
Høgskolen i Gjøviks rapportserie, 2015 nr. 1

Høgskolen i Gjøvik
2015

ISSN: 1890-520X ISBN: 978-82-93269-89-2

Konstantin Müller

Past, Present and Future of
Tor Hidden Services

Past, Present and Future of Tor Hidden Services

Konstantin Müller

Past, Present and Future of Tor Hidden Services

Abstract

Using the Internet reveals the IP addresses of both communication parties to everybody, who is
able to observe the communication. Anonymity systems like Tor hide the IP addresses and the
communication in such a way that the communication cannot be linked between the two par-
ties. Tor is a low-latency anonymity network designed for interactive applications, which allows
its users to stay anonymous while using the Internet, for example for Web browsing, e-mail or
instant messaging. In order to achieve anonymity the users’ traffic is routed through the Tor
network by choosing three random network nodes. Thus, the user stays anonymous, because
his real IP address is not used to access the service and no single node in the network can link
the user to the service he is accessing. In addition, Tor provides location-hidden services to allow
services to operate anonymous as well. With location-hidden services the location of a service,
i.e. its IP address, is not revealed by using the service. At the moment the Tor Project works on
an overhaul of the design of location-hidden services.

This paper introduces Tor, explains its design and specification with the goal to understand,
how Tor is working to achieve its anonymity goals. It explains why Tor is built in the way as it is
implemented today, but also states Tor’s limitations and situations in which Tor cannot guaran-
tee anonymity. Furthermore, location-hidden services are introduced as well. The current hidden
services design is examined in-depth with its shortcomings and drawbacks and it is presented
why this design needs to be renewed. This gives a rationale for a new design of hidden services.
The proposed new design is described as well. The paper finishes with a summary of open re-
search questions, which are not yet addressed by the new hidden services design.

The goal of this paper is to provide the reader with a thorough understanding of Tor and its
location-hidden services. It goes beyond most introductions of Tor as it looks into Tor’s protocol
specifications and explains the choices made by the designers and developers of Tor. After read-
ing this paper the reader should be able explain, how Tor is built, why it is implemented this way,
but also what Tor’s limitations are regarding anonymity and what aspects of Tor are not yet well
understood. The focus of this paper is laid on the main Tor application and anonymity. It does
not consider application-level issues such as the Tor Browser or the usage of Tor as a censorship
circumvention tool.

i

Past, Present and Future of Tor Hidden Services

Contents

Abstract . i
Contents . ii
List of Figures . iii
1 Introduction . 1

1.1 Motivation and Goals . 2
1.2 Related Work . 2

2 The Second-Generation Onion Router . 4
2.1 Anonymity Loves Company . 5
2.2 Introduction . 6

2.2.1 Design Goals and Adversary . 6
2.2.2 Bird’s Eye View . 7

2.3 Specifications . 9
2.3.1 Directory Authorities . 9
2.3.2 Path Selection . 17
2.3.3 Communication Protocol . 19

2.4 Limitations and Pitfalls . 27
3 Tor Hidden Services . 29

3.1 Introduction . 30
3.2 Current Hidden Services . 32

3.2.1 Hidden Service Protocol . 32
3.2.2 Access Control with Hidden Services . 35

3.3 Shortcomings and Drawbacks . 36
3.4 Next-Generation Hidden Services . 39

3.4.1 Service Descriptors . 40
3.4.2 Introduction Protocol . 42
3.4.3 Rendezvous Protocol . 44

3.5 Open Research Questions . 44
4 Conclusion . 47
Bibliography . 48

ii

Past, Present and Future of Tor Hidden Services

List of Figures

1 Overview of the Tor Network . 8
2 Relay Descriptor of Atlantic . 12
3 Key Certificate of gabelmoo . 13
4 Network Status Document . 15
5 Format of Control and Relay Cells . 21
6 Retrieving Data from a Remote Host via a Two-Hop Circuit 27
7 Overview of Hidden Services . 30

iii

Past, Present and Future of Tor Hidden Services

1 Introduction

People want to be anonymous on the Internet for various reasons. They do not want that oth-
ers can get to know, what Web sites they browse, for example if they search for health related
topics or other sensitive information. Or they simply do not want to be tracked by advertising
companies. Activists may come under repression, if their activities will be revealed. Companies
do not want that their competitors know, what they are doing on the Internet. Law enforcement
has good operational reasons to be anonymous while investigating crime online. The military
does not want to reveal the location of their units while communicating over the Internet. All
these are good reasons for individuals and organisation to communicate anonymously over the
Internet.

Tor is a low-latency anonymity system [1], which allows such anonymous communication. It
is designed for interactive applications such as Web browsing, remote access or instant messag-
ing and can handle any TCP traffic. The Tor network consists of relays run by volunteers, which
transport traffic through and out the Tor network. Clients connect to the network, choose ran-
domly three different relays to form a path through the network and send their requests over this
path. The last relay in the path connects to the user’s destination, for example a Web site, and
sends the response back to the user. Because every relay only knows its predecessor and succes-
sor on the path, no single relay can link the user with the service he accessed, thus, preserving
the user’s anonymity.
As of the time of writing the Tor network consists of about 6000 relays, which transports roughly
5000 MiB/s of data. The Tor Project estimates that about over 2.5 million clients connect to the
network everyday1.

Tor does not only provide anonymity to its users, but can also help services operators to run
their services anonymously with location-hidden services. A location-hidden service, for instance
a Web site, connects to the Tor network similarly as an ordinary Tor user and waits for users
to connect to it. People who want to access this service use Tor normally and the Tor network
handles the connection between the user and the hidden service. With this mechanism users can
access the service anonymously. At the same time the services can be offered anonymous as well.
The IP addresses of both the user and service are not revealed.
Location-hidden services allows, for example, human rights activists to publish information about
violations of human rights in a safe and anonymous way. Without hidden services this informa-
tion could be easily censored or the service shut down. Also the publisher could face serious
consequences for publishing, if the information could be attributed to him.

1All statistics about the Tor network can be found at https://metrics.torproject.org/.

1

https://metrics.torproject.org/

Past, Present and Future of Tor Hidden Services

1.1 Motivation and Goals

This paper introduces Tor with a special focus on location-hidden services. It explains what kind
of threats Tor wants to protect against and what design goals Tor has. The design and specifica-
tion of Tor is analysed with regard to how Tor tries to achieve these goals and how Tor maintains
the user’s and service operator’s anonymity. This includes limitations and shortcomings of Tor
and describes situations in which Tor cannot by design guarantee anonymity and situations in
which Tor could be improved to provide better anonymity.
The Tor Project is working on a renewal of location-hidden services in order to improve the cur-
rent hidden services design. The current design is examined in-depth and analysed what draw-
backs this design has and why a renewal is necessary. Keeping this in mind the proposed new
hidden service design is described as well and it is explained how the new design attempts to fix
the problems of the old one. This includes open research questions, which are not yet addressed
by the new design and need to be studied before it can be implemented.

The goal of this paper is to provide the reader with a thorough understanding of Tor and location-
hidden services. It goes beyond most introductions to Tor as it looks into the specifications of Tor
and analyses why Tor is built in the way as it is implemented today. This gives the reader a
deep understanding of Tor, its design and specification. But at the same time Tor’s limitations
and shortcomings are not left out, such that the reader should be able to understand in which
situations Tor cannot guarantee anonymity. This is important, because using Tor in situations,
which give a false sense of anonymity, could possibly have serious consequences.
This paper concentrates on the main Tor network and how to protect anonymity with a special
focus on location-hidden services. Application-specific issues such as protecting anonymity at the
application level are not considered in this paper as well as using Tor for censorship circumven-
tion or solving the problem of companies and countries trying to prevent the usage of Tor. The
following related work section lists some reference the reader can consult, if he is interested in
these topics.

The rest of this paper is organised in the following way. The next section lists related work
with regard to the topic of this paper, but also provides further references, which can be read
to learn more about Tor and Tor related topics not covered in this paper. Chapter 2 first gives
a short introduction into the problem of anonymity itself, because anonymity has quite differ-
ent security requirements than the typical CIA-triplet confidentiality, integrity and availability.
Further is the main Tor network described and explained in detail how Tor protects the user’s
anonymity. Chapter 3 starts with an analysis of the current hidden service design, which leads to
the proposed new hidden service design, and ends with open research questions regarding this
proposal. Chapter 4 summarises and concludes this paper.

1.2 Related Work

The original Tor design is introduced in [1]. It describes the threat model Tor tries to protect
against and the design goals behind Tor, which gives a rationale for the actual design and im-
plementation of Tor. [2] follows up on the original design paper and reports on challenges in

2

Past, Present and Future of Tor Hidden Services

deploying Tor and the difficulties of establishing a low-latency anonymity system. The design of
Tor as a blocking-resistant anonymity system, which can be used for censorship circumvention,
is described in [3]. The design of the Tor Browser, which is a Web browser based on Tor and
Firefox optimised for anonymity and fixing many application-level issues regarding anonymity
and Web browsing, is explained in [4]. In general, over the years since Tor’s invention the Tor
Project released many technical reports about various parts of the Tor ecosystem, which are all
published at https://research.torproject.org/techreports.html. In addition, all the Tor
specifications are publicly available at https://gitweb.torproject.org/torspec.git.

Over the years many researchers tried to attack Tor. For example, [5] identifies the path of a
Tor connection by measuring difference in the latency of relays, when the traffic of a connec-
tion is going through a relay. [6] analyses the probability of choosing a compromised path if an
attacker is able to observe or control a large fraction of the Tor network. In [7] the first attack
against hidden services is presented, which is able to find the IP address of a hidden service by
just running one single relay. An attack against hidden services, which exploits the fact that the
clock skew of a computer changes under load due to an increased CPU temperature, is explained
in [8]. With this attack a traffic pattern is sent to a hidden service and at the same time the clock
skew of potential hidden services measured directly outside the Tor network. If the traffic pattern
and the measured pattern of the clock skew matches, the hidden service is deanonymised. An
improved version of this attack is described in [9]. Further attacks against hidden services, which
also motivated a redesign of hidden services, are presented in [10]. Some of the attacks against
hidden services are explained in more detail in Chapter 3.

Some efforts were made to measure the performance of hidden services in different scenarios
[11, 12] and to improve the performance [13]. The latter paper explains different possibilities to
optimise the path creation. Further improvements of hidden services are proposed in [14]. The
presented design of Valet nodes improves the availability and resistance against Denial-of-Service
attacks of hidden services. Additionally, it allows completely hidden services in the sense, that even
the Tor network itself does not know the existence of a hidden service. [15] lists different ways
to deal with botnets, which utilise hidden services for their purposes.

In order to understand the design of Tor it is also important to understand anonymity research
in general. For instance, [16] models the usage of anonymity networks from an economics and
game theory perspective. When do people use an anonymity network and when not? What are
incentives to voluntarily run relays in such a network? In addition, [17] explains why usability is
important for an anonymity network and why a high secure system can actually hurt the user’s
anonymity. In general, the reader, who is interested in Tor and anonymity research, should visit
the Anonbib at http://freehaven.net/anonbib/topic.html, which contains a large list of re-
search papers about anonymity systems, including Tor related papers. A definitively worthwhile
read is [18], which proposed the first anonymity system aimed at e-mails and developed the
fundamental ideas of modern anonymity research.

3

https://research.torproject.org/techreports.html
https://gitweb.torproject.org/torspec.git
http://freehaven.net/anonbib/topic.html

Past, Present and Future of Tor Hidden Services

2 The Second-Generation Onion Router

The Internet was not designed and built with security in mind. Instead secure communication
protocols were developed on top of this insecure foundation. Traditionally, the three considered
aspects of information security are confidentiality, integrity and availability. Confidentiality pre-
vents the “unauthorized disclosure”, integrity the “unauthorized modification” and availability
the “unauthorized withholding” of information [19, p. 34]. Different application areas add fur-
ther aspects to this basic CIA-triplet, with anonymity being one of them. This paper uses the
definition of anonymity as given by Gollmann:

Anonymity – A subject (user) is anonymous if it cannot be identified within a given anonymity
set of subjects. [19, p. 35]

Confidentiality can be achieved with the encryption of information, such that only the users in
possession of the correct key can decrypt and read the encrypted information. This hides the
information itself, but does not hide who is communicating with whom. The latter is the goal of
anonymity. People communicate with each other without revealing the existence of this commu-
nication and the communication partners.

There exists a fundamental difference between confidentiality and anonymity. Confidentiality
can be achieved by the communication partners alone, anonymity not. For reaching anonymity
users must blend in with a group of other users, the anonymity set from the definition above.
Different users communicate over the same anonymity network and provide cover traffic for the
other users. If the users in the anonymity set and their communications are undistinguishable,
an attacker cannot figure out, who is communicating with whom, thus, the users are anonymous
inside the given anonymity set.

In general, anonymity systems can be divided into two different main categories: high-latency
and low-latency anonymity systems [17]. The goal of high-latency systems is to protect against
strong global attackers, which are able to observe a large fraction of the network to conduct traffic
correlation attacks. Such an attack compares traffic patterns such as timing or volume character-
istics between communication parties in order to link traffic between the parties and revealing,
who communicates with whom. High-latency systems protect against such attacks by destroying
the patterns, for example by introducing random delays before messages are forwarded inside
the network. Such a system offers higher security, but is inappropriate for interactive applica-
tions, because users expect a quick response from these applications.

In contrast, low-latency anonymity systems have a weaker threat model by not necessarily di-
rectly protecting against traffic correlation attacks. Because of that, such a system is suitable for a
lot more applications such as Web browsing or instant messaging and offers a better usability to

4

Past, Present and Future of Tor Hidden Services

its users. This can in fact lead to a higher degree of anonymity compared to high-latency systems
as shown in the following section. Tor is the most widely-used implementation of a low-latency
anonymity system today.

2.1 Anonymity Loves Company

The previous section explains that an anonymity system needs users, who provide cover traffic
to other users. In general, a larger anonymity set can provide better anonymity, because it will
be harder for an attacker to link network activities to specific users. Thus, an anonymity system
needs to attract as much users as possible. But every user has different requirements with regard
to both security and anonymity, but also in the way he is using the anonymity system. [16] dis-
tinguishes between low-sensitivity users and high-sensitivity users. High-sensitivity users have
higher requirements of security and anonymity as low-sensitivity users. They may choose to use
a system A, which is highly secure but has a lower performance and is only useful for a hand-
ful of applications. But this system has a small anonymity set consisting only of high-sensitivity
users, thus, it cannot provide very much anonymity. In contrast, an anonymity system B with a
lot of low-sensitivity users can offer stronger anonymity and resistance against attacks even if its
design is not as secure as the design of system A.

The above highlights that sometimes it may be better for anonymity to have more users and
a weaker anonymity system than a strong system and only a few users [17]. Additionally, it
shows that usability and performance of an anonymity system are equally important than se-
curity and anonymity properties. An anonymity systems needs to attract low-sensitivity users in
order to provide cover traffic for high-sensitivity users [16]. If these users turn away because of
bad usability, they will not have anonymity at all. At the same time high-sensitivity users are put
at risk of deanonymisation, because they lost their cover traffic to hide in. When designing an
anonymity system this insight must be always kept in mind. A secure system alone is not enough,
usability is a key factor to attract enough users [17]. The difficulty is to build an anonymity sys-
tem, which is secure on one hand but also usable on the other hand.

But the size of the anonymity set alone is not enough. For example, if a company uses its own
anonymity system in order to hide its communications from its competitors, this system does
not provide any anonymity at all. Every communication will be by definition originate from this
company. Because of that, user diversity is important as well. An anonymity system needs to at-
tract users with different backgrounds, objectives, motivations and reasons for using the system
in order to make it harder for an attacker to deanonymise users based on these properties. In this
context the authors of the Crowds anonymity network [20] coined the fitting phrase “anonymity
loves company”.

Another obstacle needs to be solved in order to use an anonymity system in a secure way. The
behaviour of users must be indistinguishable, i.e. users must act in the same way. For instance, a
user who behaves completely different than the other users stands out from them and is therefore
easily recognisable. The same holds also for the client software utilised to access the anonymity

5

Past, Present and Future of Tor Hidden Services

network. If the client software behaves differently compared to other users’ software, this can be
used by an attacker to identify the user. The reason could be misconfiguration or unusual settings.
A user changing the settings with the goal to gain more security can actually hurt his anonymity,
because the software behaves different compared to the users without changed settings. Thus,
different users may make other security-anonymity trade-offs based on their personal require-
ments. This demonstrates again that anonymity set size and user diversity is important, because
it is more difficult with a larger set and more diversity to find users who stand out. On the other
hand it may be possible to partition users in various groups based on their behaviour or client
configuration, which makes attacks to identify users easier, because an attacker can concentrate
on only one smaller group of users.

This section shows that designing an anonymity system is a very difficult task. Trade-offs be-
tween anonymity, security and usability must be carefully examined and balanced. Focusing to
close on only one property could have a negative impact on the other properties. It is important
to understand this set of problems, because the design of Tor is motivated by them and it helps
to comprehend it.

2.2 Introduction

Over the years different designs for anonymity systems were proposed. One of them is onion
routing and Tor is the “second-generation onion router” [1], which improves the original onion
routing design. Messages are wrapped in multiple layers of encryption and sent through the
network until its final destination. The Tor network consists of relays or nodes run by volunteers
around the world, which in the Tor terminology are called onion router (OR). Each user runs a
client software, named onion proxy (OP), in order to connect to the network. The OP exposes a
SOCKS proxy [21], which provides a common interface to applications in order to utilise Tor for
anonymous communication. With this approach Tor is able to transport arbitrary TCP streams
without having to deal with application- or protocol-specific properties. Additionally, users do
not need to modify their applications, for instance a browser can be easily configured to use Tor
as a proxy server. Tor does not support UDP.

2.2.1 Design Goals and Adversary

Based on previous experiences with a first-generation onion routing prototype the Tor designers
improved the original design with a few design goals in mind: deployability, usability, flexibility
and simple design. These goals reflect the results of general anonymity research as presented in
Section 2.1. Having a system, which is easy to deploy, lowers the barrier to become a node oper-
ator. More nodes are important to create more diversity and to increase the overall performance
of the network. It also makes it harder for an attacker, because it becomes more expensive to ob-
serve a large fraction of the network. As explained usability is a key factor to attract users, which
provide cover traffic to other users. A flexible and simple design facilitates quicker response to
attacks against the system or to new system requirements, which needs a system redesign.

Furthermore, Tor has a few non-goals as well partly reflecting the overall goals. Tor does not

6

Past, Present and Future of Tor Hidden Services

use a pure peer-to-peer design with short-lived user nodes. Instead it is built on top of a simpler
design with voluntarily run relays. As a low-latency anonymity network Tor does not explicitly
protect against traffic correlation attacks, because no usable solution for low-latency networks is
known yet [1]. Tor also does not perform protocol normalisation, i.e. the removal of identifying
information from higher level protocols like HTTP. For this task Tor can be combined with spe-
cialised proxy software layered between Tor and the application. With the initial design Tor is
not trying to conceal that someone is using Tor. This changed partly with the introduction of a
blocking-resistant Tor design [3] used for censorship circumvention. But still today the main Tor
network does not use steganography.

In contrast to high-latency anonymity networks Tor does not try to protect against a global pas-
sive attacker, who is able to observe a large fraction or even the whole network. Such an attacker
is in the position to effectively conduct traffic correlation attacks. Tor assumes a weaker attacker,
which can observe or compromise only a part of the whole network. This kind of attacker must
either control the first and last node on a path or the connection between the user and the first
node and the connection between the last node and the destination [6]. Because of this, Tor aims
to make it difficult for an attacker to come into the position of observing initiator and responder
of a communication. An attacker may be able to observe or compromise nodes, operate own
nodes, listen on connections between nodes and between nodes and users including tampering
with the data sent over those connections. He may try to block the usage of the network or give
users a false list of network nodes. See [1] for a list of attacks against Tor and for an analysis
how well Tor protects against these attacks.
Attackers may want to identify the communication partners, link communication to a user, for
example to determine that Alice viewed Web site XYZ, or make a profile of a user. A profile does
not need to be attributed to the identity of a user. It may be enough for an attacker to know what
Web sites a specific but unidentified user accessed, for instance for targeted advertisements.

2.2.2 Bird’s Eye View

Tor’s design is based on a distributed trust model, see Figure 1 on the next page for a graphical
overview of the basic mode of operation of the Tor network. A user does not need to trust a
single entity in the network. Instead three different nodes are chosen to build a path through the
network: an entry node, a middle node and an exit node. This path a is called a circuit. The circuit
is constructed one hop at a time. First the user connects to the entry node, then extends the
circuit to the middle node and the exit node. This has the advantage that in the case one node
fails not the whole circuit needs to be rebuilt, instead the circuit can be extended again from the
last working node. The Tor client establishes with each node session keys during this procedure.
The client encrypts the data, which should be sent through the network, with each session key.
The data is encrypted three times and every node on the circuit removes one layer of encryption,
such that the exit node receives the plaintext. This node connects to the final destination and
sends the plaintext to it, for instance connecting to a Web site and requesting a specific page.
The response is transmitted back through the circuit with the nodes in reverse order. Every node
encrypts the data with its session key, such that only the client can decrypt the response, because

7

Past, Present and Future of Tor Hidden Services

only he knows all three session keys. This procedure of adding and removing different layers of
encryption is the reason for the “onion” analogy.

Figure 1: Overview of the Tor Network

The first node on the circuit knows the user, who is accessing Tor, but does not know the content
of the data sent over the network. The exit node knows the destination of the communication
and can see the data in plaintext, if no end-to-end encryption protocol like TLS for encrypted
Web traffic is used. But the exit node does not know, who sent the messages. With this approach
no single node alone on the circuit can link together the user with the destination of the com-
munication. Every node only knows it predecessor and successor on the circuit. Because of that,
only if an attacker controls both the entry and the exit node, he can deanonymise the user. The
user data can exit at any position on the circuit, but the circuit should be at least three hops long
to achieve this level of security. The circuit could be longer, but it is an open research question
if a longer circuit would add enough security to justify the decreased performance. For now Tor
sticks to a fixed three-hop design. New circuits are built in regular intervals of at least ten min-
utes and old circuits are destroyed in order to avoid that attackers can make a long lasting profile
of the user by either observing or compromising the exit node.

But how do clients know the nodes inside the Tor network? Every node publishes in regular
intervals a signed relay descriptor to a set of semi-trusted directory authorities. This descriptor
contains all necessary information needed for establishing a connection with a node (IP address,
port, public keys, etc.). Thus, every directory authority knows all or most nodes in the network.
They conduct a vote with the information and agree on a consensus document, which contains
the current view of the network of all directory authorities, i.e. the nodes currently participating
the the network. The final network status document together with the relay descriptors is down-
loaded by clients from the authorities and is used in constructing circuits.

Relays in the network can have different roles. The roles can be either defined by the relay
operators or by the directory authorities during the vote for establishing a network consensus.

8

Past, Present and Future of Tor Hidden Services

The directory authorities assign flags to all relays during the vote [22]. The flags inform clients
about the roles of relays. The two most important roles are entry and exit nodes. An entry node
is used as the first node in a circuit to enter the network and an exit node as the last node to
leave the network. The directory authorities decide when a relay should be used by clients as
an entry node [23]. In contrast, relay operators set up their relays to be exit nodes. Operators
may choose to not allow any traffic to leave the network at their relays or can restrict to which
destinations (IP address and/or port) connections are allowed from their relays. These are called
exit policies and are implemented in order to increase the number of relays in the network [24].
The reason for exit policies is that traffic leaving the Tor network looks like originating at the
exit node. Operators may not want to deal with the hassle of running an exit node, for example
managing abuse complains about traffic, which exited at their relays.
Relays can also act as directory caches, which download network status documents and relay
descriptors from the directory authorities. They provide these documents to clients, such that
clients can download these documents from the caches and not directly from the directory au-
thorities with the goal of decreasing the load on the authorities. Furthermore, relays can be
hidden service directories, which are responsible for storing information about hidden services to
be used by clients to connect to hidden services. More details about relay roles and flags, how
the are assigned and used, are given in the following sections.

2.3 Specifications

The previous section gives an introduction into Tor to provide a general understanding of Tor’s
design and the ideas behind Tor. Based on that, this section looks deeper into the main specifi-
cations of Tor. The goal is to provide the reader with a more thorough understanding of Tor and
how it is implemented. This is important in order to comprehend, how Tor can actual provide
anonymity and how Tor protects against different kinds of attacks.
First the directory authorities are explained in Subsection 2.3.1, how they form the consensus
and the network status and how these documents are used for various parts of the overall Tor
ecosystem. Subsection 2.3.2 describes how Tor clients choose nodes in order to build circuits.
This path selection algorithm is based on the network status document produced by the di-
rectory authorities. The Subsection 2.3.3 examines in detail the communication protocol used
between onion routers, and between onion routers and onion proxies. This protocol is the most
critical piece of the Tor network to provide anonymity to its users.
Tor’s design and implementation was improved over the years. Some parts were redesigned even
more than once. This paper concentrates on the most recent version of the Tor design and does
not consider outdated or obsolete parts of the specifications. This should keep the following
explanations simpler and easier to understand. For all the details the reader can consult the
specifications directly.

2.3.1 Directory Authorities

Directory authorities are one crucial piece of the Tor network. Clients needs to know the existing
relays in the network and the status of each relay in order to be able to choose a path through the
network. In addition, directory authorities collect and store anonymous statistics about the usage

9

Past, Present and Future of Tor Hidden Services

of the Tor network [25] and make them available to the public, where they are used inter alia
for research about Tor. Currently, there are nine directory authorities, which are administrated
by trusted members of the Tor community. A fixed list of all directory authorities is shipped with
the Tor software in order to make it possible for clients to bootstrap the network. For a client
this is enough, because he can fetch all necessary information about the Tor network from the
authorities in order to start using Tor.
The specification of directory authorities, how they interact with each other, with relays and
with clients, is described in [22]. This contains everything which is needed to form network
status documents, to enable relays to contribute to the network and clients to use it. Without
directory authorities the network as a whole could not function.

Introduction

All directory authorities have a long-term authority identity key, which uniquely identifies each
directory authority. This key is used to sign a key certificate containing an authority signing key.
The authority signing key is a medium-term key valid for 3 to 12 month and signs all documents
produced by the corresponding directory authority. The authority identity key is the “Holy Grail”
of any directory authority. If an attacker can compromise this key, he can successfully imperson-
ate the authority. For this reason the authority identity key is stored encrypted and/or offline and
is only needed to sign a new authority signing key, when the old key is rotated. The rotation of
the authority signing key is much easier. Rotation of the authority identity key would require a
cumbersome redistribution of the Tor software, because the public component of the authority
identity key is hard-coded in the Tor source code. This component is needed to verify the key
certificate, such that the currently used authority signing key actually belongs to the directory
authority. Thus, clients can be sure that all documents signed by the authority signing key are
produced by the rightful directory authority.

Every relay produces relay descriptors and extra info documents and uploads them to the direc-
tory authorities. Relay descriptors contain everything, which clients need to know about a relay
in order to choose relays for a circuit and to interact with them. Extra info documents consists of
additional information not strictly necessary for the operation of the Tor network itself, mainly
usage statistics about the relay. The extra info documents are split from the relay descriptors,
because they are not needed by clients, such that they only need to download the smaller relay
descriptors.

Each directory authority knows all or at least most relays inside the Tor network. Periodically
each authority forms an opinion about the network status in form of a status vote, which in-
cludes the relays the authority knows about and the relays’ statuses. The authorities exchange
their votes and each authority independently constructs a consensus about the current network
status based on all votes. After that process all directory authorities have the same view of the
network, which is signed by all authorities and distributed to clients as network status documents.
The idea is that the authorities agree on a common view of the network, because not all authori-
ties may have the same view. For example, a relay may not send relay descriptors to all directory
authorities or the upload failed due to network timeouts during transmission. Furthermore, a

10

Past, Present and Future of Tor Hidden Services

malicious directory authority alone cannot fake network status documents and distribute false
information to clients.
Every network status document has three timestamps: valid-after (VA), fresh-until (FU) and valid-
until (VU). VA precedes FU, which in turn precedes VU. A network status document is valid be-
tween VA and VU and can be used during this time period. A document is fresh until a new
consensus becomes valid. These times overlap such that at any point in time at least three net-
work status documents are valid. But only one document is fresh, which should be preferred over
the other documents, if a client has more than one valid document.

Relays can be configured to act as directory caches. The caches download network status doc-
uments and relay descriptors directly from directory authorities, whereas clients download the
documents from directory caches in order to better balance the load on directory authorities. All
the communication, both upload and download, is performed via HTTP.

Relay descriptors and extra info documents

All documents produced as part of the directory protocol specified in [22] must be signed by the
party producing it, otherwise these documents are invalid. Because of that, every document can
be verifiable attributed to the document producer. All documents are ASCII text documents and
consist of a variable number of items. Each item has a keyword and following the keyword spec-
ified attributes valid for this item, for example “keyword attribute1 attribute2”. In general, items
are terminated by a newline, such that every item is one line. But items can also be multiline,
for instance document signatures. The exact format of all documents with their allowed items
is specified in [22]. This paper focuses on the main points to keep the description precise and
understandable.

Relay descriptors and extra info documents are generated and uploaded to the directory author-
ities by default every 18 hours or when the content changed significantly. The relay descriptor
contains items such as (most important, no complete list):

• router: IP address and ports to connect to the relay.

• fingerprint: Hash value of the relay’s identity key.

• published: Timestamp when the descriptor was generated.

• bandwidth: An estimated bandwidth the router is willing to contribute to the network.

• uptime: The time in seconds the Tor process is running.

• hibernating: Relay is in hibernating mode and should not be used for circuits. For example,
the supplied bandwidth is exhausted.

• onion-key and ntor-onion-key: Keys used to establish session keys between clients and re-
lays, see Subsection 2.3.3.

• signing-key: The relays long-term identity key.

11

Past, Present and Future of Tor Hidden Services

• accept and reject: Specifies the allowed and disallowed exit connections. Used to advertise
exit policies.

• hidden-service-dir: The relay serves descriptors for hidden services.

• extra-info-digest: Links to a corresponding extra info document.

• router-signature: Signature of the relay descriptor calculated with the identity key.

An example of a relay descriptor produced by the relay with the nickname Atlantic is shown
below in Figure 2:

router Atlantic 85.25.43.84 443 0 80
platform Tor 0.2.4.23 on Linux
protocols Link 1 2 Circuit 1
published 2014-09-13 04:46:36
fingerprint 52FF FF0C 1BD5 58DC 50D4 8F31 B249 463C 3F42 08EC
uptime 2341302
bandwidth 26214400 32768000 27157506
extra-info-digest E9F7C5A850FE737F7B05FFD479239E705A43ADEF
onion-key
[...]
signing-key
[...]
hidden-service-dir
contact frserv@safe-mail.net - 1KUgpf8uXg5gQUSozb3FTSJo3M3YbfixYd
ntor-onion-key maPq13ndyx7CuoLm/D7fZs7TinYfb0crWWh2uHlcdzY=
[...]
accept *:79-81
[...]
reject *:*
router-signature
[...]

Figure 2: Relay Descriptor of Atlantic, Received 2014-09-13

Extra info documents are not necessary to create and contain mainly statistical data about the
usage of a relay: how many data a relay read and wrote, how many requests from different
IP addresses and different countries it received, how many data was transferred as a directory
cache, how many data as part of normal Tor traffic and how many data as an exit node and
so forth. These statistics are gathered, stored and visualised at Tor’s Metrics Portal available at
https://metrics.torproject.org/. For more information on how the data contained in extra
info documents is used see [25].

From the received relay descriptors directory authorities generate microdescriptors. These mi-
crodescriptors contain only the minimal necessary information about relays clients need in order
to choose relays for a circuit and to communicate with them, for instance onion-key and ntor-

12

https://metrics.torproject.org/

Past, Present and Future of Tor Hidden Services

onion-key, IP address and port as well as the exit policy. They are stripped down versions of relay
descriptors to save bandwidth and time during download and directory authorities can directly
transform relay descriptors to microdescriptors.

Key certificates

Key certificates have the following format as exemplary shown in Figure 3 for the directory
authority gabelmoo. They contain a version number of the certificate format dir-key-certificate-
version, a fingerprint as the hash of the authority identity key, an optional IP address plus
port for the authority, a timestamp dir-key-published when the certificate was published, a
timestamp dir-key-expires after which the authority signing key is invalid, the authority identity
key dir-identity-key itself, the authority signing key dir-signing-key, a cross-certificate dir-key-
crosscert and a signature of the key certificate dir-key-certification. The signature ensures that
the authority signing key belongs to the correct directory authority. The cross-certificate is a
signature with the authority signing key of the authority identity key. Thus, the two keys certify
each other and both signatures must be valid to accept the key certificate. This proves that the
directory authority is in the possession of both keys. Otherwise a directory authority could sign
the public component of a authority signing key without possessing the private component and
could generate a valid key certificate.

dir-key-certificate-version 3
fingerprint ED03BB616EB2F60BEC80151114BB25CEF515B226
dir-key-published 2014-04-07 23:01:16
dir-key-expires 2014-12-07 23:01:16
dir-identity-key
[...]
dir-signing-key
[...]
dir-key-crosscert
[...]
dir-key-certification
[...]

Figure 3: Key Certificate of gabelmoo, Received 2014-09-13

Vote and consensus documents

In order to generate a consensus, i.e. a network status document, the directory authorities per-
form the following five steps:

1. Create votes based on known relays.

2. Exchange votes with the other directory authorities.

3. Create a consensus document and sign it.

4. Exchange signatures of the consensus document with the other directory authorities.

5. Serve the consensus document to clients.

13

Past, Present and Future of Tor Hidden Services

The vote is a document of one single directory authority, which contains the status of the Tor
network as it is currently seen by this authority. This includes all the relays the authority knows
about due to uploaded relay descriptors and the perceived status of the relays. In this process
directory authorities assign flags to relays, which tell clients roles and properties of relays in order
to make better decisions while constructing circuits. The most important flags are the following:

• Authority: The relay is a directory authority.

• BadExit: The relay is unusable as an exit node.

• Exit: The relay is suitable as an exit node.

• Fast: The relay can handle high-bandwidth circuits.

• Guard: The relay is suitable as an entry node.

• HSDir: The relay serves hidden service descriptors.

• Running: The relay is up and running.

• Stable: The relay can handle long-lived circuits.

• V2Dir: The relay acts as a directory cache.

• Valid: The relay does not run a broken Tor version and is not blacklisted as suspicious by the
directory authority.

Under which circumstances flags are assigned to relays is specified in detail in [22]. In addition
to assigning flags, a set of bandwidth scanners measure the bandwidth of each relay and feed
that data back to the directory authorities, which utilise it to provide more accurate information
about the relays’ bandwidth [26]. Thus, directory authorities do not need to trust the reported
bandwidth values of relays.

In the second step the directory authorities exchange the votes. In this step every authority
learns, what the other authorities think about the current status of the network. If one authority
does not know a relay another authority knows, the authority can download the relay descriptor
from the other authority to learn the unknown relay. But this relay will only be part in the next
vote. After obtaining all the votes from all directory authorities each authority independently
creates a consensus document by combining the votes and signs it (step three). In general, when
directory authorities have conflicting views of the network or about a specific relay, a majority
vote is conducted to resolve that conflict.

It is important that all the directory authorities generate exactly the same consensus document.
In order to accomplish this the Tor specification of directory authorities [22] defines precisely
how to compute the consensus based on the votes. Multiple methods for this computation exists,
which are called consensus methods, and in general newer methods extend the older methods. In
the votes directory authorities include the consensus methods they support. The newest consen-

14

Past, Present and Future of Tor Hidden Services

sus method supported by two-thirds of the directory authorities is used to calculate the consen-
sus. The final consensus document is signed by all directory authorities.

In the fourth step the directory authorities exchange the signatures of the consensus document
and all signatures are attached to the document. This is possible, because all directory author-
ities signed the exact same document. When clients download the consensus in step five, they
can therefore verify that all directory authorities agreed upon the same network status.

network-status-version 3
vote-status consensus
consensus-method 17
valid-after 2014-09-13 08:00:00
fresh-until 2014-09-13 09:00:00
valid-until 2014-09-13 11:00:00
voting-delay 300 300
client-versions 0.2.3.24-rc,0.2.3.25,0.2.4.17-rc,0.2.4.18-rc, [...]
server-versions 0.2.4.23,0.2.5.6-alpha,0.2.5.7-rc
known-flags Authority BadExit Exit Fast Guard HSDir Running Stable V2Dir Valid
params CircuitPriorityHalflifeMsec=30000 NumDirectoryGuards=3 NumEntryGuards=1

NumNTorsPerTAP=100 UseNTorHandshake=1 UseOptimisticData=1 bwauthpid=1
cbttestfreq=1000 pb_disablepct=0 usecreatefast=0

[...]
dir-source gabelmoo ED03BB616EB2F60BEC80151114BB25CEF515B226

212.112.245.170 212.112.245.170 80 443
contact 4096R/C5AA446D Sebastian Hahn <tor@sebastianhahn.net> -

12NbRAjAG5U3LLWETSF7fSTcdaz32Mu5CN
vote-digest 3A9240CD6666793B6954C2E7D23F8523CEE85B9B
[...]
r Atlantic Uv//DBvVWNxQ1I8xsklGPD9CCOw jSegCkirIunDfYZSfOo+bv9brzk

2014-09-13 04:46:36 85.25.43.84 443 80
s Exit Fast Guard HSDir Running Stable V2Dir Valid
v Tor 0.2.4.23
w Bandwidth=99900
p accept 20-23,43,53,79-81,88, [...]
[...]
directory-footer
bandwidth-weights Wbd=708 Wbe=0 Wbg=4034 [...]
[...]
directory-signature ED03BB616EB2F60BEC80151114BB25CEF515B226

CD7159A8DE14BC6BDC7E5E1E51ADC89E162FCA08
[...]

Figure 4: Network Status Document, Received 2014-09-13

Vote and consensus documents contain different categories of information, see Figure 4 above as
an example for a consensus document. This example includes entries for the directory authority
gabelmoo and the relay Atlantic. The first category consists of information to handle the voting

15

Past, Present and Future of Tor Hidden Services

and consensus building process. This includes inter alia the document type (vote or consensus),
supported consensus methods, the VA, FU and VU times, information about the directory au-
thorities and flag assignment parameters. These parameters, which are only contained in votes,
specify thresholds an authority used to assign flags to relays.
The second category is information about the Tor network in general. This includes a list of rec-
ommend Tor software versions to warn users about outdated software, known flags and client
parameters. The client parameters are used to modify the behaviour of the Tor software. This has
the advantage that the behaviour of the clients can be changed based on the parameters without
the need to distribute a new version of the software. For example, this can be utilised to migrate
from an old protocol version to a new version. When the new behaviour is implemented, a new
version of the software can be shipped with the new behaviour initially deactivated. After most
users and relays upgraded to the new software version, a consensus parameter can be set to ac-
tivate the new protocol. This allows a smoother transition to new versions of Tor, which requires
users and relay operators to upgrade the software. In addition, thresholds and other constants
can be tweaked in this way to experiment with other values without the need to redistribute Tor
to a lot of people.
The third category of information included in these documents is information about each relay
similar to the relay descriptors. It contains information about how to communicate with a relay,
the relay’s exit policy, the assigned flags and the bandwidth of relays, either the advertised, self-
reported bandwidth from relays or the measured bandwidth from the bandwidth scanners.
In most cases both votes and consensus documents contain the same information, but some
items are only included in one document, because it is not necessary to include them in the
other. One important component of consensus documents are bandwidth-weights. These band-
width weights are calculated by the directory authorities and used by clients in the path selection
algorithm to choose relays for a circuit, see Subsection 2.3.2. The weights are used to optimise
the performance and the load balancing of the Tor network.

In addition to the normal consensus, directory authorities also compute a microdescriptor consen-
sus. The main difference is that the microdescriptor consensus does not contain exit policies of
relays, because this information is already contained in the microdescriptors of relays. Further-
more, a link to the corresponding microdescriptor of the relay is included as well, such that a
client can locate the corresponding microdescriptors. The goal is to avoid duplication of infor-
mation in consensus documents and microdescriptors.

Using network status documents and relay descriptors

In regular intervals clients download network status documents to learn the status of the Tor
network. Additionally, they download relay descriptors corresponding to the relays in the status
document and keep these descriptors up-to-date. This ensures that clients always have updated
information about the network and are able to build circuits and to use the network. All nec-
essary information are contained in these documents. If clients download the microdescriptor
consensus, they also download the corresponding microdescriptor relay descriptors. They use
key certificates and the authority signing keys contained in them to verify that they received
correct and untampered network status documents.

16

Past, Present and Future of Tor Hidden Services

2.3.2 Path Selection

Once clients have a network status document and enough relay descriptors they can start to se-
lect nodes and to build circuits through the Tor network. But how do they decide what nodes they
want to use for a particular circuit? This is specified in the “Tor Path Specification”, see [27]. A
path is an ordered sequence of three nodes in the network. The client connects to all three nodes
on a path in order to establish a circuit through the Tor network, which is subsequently used to
transmit data. The circuit is extended one hop at a time. A successfully built circuit is utilised
to transport a stream of data. A stream is an end-to-end connection from the client to the des-
tination with the last node on the path making the direct connection to the destination. Once a
circuit construction finished, a stream can be attached to the circuit and a connection established
with the destination. Finally, this stream transports all data exchanged between the client and
the destination over the circuit.

Tor builds circuits pre-emptively based on the observed usage of Tor in the last hour. Because
of that, a set of circuits is always available and can be used for streams, such that the user does
not need to wait for the construction of a new circuit upon request. A circuit is called a clean cir-
cuit, if no user traffic was transported over this already completed circuit before. Furthermore,
Tor builds circuits on demand, if no clean circuits can serve the user’s request. In addition to
circuits used for transportation of user data, Tor relays build circuits for internal reachability and
bandwidth tests. For the reachability test the relay creates a circuit with itself as the last hop in
order to determine that other relays and clients can connect to it. Only if the reachability test fin-
ished successfully, the relay publishes its relay descriptor. Additionally, relays create test circuits
to measure their bandwidth more accurately and include this information in the relay descriptor.

The method of building circuits is called telescoping, because the circuit is only extended to
the next hop, if the client could connect to the previous node without an error, similar to the
extension of a telescope. This method can be utilised to “cannibalise” clean circuits for a purpose
different than the originally intended purpose, for instance to replace the exit node on the circuit
in order to allow the connection to another destination based on the exit policy. Or the circuit
could be extended to another hop on demand. Furthermore, Tor keeps track of the time needed
to create circuits. This is used to calculate a timeout after which Tor gives up to build a specific
circuit, marks this circuit creation as failed and does not try to establish this circuit any longer.

Tor chooses nodes based on the flags assigned to them by the directory authorities, their band-
width and some additional constraints. For a relay having a high bandwidth it is more likely to
be picked as a node for a path. The goals of the path selection algorithm are circuit performance,
load balancing and security. Clients should use circuits, which offer them a high performance,
but at the same time the load needs to be distributed to all nodes in the network in order to avoid
that a few fast nodes are overloaded and must handle most of the traffic. In addition, it should
be difficult for an attacker to come into the position to control both the entry and exit nodes on
a path, because this would allow effective traffic correlation attacks. The following rules apply
during the selection of nodes for a single path with the exit node being chosen first:

17

Past, Present and Future of Tor Hidden Services

• No relay is picked twice.

• Not more than one relay from the same family is picked. Relay operators are encouraged to
specify during relay configuration, that relays controlled by the same operator belong to the
same family. Thus, every relay on a path should be controlled by a different operator.

• Only pick one relay from the same /16 subnet. This ensures that relays are not closely located
and makes it less likely that two relays can be observed by an attacker at the same time.

• Relays must have the running and valid flag in order to avoid turned off or malicious nodes.

• The first node must have the guard flag, the last node the exit flag.

• For long-lived circuits which are expected to be open for a long time period, for example
remote logins with SSH, only nodes with the stable flag are picked. This makes it less likely
that the circuit breaks during operation because of unreliable nodes.

• Exit nodes are picked according to their exit policy. This ensures up front that the connection
to the destination will not be refused by the exit node due to a violation of the exit policy.

• Node selection is weighted by the node’s bandwidth. Fast nodes offering high bandwidth are
preferred.

• The bandwidth-weights from the consensus document determine the probability of select-
ing nodes for a particular position on the path, for instance the probability to pick a node
with the guard flag as an entry, middle or exit node. For example, nodes with the guard flag
are preferred as the first node and nodes with the exit flag as the last node. The weighting
depends on the bandwidth all guard respectively exit nodes contribute to the network com-
pared to the overall bandwidth of all relays in the network. This helps to load balance the
traffic in the network.

The concept of guard nodes, i.e. relays with the guard flag, is important for the security of Tor.
Recall that in many cases the goal of an attacker is to control both the entry and the exit node
on a circuit in order to correlate traffic. In general, if an attacker controls C out of N relays and
nodes are selected at random, the probability of choosing a compromised path with the attacker
controlling both entry and exit node is

(
C
N

)2
. Over time this probability goes to 1, when a client

keeps building circuits at random. The attacker only needs to wait until the client creates a com-
promised circuit. The concept of guard nodes try to mitigate this attack [27].

Tor chooses a small set of guard nodes, currently three, and always uses one of the guard nodes
as the entry node. When selecting guard nodes, there are two possible outcomes. First, the guard
is controlled by the attacker and all circuits can be compromised, or second, the guard is not
controlled by the attacker and the attacker never has a chance to compromise a circuit. If the
number of attacker controlled guards compared to all relays in the network is small, then the
probability of picking a bad node is small as well. This increases the costs for an attacker, because
he needs to run more nodes in order to increase the likelihood of a successful attack.

18

Past, Present and Future of Tor Hidden Services

But this method also has a drawback. Because clients do not change their guards and new clients
choose the same guard nodes, these nodes accumulate more and more clients and traffic they
need to process. For this reason clients rotate their guard nodes currently every 8 to 12 weeks
[23]. This helps to distribute the traffic over all guard nodes. This is always a trade-off between
performance, load balancing and security and is subject to current research in order to choose the
best parameters for this trade-off [28]. The Tor developers discuss to move to a single guard node
and a rotation period of 9 to 10 months [29]. The goal is to further slow down attacks, because
with these parameters attackers need to wait even longer before clients pick their controlled
nodes. It is important to note that the design of guard nodes does not prevent traffic correlation
attacks itself, instead it is designed to slow down attacks and to make attacks unattractive due to
the required time and/or costs for running nodes.

2.3.3 Communication Protocol

Tor’s communication protocol as specified in [30] defines all communications within the Tor net-
work: relay-to-relay communication, client-to-relay communication and the end-to-end commu-
nication between the client and the destination outside the Tor network. This protocol supplies
the functionality of anonymous communication. Tor uses various cryptographic algorithms as
building blocks of the protocol: AES in the counter mode with a 128 bit key as a symmetric ci-
pher, RSA with a 1024 bit key as a public-key cipher and SHA-1 as a cryptographic hash function.
All relays in the network own three different public-private keypairs:

• A long-term identity key used as the relay’s identity and to sign certificates as well as relay
descriptors and extra info documents. Clients learn this key from relay descriptors.

• A medium-term onion key used to establish an authenticated and encrypted connection be-
tween a client and a relay on a circuit. This key is also part of the relay descriptor.

• A short-term connection key used to negotiate TLS link connections between two adjacent
relays and between a client and an adjacent relay. This key is rotated at least once a day.

Establish TLS connections

Direct link connections between two adjacent relays respectively a client and a relay is secured
with TLS. The client establishes a TLS connection with the entry node and every node on the
path does the same with its successor. These TLS connections are used to transport the Tor
protocol, for instance creating circuits and transferring data over streams. Multiple circuits can
share a single TLS connection. The goal is to establish an encrypted connection and to mutual
authenticate both ends of the connection. It is important that a client or relay knows it is talking
to the correct relay and not to an imposter, who performs a Man-in-the-Middle attack. The utili-
sation of TLS also prevents that an outside attacker can modify the data sent over the connection.

There exists three specified versions of the handshake to establish a TLS connection: certificates-
up-front, renegotiation and in-protocol. The first two handshakes authenticate both parties with
standard TLS methods, whereas authentication with the third handshake is performed with a

19

Past, Present and Future of Tor Hidden Services

Tor-specific protocol. Especially the third handshake is designed in a way that it looks to an
observer like an ordinary TLS connection between a Web server and a browser. The goal is to
make it difficult to determine that a TLS connection is a Tor connection by just looking at the
TLS traffic. For the same reason the encryption algorithms advertised in the TLS handshake as
supported by Tor mimics the cipher list of popular Web browsers. Furthermore, if clients use TLS
certificates during the handshake, these certificates are constructed in a way that they do not
leak identifying information or identify Tor traffic. In addition, new certificates are created in the
case the IP address of a user has changed. See the specification [30] about how clients and relays
know when to use which handshake.

With the certificates-up-front handshake the initiator of the connection sends two X.509 cer-
tificates to the responder during the TLS handshake. The first certificate contains the short-term
connection key. This certificate is signed with the long-term identity key, which is part of the
second, self-signed certificate. The responder answers the request with a similar two-certificates
chain in order to finish the handshake. Because both initiator and responder know the identity
keys from the relay descriptors, they can verify that they are actually connected to the right
relay. At this point both parties have successfully authenticated each other and established an
encrypted TLS connection usable for further communication.

Using the renegotiation handshake the initiator does not send any certificate during the ini-
tial TLS handshake and the responder answers only with a single connection certificate. This
behaviour is similar to a browser establishing a TLS connection with a Web server, where only
the Web server sends a certificate to the browser to authenticate itself. After this initial TLS
handshake is finished, the initiator starts a TLS renegotiation with both initiator and responder
sending two certificates in the same manner as with the certificates-up-front handshake.
The in-protocol handshake has the same first step as the renegotiation handshake. But the sec-
ond step uses the Tor protocol for authentication. This is explained in more detail in a following
subsection.

Cell format

After a TLS connection is successfully established, this connection is used for all further commu-
nications. For this purpose Tor uses fixed-size cells with two basic types of cells: control cells and
relay cells. Control cells are exchanged between two adjacent nodes and are always interpreted
by the node receiving them, for example the creation of circuits uses control cells. In contrast,
relay cells are end-to-end communication between the client and the last node on a circuit and
are utilised for stream management and end-to-end transportation of data. Relay cells are just
forwarded by the intermediary nodes on the circuit. In addition to the fixed-size cells Tor has
cells with a variable length.

A cell has the following format, see Figure 5 on the next page: a four byte circuit identifier
CircID followed by an one byte Command followed by 509 bytes of payload, in total 514 bytes1.

1Until recently Tor used a CircID of two bytes. Thus, a cell was 512 bytes long.

20

Past, Present and Future of Tor Hidden Services

The randomly chosen CircID associates a cell with a particular circuit and is different for every
TLS connection. Data travelling over a circuit has a different circuit identifier on each link be-
tween two nodes. The command describes how a relay processes the cell and how the payload
is formatted. Payload shorter than 509 bytes is padded with zeros. A variable-length cell has in
addition to CircID and Command a two bytes Length field after the command, which specifies the
length of the following payload.

Figure 5: Format of Control a) and Relay b) Cells

Relay cells have the cell command relay and add an own header to the start of the cell’s payload
as illustrated in the figure above. This header consists of an one byte Command to identify the
relay cell, a two byte Recognized field set to zero, a two byte identifier StreamID of the stream the
relay cell is associated with, a four byte checksum Digest, the Length of the remaining payload
and the actual relay cell payload. The relay cell header and the payload is AES-encrypted.

Initialise connections

In the case of the renegotiation and in-protocol handshake the connection between two Tor
instances, either two relays or a client and a relay, must be initialised, before circuits can be
built and data transmitted over the connection. Especially, they must agree on a version of the
protocol they will use. Currently Tor has four versions:

1. The first version uses the certificate-up-front handshake.

2. The second uses the renegotiation handshake and introduced variable-length cells.

3. The third uses the in-protocol handshake.

4. The fourth and most current version implemented circuit identifiers of four bytes.

With both renegotiation and in-protocol handshake the first cell both Tor instances send is a
version cell, i.e. the command in the cell header corresponds to version. This cell contains the
numbers of the link protocol versions supported. The protocol version with the highest number
both parties understand is selected for further communication. Following that they immediately
exchange netinfo cells, if the renegotiation handshake is used. These cells contain a current
timestamp, the IP address of the other party and the own IP addresses. IP addresses are encoded
in the form Type-Length-Value (TLV). The type either specifies a hostname, an IPv4 address or
an IPv6 address, length the number of bytes of the address and value is the actual address. On
receiving the netinfo cell Tor checks, whether it is connected to the correct IP address of the
other Tor instance. Otherwise an attacker could mount a Man-in-the-Middle attack by tricking
a relay to connect to an attacker controlled relay, although he would not be able to read the
encrypted traffic.

21

Past, Present and Future of Tor Hidden Services

For the renegotiation handshake this process is enough to set up the connection. With the in-
protocol handshake both parties still need to authenticate each other. This authentication process
follows these steps:

1. The initiator sends a version cell.

2. The responder answers with a version, a certs, an auth_challenge and a netinfo cell. The
certs cell includes certificates similar to the certificate chain used with certificate-up-front
and renegotiation to identify and authenticate the responder.

3. The initiator responds with a certs, an authenticate and a netinfo cell to authenticate
himself. If he does not want to authenticate, he just sends a netinfo cell. The authenticate
cell must include the challenge from the previously received auth_challenge cell.

Both certs cells include two X.509 certificates. The responder sends exactly the same two-
certificates chain as he would do with the certificates-up-front and the renegotiation handshake,
i.e. the TLS link certificate with the short-term connection key used for the TLS connection and
an identity certificate with the long-term identity key signing both certificates, which is enough
for the initiator to authenticate the responder. The certs cell from the initiator to the responder
(step 3) includes an identity certificate as well and an authenticate certificate, which consists
of an authentication key. Again, both certificates must be signed by the initiator’s identity key.
Checking these certificates is not sufficient to authenticate the initiator by the responder. He must
verify the authentication cell as well.

The auth_challenge cell sends a randomly chosen 32 bytes challenge to the initiator, who must
include this challenge in his authenticate cell answer. This cell consists of SHA-256 hashes of
the initiator’s identity key, the responder’s identity key, all the bytes sent so far from the respon-
der to the initiator including the auth_challenge cell, all the bytes sent so far from the initiator
to the responder, the responder’s TLS link certificate as well as a secret value based on TLS pa-
rameters including the TLS secret master key, a 24 bytes random value and a signature of the
SHA-256 hash value of all the previous fields using the authentication key included in the certs
cell for signing. The responder can check all these fields and can verify the signature in order to
authenticate the initiator, because the initiator is the only entity able to create the authenticate
cell and to sign it correctly with the private part of the authenticate key. This process is necessary,
because in contrast to the other two handshake methods the initiator does not use a TLS link
certificate, which can be used for authentication. This finishes the initialisation of connections
with the in-protocol handshake.

Create circuits

Circuits are created one hop after another. Tor clients send a create cell to the entry node includ-
ing the first half of a handshake to authenticate the node. The node replies with a created cell
and the second half of the handshake. In order to extend the circuit the client sends an extend
relay cell to the entry node, which unwraps the cell, constructs a create cell with the payload of
the extend relay cell and forwards the create cell to the middle node. If the entry node does
not have a TLS connection to the middle node, this connection is established first as previously

22

Past, Present and Future of Tor Hidden Services

described. The middle node answers with a created cell to the entry node, which wraps the
answer into an extended relay cell and transmits this cell to the client. The same process is
repeated in order to extend the circuit to the exit node with the client sending the extend re-
lay cell to the middle node. In the same manner the circuit could be extended to even more hops.

Tor supports two authentication handshakes during the exchange of create and created cells:
the original TAP handshake, which is based on the classical Diffie-Hellman (DH) key exchange
[31], and the newer ntor handshake as proposed in [32]. TAP is slow due to the number of oper-
ations necessary to compute the DH key exchange [13]. With ntor the original DH key exchange
is replaced with a version based on elliptic curves, which is able to speed up the handshake
significantly [33]. But why is another authentication performed in addition to the link authenti-
cation? The client has only an authenticated TLS connection with the entry node, but the middle
and the exit node must also be authenticated by the client, such that the client can be sure to use
only the nodes as chosen during path selection. Furthermore, both TAP and ntor are utilised to
negotiate session keys between the client and each node on the circuit.

With the introduction of the ntor handshake the Tor developers had to change the protocol,
because create / created and extend / extended assume only the TAP handshake. In order
to support ntor and to make the protocol more flexible create2 / created2 and extend2 /
extended2 cells are defined. The payload of create2 has the form of TLV: type of handshake,
length of the handshake data and the handshake data itself. The two types currently specified
are TAP and ntor. The created2 cell consists of a length field and the reply handshake data. The
old create / created cells contain only the handshake data as defined for TAP.

The extend2 and extended2 relay cells have the same handshake payload as create2 and
created2, respectively. In addition, extend2 relay cells define a variable number of link spec-
ifiers. These link specifiers, again in the form TLV, are either an IPv4 or IPv6 address plus port or
an identity fingerprint of the next hop on the circuit. The fingerprint consists of the SHA-1 hash
value of the relay’s identity key. The link identifiers are required to tell a relay the next node
to whom the circuit should be extended. The extend relay cell only contains an IPv4 address, a
port, the TAP handshake data and the relay’s fingerprint. The payload of the extended relay cell
is the same as of the created cell. A node receiving an extend or extend2 relay cell copies the
embedded handshake data, creates a create respectively create2 cell with this data and sends
the cell to the node as identified by the link specifier. In the same way the response handshake
data is copied and sent to the client in extended / extended2 relay cells.

TAP handshake

The TAP handshake uses the Diffie-Hellman key exchange. The client chooses a value x and
computes gx mod p with g and p given and encrypts the result with the relay’s RSA public onion
key learned from the relay descriptor. The encrypted value is sent to the relay as the handshake
payload of a create or extend cell. The relay chooses a value y and calculates gy mod p. The
result is sent back to the client together with a number KH in a created or extended cell.
Both parties can then calculate a shared secret gxy mod p. This shared secret is used to derive

23

Past, Present and Future of Tor Hidden Services

session keys, inter alia the number KH. Because the first half of the handshake is encrypted
with the relay’s public onion key, only the right relay can decrypt it and derive the session keys.
The number KH included in the response demonstrates that the relay was able to calculate the
session keys and authenticates the relay to the client.
In order to derive session keys the number i is concatenated to the shared secret and the result
hashed. This procedure is repeated with initially i = 0 and i incremented by 1 in every step. All
hash values are concatenated and five keys are taken from this: the response number KH, the
forward digest Df, the backward digest Db, the forward encryption key Kf and the backward
encryption key Kb. The usage of these keys is explained in a following subsection.

ntor handshake

The ntor handshake is built upon the elliptic curve function Curve25519 as specified in [33]. A
relay has a ntor onion keypair (b, B) based on this curve with b being the private key and B

the public key. B is published in the relay descriptor as the ntor onion key. The client generates
a temporary keypair (x, X) and sends the fingerprint of the relay, the identifier of B and X to
the relay as the first half of the handshake. The relay generates a temporary keypair (y, Y),
computes an authentication value based on X, y and b and replies with the authentication value
and Y as the second half of the handshake. Only the relay knowing the private keys y and b can
generate this value. The client verifies the authentication value with x, Y and B. Furthermore,
both compute a shared secret used for session key derivation.
The key derivation function (KDF) of ntor is a little bit different than the KDF of TAP. The TAP
KDF always uses the same shared secret during concatenation with i. In contrast, ntor’s KDF
concatenates i to the hash value from the previous step with the shared secret only used as the
initial value. But again the same five keys KH, Df, Db, Kf and Kb are generated.

Close circuits

Circuits are closed either on request, for example if all streams on a circuit finished, or in the
case of an unrecoverable error. Circuits can be closed completely or hop-by-hop. When a client
or relay want to close a circuit, they send a destroy cell to the adjacent node, for instance to
the entry node in the case of a client. On receiving the destroy cell the relay frees all resources
associated with the circuit, including any connections to servers outside the Tor network, if the
relay is an exit node. If the relay is not the last node, the destroy cell is forward to the next
node, propagating the closing of the circuit.

Circuits can be closed hop-by-hop similar to the creation of circuits by sending a truncate relay
cell to a particular relay. The receiving relay sends a destroy cell along the circuit and replies
to the initiator with a truncated relay cell to signal that the closing request was processed. This
procedure can be used, for example, to remove the exit node from a circuit and to extend the
circuit again to another exit node.

If a circuit breaks due to an unrecoverable error between two adjacent relays, the relay closer to
the client sends a truncated relay cell to the client and the other relay sends a destroy cell in
the direction of the circuit end. Because of that, all nodes the client cannot reach anymore are

24

Past, Present and Future of Tor Hidden Services

closed down cleanly and the remaining circuit is kept working. This feature is useful in order to
recover from errors, because circuits can be rebuilt starting with the last reachable node. Both
truncated and destroy cells contain a single byte value as the payload indicating the reason for
the closing. The truncate relay cell does not have any payload.

Processing relay cells

After the client created a circuit, authenticated all relays and established session keys, the circuit
can be used for sending data. The end-to-end communication between the client and the exit
node is handled by relay cells. Sending cells from the client to the exit node is called forward
direction, from the exit node to the client backward direction. The keys Kf and Df are used in
the forward direction, Kb and Db in the backward direction. A client encrypts the cell’s payload
with all three Kf keys using AES and transmits the cell along the circuit. Every node on the cir-
cuit removes one layer of encryption by decrypting the cell with its own Kf, thus, the exit node
receives the original plaintext. On a reply back to the client all nodes add one layer of encryption
by encrypting the cells payload with Kb. For this reason only the client can read the payload,
because only he possesses all Kb keys.

In order to preserve the integrity of the cell a checksum is included in each relay cell, i.e. the
Digest field of the relay cell header. For each relay on the circuit Tor keeps a running digest and
includes the first four bytes of this digest as the checksum. In the forward direction the running
digest is the hash value of all cells sent from the client to a particular relay, in the backward
direction all cells sent from the relay to the client. The running digest is initialised by Df respec-
tively Db and only includes cells, which are destined for a relay, i.e. no cells just forwarded by
a relay. This ensures that the receiver of a cell would detect any manipulations, because he can
compare the running digest with the expected digest in the relay cell’s header.

When a relay receives a relay cell in the forward direction, it decrypts the payload and checks
whether the Recognized header field is set to zero. Recall that this field is always initialised by
the sender as zero. If the field is not zero, the relay just forwards the decrypted cell, because
it is not the intended recipient as it cannot decrypt the plaintext correctly. If the field is indeed
zero, the relay checks the digest and in the case of a correct match processes the cell. If the di-
gest does not match, the cell is forwarded as well. This process guarantees that a relay can easily
identify, if it is the intended recipient of a relay cell. It acts as an address for the cell’s destination.

It should be noted that with the techniques described in this subsection relay cells can be sent to
any relay on a circuit, not just to the exit node by “addressing” the right relay and only adding
encryption layers for the relays before the recipient.

Manage streams and transfer data

When an application wants to send data over the Tor network, it connects to the Tor client via
Tor’s SOCKS interface and request a connection to the remote host. Tor chooses an open circuit,
which is able to handle the request, or creates a new circuit if necessary. Then it sends a begin
relay cell to the exit node to open a stream. This cell contains the hostname, IPv4 address or

25

Past, Present and Future of Tor Hidden Services

IPv6 address and the requested port of the remote host as supplied by the application through
the SOCKS interface. On receiving the begin relay cell the exit node resolves the hostname if
necessary and opens a TCP connection to the remote host on the specified port. The exit node
replies with a connected relay cell, which includes the resolved IP address and a time-to-live
(TTL) value. The TTL gives the number of seconds the resolved IP address should be cached. If
the exit node cannot successfully connect to the remote host, it replies with an end relay cell.

After a stream is successfully established, Tor acknowledges the successful connection to the
application via SOCKS. Afterwards, all TCP data handed from the application to Tor is packed in
data relay cells and transmitted to the exit node. There the data in unwrapped and sent to the
remote host. All data received from the remote host by the exit node is wrapped in data relay
cells and transported back to the client, which hands the data to the application. If a connection
is closed by either the remote host, the application or due to an error, the stream is closed by
sending an end relay cell along the circuit, either in forward or backward direction. This cell con-
tains a single byte with the reason for the closing. On receiving an end relay cell all connections
associated with the stream are closed and no further data transmitted. The circuit itself is not
closed, because different streams can share the same circuit.

If a relay serves directory information as described in Subsection 2.3.1, a client can fetch this
information anonymously from the relay by sending a begin_dir relay cell to it. The relay con-
nects to itself on the port used for serving directory information and establishes a stream as it
would do after receiving a begin relay cell. The ordinary directory protocol is subsequently tun-
nelled over this stream. Furthermore, hostnames can be resolved anonymously as well. For this
purpose clients send a resolve relay cell to the exit node containing the hostname to resolve. The
exit node looks up the IP address belonging to the hostname and answers with a resolved relay
cell, which contains a variable number of IP addresses of the form TLV plus TTL. This supports
either IPv4 or IPv6 addresses as well as a reverse lookup, i.e. finding the hostname corresponding
to an IP address. In addition, Tor implements a form of flow control for circuits and streams in
order to avoid that they become congested. This is implemented via sendme relay cells, which
signal to one end of the connection that a relay is able to receive more data relay cells. Otherwise
transmission of cells is stopped after a fixed number of sent cells. For more details about flow
control see [1] and [30].

Summary

In summary, clients and relays establish TLS connections to adjacent relays. The Tor protocol is
transported over those connections. A client creates a circuit, authenticates all three relays on the
circuit and negotiates session keys with them. Streams are opened on circuits in order to trans-
port end-to-end data from the application to the remote host via relay cells, which are encrypted
with the session keys. Figure 6 on the next page illustrates this process by showing what commu-
nication takes place between the different entities involved and what cells are transmitted. The
example uses a two-hop circuit in order to provide a clear presentation. But this example could
easily be extended to a three-hop circuit. This gives a good summary of the Tor protocol.

26

Past, Present and Future of Tor Hidden Services

Figure 6: Retrieving Data from a Remote Host via a Two-Hop Circuit

2.4 Limitations and Pitfalls

Tor is used by millions of people everyday, who want to protect their anonymity. The previous
sections explain in detail how Tor is designed in order to achieve that goal. But Tor has also some
limitations and pitfalls users must be aware of. Tor anonymises any application using TCP instead
of being tied to a single application, for example just Web browsing. But Tor only supports TCP
and not UDP. Another approach would be to anonymise all IP packets regardless of the transport
layer protocol used. But this has the great disadvantage that it would require in most cases mod-
ifications to the operating system’s network stack. This would make the implementation more
complex and less portable. Thus, Tor follows a middle approach in order to have a simpler de-
sign, which is portable to a lot of systems plus application-independent. This also helps to attract
more users, because it is easier for them to install and use Tor for different purposes.

But Tor only anonymises the IP address of a user, it does not perform any protocol normali-
sation. If the protocol transported over Tor does not protect the user’s anonymity, for instance it

27

Past, Present and Future of Tor Hidden Services

contains the real IP address of the user as in the case of Bittorrent [34], Tor cannot help. Pro-
tocols must be designed in a way that they do not hurt the user’s anonymity. The same holds
for applications, which must be configured to not leak identifying information if combined with
Tor. Another solution would be to layer a proxy between Tor and the application, which removes
all identifying information from the traffic given to Tor. In addition, if no end-to-end encrypted
protocol is used, the exit node can view the plaintext traffic leaving the network. For example,
viewing a Web site with plain HTTP the exit node can see the viewed Web site, because the traf-
fic leaving the exit node is unencrypted. Furthermore, multiple streams share a single circuit in
order to avoid the overhead of constructing an own circuit for each stream. If two streams share
a circuit and one streams leaks the user’s identity due to a careless protocol, the other stream is
deanonymised as well [34].
In general, Tor itself does not attempt to solve these application-level problems. Tor relies on
protocol and application developers to solve it. For Web browsing the Tor Project offers the Tor
Browser [4], which mitigates many problems regarding anonymity and Web browsing and gives
users a tool to anonymously surf the Web. This is the biggest use case for Tor and requires special
attention, because Web browsing and anonymity is itself a very difficult problem.

Furthermore, users must be aware of DNS leaks. When connecting to Tor via SOCKS, the ap-
plication can provide either a hostname or an IP address to Tor. In the first case the exit node
resolves the hostname before establishing the connection to the remote host. In the second case
it uses the supplied IP address. This means that the application resolved the hostname itself. If
this is performed outside Tor, the user leaks the destination to any entity observing the user’s
traffic. Because of that, users must ensure that applications transport both DNS resolves and TCP
traffic over Tor.

By design Tor does not protect against traffic correlation attacks. But in fact the Tor protocol
already specifies padding and vpadding control cells as well as drop relay cells, which can be
used to create dummy traffic and could make traffic correlation attacks harder or impossible. But
this would add additional load onto the Tor network. Until this security and performance trade-
off is better understood, mechanisms against traffic correlation attacks are not deployed [30].

Additionally, some parts of the Tor protocol show its age. Especially the cryptography primi-
tives are partly outdated, for instance RSA with 1024 bit keys is too short. That was enough
at the time Tor was originally designed, but not today with the massive increase of computing
power over the last decade. The Tor developers are working on improving the situation [35],
specifically by migrating identity keys to an elliptic curve public-key cipher [36]. But this needs
time. Many parts of Tor must be changed and relays and clients migrated to the new software.

Tor is a great tool to provide anonymous communications over the Internet, but cannot solve
the problem alone. Applications and protocols must be built with anonymity requirements in
mind as well. Furthermore, user must be aware of Tor’s limitations and pitfalls in order to not
hurt their anonymity by using Tor in a dangerous way.

28

Past, Present and Future of Tor Hidden Services

3 Tor Hidden Services

The Tor protocol as described in Chapter 2 provides anonymity to users, who want to access a
public service anonymously. This allows users to view any public service. The service does not
need to know about Tor. From the service’s point of view the exit node is the user and makes the
connection to it. Tor is mostly used in this way. But service operators may also have the desire to
stay anonymous in order to provide the service without being identified as the service operator.
For example, activists often want to publish sensitive information anonymously, because they
fear repression from governments or corporations if they can be identified as the publisher. This
is very important, for instance for whistle-blowers who want to uncover wrongdoing.

Tor’s location-hidden services allow exactly that. Location-hidden services, sometimes also called
responder anonymity, provides anonymity to a service and its service operator, where the real IP
address of a hidden service is never revealed to anyone accessing the service. Thus, it cannot be
determined, where the server running the service is physically located and who operates it. This
makes it very difficult to shut down the service by governments or corporations and to censor
the published information. In addition, this offers a protection against Denial-of-Service (DoS)
attacks. An attacker cannot attack a hidden service directly, because he does not know its IP
address. Instead he must attack through the Tor network, which can cooperatively defend the
Denial-of-Service attack.

Hidden services are operated as part of the Tor network and users access them using the or-
dinary Tor client, ensuring anonymity for both users and service operators. This provides end-
to-end encryption between the client and the hidden service, thus, nobody can listen on the
communication between the user and the hidden service. Furthermore, the hidden service is au-
thenticated to the user in a way that the user knows he is talking to the legitimate hidden service.
Any TCP application can be configured as a hidden service. The Tor software acts as a proxy for
the application and delegates all communication between the user and the application. Because
of that, applications do not need modifications for being operated as a hidden service.

The classical example of a hidden service is a Web server for publishing information. But the
hidden service design allows other interesting applications as well. For instance, TorChat1 is a
peer-to-peer instant messenger with a completely decentralised design employing hidden ser-
vices. In fact, every user runs its own hidden service as part of the TorChat program. TorChat
connects users to each other via the hidden service mechanism and all messages exchanged
between two users are end-to-end encrypted with no intermediary able to listen on the conver-
sation. Both parties stay completely anonymous. An attacker cannot find the location of users,

1Available at https://github.com/prof7bit/TorChat.

29

https://github.com/prof7bit/TorChat

Past, Present and Future of Tor Hidden Services

who is communicating with whom or what they say. TorChat is a great example of an application
making use of the capabilities of Tor hidden services.

The following Section 3.1 introduces the general mode of operation of location-hidden services
and describes the goals the Tor developers had in mind while designing them. Section 3.2 ex-
plains the current design and specification of hidden services, which is followed by an analysis
of its limitations in Section 3.3. Based on this, Section 3.4 explains the proposal of a renewed
hidden service design, which aims to fix these limitations. Section 3.5 concludes this chapter
with a list of open research questions the new design does not address yet.

3.1 Introduction

The Tor developers had four design goals in mind when they created hidden services: access
control, robustness, smear-resistance and application-transparency [1]. A hidden service can use
access control mechanisms in order to determine, who is allowed to access the service. Further-
more, attackers should not be able to perform DoS attacks against the hidden service by just
making many connections to the service. Robustness means that there is no single relay, which
is solely responsible for handling one hidden service inside the Tor network. The hidden service
should be able to operate even if relays taking part in the hidden service protocol shut down.
Because of that, an attacker cannot render the service inoperable by attacking only a few relays.
Smear-resistance in contrast should protect Tor relays, which handle hidden service traffic. An
attacker should not be able to frame a relay and claim that this relay is offering an illegal or ques-
tionable hidden service. A relay should not be attributed as responsible for one hidden service.
Application-transparency is the property that hidden services can be offered for any application
without the need to modify it.

Figure 7: Overview of Hidden Services

The fundamental design of Tor hidden services is illustrated in Figure 7 above. The Tor software
running on the hidden service computer is configured in a way that all connections to it are
handed to the application offering the service. Tor does this transparently to the application. Ev-
ery hidden service has a long-term identity key, which uniquely identifies the service. The public
component is used as the hostname for the hidden service in form of a .onion address. This

30

Past, Present and Future of Tor Hidden Services

virtual top level domain is interpreted as a request to access a hidden service, when submitted
to Tor. The hostname has the form z.onion with z being the public key of the hidden service. In
order to access a hidden service the following steps are performed (the enumeration corresponds
to the numbers in Figure 7):

1. The hidden service chooses a set of ordinary Tor relays as medium-term introduction points,
builds circuits to them and instructs them to act as its introduction points.

2. The hidden service creates a hidden service descriptor, which includes the service’s public key
and the selected introduction points, and publishes this descriptor to a set of hidden service
directories. Every relay with the HSDir flag can act as a hidden service directory.

3. A user already knows the .onion address of the hidden service through a second channel.
The client uses this address to download the hidden service descriptor from a hidden service
directory in order to learn the introduction points.

4. The client picks a relay as a short-term rendezvous point and creates a circuit to it.

5. The client sends the rendezvous point together with the first half of an authentication hand-
shake to one of the introduction points via a circuit and requests it to make a connection to
the hidden service.

6. The introduction point forwards the connection request to the hidden service, which consists
of the rendezvous point and the handshake data.

7. If the hidden service decides to communicate with the client, it establishes a circuit to the
rendezvous point and sends the second half of the authentication handshake. The rendezvous
point connects the client circuit and the hidden service circuit together in order to build
a connection between the client and the hidden service. The authentication handshake is
forwarded to the client.

8. The client authenticates the hidden service and both compute session keys based on the
handshake data. This establishes an end-to-end encrypted connection between the client and
the hidden service. Subsequently all communication is tunnelled over this connection via the
rendezvous point.

This protocol secures the anonymity of both user and hidden service, because neither the hidden
service directories, the introduction points nor the rendezvous point learn the real IP addresses
of the user or the hidden service due to the fact that all connections are made through three-
hop circuits. In fact, the introduction points do not even learn for which hidden service they are
acting as introduction points [37]. If an introduction point is unavailable, the hidden service can
pick a new one and include it in the hidden service descriptor. This makes the design robust,
because if an attacker shuts down all introduction points, the hidden service just advertises new
introduction points and is able to accept connections again. Smear-resistance is provided by
using a different client selected rendezvous point for every connection. Thus, an attacker cannot
just run a disreputable hidden service and frame a rendezvous point for sending illegal content,
because he has no control over the choice of the rendezvous point. He can also not frame an
introduction point, since those never transport any application data.

31

Past, Present and Future of Tor Hidden Services

3.2 Current Hidden Services

The current protocol of Tor hidden service is specified in [37]. The Tor software runs on the
same machine as the application, for instance a Web server, which should be made available as a
hidden service. Tor is configured to forward all application data received via the hidden service
protocol to a local IP address and port, where the application processes this data. Because of
that, an application is not aware of the fact that it is offered as a hidden service. Users use hidden
services in the same way they use non-hidden services via Tor. From the user’s perspective there
is no difference between a hidden service and a non-hidden service, except the .onion address.

3.2.1 Hidden Service Protocol

First the hidden service protocol for the communication between a client and a Tor instance
running as a hidden service is described in this subsection with the explanation following the
process illustrated in Figure 7 and explained in the previous section. Subsection 3.2.2 examines
two different mechanisms hidden services can deploy in order to perform access control, i.e. to
enforce that only authorised users can access the service.

Establish introduction points

Initially, the Tor instance running as a hidden service generates for every introduction point
a short-term service key independent of its long-term identity key. Next it chooses a small set
of three to ten relays as introduction points. This number of introduction points depends on
the self-estimated popularity of the hidden service [38]. If the hidden service is more popular,
more introduction points are selected. A circuit to each introduction point is created and an
establish_intro relay cell sent to each of them. This relay cell contains the public service key
component, a hash value based on the number KH from the authentication handshake between
the hidden service and the introduction point and a signature of this information computed
with the private service key component. The hash value is included in order to prevent replay
attacks, since the value depends on the newly generated KH only the hidden service and the
introduction point know. The introduction point verifies the signature and the hash value of
the received relay cell and answers with an empty intro_established relay cell in the case
of a positive outcome. The introduction point utilises the service key to associate requests from
clients to the hidden service. The service key is used for this purpose instead of the hidden service
identity key, because the introduction point should not know for which hidden service it serves
as an introduction point.

Publish hidden service descriptor

After a hidden service has established its introduction points, it generates a hidden service
descriptor. This descriptor has the same basic format as all directory documents described in
Subsection 2.3.1. Every descriptor has a rendezvous-service-descriptor item, which contains a
descriptor-id. This descriptor-id uniquely identifies the service descriptor and is used to publish it
to different hidden service directories. It is calculated based on a hash value of the combination
of the hidden service identity key, a current timestamp, a descriptor-cookie and a replica number.
The timestamp changes every 24 hours and guarantees that the service descriptor is published to
a different set of hidden service directories every 24 hours. The replica number is used to gener-

32

Past, Present and Future of Tor Hidden Services

ate multiple copies of the service descriptor with different descriptor-ids. The descriptor-cookie
is an optional secret password of 128 bits shared between the hidden service and its clients.

Additionally, the service descriptor contains inter alia the public identity key permanent-key
of the hidden service, a secret-id-part necessary to verify that the service descriptor belongs
to the descriptor-id, a timestamp publication-time when the descriptor has been created, a list
of introduction-points and the signature of the hidden service descriptor signed with its pri-
vate identity key. The list of introduction points can contain a single service-authentication
item, which can be used for the authentication of clients by the hidden service. This is fol-
lowed by an arbitrary number of introduction points. Each introduction point is identified by
the relay’s fingerprint and has an IP address plus port, the relay’s onion key, the service key
generated for the particular introduction point and an intro-authentication item. In addition to
service-authentication client authentication can be performed with the data contained intro-
authentication as well, but the latter mechanisms is depended on the selected introduction
point. The list of introduction points may be encrypted with AES in counter mode and the
descriptor-cookie as the secret key. Thus, only clients who know the cookie can decrypt the
list in order to contact the hidden service.

Currently, Tor generates two replicas of the service descriptor and publishes each replica to three
hidden service directories. Thus, at any time six hidden service directories serve service descrip-
tors for a specific hidden service. The hidden service learns all hidden service directories from
the consensus document and sorts their fingerprints in a circular ring. Both replicas are uploaded
to the three hidden service directories which fingerprints follow in the ring immediately after the
two replicas’ descriptor-ids. Service descriptors are uploaded via HTTP once an hour or when-
ever their content has changed using a circuit to a hidden service directory and the begin_dir
relay cell mechanism.

Obtain hidden service descriptor

To contact a hidden service a user only needs the z.onion address of the hidden service. The
value z is calculated as the first 80 bits of the SHA-1 hash value of the hidden service identity
key encoded as Base32. The Base32 encoding represents the 80 bits as 16 alphanumerical char-
acters [39]. For example, a .onion address could look like 3g2upl4pq6kufc4m.onion. The client
can calculate the descriptor-id of the hidden service descriptor based on the .onion address,
because the descriptor-id is computed with the decoded hash value. In addition, the current
timestamp and the replica number are also known. If a descriptor-cookie is used, the user needs
to possess this value as well. Then the client can locate the six responsible hidden service directo-
ries for the current service descriptor and downloads the descriptor from one of those directories
via a Tor circuit after connecting to it with a begin_dir relay cell and requesting the service
descriptor by its descriptor-id via HTTP.

Establish a rendezvous point

The client chooses randomly a Tor relay as the rendezvous point with the hidden service. It
builds a circuit to the selected relay and sends an establish_rendezvous relay cell to it, which

33

Past, Present and Future of Tor Hidden Services

consists only of a 20 byte random rendezvous cookie. The rendezvous point associates the cookie
with the the client circuit and acknowledges the creation of the rendezvous point with an empty
rendezvous_established relay cell. The rendezvous cookie is later needed to connect the client
and the hidden service together at the rendezvous point.

Introduce client to hidden service

The client selects one of the introduction points contained in the service descriptor, builds a cir-
cuit to it and sends it an introduce1 relay cell. This cell contains unencrypted the hash value
of the service key of the hidden service. Furthermore, the cell includes a version field set to 3
for the current introduction protocol, optional authentication data of the form TLV, a deprecated
timestamp not longer in use, the rendezvous point’s IP address, port and onion key, the ren-
dezvous cookie and the first half of a Diffie-Hellman handshake. These fields are all encrypted by
the public service key of the hidden service used for the chosen introduction point. The hidden
service protocol uses the TAP handshake in order to authenticate the hidden service by the client
and to derive session keys shared between the client and the hidden service.

When the introduction point receives an introduce1 relay cell, it checks whether it recognises
the service key contained in it and sends an introduce2 relay cell along the corresponding cir-
cuit to the hidden service. This cell has the encrypted portion of the introduce1 relay cell as
payload. The introduction point acknowledges this to the client with an empty introduce_ack
relay cell. The hidden service checks that the received introduce2 relay cell is not a replay by
keeping a cache of introduce2 relay cells it previously received for a specific service key. After
that the encrypted payload is decrypted by the hidden service with the private service key in
order to learn the selected rendezvous point.

Rendezvous

The hidden service finishes the TAP handshake, builds a circuit to the rendezvous point and sends
the rendezvous cookie, the second part of the Diffie-Hellman handshake and the value KH in a
rendezvous1 relay cell to the rendezvous point. The rendezvous point checks whether it has a
circuit associated with the rendezvous cookie. In this case it forwards the Diffie-Hellman and KH

values in a rendezvous2 relay cell to the client. The client finishes the handshake and authenti-
cates the hidden service by verifying KH. Both client and hidden service derive the same shared
keys as defined by the TAP handshake. They now have established an end-to-end encrypted con-
nection via the rendezvous point, which can be used for further communication.

When the client wants to send a relay cell to the hidden service, it encrypts and authenticates the
cell with Kf and Df, respectively, as explained in Subsection 2.3.3 and sends it along the circuit
to the rendezvous point. The rendezvous point forwards the cell to the hidden service, which de-
crypts the cell with Kf and checks its integrity with Df. The hidden service can transmit data to
the client in the same way while using Kb and Db instead of Kf and Df. The cells transported on
the circuits are encrypted in the same manner as with the ordinary Tor protocol. Cells from the
client to the rendezvous point are encrypted three times in addition to the end-to-end encryption
with one layer of encryption being removed at every intermediary node. From the rendezvous

34

Past, Present and Future of Tor Hidden Services

point to the hidden service every node adds one layer of encryption. For the opposite direction
the processes is reversed.

In order to communicate with the application running at the hidden service the client sends
a begin relay cell to the hidden service. The hidden service makes a connection to the applica-
tion as defined in the configuration and replies to the client with a connected relay cell. Both
the begin and the connected relay cells do not include any IP addresses, because the client does
not know the real IP address of the hidden service and the address must not be exposed to the
client with a connected relay cell in order to keep the service anonymous. For all further com-
munication between the client and the application via data relay cells the hidden service acts as
an exit node, except that only connections to the application are allowed. Data received from the
hidden service is handed to the application on the client which requested the hidden service.

3.2.2 Access Control with Hidden Services

Access control can be performed at two points in the hidden service protocol. First, when down-
loading service descriptors with encrypted introduction points. If a client cannot decrypt the
introduction points, it cannot connect to the service, because the client does not know the in-
troduction points and it cannot create valid introduce1 relay cells without knowing the service
key. Thus, only clients in possession of the secret decryption key are allowed to access the ser-
vice. Second, the hidden service can refuse to connect to the client’s rendezvous point after it
examined the authentication data in introduce2 relay cells.

Currently, two access control protocols are specified for hidden services: basic authorisation and
stealth authorisation [37]. The difference between those two protocols is the fact that the basic
authorisation is suitable for a larger number of users, but does not conceal the activity of the
hidden service. Unauthorised users cannot access the service, but can determine that it is oper-
ating. With the stealth authorisation unauthorised users cannot discover that a hidden service is
active at all. But this protocol is only feasible for a maximum of 16 users. Both protocols can be
configured at the Tor instance running as a hidden service transparently to the application. For
more details about the configuration see [37].

Basic authorisation

The basic authorisation protocol uses encrypted introduction points for access control. The hid-
den service creates a single session key to encrypt the introduction points as described in the
previous subsection. In addition, the hidden service generates a descriptor cookie for every user,
who should be authorised to access the service. Those descriptor cookies are distributed to users
outside of Tor and users configure their Tor clients to use this cookie when accessing the hidden
service. The hidden service generates a client id for every user based on their descriptor cookie
and encrypts the session key with each descriptor cookie using AES. The pairs of client id plus
encrypted session key are included in the service descriptor in addition to the encrypted intro-
duction points. The list is sorted by the client id and always a multiple of 16 pairs are generated.
Fake entries are added if necessary.

35

Past, Present and Future of Tor Hidden Services

A client locates and downloads the service descriptor normally. It finds its entry in the list of
authorised clients by searching for its client id, decrypts the session key with its own descriptor
cookie and uses the obtained session key to decrypt the introduction points. Then it connects
to the hidden service, while including the descriptor cookie in the introduce1 and introduce2
relay cells as authentication data. The hidden service verifies the received descriptor cookie. If
the client is still authorised to access the hidden service, the service connects to the rendezvous
point to finish the connection. Afterwards, client and hidden service communicate without fur-
ther restrictions.

When a hidden service wants to remove the access of a user, it stops to include the client en-
try in the service descriptor. Furthermore, the service refuses a connection after receiving the
now invalid descriptor cookie with an introduce2 relay cell. This is necessary, because the client
still knows the introduction points of the hidden service, if the service has not changed them
after it revoked the user’s access.

Stealth authorisation

The stealth authorisation goes one step further than the basic authorisation by hiding the activity
of the hidden service to unauthorised users. The idea is to publish a separate service descriptor
for each authorised user. For this purpose the hidden service generates an asymmetric client key
and a symmetric descriptor cookie for every user. The client key is used as a replacement for the
hidden service identity key. The client keys and the descriptor cookies are distributed to users
outside of Tor. For each user the hidden service creates a service descriptor with the client key
and the descriptor cookie as part of the descriptor-id. Furthermore, the introduction points are
encrypted with the descriptor cookie as well. Including the descriptor cookie in the descriptor-id
ensures that all service descriptors are distributed to different hidden service directories and that
only the authorised users can locate and download them. Because of that, unauthorised users
cannot identify the activity of a hidden service.

Clients use the client key and the descriptor cookie in order to receive its service descriptor,
decrypts the introduction points and include the descriptor cookie in introduce1 relay cells. The
hidden service decides in the same way as with the basic authorisation protocol, if it allows the
access of the client after receiving an introduce2 relay cell. In order to revoke the access for a
particular user the hidden service just needs to stop publishing service descriptors for the user
and to close down the circuits to the introduction points used for this user. After that, even a
formerly authorised user cannot determine that the hidden service is still active.

3.3 Shortcomings and Drawbacks

The basic design of hidden services did not change significantly over the last years since it was
initially proposed. Because of that, the design as it is today has several shortcomings and draw-
backs, which are described briefly in this section. This includes a description of attacks against
hidden services. Some of those limitations and attacks motivated the redesign of Tor hidden ser-
vices as introduced in the section afterwards. [40] gives a short summary of the limitations of
the current hidden service design and points out possible directions for improvements.

36

Past, Present and Future of Tor Hidden Services

The protocol itself and the format of relay cells is not very flexible and extensible and lacks
behind the general Tor protocol. For example, the hidden service protocol only supports IPv4 ad-
dresses and not IPv6 addresses, and only the TAP handshake and not the newer ntor handshake
to authenticate the hidden service. In contrast, the Tor protocol can support future handshake
protocols without the need to change the cell format. The hidden service protocol is not easily
extensible like this.
Furthermore, hidden services utilises the same cryptographic primitives as the Tor protocol, es-
pecially RSA with only 1024 bit keys. Thus, when the Tor protocol is upgraded to stronger, more
modern algorithms, hidden services should be upgraded as well. This can be carried out in two
independent steps, but needs to be done eventually. Another problem are the hidden service
identity keys. Currently, those keys must be kept online at the hidden service, because they are
necessary to sign service descriptors. If an attacker can compromise a hidden service and gets
hold of the identity key, he can easily impersonate the hidden service. In order to counter this
threat identity keys could be stored offline in a similar way as the directory authorities handle
their authority identity keys today.

The hidden services’ .onion addresses have an important property. They are self-authenticating.
After a client downloaded a service descriptor for a particular hidden service, it can verify that
the public identity key contained in the descriptor matches the .onion address, because this ad-
dress encodes the public identity key. For this reason a user can be sure to always connect to the
hidden service he actually requested. But this has the great disadvantage that .onion addresses
are not human memorable and users cannot handle them in the same way as ordinary domain
names. This is a severe limitation from an usability perspective, which could pose an obstacle for
the adoption of hidden services.

Introduction points are the primary targets of Denial-of-Service attacks against a hidden ser-
vice, because an attacker cannot attack a hidden service directly. This can make a hidden service
temporary unavailable until new introduction points are selected and new service descriptors
distributed, if an attacker is able to shut down the currently used introduction points. A possible
countermeasure against this type of attack are valet nodes [14]. Clients do not contact introduc-
tion points directly, but instead use the valet nodes as contact points with the hidden service.
With this design clients do not learn the IP addresses of the introduction points. Thus, valet
nodes act as a protection layer in front of the introduction points. The idea is to only have a few
introduction points but much more valet nodes. An attacker is unable to attack the introduction
points directly and unable to shut down all valet nodes.

Hidden services are slow, which has mainly two reasons. First, the establishment of a connec-
tion between the client and the hidden service is complex and expensive, because this involves
the indirection via an introduction point and a rendezvous point. Second, the final connection
between the client and the hidden service consists of six hops. Because many circuits must be
built during this process the introduction of the faster ntor handshake may already improve the
situation. Additionally, [13] suggests an improvement of the connection establishment based on

37

Past, Present and Future of Tor Hidden Services

the concept of valet nodes. Rendezvous points are removed completely and replaced by valet
nodes, which simplifies the set up of a hidden service connection significantly.
In addition to the performance problem hidden services do not scale well. Introduction points
are a major bottleneck, because only a few introduction points need to handle all the connection
requests to a hidden service. Furthermore, the current hidden service design does not allow load
balancing by distributing traffic to different servers with different IP addresses. A connection
request is always forwarded to the same hidden service instance.

The first attack able to identify the real IP address of a hidden service is described in [7]. The
attack uses only one single Tor node controlled by the attacker to deanonymise the hidden ser-
vice within minutes to hours. The idea is that the hostile node repeatedly connects to the hidden
service and hopes to be picked as the entry node by the hidden service for the circuit from the
hidden service to the rendezvous point. The hostile node correlates the traffic it forwards as the
Tor node with the traffic generated as the client communicating with the hidden service. If a
match can be found, the node is part of the hidden service circuit to the rendezvous point. But
the hostile node does not know, if it is the entry node of the circuit or the middle or exit node.
In order to determine the IP address of the hidden service the hostile node makes a list of IP
addresses connected to the node in the cases of a traffic match. The IP address contained most
in the list is most likely the IP address of the hidden service, because when the hostile node acts
as the entry node, it is always connected to the same IP address of the hidden service. If its is
not the entry node, it is connected to random Tor nodes with different IP addresses. Thus, the IP
address of the hidden service is encountered more frequently.
This attack can be accelerated with a second attacker controlled node, which is always chosen
as the rendezvous point while communicating with the hidden service. Then the attacker can
easily determine, if the first hostile node A is the entry node of the hidden service. If A is directly
connected to the IP address of the rendezvous point, A is the exit node. If both hostile nodes are
connected directly to the same node B with the same IP address, B is the exit node and A is the
middle node. Otherwise, A must be the entry node of the hidden service.
As a countermeasure against this attack guard nodes were introduced. The attack exploits the
fact that without guard nodes it is very likely that the hostile node is eventually selected as the
entry node of the hidden service for the circuit to the rendezvous point, because every time a
new connection is made to the hidden service a new entry node is chosen. Guard nodes effec-
tively defend against this attack, because the entry node is not changed for every new connection.

Hidden service directories are in an interesting position. They can track the popularity of a
hidden service by counting the number of requests for the service descriptor of a particular
hidden service. Furthermore, if all six hidden service directories for a specific hidden service col-
laboratively deny to serve service descriptors of that service, they make the service temporarily
unavailable to clients. [10] explores these kind of attacks based on hidden service directories.
The main issue is that descriptor-ids are predictable. Knowing the .onion address of a hidden
service allows everyone to calculate the future descriptor-ids, because the id only depends on
the public identity key, a timestamp and the replica number. Because of that, for any future

38

Past, Present and Future of Tor Hidden Services

point in time it can be calculated, which hidden service directory will be responsible for a spe-
cific descriptor-id. An attacker can easily generate an identity key for a hidden service directory
responsible for a given descriptor-id, because it is not necessary to calculate the identity key ex-
actly, it just needs to be between the descriptor-id and the identity key of the first hidden service
directory following the descriptor-id. By exploiting this weakness an attacker can control the six
hidden service directories responsible for a descriptor-id of a specific hidden service and for this
reason can effectively measure the popularity of the service or deny the access to it.
In addition, [10] shows that it is possible to harvest hidden service descriptors for almost all hid-
den services within 24 hours with only minimal resources necessary for the attack. The main idea
is to run hidden service directories with identity keys, which fall into the gap between consecu-
tive identity keys of two other hidden service directories. By injecting hidden service directories
into every second gap of the circular ring of all hidden service directories service descriptors can
be gathered. This enumerates all the hidden services currently operating.

3.4 Next-Generation Hidden Services

The Tor developers work on an improved hidden service design in order to modernise hidden
services and to fix shortcomings of the old design. The fundamental concept of hidden service di-
rectories, introduction points and rendezvous points is not changed, but the details, for instance
relay cell formats, are altered. The new design is incompatible to the old one, but allows to use
older Tor nodes, which do not understand the new protocol, as introduction and rendezvous
points. The current proposal of next-generation hidden services is described in [41]. The design
is not finished yet and subject to minor and major changes. Because of that, the following expla-
nations reflect only the current proposal as of the time of writing of this paper.

A major change is the way how keys are handled. The proposal builds on top of the concept
of key blinding. It exists a public-private master keypair. Using a random value a blinded keypair
is derived from the master keypair. Everyone who knows the public master key and the random
value can derive the blinded public key, but it is impossible to derive the blinded keypair without
knowing the master keypair or to derive the master keypair from the blinded keypair. In addi-
tion, a signature created with the blinded private key can be verified with the blinded public
key as well. This concept is used to keep the hidden service identity key offline. The following
public-private keypairs are employed during the new hidden service protocol:

• A long-term master identity key to identify the hidden service. The public component is en-
coded in a .onion address. In contrast to the old design the whole public key is encoded
making .onion addresses much longer. This key can be stored offline and is only used to
generate blinded signing keys.

• A blinded signing key to sign descriptor signing keys. This key is changed periodically. Every-
one who knows the public master identity key and an optional secret, both together called
credential, can derive the public blinded signing key.

• A descriptor signing key to sign service descriptors. In contrast to the master identity key and

39

Past, Present and Future of Tor Hidden Services

blinded signing key the private component of this key must be stored online at the hidden
service for signing the descriptors. Descriptor signing keys can be generated in advance sim-
ilar to the way how directory authorities handle their keys. Thus, an attacker compromising
the hidden service can impersonate the service only for a limited time period.

• A short-term introduction point authentication key generated for each introduction point used
to identify the hidden service to the introduction point. This key has the same functionality
as the service key in the old design.

• A short-term introduction point encryption key generated for each introduction point used to
establish a connection between the client and the hidden service. This key is used analogously
to the onion key in the Tor protocol.

In addition, a symmetric descriptor encryption key is utilised to encrypt the introduction points
in the service descriptor. For symmetric encryption AES in counter mode with 128 bit keys is
proposed, for signatures Ed25519 [42] based on elliptic curves.

The next subsection describes how service descriptors are generated, published, stored and re-
ceived. This is followed by an explanation of the introduction protocol, i.e. the protocol used
by clients to contact a hidden service. The end of this section presents the rendezvous protocol
between clients and hidden services. These explanations point out how the new hidden service
design tries to fix the limitations of the old design and where the two designs differ.

3.4.1 Service Descriptors

Service descriptors are stored in an unpredictable way in order to defend against the attacks
described in Section 3.3 caused by the method for storing descriptors in the old design. The new
method depends on a time period, a blinded signing key and a shared random value. The length
of the time period is determined by a consensus parameter and the default value is 25 hours. For
every period a new blinded signing key is generated. In addition, the directory authorities agree
upon a shared random value, which is published in the network status document and valid for
one time period. This ensures that attackers cannot calculate the location of service descriptors
in advance, because they cannot predict the shared random value, and that the hidden service
directories for a single hidden service change every time period. Furthermore, a subcredential is
computed as the hash value of the hidden service’s credential and the current blinded signing
key. The private blinded signing key is used for signing descriptor signing keys and the public
blinded signing key for fetching descriptors from hidden service directories.

The locations for service descriptors change every time period. In order to avoid that all hid-
den services always upload their new descriptors at the same time at the beginning of each time
period the periods overlap. A consensus parameter determines how much two time periods over-
lap. Hidden services upload their new descriptors during the overlap interval. The exact point
in time is calculated based on the new blinded signing key. Because of that, the simultaneous
upload of service descriptors is avoided.

40

Past, Present and Future of Tor Hidden Services

The number of service descriptor replicas and the number of hidden service directories storing
each replica is defined by consensus parameters. The default values are two replicas and three
hidden service directories for each replica, the same as with the old design. For each replica an
index is computed based on the current public blinded signing key, the replica number and the
current time period. An addition, an index for each hidden service directory is calculated as well
depended on the relay’s fingerprint, the shared random value and the current time period. Each
replica is uploaded anonymously to the three hidden service directories with the index following
immediately after the calculated replica index.
Clients can compute the locations of service descriptors as well, because they can derive the
currently used blinded signing key from the hidden service’s master identity key contained in
the .onion address and know the current time period as well as the shared random value from
the consensus. They download the service descriptor from one of the responsible hidden service
directories by making an anonymous circuit to the directory and requesting the descriptor by the
current blinded signing key.
If an optional secret is used as part of the hidden service’s credential, a client also needs to know
this secret in order to derive the blinded signing key. This secret is not part of the .onion ad-
dress. Without knowing the secret a client cannot download the service descriptor of a hidden
service. This method can be utilised to gain protection similar to the stealth authorisation in the
old hidden service design.

Service descriptor format

The format of a service descriptor consists of two parts: an unencrypted part and an encrypted
part. The unencrypted part contains a certificate of the descriptor signing key, which is used to
sign the service descriptor. The certificate in turn is signed by the current blinded signing key
in order to guarantee that the descriptor was indeed generated by the requested hidden service.
Furthermore, the service descriptor contains the current time period and a revision counter. The
revision counter allows to update a service descriptor during the same time period. A hidden
service directory always replies with the most current service descriptor, i.e. the descriptor with
the highest revision counter. The whole service descriptor including the encrypted part is signed
with the private descriptor signing key.

The encrypted portion of the service descriptor is encrypted and authenticated with symmetric
keys. The keys are derived from the current public blinded signing key and the current subcre-
dential. Thus, only clients in the possession of the hidden service’s credential including the secret
value can decrypt the service descriptor and contact the hidden service. The encrypted part is ap-
pended by a message authentication code (MAC), which is used to verify that the encrypted data is
not altered. This is basically a hash value of the data calculated using a symmetric authentication
key. The data itself consists of a field with supported authentication types and the introduction
points of the hidden service. The authentication types specify the methods the hidden service
supports to authenticate the client during the introduction protocol. For each introduction point
the service descriptor contains the IP address (IPv4 and/or IPv6) plus port as well as the intro-
duction point authentication key and the introduction point encryption key.

41

Past, Present and Future of Tor Hidden Services

In contrast to the service descriptors in the old design the new service descriptors do not contain
the long-term identity key of the hidden service. They only contain the blinded signing key. Be-
cause of that, with the new design the hidden service directories does not learn .onion addresses
of hidden services they store the service descriptors for. Thus, it is impossible to track a hidden
service and to enumerate .onion addresses by harvesting service descriptors.

3.4.2 Introduction Protocol

The general introduction protocol is the same as with the old hidden service design. The hidden
service connects to multiple introduction points and advertises them in the service descriptor. A
client connects to one of the introduction points and sends to it a connection request. The request
is forwarded to the hidden service.

Establish introduction points

In order to establish an introduction point the hidden service creates a circuit to it and sends an
establish_intro relay cell. This cell contains the introduction point authentication key for this
specific introduction point. This has the form TLV. If the type is zero or one, the establish_intro
relay cell has the format of the old hidden service protocol as previously described. Thus, a relay
can distinguish between the old and the new protocol. The values greater than one indicate the
new protocol with the value two specifying an Ed25519 authentication key. In addition, this cell
can contain a variable number of extensions fields, again of the form TLV. This mechanism can
be used to send additional data in establish_intro relay cells without the need to modify the
general structure. If a relay does not recognise one extension, it just ignores it. Furthermore, the
cell contains a MAC which is calculated over the authentication key and all extension fields in
order to prevent replay attacks. As the key for the MAC the number KH from the circuit hand-
shake is used. All fields are signed by the introduction point authentication key. An introduction
point receiving an establish_intro relay cell verifies the fields of the cell as in the old protocol,
associates the authentication key with the circuit and acknowledges the establishment of the in-
troduction point with an empty intro_established relay cell.

The establishment of an introduction point is exactly the same both in the new and the old
protocol. But the new protocol defines a mechanism to manage introduction points as well. If
the type of the authentication key in the establish_intro relay cell has the value 255, the
remainder of the cell contains data for managing the introduction point. This consists of a com-
mand type, the length of the command data and the actual data. Currently, only one command
is specified, that is update encryption keys. This command is utilised to tell the introduction point
the introduction point encryption key, which is currently used by the hidden service for this par-
ticular introduction point. It must be sent at least once after the establishment of the introduction
point in order to set the initial introduction point encryption key. The payload of this command
contains a variable number of keys, a monotonically increasing counter and a signature of the
data computed with the introduction point authentication key. The purpose of this command
is that a hidden service can change its introduction point encryption key without the need for
clients to download a new service descriptor. Instead the hidden service tells the introduction
point the new key, which in turn tells this key to a client if necessary.

42

Past, Present and Future of Tor Hidden Services

Introduce client to hidden service

A client needs to know at least one introduction point plus the corresponding introduction point
authentication key and introduction point encryption key in order to build a connection to a
hidden service. The introduce1 relay cell sent from the client to the introduction point con-
tains two identifiers for both keys, extension fields in the same way as establish_intro relay
cells and an additional encrypted payload. The introduction point determines whether the key
identifiers in the cell match the keys supplied by the hidden service. In the positive case the cell
is forwarded to the hidden service as an introduce2 relay cell with exactly the same payload
as the introduce1 relay cell. The introduction point acknowledges the successful introduction
request with an introduce_ack relay cell to the client. This relay cell has only one field with a
status value and optional extension fields. If the introduction point does not recognise the in-
troduction point encryption key in the introduce1 relay cell, it sends the current key belonging
to the hidden service to the client as an extension field of the introduce_ack relay cell. The
introduction point transfers the key as received from the hidden service via the update encryption
keys command.

In order to establish an end-to-end encrypted connection between the client and the hidden
service the new hidden service protocol employs a variant of the ntor handshake using the in-
troduction point encryption key during the handshake. In addition to the normal ntor hand-
shake two additional single-use keys are generated during this process. Those two keys are used
to encrypt and authenticate the additional payload of introduce1 and introduce2 relay cells.
See [41] for all the details of the extended ntor handshake. The additional payload contains the
public key used as the first half of the ntor handshake, the encrypted data for the hidden service
and a MAC of the whole relay cell payload including the the encrypted data. The MAC ensures
that the payload is received unmodified by the hidden service. This authentication mechanism is
an improvement in the new design, because it is not performed in the old hidden service proto-
col. The data is encrypted and authenticated with the two keys generated during the extended
ntor handshake.

The encrypted data for the hidden service consists of the following information: the rendezvous
cookie, optional extension fields, the rendezvous point’s onion key (either TAP or ntor) and link
specifiers to contact the rendezvous point. The link specifiers have the same format as in extend2
relay cells, including IPv4 and IPv6 addresses. When a hidden service receives an introduce2
relay cell, it checks if the cell contains the correct introduction point authentication key and
introduction point encryption key, reads the public key of the client, performs its part of the ex-
tended ntor handshake, authenticates the relay cell and encrypts the additional payload. Then
the hidden service has all information necessary to continue with the rendezvous protocol.

Access control during introduction

The new hidden service protocol specifies an access control mechanism, which enforces access
control during the introduction protocol, as a replacement for the basic and stealth authorisa-
tion protocols of the old hidden service design. This provides more fine-grained access control

43

Past, Present and Future of Tor Hidden Services

as just using the credential mechanism, because access control can be defined on a per-user
basis and does not require the distribution of service descriptors for access control. Currently,
two mechanisms are specified: password-based authentication and Ed25519-based authentication.
Both mechanisms transport data as an extension field in the encrypted part of introduce1 and
introduce2 relay cells. The password-based authentication sends a username and a password to
the hidden service, which checks these values against a list of authorised users.
With the Ed25519-based authentication every authorised user has a public-private Ed25519 key-
pair. The client uses the private key to sign a message to the hidden service. This message contains
a random value, the public key and the signature. The signature is computed over the random
value, the public key and the two identifiers of the introduction point authentication key and the
introduction point encryption key contained in the introduce1/2 relay cells. The hidden service
checks whether it recognises the public key as belonging to an authorised user and whether the
signature is correct. This authenticates the user. With both mechanisms the hidden service does
not connect to the rendezvous point, if the authentication fails. If the authentication succeeds, it
continues normally with the rendezvous protocol.

3.4.3 Rendezvous Protocol

The new rendezvous protocol is not very different form the old protocol. In order to establish a
rendezvous point a client sends an establish_rendezvous relay cell to a relay, which only con-
tains the rendezvous cookie. The relay answers with an empty rendezvous_established relay
cell. The hidden service connects to a rendezvous point with a rendezvous1 relay cell consist-
ing of the rendezvous cookie and the server’s half of the ntor handshake. The rendezvous point
forwards the cell as a rendezvous2 relay cell to the client with the content unchanged, if it has
a circuit associated with the rendezvous cookie provided by the hidden service. Because only
the handshake data included in rendezvous1/2 relay cells has changed in the new protocol, re-
lays, who do not understand the new hidden service protocol, can still be selected as rendezvous
points, because they do not need to process the handshake data. When the connection between
the client and the hidden service is established, they communicate in the same way as in the
old hidden service protocol. The only difference is that they use the extended ntor handshake to
derive the session keys.

3.5 Open Research Questions

The new hidden service design mainly upgrades the hidden service protocol to the same standard
as the main Tor protocol. It now supports IPv6 addresses, the new ntor handshake and improves
the protocol reflecting up-to-date cryptography best practices. Especially, the handling and the
security of hidden service identity keys is improved by making it possible to store them offline.
In addition, the relay cell formats are made extensible in order to allow future enhancements
of the protocol without necessarily changing the format and a large redeployment of the Tor
software. Furthermore, the new unpredictable design for storing service descriptors effectively
defends against the hidden service directory attacks presented in [10].
Additionally, the new design enforces access control mainly during the introduction protocol,
whereas the authorisation protocols in the old hidden service design are based on the encryption

44

Past, Present and Future of Tor Hidden Services

of introduction points in service descriptors. The new approach has the advantage that adding,
changing or removing access rights can be performed locally at the hidden service without the
need to redistribute service descriptors. The protocol also allows to easily add further access
control mechanisms in addition to the password-based and Ed25519-based methods. However,
there is no equivalent to the stealth authorisation protocol specified yet. But such a mechanism
can be implemented with hidden service credentials and a secret value part of the credential.

But the new hidden service design is not fully finished yet. Some parts need more research and
thinking, whereas other parts need a more thorough specification. One point is that the relay
cells used during the rendezvous protocol are not extensible in the same manner the relay cells
used for the introduction protocol. Making them extensible would allow future amendments to
this part of the protocol as well. In addition, the idea of updating the introduction point encryp-
tion keys needs more analysis. Is this mechanism worth the complexity? What are the benefits?
What are the drawbacks? Or should clients just download a new service descriptor, if they only
possess an expired key?

Furthermore, some major components of the redesign are not yet fully discussed and speci-
fied, for example the scaling of hidden services. The new design should support hidden services,
which use more than one node for the service in order to better handle high usage load on the
hidden service. The Tor developers investigate two major alternative designs for scaling hidden
services [41]. With the first option each hidden service node builds a circuit to each introduction
point and the introduction points distribute the requests to the different hidden service nodes.
One master node is responsible for selecting the introduction points and for publishing the ser-
vice descriptor. In the alternative design every hidden service node picks its own introduction
points independently and a master node combines all introduction points into one single service
descriptor. In this scenario the clients choose the introduction point and with it balance the load
over all hidden service nodes. Both options need a mechanism to select another master node in
order to avoid an inoperable service in the case a master node shuts down.

Another questions is how a hidden service chooses its introduction points. This can be boiled
down to three major questions [38]. First, how many introduction points should a hidden ser-
vice select? Is the current formula used for estimating the popularity of a hidden service working?
What is the trade-off between the number of introduction points, load on the network for main-
taining them and security? Second, which relays can be introduction points? Currently, every
relay with the stable flag can be selected as an introduction point. Third, what is the lifetime of
an introduction point? After what time period should new introduction points be selected? In the
present design introduction points are rotated between 18 to 24 hours. But the recent research
about entry guards suggests that a longer period is beneficial for security, because it reduces the
likelihood that an attacker controlled relay is picked as an introduction point.

A few limitations of the old hidden service design are not tackled by the new design at all
or not specifically. The resistance of Denial-of-Service attacks against introduction points is not

45

Past, Present and Future of Tor Hidden Services

improved. Introduction points still face the same risk of DoS attacks. If the lifetime of an intro-
duction point is increased, this may be even a greater problem, because an attacker can make the
hidden service unavailable for a longer period of time by shutting down the introduction points.
If unavailable introduction points are rotated, an attacker can use this attack to force the hidden
service to change its introduction points very frequently, which increases the likelihood that the
hidden service picks an attacker controlled introduction point. But it remains to been shown that
this is a realistic attack.
Furthermore, the performance problems of hidden services are not specifically addressed. By
moving to the ntor handshake and elliptic curve public-key cryptography the situation could al-
ready improve, but the consequences will only be evident once the new design is implemented
and deployed. At the moment the general issue of the complex connection set up with the hid-
den service and the final six-hop connection is not attacked by the new design. In addition, the
problem of non-memorable .onion addresses is not solved as well. In contrast, with the longer
.onion addresses in the new design the situation is even worse. Because of that, solving this
problem is more urgent than ever.

Tor location-hidden services provide anonymity to the service operator in addition to the anonymi-
ty given to the user by Tor. The new design of hidden services is necessary in order to modernise
hidden services, to make them more secure and future-proof. The redesign does not solve all
limitations of hidden services, but it will certainly make improvements easier in the future.

46

Past, Present and Future of Tor Hidden Services

4 Conclusion

Anonymity is an important property in information security. In contrast to confidentiality the goal
is to hide the communication partners, who is communicating with whom, not only the commu-
nication content. But this cannot be achieved by the communication partners alone, they need
cover traffic to hide their own traffic in. Because of that, an anonymity system can only provide
sufficient protections to its users, if it has many diverse groups of users using and contributing
to the system. This places anonymity systems in an area of conflict, where they have to balance
anonymity, security and usability.

This paper introduces Tor as one example of an anonymity system, which is utilised to pro-
vide anonymous communications for interactive applications such as Web browsing or instant
messaging. Tor cannot only provide anonymity to users, who access non-anonymous services
like public Web sites, but also to service operators in the form of location-hidden services, which
makes it possible to have a complete anonymous communication between a user and a service.
The general mode of operation of Tor and hidden services in described as well as the details
of the protocols explained in-depth. This includes limitations, shortcomings and drawbacks in
order to provide the reader with a thorough understand of Tor, empowers the reader to critically
discuss Tor and to comprehend the situations in which Tor cannot provide anonymity.
A special focus is laid on location-hidden services, which are currently subject to a major over-
haul. The current hidden service design is described and its shortcomings and drawbacks anal-
ysed. Keeping this in mind the current proposal of the next-generation hidden services is pre-
sented as well. This concludes with a list of open research questions, which are not yet answered
by the current proposal.

Tor is an important piece of software, which helps million of people every day to stay safe on-
line and to communicate anonymously. It is also a very interesting project to conduct research,
because all the development is carried out in public and the source code and specifications are
publicly available as well. This paper helps everyone, who wants to learn more about Tor, to start
this journey by explaining the inner workings of Tor in detail. Hopefully this will enable people
willingly to contribute to Tor to actually doing it.

47

Past, Present and Future of Tor Hidden Services

Bibliography

[1] Dingledine, R., Mathewson, N., & Syverson, P. August 2004. Tor: The Second-Generation
Onion Router. In Proceedings of the 13th USENIX Security Symposium.

[2] Dingledine, R., Mathewson, N., & Syverson, P. Challenges in deploying low-latency
anonymity. Technical Report 2005-02-001, The Tor Project, February 2005.

[3] Dingledine, R. & Mathewson, N. Design of a blocking-resistant anonymity system. Technical
Report 2006-11-001, The Tor Project, November 2006.

[4] Perry, M., Clark, E., & Murdoch, S. March 2013. The Design and Implementation of the Tor
Browser [DRAFT]. https://www.torproject.org/projects/torbrowser/design/. Last
Accessed 2014-09-05.

[5] Murdoch, S. J. & Danezis, G. May 2005. Low-Cost Traffic Analysis of Tor. In Proceedings of
the 2005 IEEE Symposium on Security and Privacy. IEEE CS.

[6] Johnson, A., Wacek, C., Jansen, R., Sherr, M., & Syverson, P. November 2013. Users Get
Routed: Traffic Correlation on Tor by Realistic Adversaries. In Proceedings of the 20th ACM
conference on Computer and Communications Security (CCS 2013). ACM Press.

[7] Øverlier, L. & Syverson, P. May 2006. Locating Hidden Servers. In Proceedings of the 2006
IEEE Symposium on Security and Privacy. IEEE CS.

[8] Murdoch, S. J. November 2006. Hot or Not: Revealing Hidden Services by their Clock
Skew. In 13th ACM Conference on Computer and Communications Security (CCS 2006),
27–36. ACM Press.

[9] Zander, S. & Murdoch, S. J. July 2008. An Improved Clock-skew Measurement Technique
for Revealing Hidden Services. In Proceedings of the 17th USENIX Security Symposium,
211–226.

[10] Biryukov, A., Pustogarov, I., & Weinmann, R.-P. May 2013. Trawling for Tor Hidden Ser-
vices: Detection, Measurement, Deanonymization. In Proceedings of the 2013 IEEE Sympo-
sium on Security and Privacy, 80–94.

[11] Loesing, K., Sandmann, W., Wilms, C., & Wirtz, G. July 2008. Performance Measurements
and Statistics of Tor Hidden Services. In Proceedings of the 2008 International Symposium
on Applications and the Internet (SAINT). IEEE CS.

[12] Lenhard, J., Loesing, K., & Wirtz, G. June 2009. Performance Measurements of Tor Hidden
Services in Low-Bandwidth Access Networks. In Proceedings of the 7th International Con-
ference on Applied Cryptography and Network Security (ACNS 09), Abdalla, M., Pointcheval,

48

https://www.torproject.org/projects/torbrowser/design/

Past, Present and Future of Tor Hidden Services

D., Fouque, P.-A., & Vergnaud, D., eds, volume 5536 of Lecture Notes in Computer Science,
324–341. Springer-Verlag.

[13] Øverlier, L. & Syverson, P. June 2007. Improving efficiency and simplicity of Tor circuit
establishment and hidden services. In Proceedings of the Seventh Workshop on Privacy En-
hancing Technologies (PET 2007), Borisov, N. & Golle, P., eds. Springer-Verlag.

[14] Øverlier, L. & Syverson, P. June 2006. Valet Services: Improving Hidden Servers with a
Personal Touch. In Proceedings of the Sixth Workshop on Privacy Enhancing Technologies
(PET 2006), Danezis, G. & Golle, P., eds, 223–244. Springer-Verlag.

[15] Hopper, N. March 2014. Challenges in protecting Tor hidden services from botnet abuse.
In Proceedings of Financial Cryptography and Data Security (FC’14).

[16] Acquisti, A., Dingledine, R., & Syverson, P. January 2003. On the Economics of Anonymity.
In Proceedings of Financial Cryptography (FC ’03), Wright, R. N., ed, volume 2742 of Lecture
Notes in Computer Science. Springer-Verlag.

[17] Dingledine, R. & Mathewson, N. June 2006. Anonymity Loves Company: Usability and
the Network Effect. In Proceedings of the Fifth Workshop on the Economics of Information
Security (WEIS 2006), Anderson, R., ed.

[18] Chaum, D. February 1981. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM, 24(2).

[19] Gollmann, D. 2011. Computer Security. John Wiley & Sons, 3rd edition.

[20] Reiter, M. & Rubin, A. June 1998. Crowds: Anonymity for Web Transactions. ACM Trans-
actions on Information and System Security, 1(1).

[21] Leech, M., Ganis, M., Lee, Y.-D., Kuris, R., Koblas, D., & Jones, L. March 1996. SOCKS
Protocol Version 5. RFC 1928 (Proposed Standard).

[22] The Tor Project. Tor directory protocol, version 3. https://gitweb.torproject.org/
torspec.git/blob/HEAD:/dir-spec.txt. Last Accessed 2014-09-13.

[23] Dingledine, R. September 2013. The lifecycle of a new relay. https://blog.torproject.
org/blog/lifecycle-of-a-new-relay. Last Accessed 2014-09-10.

[24] Perry, M. June 2010. Tips for Running an Exit Node with Minimal Harassment. https://
blog.torproject.org/blog/tips-running-exit-node-minimal-harassment. Last Ac-
cessed 2014-09-10.

[25] Loesing, K. Overview of Statistical Data in the Tor Network. Technical Report 2011-03-001,
The Tor Project, March 2011.

[26] Loesing, K., Perry, M., & Gibson, A. Bandwidth Scanner specification. https:
//gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/
README.spec.txt. Last Accessed 2014-09-12.

49

https://gitweb.torproject.org/torspec.git/blob/HEAD:/dir-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/dir-spec.txt
https://blog.torproject.org/blog/lifecycle-of-a-new-relay
https://blog.torproject.org/blog/lifecycle-of-a-new-relay
https://blog.torproject.org/blog/tips-running-exit-node-minimal-harassment
https://blog.torproject.org/blog/tips-running-exit-node-minimal-harassment
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.spec.txt
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.spec.txt
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.spec.txt

Past, Present and Future of Tor Hidden Services

[27] Dingledine, R. & Mathewson, N. Tor Path Specification. https://gitweb.torproject.
org/torspec.git/blob/HEAD:/path-spec.txt. Last Accessed 2014-09-14.

[28] Dingledine, R. October 2013. Improving Tor’s anonymity by
changing guard parameters. https://blog.torproject.org/blog/
improving-tors-anonymity-changing-guard-parameters. Last Accessed 2014-09-
14.

[29] Kadianakis, G. & Hopper, N. The move to a single guard node. https://gitweb.
torproject.org/torspec.git/blob/HEAD:/proposals/236-single-guard-node.txt.
Last Accessed 2014-09-14.

[30] Dingledine, R. & Mathewson, N. Tor Protocol Specification. https://gitweb.torproject.
org/torspec.git/blob/HEAD:/tor-spec.txt. Last Accessed 2014-09-19.

[31] Diffie, W. & Hellman, M. E. November 1976. New Directions in Cryptography. IEEE
Transactions on Information Theory, 22(6), 644–654.

[32] Goldberg, I., Stebila, D., & Ustaoglu, B. January 2013. Anonymity and one-way authenti-
cation in key exchange protocols. Designs, Codes and Cryptography, 67(2), 245–269.

[33] Bernstein, D. J. 2006. Curve25519: New Diffie-Hellman Speed Records. In Public Key
Cryptography - PKC 2006, Yung, M., Dodis, Y., Kiayias, A., & Malkin, T., eds, volume 3958
of Lecture Notes in Computer Science, 207–228. Springer-Verlag.

[34] Manils, P., Chaabane, A., Le Blond, S., Kaafar, M. A., Castelluccia, C., Legout, A., & Dabbous,
W. April 2010. Compromising Tor Anonymity – Exploiting P2P Information Leakage.

[35] Mathewson, N. Two improved relay encryption protocols for Tor cells. https://gitweb.
torproject.org/torspec.git/blob/HEAD:/proposals/202-improved-relay-crypto.
txt. Last Accessed 2014-09-20.

[36] Mathewson, N. Migrate server identity keys to Ed25519. https://gitweb.torproject.
org/torspec.git/blob/HEAD:/proposals/220-ecc-id-keys.txt. Last Accessed 2014-
09-20.

[37] The Tor Project. Tor Rendezvous Specification. https://gitweb.torproject.org/
torspec.git/blob/HEAD:/rend-spec.txt. Last Accessed 2014-09-26.

[38] Kadianakis, G. August 2014. [tor-dev] On picking Introduction Points in Next Generation
Hidden Services. https://lists.torproject.org/pipermail/tor-dev/2014-August/
007335.html. Last Accessed 2014-10-03.

[39] Josefsson, S. October 2006. The Base16, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard).

[40] N.N. April 2013. Hidden Services need some love. https://blog.torproject.org/blog/
hidden-services-need-some-love. Last Accessed 2014-09-27.

50

https://gitweb.torproject.org/torspec.git/blob/HEAD:/path-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/path-spec.txt
https://blog.torproject.org/blog/improving-tors-anonymity-changing-guard-parameters
https://blog.torproject.org/blog/improving-tors-anonymity-changing-guard-parameters
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/236-single-guard-node.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/236-single-guard-node.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/tor-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/tor-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/202-improved-relay-crypto.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/202-improved-relay-crypto.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/202-improved-relay-crypto.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/220-ecc-id-keys.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/220-ecc-id-keys.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/rend-spec.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/rend-spec.txt
https://lists.torproject.org/pipermail/tor-dev/2014-August/007335.html
https://lists.torproject.org/pipermail/tor-dev/2014-August/007335.html
https://blog.torproject.org/blog/hidden-services-need-some-love
https://blog.torproject.org/blog/hidden-services-need-some-love

Past, Present and Future of Tor Hidden Services

[41] Mathewson, N. Next-Generation Hidden Services in Tor. https://gitweb.torproject.
org/torspec.git/blob/HEAD:/proposals/224-rend-spec-ng.txt. Last Accessed 2014-
10-03.

[42] Bernstein, D. J., Duif, N., Lange, T., Schwabe, P., & Yang, B.-Y. September 2012. High-speed
high-security signatures. Journal of Cryptographic Engineering, 2(2), 77–89.

51

https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/224-rend-spec-ng.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/224-rend-spec-ng.txt

	Abstract
	Contents
	List of Figures
	Introduction
	Motivation and Goals
	Related Work

	The Second-Generation Onion Router
	Anonymity Loves Company
	Introduction
	Design Goals and Adversary
	Bird's Eye View

	Specifications
	Directory Authorities
	Path Selection
	Communication Protocol

	Limitations and Pitfalls

	Tor Hidden Services
	Introduction
	Current Hidden Services
	Hidden Service Protocol
	Access Control with Hidden Services

	Shortcomings and Drawbacks
	Next-Generation Hidden Services
	Service Descriptors
	Introduction Protocol
	Rendezvous Protocol

	Open Research Questions

	Conclusion
	Bibliography

