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Abstract 

Long-term extreme load effects are one of the primary concerns in the design of civil and offshore 
structures. Such load effects can be evaluated using the accurate but computationally demanding full 
long-term method or the more efficient but approximate first-order and second-order reliability 
methods. Monte Carlo based methods enhanced with machine learning algorithms offer efficient 
alternatives to the traditional methods. Therefore, artificial neural networks and support vector 
machines along with Monte Carlo simulations are employed here in the prediction of long-term extreme 
load effects. A three-span suspension bridge with two floating pylons under combined wind and wave 
actions is used as a case study. The cumulative density functions of the long-term extreme values 
corresponding to a bending moment value due to vertical deflections at the critical position of the girder 
are calculated. It is then shown that the artificial neural network and support vector machine-based 
approaches require less computational effort and yield more accurate results than the first- and second-
order reliability methods. 

Keywords: artificial neural networks, support vector machines, first-order reliability method, second-
order reliability method, long-term extreme load effects. 

Nomenclature   

Environmental parameters Artificial nueral network 

V mean wind velocity w weight parameters 

Iu, Iw horizontal and vertical turbulence 
intensity 

b 

α0, β0 

bias parameters 

objective function parameters 

Hs, Tp 
significant wave height and peak wave 
period 

ED 

Ew 

sum of the squared errors 

sum of the squares of the network weights 

Reliability analysis methods N, r actual and effective number of weight and 
bias parameters 

g limit state function Support vector machine 

Xd 
extreme load effect in a short-term 
period with duration d 

γ kernel parameter 

C penalty parameter 



Xcrit a specified critical load effect 
Operation symbol 

s a vector of environmental parameters 

u standard normal random variables Ф CDF of a standard normal distribution 

β reliability index ‖ · ‖‖‖ the norm of a vector 

Tlong,Tshort long- and short-term periods ∇(∙) gradient of a function 

Фu joint PDF of u det(·) determinant of a matrix 

Abbreviations   

ANN artificial neural networks PDF probability density function  

CDF cumulative distribution function RMSE root mean square error 

FLM full long-term method SORM second order reliability method 

FORM first order reliability method SVM support vector machines 

MPP  most probable point MCS      Monte Carlo simulations 

 

1 Introduction 

The probability distribution of long-term extreme load effects is desired in the design of civil and 
offshore structures. In principle, the full long-term method (FLM), is an integration of short-term 
response statistics (e.g., distributions of all peaks, distributions of extreme values, or the mean 
upcrossing rate) over all possible environmental conditions and represents the most accurate approach. 
However, the FLM does not represent the most economical approach from a computational perspective 
because it must account for contributions from all possible short-term environmental conditions.  

The long-term extreme load effects of structures can also be calculated using approximate reliability 
methods such as FORM and SORM (Rackwitz and Flessler, 1978; Zhao and Ono, 1999). In such 
methods, the point on the limit-state surface with the highest probability of occurrence (the so-called 
design point or the MPP) is sought after. Then, the limit state surface is approximated at the MPP by a 
linear surface in FORM, whereas it is replaced by its quadratic Taylor expansion in the case of SORM 
(Breitung, 1984; Der Kiureghian and De Stefano, 1991), making it more accurate if the failure surface 
is nonlinear. Ultimately, the performance of both methods hinges on the estimation of the MPP. To that 
end, several strategies has been developed over the years to search for it. Liu and Der Kiureghian (1991) 
compared several optimization algorithms to search for the MPP and found that the Hasofer-Lind and 
Rackwitz-Fiessler (HL-RF) method (Hasofer and Lind, 1974; Rackwitz and Flessler, 1978) and the 
modified HL-RF method outperformed others for the examples presented in their study. Later, Zhang 
and Kiureghian (1995) introduced an improved HL-RF method that showed better performance in terms 
of convergence in several examples (Santos et al., 2012; Zhang and Kiureghian, 1995). 

More recently, machine learning approaches such as artificial neural network (ANN) and support vector 
machine (SVM) algorithms have been employed in structural reliability analysis. Machine learning 
algorithms are generally used to replace the implicit limit state function by a surrogate model. Therefore, 
they can be combined with both FORM, SORM and Monte Carlo methods. Several studies successfully 
used ANN-based MCS (Cardoso et al., 2008; Papadrakakis et al., 1996) in their reliability analyses, 
where others compared the results from ANN-based MCS and ANN-based FORM. On the other hand, 
several studies used SVM, either in connection with MCS (Hurtado, 2004; Rocco and Moreno, 2002) 
or FORM (Li et al., 2006; Zhao, 2008). The results showed remarkable accuracy and efficiency for the 



basic examples presented. Although machine learning methods are shown to be applicable in FORM 
and SORM, their full potential is realized in Monte Carlo methods, where the computational effort is 
reduced significantly, and the accuracy is not compromised due to approximations of the limit state 
function.  

ANNs can replace the implicit limit state function in the reliability problem, therefore avoiding time 
consuming simulations. An ANN consists of an input layer, hidden layer, and output layer that are 
connected by weights and bias parameters. The training of the network is then to find the optimum 
combination of these parameters to minimize the difference between the outputs and the corresponding 
target values. The feed-forward back-propagation (BP) network (Rumelhart et al., 1986; Vogl et al., 
1988) is one of the most commonly used types. The direct way to solve this problem is through the 
widely used gradient descent, conjugate gradient (Charalambous, 1992) or quasi-Newton algorithms. 
The Levenberg-Marquardt (Hagan and Menhaj, 1994) algorithm that is based on the Newton-Raphson 
or Gauss-Newton methods shows a more robust and stable performance when employed in training 
neural networks. The Bayesian regulation method was introduced to neural network training by 
MacKay (1992a, 1992b) and adds the sum of the squared network parameters to the objective function 
in addition to the errors between the outputs and the targets. This approach has been shown to have 
good performance in controlling the so-called overfitting problem (Hirschen and Schäfer, 2006; Liang, 
2005; Titterington, 2004). 

SVM, which is essentially another powerful machine learning tool for data classification type of 
problems, can also be conveniently implemented into reliability analyses, if failure and safety are 
defined as two classes. The algorithm is based on the principle of structural risk minimization (Hurtado, 
2004; Li et al., 2006; Pan and Dias, 2017) and usually requires a small amount of training data, which 
makes it computationally efficient (Pan and Dias, 2017).  

Although ANN and SVM have been applied in some engineering-relevant reliability problems, most 
prior research has focused on the evaluation of performance and efficiency of the machine learning 
methods by applying them to simple benchmark examples. However, the applicability of such machine 
learning approaches to the prediction of the probability of long-term extreme load effects of complex 
structures is yet to be investigated. 

In this paper, a new machine learning based Monte Carlo (MC) framework is developed to predict the 
cumulative distribution function (CDF) of the long-term extreme response of a floating suspension 
bridge under wind and wave actions. By replacing the implicit limit state function with surrogate models 
based on ANN and SVM, the efficiency of the MC method is increased significantly. In training of the 
algorithms, a strategy is devised to increase the accuracy of the models in the vicinity of the design 
point. The probability values and limit state surfaces obtained by ANN-based and SVM-based MC 
methods are then compared with the exact solutions obtained by the full long-term method and more 
efficient but approximate FORM and SORM. In the particular case study of the suspension bridge with 
floating pylons, which is characterized by a strongly nonlinear limit state function, FORM and SORM 
showed poor performance in estimation of the limit state surface and consequently the CDF of the long-
term extreme response, whereas the ANN and SVM enhanced MC schemes showed great potential with 
respect to both computational efficiency and accuracy. 

2 The floating suspension bridge concept 

Figure 1 shows the model view of a three-span suspension bridge with two floating pylons proposed as 
a solution for crossing wide and deep fjords in Norway. The main cables are supported by two fixed 
pylons at each end of the bridge and two floating pylons in the middle of the bridge. The bottom part 
of the floating pylon is similar to tension leg platforms moored by four groups of tethers, providing a 
high stiffness in heave, pitch, and roll. Each of the main girder spans has a length of 1385 m, and the 
pylons are 198 m high and have a draft of 65 m. The water depth is 550 m and 450 m at the left and 



right floating pylons, respectively. A comprehensive finite element model of the bridge, as displayed in 
Figure 1, is used in the dynamic analysis. The girder, main cable, tethers, hangers, and pylons are 
modeled using beam elements. More details about the finite element model of the bridge are presented 
in Gong and Halden (2016). 

 

Figure 1 Finite element model of the three-span suspension bridge with two floating pylons 

 

3 Prediction of the long-term extreme load effects 

3.1 Long-term description of the wind and wave fields 

In prediction of the long-term extreme load effects of complex structures, a long-term description of the 
environmental conditions is needed. The long-term condition can be considered as a sequence of 
stationary short-term (1 hour) conditions characterized by the Hs, Tp and V. Here, due to lack of usable 
site measurements, a scaled dataset from the North Sea is used, where the wave height and the period 
are divided by 2.5 and 2.5 , respectively to match the preliminary surveys at the site, where the mean 
wind velocity is kept as it is (Li et al., 2015).  The marginal distribution of the mean wind velocity V 
and the conditional distribution of significant wave height Hs given the mean wind velocity are 
presented using a two-parameter Weibull distribution model. Moreover, the conditional distribution of 
peak wave period Tp given both the mean wind velocity and the significant wave height is fitted to a 
lognormal distribution. The wind and waves are assumed to be colinear and perpendicular to the bridge 
axis. Table 1 lists the assumed parameters (Johannessen et al., 2002; Li et al., 2015) and the expressions 
of for the probability distributions of environmental parameters are given below:  
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Table 1 Parameters for the marginal distribution of V and the conditional distributions of Hs and Tp 

Vα  Vβ  θ  γ  1a  2a  3a  1b  2b  3b  
2.209 9.409 -0.255 1.0 2.136 0.013 1.709 1.816 0.024 1.787 

1e  2e  3e  1f  2f  3f  1k  2k  3k  
8.0 1.938 0.486 2.5 3.001 0.745 -0.001 0.316 -0.145 

3.2 Wind- and wave-induced responses 

In calculation of the response of the suspension bridge with floating pylons, namely the section bending 
moments along the girder, combined wind and wave actions are considered. The wind actions consist 
of a time-invariant component due to the mean wind velocity, a stationary dynamic component due to 
turbulence and self-excited forces induced by the motion of the girder. The wave actions include the 
radiation force generated by the motion of the submerged part of the pylons and the first-order wave 
excitation force. The second-order excitation force, viscous drag damping forces on the pylons and the 
tethers and possible excitations due to vortex shedding are out of the scope of this study. Furthermore, 
the nonlinear buffeting forces are disregarded due to its negligible contribution to the overall response 
(Xu et al., 2018a) and nonlinear aerodynamics are not modeled owing to the linear nature of the bridge 
section that is used. The equation of motion is solved by multi-mode frequency domain method (Xu et 
al., 2018a). The standard deviation of the bending moment due to vertical deflection at the critical 
position of the girder (with the maximum bending moment) under various combinations of wind 
velocity, wave height, and peak period are shown in Figure 2. As expected, the sea states with greater 
significant wave height induce larger wave excitation forces and correspondingly larger section 
moments. However, the structural response is not necessarily larger with the increasing wind speed 
under large wave heights. This is due to larger aerodynamic damping under stronger winds. In addition, 
the variation in the section moments depends strongly on the wave period. The peaks in the bending 
moment due to vertical deformation are located within the wave period range from 3 s to 8 s, which 
contains several vertical natural modes. Given a specified environmental condition, the conditional CDF 
of the extreme value of the section moment due to vertical deflection in the girder in a short-term period 
can be written as follows (Naess and Moan, 2012): 
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where xσ and xσ


are the standard deviations of the response process and its derivative and (0 | )sxν
+

denotes the mean zero-upcrossing rate.  

 

                                      (a) Tp=8 s                                                         (b) V=20 m/s 

Figure 2 Standard deviation (STD) of the bending moment due to vertical deformation 



3.3 The full long-term method 

As stated earlier, the long-term condition (i.e. 100 years) is a sequence of many short-term intervals (1 
hour), which are characterized by a set of environmental parameters , ,s s pV H T =   . Denoting the 

extreme load effect in a short-term period as dX , the CDF of the extreme load effect in the long-term 
period can be written as  

 |( ) ( | ) ( )S S
s

s s s
d dX XF x F x f d≈ ∫   (5) 

where ( )Sf s  and ( )s s
dXf x  refer to the occurrence probability of a specified environmental condition s 

and the CDF of the extreme response in a short-term period given this environmental condition (Eqn. 
(4)), respectively. It should be noted that the formulation based on the short-term extremes is used here; 
however, formulations based on other response statistics, such as peak values or upcrossing rate can 
also be used (Naess and Moan, 2012). Direct integration of the above expression is called the full long-
term method (FLM). In other words, the FLM is an integration of all possible short-term response 
statistics weighted by their probability of occurrence. The CDF of the long-term extreme response can 
then be obtained using 
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The relation in Eqn. (5) can also be formulated as a structural reliability problem. To that end, 
introducing critX as an arbitrary critical load effect, a limit state function is written in the form (Madsen 
et al., 2006) 

 crit crit( ; ( ), ) ( )s s sd dg X X X X= −   (7) 

The integration then can be rewritten as 
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using the limit state function. Here, crit( )fp X is the probability that the limit state criteria is violated (

crit ( ) 0sdX X− ≤ ), commonly referred to as the probability of failure in structural reliability analysis. 
Notice that this is equivalent to 1- crit( )

dXF X . The expression can be further simplified defining a new 

vector [ ];ω s dX=  as 
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which is the familiar form of the generalized reliability problem. 

3.4 First-order reliability method (FORM) 

Directly solving Eqn. (9) is not efficient; therefore, it is often approximated using FORM. First, the 
variables are transformed into the standard normal space (the so-called u-space), applying the 
Rosenblatt transform (Rosenblatt, 1952). The transformation uses conditional CDFs of the variables in 
a stepwise manner as follows: 
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and it preserves probability so that 

 
crit( ) 0 ( ; ) 0

( ) ( )ω U
ω u

ω ω u u
g g X

f d dφ
≤ <

=∫ ∫   (11) 

where φU  is the joint probability density function of the standard normal random variables. After the 
transformation, the failure probability reads: 
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FORM assumes that the limit state function crit( ; ) 0g X =u  in the u-space can be approximated linearly 
by a first-order Taylor expansion. Prior to this assumption, there is no loss of accuracy. Furthermore, to 
guarantee that the first-order expansion will be as accurate as possible, the Taylor expansion of the limit 
state function is obtained at the MPP which provides the greatest contribution to the failure probability. 
In the u-space, searching for the MPP is equivalent to minimizing the distance from the origin to the 
known failure surface defined by crit( ; ) 0g X =u  (Du, 2005). Therefore, the basic idea of FORM is as 
follows: 

Given critX , find min( )β = u  subject to crit( ; ) 0g X =u  

where   ⋅  stands for the norm of a vector, and β  is the distance from the origin to the MPP. When 
the limit state function is linearly expanded at the MPP in the u-space, the probability of exceeding 

critX  over a short-term period is defined as follows (Haver and Winterstein, 2009): 
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The design point can be obtained using the HL-RF method (Liu and Der Kiureghian, 1991): 
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Here, (g( ))k∇ u  denotes the gradient of the limit state function evaluated at point ku . The design point 
is obtained when Eqn. (14) converges, i.e., 1 1k k k ε+ +− ≤u u u , where ε  is the convergence tolerance.  

The probability of the extreme section bending moment due to vertical deflection of the girder not 
exceeding a bending moment value of 50.4 MNm is calculated using FORM. The moment value is 
taken from Xu et al. (2018), which represents the 100-year load effect. An improved HL-RF method is 
used to obtain the design point, since the iterations oscillate among several conditions without 
convergence when the HL-RF is used. The details of the improved HL-RF method are given in (Liu 
and Der Kiureghian, 1991; Zhang and Kiureghian, 1995). 12 iterations have been performed before 
converging to the point u1=4.23, u2=0.497, u3=-0.281, and u4=1.84, which is very close to the true 



design point (MPP), obtained using the full long-term method (Xu et al., 2018b). Here, u1, u2, u3, and 
u4 are variables in the Gaussian space transformed from the distribution or conditional distribution of 
the mean wind velocity, significant wave height, peak wave period, and short-term extreme responses. 
The results correspond to a mean wind velocity of 28.3 m/s, a significant wave height of 4.61 m, and a 
peak wave period of 8.13 s in the physical space. The failure surface approximated by FORM is plotted 
along with the exact failure surface in Figure 3(a) for the sake of comparison. In the figure, a fixed value 
for u1 coincident with the true design point was assumed for the sake of visualizing the 4-d failure 
surface in a 3-d plot. Clearly, the first-order approximation fails to represent the true failure surface. 
The non-exceedance probability (CDF value) of the long-term extreme bending moment corresponding 
to the bending moment value of 50.42 MNm based on FORM is 0.228 with an error of 39.5% compared 
with the value 0.396 that is obtained from the full long-term method. 

 

 

(a) FORM (b) SORM 
  

Figure 3 Comparison of the failure surface based on FORM and SORM with the exact solution.  (o: 
Failure surface based on FORM; : Exact failure surface; * Design case) 

3.5 Second-order reliability method (SORM) 

SORM approximates the limit state function ( ) 0g =u  in the u-space via a second-order Taylor 
expansion at the MPP. The approximation of the limit state function can be written as follows (Naess 
and Moan, 2012): 

 * * * * * *1( ) ( ) ( ) g( ) ( ) ( )( )
2

 T T
ug g= + − ∇ + − −u u u u u u u H u u u   (15) 

Here, *( )H u  is the Hessian matrix of the limit state function at the MPP with respect to the Gaussian 
variables. The failure probability based on Breitung’s asymptotic approximation can be written as 
follows (Breitung, 1984): 
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The non-exceedence probability of the extreme section bending moment due to vertical deflection of 
the floating suspension bridge girder is also evaluated using SORM. The value of the CDF 
corresponding to the bending moment of 50.4 MNm is found to be 0.441. Compared to the exact value 
of 0.396 from the full long-term method, this yields an error of 10.3%, which is a significant 
improvement compared to FORM. The failure surface approximated using SORM is shown in Figure 
3(b). Although the approximated failure surface is superior to FORM, it still lacks accuracy further 
from the design point. 

3.6 Monte Carlo Method Enhanced with Machine Learning Algorithms 

The probability distribution of the long-term extreme load effects can also be obtained using Monte 
Carlo simulations. In that case, the expression of the CDF can be written as follows (Naess and Moan, 
2012): 
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Where MC
dX  are the Monte Carlo simulated short-term extremes, ( )MC

d critm X X≤  is the number of 
cases where the output is smaller than Xcrit, and Tlong and Tshort are the durations of the long-term and 
short-term periods, which in this case are 100 years and 1 hour, respectively. This framework requires 
many simulations giving the output Xd

MC
 for the set of M randomly generated samples of the 

environmental variables Hs, Tp and V. For each combination of the environmental variables, random 
samples of Xd

MC can be drawn using the conditional distribution given in Eqn. (4), after the standard 
deviation of the load effect and its derivative is calculated in frequency domain. This means an 
exhausting number of calls to the multimode frequency domain routine is necessary, which is time 
consuming. However, if machine learning algorithms such as ANNs or SVMs are trained using a limited 
number of simulations and used instead of the response calculation routine, a significantly more 
efficient framework can be achieved. 

Taking advantage of the equality given in Eqn. (11) and the Rosenblatt transform, the random samples 
can also be generated in the u-space directly, which is desirable due to the its convenience. For a random 
set consisting of independent Gaussian variables u1, u2, u3 and u4 described in (10), the Monte Carlo 
simulated short-term extreme response is written as 

 ( )1
| 4( )sd

MC
d XX F u−= Φ  (18) 

Here, it is noticed that a unique MC
dX is obtained for each random set of u values. However, the 

evaluation of the function ( )1
| |s s

dXF x− needs calculation of the standard deviations of the load effect and 
its derivative for each combination of u1, u2 and u3. This can be avoided by training machine learning 
algorithms that take the random variables u1, u2, u3 and u4 as input and give the corresponding MC

dX as 
output. 

3.6.1 Training cases 

The efficiency and accuracy of the machine learning algorithms are highly dependent on the training 
cases; therefore, they should be selected carefully. Since the location of the design point is unknown 
prior to training of the algorithms, the generated training cases are suggested to cover most of the u-
space. Therefore, u1, u2, and u3 are selected in the ranges [-1, 5], [-2, 5], and [-5, 5], respectively, whereas 
the Gaussian variable u4 is selected in the range [-5, 5]. It should be noted that once u1, u2, and u3 are 
known, Eqn. (18) explicitly defines the relationship between u4 and MC

dX . This means that the response 
prediction routine will be called only for unique combinations of u1, u2, and u3, where many values of 



u4 can be used in training without much computational effort. For the initial training of the network, it 
is desired that the training data is uniformly distributed in the u-space to avoid large errors in the regions 
with less data. Therefore, the u1-u2-u3 parameter space is divided into 5×5×5 equal regions, and one 
training case is generated for each region by assuming that they follow a uniform distribution in the 
region, as presented by the blue circles in Figure 4. The total number of calls to the response prediction 
routine therefore adds up to 5x5x5 = 125. Using 101 values of u4, the size of the training data becomes 
5x5x5x101 = 12625 points, of which 10% is reserved as validation set and the rest is used as the training 
set. 

3.6.2 Artificial neural networks  

Figure 5 shows a feed-forward back-propagation ANN with three layers, i.e., input layer, hidden layer, 
and output layer. The network can have one or more hidden layers depending on the complexity of the 
research problem. One hidden layer is sufficient for the case study in this paper. Each layer contains 
several neurons that are connected by the weight parameters w. A bias parameter b is used to modulate 
the element output.  Typically, the number of neurons in the hidden layer is chosen via trial and error. 
The training of the neural network is basically to update the weight and bias parameters to minimize 
the network errors which are defined as the difference between the output and target values. The 
Bayesian regularization algorithm is employed in in training due to its superiority in avoiding 
overfitting. The algorithm minimizes the combination of squared errors and weights as follows: 

 0 0min    D WE Eβ α+  (19) 

Here, ED is the sum of squared errors and EW is the sum of squares of the network weights. α0 and β0 
denote the objective function parameters representing the emphasis of reducing the weight size or 
minimizing the network errors during the training.  

 

Figure 4  Values of u1, u2, and u3 of the training and test cases (o refers to the training cases, o refers to 
the test cases in ANN, and o represents the test cases in SVM) 



 

Figure 5  Structure of an n-m-1 neural network 

The workflow of the prediction of the long-term extreme load effects using ANNs is illustrated in Figure 
6. Training of the network was performed using the MATLAB toolbox Neural Net Fitting. In the case 
study, the inputs are the Gaussian variables transformed from the distribution or conditional distribution 
of the environmental parameters (such as mean wind velocity, significant wave height and peak wave 
period in this paper) and short-term extreme responses based on the Rosenblatt transform algorithm 
(Rosenblatt, 1952), as represent as u in Eqn. (12). The targets are the values of short-term extreme 
responses which are referred as Xd in Eqn. (7). Each combination of u corresponds to a unique value of 
Xd. By mapping the inputs to the targets in the MATLAB toolbox, the weight and bias parameters 
connecting different layers of the network are obtained. In order to optimize the network, step 3 is 
introduced, which finds the design point (FORM-MPP) using the roughly trained neural network and 
generates several test cases around the design point for re-training the network. Finally, in step 4, the 
re-trained neural network is combined with the Monte Carlo method to predict the probability 
distribution of long-term extreme load effects.  

Although it is not very likely for the problem considered here, it is possible that the reliability problem 
accommodates more than one design point due to a highly nonlinear limit state function in the u-space. 
In such a case, MC simulations will still yield accurate results. However, it is advised that the amount 
of training data is increased, where the step 3 should either be removed or modified to search for 
multiple design points, using the established methods of structural reliability (Der Kiureghian and 
Dakessian, 1998).   



 

Figure 6 The procedure for the application of an ANN in predicting long-term extreme load effects 

3.6.2.1 Determination of the number of neurons  

To an extent, the performance of an ANN is dependent on the number of neurons in the hidden layer 
and the initial values of the weight and bias selected. For the case study considered, the training process 
does not require extensive computational effort. Therefore, a simple trial and error scheme is applied to 
determine the optimal number of neurons in the hidden layer. The number of neurons is then determined 
based on the effective number of parameters r  as well as based on the sum of square errors between 
the outputs and the targets (Dan Foresee and Hagan, 1997). The actual number of weight and bias 
parameters in the neural network is represented by N, whereas the effective number, r, indicates how 
many of the weight and bias parameters are effectively used. If r is very close to N, then there may be 
an insufficient number of neurons or hidden layers. More neurons should be added until r no longer 
increases. Several networks with different numbers of neurons in the hidden layer are trained, and Table 
2 lists the corresponding squared errors and the actual and effective number of the parameters. It is 
observed that the sum of the squared errors always converges as the number of neurons exceeds 40. 
Moreover, the effective number of parameters also remains at approximately 240 and does not increase 
significantly with increasing number of neurons. Therefore, the network with 40 neurons in the hidden 
layer is considered as the optimum choice for this nonlinear problem, given that the simplest possible 
network with no loss of accuracy is sought after. 

Table 2 The sum of the squared errors and the actual and effective number of parameters in the neural 
networks with different numbers of neurons in the hidden layer 



Number of 
neurons 10 20 30 40 50 60 70 

ED 2.07 0.440 7.94•10-2 6.35•10-2 6.51•10-2 6.37•10-2 6.36•10-2 
N 61 121 181 241 301 361 421 
r 56.4 117 173 233 242 244 234.6 

 

3.6.2.2 Selection and updating of the neural networks 

Twenty ANNs with 40 neurons in the hidden layer, each with different initial weight and bias 
parameters are trained using the Bayesian regularization algorithm. The condition at the mean position 
of the MPP predicted by the twenty networks, and another eight conditions at the corners of a cube with 
a center at the MPP and a length of one, is displayed by the red circles in Figure 4. These 9 conditions 
are selected as the first three Gaussian coordinates of the test cases. The average value of u4 is 1.89; 
thus, the fourth coordinate of the inputs is selected in the range [1.39, 2.39] with an interval of 0.1, 
giving 11 values of u4. The root-mean-square error (RMSE) of the predicted short-term extreme values 
of the section moment for the test cases compared to the exact solutions is used as the criterion to judge 
which network has the best performance. The RMSE is defined as follows: 

 (true) (pred) 2

1

1 ( )
n

d d
i

RMSE X X
n =

= −∑  (20) 

Here, (pred)
dX  is the predicted value of the section moment using the trained neural network, and ( )true

dX  
is the target value; n is the number of the test cases. The predicted short-term extreme values of the 
section moment of the 9×11 test cases based on three of the networks are compared with the true results, 
as shown in Figure 7. The trial-and-error scheme is used to identify the network with optimal initial 
parameters, i.e. giving the least error (RMSE). The third network shown in Figure 7 introduces the 
minimal RMSE and is selected to predict the distribution of the long-term extreme values of the section 
moment due to vertical deflections. At the end of the training, the total number of structural analyses 
that were performed is only 5x5x5 + 9 = 136. 

 

Figure 7 Comparison of the predicted values of the test cases to the true values applying different neural 
networks with different initial weight and bias parameters 

3.6.2.3 ANN-based Monte Carlo simulation 

The predicted failure surface, defined as the section moment being equal to 50.42 MNm, match quite 
well with the exact surface, as shown in Figure 8. According to the ANN-based Monte Carlo simulation, 
the CDF value corresponds very well with the full long-term method over the entire range of the long-
term extreme values, as shown in Figure 9, and the probability of the bending moment not exceeding 
the value of 50.42 MNm in 100 years is calculated as 0.3985 with an error of 0.63%.  
   



  

Figure 8 Comparison of the failure surface 
between the ANN and exact solutions. The 
legend of the figure is the same as in Figure 9. 

Figure 9 Comparison of the CDF of the long-term 
extreme response between the ANN with FLM 
solutions 

 

3.6.3 Support vector machine 

Given a set of training data, 1 1( , )yx , 2 2( , )yx , , and ( , )n nyx  ( { },  1, 1p
i iR y∈ ∈ − +x  and ‘-1’ and 

‘1’ represent two different categories), the main purpose of SVM is to find a hyperplane in a high- or 
infinite-dimensional space to separate the training data as different classes. In reliability analysis, the 
two classes refer to ‘safety’ and ‘failure’ domains. In the case study of the probability distribution of 
extreme load effects, the two classes are the short-term extreme response value exceeding or not 
exceeding a specified critical value. The hyperplane, named as ‘failure surface’ in the long-term 
analysis, is usually expressed as follows:  

 0T b+ =w x  (21) 

Here, w is the orthogonal vector to the hyperplane, and b is the bias term. The optimization problem 
searching for appropriate w  and b values can be formulated as maximizing the margin, which is also 

equal to minimizing w  with a constraint to guarantee that all training data are on the correct side of 
the hyperplane. To control overfitting, classification errors should be allowed, which can be expressed 
as: 

 2

1

1min  ,   subject to 1 ,  i 1,2, , n
2

n
T

i i i i
i

C y bξ ξ
=

 + + ≥ − = ∑w w x    (21) 

Here, ξ  represent the distance of the training data from the functional margin. It is positive when the 
ith training point is in a wrong position; otherwise, it is zero. C is the parameter defined by the user to 
assign the penalty to the classification errors. 

When the training data are required to be separated by a nonlinear hyperplane, the optimization problem 
can be solved by mapping the variables to a higher dimensional space, ( )φ→x x , as shown in Figure 

10(b). This mapping function is called the kernel function ( ), ( ) ( )i j i jk φ φ= ⋅x x x x . Radial basis function 
is one of the most widely used kernel functions for nonlinear problems, which is expressed as follows 
(Burges, 1998): 

 ( ) ( )2
, expi j i jk γ= − −x x x x  (22) 

Here, γ is a kernel parameter defined by the user.  



 

Figure 10 Linear and nonlinear SVM models 

The procedure of applying an SVM to the case study is shown in Figure 11. The first and last steps are 
similar to those for the application of an ANN. Steps 2-4 are introduced to search for the optimum 
combination of the kernel's parameter γ and soft margin parameter C, which are two important 
parameters determining the performance of the SVM model. Many computer codes for SVM training 
are readily available online, e.g., the LIBSVM compiled by Chang and Lin (2011), LS-SVMlab by 
Suykens and Vandewalle (1999) and the MATLAB toolbox fitcsvm, which is used in this study.  

 

Figure 11 The procedure of the application of an SVM for predicting long-term extreme load effects 

3.6.3.1 Determination of parameters  

Cross-validation technique is used to search for the optimum combination of the hyperparameters γ and 
C. The method requires dividing the training data into subsets and calculating an average error quantity. 
Repeating this with different hyperparameters, the combination of parameters that give the least average 
error is chosen as the optimal. To that end, the 125 environmental conditions are divided here into eight 
subsets. Each environmental condition is then grouped with 1001 values of u4. The mean error rate of 
classifying the ‘unknown’ set under different combinations of γ and C is shown in Figure 12. The SVM 
model with parameters γ=24 and C=29 introduces the least error and is used to find the MPP (u1=4.23, 
u2=0.508, u3=-0.304, and u4=1.84). The test conditions are shown by the yellow circles in Figure 4, 



and u4 is selected in the range [-5, 5] with an interval of 0.01. The error rates of the classification of the 
test cases under different combinations of kernel parameter γ and soft margin parameter C are shown in 
Figure 13. Finally, γ=22 and C=213 are selected as the parameters for the model as the combination 
gives the least error in classification of the test data. 

 

Figure 12 Error rate of the classification of the 
validation set based on cross-validation 

Figure 13  Error rate of the classification of the 
test cases 

 

3.6.3.2 SVM-based Monte Carlo simulation 

After determining the parameters, the SVM model is re-trained by adding the test cases to the training 
cases. The predicted and true failure surfaces are shown in Figure 14. Similar to the case of the ANN-
based MC method, there is a good agreement between the two surfaces. The value of the CDF of the 
extreme bending moment according to the Monte Carlo simulation is 0.402 with an error of 1.41% 
compared to the results obtained using the full long-term method. 

 

 

Figure 14  Comparison of the failure surface between the SVM and exact solutions. (o Failure surface 
based on SVM;  ▬ exact failure surface; * design case) 

3.6.4 The effect of the randomness and size of the training data 

The random nature of the training data can affect the training process and consequently the performance 
of the ANN and SVM models. For instance, if the randomly generated environmental conditions for 



training are near the design point by chance, the predicted results will likely match well with the true 
values. To guarantee that the better performance of the machine learning approaches over traditional 
reliability analysis methods is not owed to coincidence, three different training cases with different sizes 
are generated. Table 3 and Table 4 show the cumulative probabilities of the long-term extreme values 
corresponding to the bending moment value of 50.42 MNm and the corresponding errors along with a 
comparison of the failure surface.  

For the ANN-based method, 3×3×3 environmental conditions are not sufficient to predict the 
probability distribution of the long-term extreme values. The variation in the CDF value based on the 
three different random training sets is large, and the agreement between the failure surfaces is poor. 
When the number of training environmental conditions is increased to 4×4×4, the ANN gives 
satisfactory predictions. The maximum error is found to be 7.12%; therefore, the accuracy is not a result 
of a ‘cancellation effect’ because the failure surfaces also match well. Thus, only 73 environmental 
conditions are required including the test conditions, which is fewer than that in FORM. The 
performance becomes significantly better when 5×5×5 and 6×6×6 training conditions are used. 

The performance of the trained SVM model is presented in Table 4. The prediction becomes satisfactory 
as the number of training environmental conditions increases to 5×5×5, where 3×3×3 conditions are 
clearly not enough. Although the CDF of long-term extreme response is accurate based on the first two 
random sets of 4×4×4 conditions, it should be attributed to the cancellation effect according to the poor 
match of the failure surface.  

3.7 Comparison of the failure probability based on different approaches 

The probability of the extreme values of the bending moment below 50.42 MNm in 100 years and the 
number of simulations required for the full long-term method, FORM, SORM, ANN-Monte Carlo, and 
SVM-Monte Carlo approaches are compared in Table 5. FORM requires the simulation of 78 
environmental conditions; 65 of these conditions come from 13 iterations, whereas the other 13 are 
performed due to backtracking to guarantee the convergence. SORM requires ten more to calculate the 
elements in the Hessian matrix.  

In this case study, the performance of the ANN in predicting the probability of the long-term extreme 
load effects of suspension bridges with floating pylons is better than those of the FORM and SORM 
from the perspective of both computational efficiency and accuracy. Another advantage of applying the 
machine learning approach is that the numerically simulated cases can also be used to predict the CDF 
at any specified extreme value for different response parameters. 

The SVM is not as good as the ANN method because regression is performed in the ANN, whereas a 
classification algorithm is employed in the SVM. Therefore, the targets of the training cases in the ANN 
are the long-term extreme values, whereas in the SVM, the target values are simply ‘-1’ and ‘1’, 
representing failure and safety, respectively. Therefore, much more information is efficiently used in 
the neural networks. 

 

 

Table 3 Effect of the size and uncertainty of the training data in the ANN 

3x3x3 training conditions + 9 test conditions 4x4x4 training conditions + 9 test conditions 

CDF value of the long-term extreme value and error CDF value of the long-term extreme value and error 

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3 



0.4162 

5.10% 

0.3021 

23.7% 

0.4449 

12.3% 

0.3678 

7.12% 

0.3843 

2.95% 

0.3881 

1.99% 

comparison of the failure surface using training set 1 comparison of the failure surface using training set 3 

  

5x5x5 training conditions + 9 test conditions 6x6x6 training conditions + 9 test conditions 

CDF value of the long-term extreme value and error CDF value of the long-term extreme value and error 

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3 

0.3985 

0.631% 

0.3963 

0.076% 

0.3999 

0.985% 

0.3958 

0.051% 

0.3893 

1.69% 

0.3909 

1.29% 

comparison of the failure surface using training set 2 comparison of the failure surface using training set 1 

  

 

 

 

Table 4 Effect of the size and uncertainty of the training data in the SVM 

3x3x3 training conditions + 9 test conditions 4x4x4 training conditions + 9 test conditions 

CDF value of the long-term extreme value and error CDF value of the long-term extreme value and error 

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3 



0.3323 

16.0% 

0.3457 

12.7% 

0.4373 

10.4% 

0.3605 

8.96% 

0.3742 

5.50% 

0.2909 

26.5% 

comparison of the failure surface using training set 3 comparison of the failure surface using training set 2 

  

5x5x5 training conditions + 9 test conditions 6x6x6 training conditions + 9 test conditions 

CDF value of the long-term extreme value and error CDF value of the long-term extreme value and error 

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3 

0.3793 

4.22% 

0.3953 

0.177% 

0.3436 

13.2% 

0.3847 

2.85% 

0.4116 

1.69% 

0.3710 

6.31% 

comparison of the failure surface using training set 2 comparison of the failure surface using training set 2 

  

 

  

Table 5 Comparison of the cumulative probabilities and computational effort for different methods 

Method CDF value Cases required Error (%) 
Full long-term  0.396 / / 

FORM 0.228 5*13+13=78 39.5 
SORM 0.441 78+10=88 10.3 

ANN-based Monte 
Carlo simulation 

0.416 / 0.302 / 0.445 3×3×3+9=36 5.1 / 23.7 / 12.3 
0.368 / 0.384 / 0.388 4×4×4+9=73 7.12 / 2.95 / 1.99 
0.399 / 0.396 / 0.400 5×5×5+9=134 0.63 / 0.076 / 0.99 



0.396 / 0.390 / 0.391 6×6×6+9=225 0.051 / 1.69 / 1.29 

SVM-based Monte 
Carlo simulation 

0.332 / 0.346 / 0.437 3×3×3+9=36 16.0 / 12.7 / 10.4 
0.361 / 0.374 / 0.291 4×4×4+9=73 8.96 / 5.5 / 26.5 
0.379 / 0.395 / 0.344 5×5×5+9=134 4.22 / 0.177 / 13.2 
0.385 / 0.412 / 0.371 6×6×6+9=225 2.85 / 1.69 / 6.31 

 

4 Conclusions 

The machine learning methods of the ANN-based and SVM-based Monte Carlo simulations are applied 
to a case study of long-term extreme load effects on a suspension bridge with floating pylons under 
combined wind and wave actions. A comparison between machine learning methods and first- and 
second-order reliability methods is conducted to determine the computational accuracy and efficiency 
of the methods in calculation of the cumulative probabilities of the long-term extreme values of the 
bending moment due to vertical deflections at the critical position of the girder.  

In the case study of the suspension bridge with floating pylons, which is characterized by a strongly 
nonlinear limit state function, first- and second-order Taylor expansions are not found sufficiently 
accurate. The ANN regression algorithm yields more accurate results than the SORM when similar 
number of environmental conditions are used. The SVM classification algorithm requires more 
computational effort than the ANN to perform with similar accuracy. Therefore, the ANN approach is 
recommended based on the case study results.  

Another reason for recommending the ANN method is that the long-term cumulative probability of any 
specified short-term extreme peak value can be achieved through only one training process. It can be 
further used to calculate the characteristic long-term extreme response values for ULS and ALS design 
checks. To achieve the same goal, FORM, SORM, and SVM training have to be repeated several times 
at different specified critical response values. Consequently, the computational effort required will be 
significantly larger compared to the ANN-based method.  
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