate (FDR) controlled at 10%. The heatmap was generated using the pheatmap package
(https://cran.rproject.org/web/packages/pheatmap/index.html) based on log-transformed profiling data.
MataboAnalyst 3.0 was used to identify pathways related to EV1 infection (www.msea.ca). In this
pathway analysis tool, the pathway data are derived from KEGG database (www.genome.jp/kegg/).

2.11. Website Development

The current landscape of the available and emerging antiviral drug combinations was reviewed
and summarized in a database that can be freely accessed at https://antiviralcombi.info. The information
for the database was obtained from PubMed, clinicaltrials.gov, DrugBank, DrugCentral, the Chinese
Clinical Trials Register (ChiCTR), and EU Clinical Trials Register databases [11,18,19], as well as other
public sources. To extend the coverage of our database, we manually review each article to extract raw
drug combination data, where available. The website was developed with PHP v7 technology using
D3.js v5 (https://d3js.org/) for visualization.

3. Results

3.1. Novel Anti-SARS-CoV-2 Combinations

Currently, there is still no potently effective antiviral treatment against SARS-CoV-2. However,
our previous experiments have uncovered synergism between orally available nelfinavir and several
other drugs against SARS-CoV-2 in Vero-E6 cells [7]. Nelfinavir is an approved antiviral developed for
use in the treatment of HIV infection, and its safety profile in humans is already understood. Nelfinavir
was also shown to target the SARS-CoV-2 protease [7]. Moreover, nelfinavir has been successfully used
to treat COVID-19 in several patients (https://www.researchsquare.com/article/rs-27346/v1).

We have also shown that serum samples from patients recovered from SARS-CoV-2 infections
could neutralize the virus and prevent virus-mediated cell death [7]. The FDA has granted emergency
use authorization for convalescent serum therapy for the treatment of COVID-19, and a recent safety
study has found that its use is generally safe in patients [20].

Here, we tested nelfinavir in combination with a convalescent serum sample from a recovered
patient (G614) [16]. We observed that nelfinavir and G614 serum displayed antiviral synergism

https://bioconductor.org/packages/release/bioc/html/limma.html
https://cran.rproject.org/web/packages/pheatmap/index.html
www.msea.ca
www.genome.jp/kegg/
https://antiviralcombi.info
https://d3js.org/
https://www.researchsquare.com/article/rs-27346/v1
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without detectable toxicity in human lung epithelial Calu-3 cells (synergy score: 13; Figure 2A).
Moreover, at selected concentrations nelfinavir combinations with convalescent serum G614 reduced
the SARS-CoV-2 production by >2 logs in comparison to nelfinavir alone (Figure 2E)
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Figure 2. Combinations of nelfinavir with convalescent serum, neutralizing antibody,
EIDD-2801, or remdesivir rescue Calu-3 cells from severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)-mediated death and inhibit virus replication. (A) The interaction landscapes of one of the
combinations measured using a CTG assay on SARS-CoV-2- and mock-infected cells. (B) The interaction
landscape showing selectivity and synergy of the drug combination. (C) Synergy scores were calculated
for efficacy (SARS-CoV-2-infected) and selectivity (SARS-CoV-2-infected–Mock-infected) dose-response
matrices for drug combinations. (D) The effects of 1 µM nelfinavir plus 0.1% DMSO, 2 mg/mL G614,
1 µM EIDD-2801, 1 µM remdesivir or 2 ng/mL 23G7 antibody on viral replication measured by plaque
reduction assay.

Next, we obtained PBMCs from convalescent patients and identified their serological responses to
SARS-CoV-2 antigens. We cloned antibodies using proprietary HybriFree technology [21]. We identified
a panel of antibodies that bind the viral S-protein, including the 23G7 antibody, which can neutralize
SARS-CoV-2 infection at nanomolar concentrations (Figure S1). When this antibody was administered
to Calu-3 cells in combination with nelfinavir, we observed that the combination was synergistic and
had no detectable toxicity (synergy score: 24; Figure 1).

Cycloheximide, cepharanthine, EIDD-2801, and remdesivir have been reported recently to possess
anti-SARS-CoV-2 activity [22–24]. We confirmed their anti-SARS-CoV-2 activities on Vero-E6 cells
(Figure S2). We tested combinations of cycloheximide, cepharanthine, EIDD-2801 and remdesivir
with nelfinavir in Calu-3 cells. We observed that only nelfinavir plus EIDD-2801 or remdesivir
were synergistic at non-cytotoxic concentrations (synergy scores: 14 and 6; Figure 2B–D). Moreover,
at selected concentrations, nelfinavir with EIDD-2801 or remdesivir reduced SARS-CoV-2 production
by >2 logs in comparison to nelfinavir alone (Figure 2E). Thus, the nelfinavir-convalescent serum G614,
nelfinavir-23G7, nelfinavir-EIDD-2801, and nelfinavir-remdesivir combinations could result in better
efficacy and decreased toxicity for the treatment of SARS-CoV-2 than drugs alone.
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3.2. Novel Anti-EV1 Combinations

EV1 belongs to the genus Enteroviruses. Enteroviral infections affect humans worldwide by
causing the common cold, hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis,
and poliomyelitis. Enteroviruses are also associated with chronic diseases such as type I diabetes,
asthma, and allergies. Enteroviruses are non-enveloped viruses that belong to the family of Picornaviridae.
They include 12 species, enterovirus A–H, and J and rhinovirus A–C.

There are no approved therapies to treat enterovirus infections. In order to identify antiviral drug
candidates, we screened the FIMM oncology drug collection (527 drugs) against EV1 in human cancer
lung epithelial A549 and retinal pigment epithelial RPE cells using cell viability assay as readout.
We identified vemurafenib as an inhibitor of EV1 replication. Vemurafenib (marketed as Zelboraf) is
an FDA-approved inhibitor of the cellular B-Raf enzyme for the treatment of late-stage melanoma.
Vemurafenib interrupts the B-Raf/MEK/ERK pathway, only if the B-Raf has V600E mutation [25].
A549 and RPE are non-BRAF mutated cells indicating that it does not target BRAF. Importantly, our
studies show that vemurafenib inhibits EV1, but not EV6 (structural identity—88%, similarity—93%)
in A549 cells, indicating that it could target viral protein as well (Figure S3A).

Next, we studied the effect of vemurafenib on the metabolism of EV1- and mock-infected A549
cells. We analyzed 111 polar metabolites in cell culture supernatants at 24 hpi. We quantified 90
metabolites. EV1 infection affected the levels of adenine, adenosine, hypoxanthine, glutathione, NAD,
AMP, guanosine, and sucrose. Vemurafenib had some effect on the levels of these metabolites in both
EV1- and mock-infected A549 cells (Figure S3B).

We also evaluated the effect of vemurafenib on transcription in EV-1 and mock-infected A549
cells. Cells were treated with 10 µM vemurafenib or DMSO and infected with EV1 or mock.
After 8 h, we analyzed the expression of cellular genes using RNA microarray. We found that
vemurafenib deregulated transcription of several genes in EV1- and mock-infected cells (Figure S3C).
Interestingly, gene set enrichment analysis (GSEA) revealed that vemurafenib affected transcription of
17 cellular genes belonging to GO_RESPONSE_TO_OXYGEN_CONTAINING_COMPOMPOUND
and GO_RESPONSE_TO_ENDOGENOUS_STIMULUS gene sets (p-value 9.95 e-15 and 1.24 e-14;
FDR q-value 9.45 e-11 and 9.45 e-11). These results indicate that vemurafenib could also target cellular
factor(s) involved in the transcription of antiviral genes.

In addition, we evaluated the effect of vemurafenib on the production of cytokines and growth
factors in EV1-infected and non-infected cells. After 24 h, medium from EV1- or mock-infected, DMSO-
or drug-treated A549 cells was collected and clarified by centrifugation. Cytokines were analyzed
using proteome profiler human cytokine array kit. Figure S3D shows that EV1 replication suppressed
secretion of CXCL-1, PDF-AA, CCL2, IL8, Angiogenin, IGFBP-2, and VEGF and activated production
of FGF-2, whereas vemurafenib treatment reversed this virus-mediated effect.

Next, we examined whether combinations of vemurafenib with known inhibitors of EV1 infection
emetine, homoharringtonine, obatoclax, gemcitabine, or dalbavancin [18] can protect cells from
virus-mediated death better than vemurafenib alone. Virus- and mock-infected A549 cells were
treated with an increasing concentration of vemurafenib and increasing concentrations of two drugs.
After 24 h, cell viability was measured. We calculated the synergy scores as well as selectivity for
each drug combinations considering their toxicity. Figure 3A,B shows that vemurafenib plus emetine,
homoharringtonine, gemcitabine, or obatoclax were synergistic (synergy score > 5). However, at selected
concentrations, only two combinations (vemurafenib plus emetine or homoharringtonine) reduced the
EV1 production by >2 logs in comparison to vemurafenib alone (Figure 3C).
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Figure 3. Combinations of vemurafenib with other antiviral agents rescue A549 cells from echovirus
1 (EV1)-mediated death and inhibit virus replication. (A) The interaction landscapes of one of the
drug combinations measured using a CTG assay on EV1- and mock-infected cells. (B) The interaction
landscape showing selectivity and synergy of the drug combination. (C) Synergy scores were calculated
for efficacy (EV1-infected) and selectivity (EV1-infected–Mock) dose-response matrices for drug
combinations. (D) The effects of 5 µM vemurafenib plus 0.1% DMSO, 0.2 µM emetine, 0.2 µM
homoharringtonine, 0.2 µM obatoclax, 1 µL gemcitabine, 0,1 µL anisomycin and 1 µL cycloheximide
on viral replication measured by plaque reduction assay.

We also identified two novel agents, anisomycin and cycloheximide, which inhibited EV1 infection
in A549 cells (Figure S4). We tested combinations of vemurafenib with these novel inhibitors of EV1
infection. Vemurafenib plus anisomycin or cycloheximide were synergistic (synergy score > five) and
reduced the EV1 production by >2 logs in comparison to vemurafenib alone (Figure 3C). From these
results, we concluded that the addition of emetine, homoharringtonine, anisomycin or cycloheximide
could decrease the effective dose of vemurafenib against EV1 infection in vitro.

3.3. Novel Anti-HCV Combinations

Through completion of a literature review, we identified several drugs that could be combined
to inhibit HCV infection in vitro [4,11,19]. We tested combinations of sofosbuvir with brequinar,
emetine, homoharringtonine, and niclosamide using GFP-expressing HCV in infected Huh-7.5
cells [11]. Eight different concentrations of the compounds alone or in combinations were added to
virus- or mock-infected cells. HCV-mediated GFP expression and cell viability were measured
after 48 h post-infection to determine compound efficiency and toxicity. We identified two
drug combinations, which lowered GFP-expression without detectable cytotoxicity at indicated
concentrations: sofosbuvir-brequinar and sofosbuvir-niclosamide, with synergy scores of 24 and five,
respectively (Figure 4).
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3.4. Novel Drug Combinations against HIV-1 Infections

Through the literature review, we identified several drugs that could be combined to inhibit HIV-1
infection in vitro [4,18,19]. We tested combinations of lamivudine with brequinar, suramin, ezetimibe,
minocycline, rapamycin, and monensin, as well as combinations of tenofovir with the same drugs
against HIV-1-mediated firefly luciferase expression in TZM-bl cells. The firefly luciferase open reading
frame is integrated into the genome of TZM-bl cells under the HIV-1 LTR promoter. Six different
concentrations of the compounds alone or in combinations were added to virus- or mock-infected
cells. HIV-induced luciferase expression and cell viability were measured after 48 h to determine
compound efficiency and toxicity. Our screen identified two combinations (lamivudine–monensin and
tenofovir–monensin) that suppressed HIV-1-mediated firefly luciferase expression without detectable
cytotoxicity with synergy scores of 5.2 and 5.9, respectively (Figure 5).
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Figure 5. Combinations of monensin with lamivudine or tenofovir inhibit human immunodeficiency
virus 1 (HIV-1)-mediated luciferase expression in TZM-bl cells. (A,C) The interaction drug combination
landscapes measured as 6 × 6 dose-response matrices using an HIV-1 virus and reporter cell line
expressing luciferase. (B,D) The interaction drug combination landscapes measured using and CTG
assay on mock-infected cells.

3.5. Drug Combination Database

Thus far, research on drug synergy is often disjointed, and there has yet to be a centralized
system for aggregating and summarizing synergistic, additive, and antagonistic interactions between
antiviral drugs. In response to this, we have developed a freely accessible database summarizing
antiviral drug combinations and their developmental status. The website is updated regularly and
incorporates novel combinations as they emerge or change the statuses of existing ones as updates
occur. The database comprises 985 antiviral drug combinations (Figure 6A), including two- and
three-drug cocktails. It covers 612 unique drugs and 68 different viruses (Figure 6B).

To extend the coverage of our database, we manually reviewed each article for raw drug
combination data that were available. We calculated synergy scores (ZIP, Bliss, Loewe, and HSA) for
these. This allowed us to filter drug-pairs to select the most synergistic combinations for selected
viruses and interactively investigate their raw combination data (Figure 6C). The website also includes
search, filtering, graphical visualization, and download modules.
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clomiphene drug combination.

4. Discussion

Although the use of drug cocktails is not new, many patients and doctors still rely on monotherapies
to fight viral infections [3]. Much of this is due to incomplete knowledge of drug interactions. Here,
we have reported several novel combinations that show synergism and have better efficacy than single
drug therapies in vitro.

In particular, we report novel anti-SARS-CoV-2 activities of nelfinavir in combination with
convalescent serum or purified neutralizing 23G7 antibodies. We have also uncovered synergism
between nelfinavir and orally administered investigational EIDD-2801 or intravenously administered
approved-remdesivir [26,27]. Because convalescent serum and remdesivir has already been approved
for the treatment of SARS-CoV-2 infection, we strongly urge further investigation into the combinations
of these agents with nelfinavir. Moreover, due to the promising antiviral and neutralizing activity of
EIDD-2801 or 23G7, respectively, we believe that further research on their combinations with nelfinavir
is warranted.

We also identified six novel synergistic antiviral combinations with orally available anticancer
vemurafenib, which successfully inhibited EV1 infection in vitro. Of six combinations, we uncovered
four which stood out by inhibiting EV1 replication by over two orders of magnitude more than
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inhibition by vemurafenib alone. We recommend further development of vemurafenib combinations
with anisomycin, homoharringtonine or emetine as anti-EV1 therapeutics.

Combination therapies are already widely used in the treatment of HCV and HIV. Our studies
have identified four novel synergistic drug combinations against HCV and HIV. In the case of
HCV, we combined sofosbuvir (an FDA-approved anti-HCV drug) with brequinar (an investigational
anti-cancer agent) and niclosamide (an approved anthelminthic agent). In the case of HIV, we combined
monensin (a veterinary antibiotic) with lamivudine and tenofovir (both approved anti-HIV agents).
These combinations boosted the antiviral activity of each of the drugs.

Our study suggests that synergy is often achieved when a virus-directed drug is combined with
another virus- or host-directed drug (Figure 7). This observation is in agreement with our previous
studies. We propose that this schema can be used to direct the discovery of new antiviral drug
combinations, although further studies are warranted to find the molecular mechanisms responsible
for this synergism pattern. It is also important to note that there is a relatively poor understanding of
the mechanisms that lead to synergistic interactions between the drugs. A synergy assessment that
is usually performed in a mechanism-unbiased way can help to uncover the potentially synergistic
combinations even without knowing their mechanisms of actions. Therefore, our drug combinations
should be further studied to explain the mechanism of synergy and validated in vivo model systems.
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To underscore the potential benefits and provide an organized summary of all currently known
synergistic antiviral drug combinations, we constructed a web resource that can be accessed at
https://antiviralcombi.info. We hope that the synergism data can be directed to further investigate the
most promising and to develop the most effective antiviral combinations.

5. Conclusions

Here, we identified novel and reviewed known synergistic combinations against emerging and
re-emerging viral infections. Our next goal is to complete preclinical studies with the most effective and
tolerable combinations and translate our findings into trials in patients. These combinations may have a
global impact, improving the protection of the general population from emerging and re-emerging viral
infections or co-infections and allowing the swift management of drug-resistant strains. Our bigger
ambition is to find algorithms for the prediction of novel antiviral drug combinations. This can be
used as a means for the faster and cheaper identification of safe and effective antiviral options.

Supplementary Materials: The following information is available online at http://www.mdpi.com/1999-4915/12/
10/1178/s1, Table S1: Compounds, their suppliers, and catalogue numbers. Figure S1. The effect of recombinant
antibodies from patients recovered from COVID-19 on virus-mediated death of Vero-E6 cells. Figure S2. Remdesivir,
EIDD-2801, cycloheximide, and cepharanthine prevent the virus-mediated death of Vero-E6 cells. Figure S3.
Vemurafenib is a novel inhibitor of EV1 replication. Figure S4. Anisomycin and cycloheximide prevent the
EV1-mediated death of Vero-E6 cells.

Author Contributions: All authors contributed to the methodology, software, validation, formal analysis,
investigation, resources, data curation, writing, and review and editing of the manuscript. D.K. conceptualized,
supervised, and administrated the study and acquired funding. All authors have read and agreed to the published
version of the manuscript.
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