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Featured Application: Although the focus in this article is on unmanned aerial vehicles, the geo-
metric reduced-attitude controllers presented apply to all fixed-wing aircraft with fully actuated
rotational dynamics. The proposed approach could also be applied to other bank-to-turn vehi-
cles such as missiles. The method can be particularly useful for situations where the vehicle
experiences large deviations from the attitude reference.

Abstract: This paper presents nonlinear, singularity-free autopilot designs for multivariable reduced-
attitude control of fixed-wing aircraft. To control roll and pitch angles, we employ vector coordinates
constrained to the unit two-sphere and that are independent of the yaw/heading angle. The angular
velocity projected onto this vector is enforced to satisfy the coordinated-turn equation. We exploit
model structure in the design and prove almost global asymptotic stability using Lyapunov-based
tools. Slowly-varying aerodynamic disturbances are compensated for using adaptive backstepping.
To emphasize the practical application of our result, we also establish the ultimate boundedness
of the solutions under a simplified controller that only depends on rough estimates of the control-
effectiveness matrix. The controller design can be used with state-of-the-art guidance systems for
fixed-wing unmanned aerial vehicles (UAVs) and is implemented in the open-source autopilot
ArduPilot for validation through realistic software-in-the-loop (SITL) simulations.

Keywords: fixed-wing; unmanned aerial vehicles; geometric attitude control; nonlinear control;
coordinated turn

1. Introduction
1.1. Background and Motivation

In recent years, technology advancements have led to increased use of small un-
manned aerial vehicles (UAVs) in civil, commercial, and scientific applications. Fixed-wing
UAVs [1], as illustrated in Figure 1, have superior range and endurance when compared to
rotary-wing UAVs, which enable applications such as environmental monitoring, search
and rescue, aerial surveillance and mapping, and medical transportation [2]. To further
develop the field, and enable safe and efficient autonomous operation of UAVs, requires
robust autopilots that can handle a range of environmental conditions, including turbulent
wind conditions, and operate in the presence of highly uncertain aerodynamics [3].

As underactuated vehicles, conventional fixed-wing aircraft have fewer control inputs
than the dimension of their configuration space. One or more propellers provide a thrust-
force in the longitudinal direction, but the forces orthogonal to the thrust axis (lift, side-
force) are not directly controllable. Therefore, fixed-wing UAVs have to resort to using
guidance schemes [4], where the UAV’s geometric path in 3-D space is controlled by
specifying course and flight path angle commands to lower-level autopilots [5]. Due
to the fact that small fixed-wing UAVs experience winds that are large relative to their
operating airspeeds [1], path-following methods [6] are usually preferred over trajectory
tracking control [7]. In path following, the goal is to reach and follow a geometric path,
but without any temporal constraints. This also deals with performance limitations of
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trajectory tracking for systems with nonminimum phase characteristics, such as aircraft [8].
See [9,10] for a comparison of different path-following algorithms for fixed-wing UAVs,
in two and three dimensions, respectively. For a recent survey with a focus on quadrotor
UAVs, see [11].

Guidance and control systems for unmanned vehicles can be integrated, or sepa-
rated [12]. For integrated guidance and control (IGC) systems, the guidance system and
inner-loop autopilot are designed simultaneously, taking cross-coupling effects into ac-
count. On the other hand, in separated guidance and control (SGC), inner and outer loops
are designed separately, with modularity and cross-platform use in mind [13]. Examples of
separate guidance algorithms for fixed-wing UAVs include nonlinear guidance laws [14,15],
vector-field path following [16,17] and a guidance law based on nested saturations [18].
In [19], path following is achieved by using an existing commercial inner-loop autopilot
but augmented with an L1 adaptive controller to deal with modeling uncertainty and
environmental disturbances. While most guidance algorithms use only kinematic models,
an integrated approach is presented in [20] that uses a simple model of the aerodynamic
forces acting on the aircraft. Common to all the mentioned approaches, both IGC and SGC,
is the reliance on attitude control in the inner-most loop. The rotational dynamics is not
considered but rather assumed to be stabilized by some low-level controller. This motivates
further research on attitude controllers, specifically tailored towards fixed-wing UAVs.

Figure 1. Skywalker X8 fixed-wing UAV (Image courtesy of NTNU UAV-Lab).

Several different attitude representations have been employed for fixed-wing UAV
path following, including Euler angles [21], rotation matrices [22] and unit quaternions [23].
Minimal representations such as Euler angles are often used because of their intuitive
interpretation but suffer from “gimbal-lock” singularities [24]. Unit quaternions [25] are
singularity-free, but provide a double cover of SO(3), the space of 3-D rotations. This
might lead to unwinding, where the UAV unnecessarily makes a full rotation, even when
arbitrarily close to the target attitude [26,27]. Rotation matrices, on the other hand, provide
a global and unique representation. This has led to a significant research effort into so-
called geometric attitude control, where singularity-free controllers are designed directly on
SO(3), using rotation matrices, that avoid the unwinding phenomenon and often controls
the system along geodesics, i.e., paths of minimum length in rotation space [28–33]. These
advantages are desirable when the controlled vehicle is subject to large angle rotations,
e.g., a fixed-wing UAV recovering from large attitude errors resulting from severe wind
gusts [34].

Fixed-wing UAVs use one of two main mechanisms for turning: bank-to-turn, where
a lateral acceleration is generated by reorienting the lift-force by rolling/banking the UAV,
or skid-to-turn, where turning is achieved by generating a sideslip angle, which in turn
generates a lateral force that turns the vehicle [35]. In [36], these methods are combined to
reduce lateral distortion of camera images gathered by a fixed-wing UAV. In general, bank-
to-turn is often preferred over skid-to-turn because for most aircraft the lift force is of orders
of magnitude greater than thrust forces [37]. Thus, the course angle, yaw angle, and turn
rate of aircraft are not controlled directly, but rather through banked-turn maneuvers. For
aircraft in coordinated turns, i.e., with zero sideslip angle, the coordinated-turn equation
provides a simple relationship between roll angle and resulting turn rate, and is for this
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reason often used in autopilot design [1,38–42], including those used in state-of-the-art
open-source autopilots [43,44].

Controllers designed using rotation matrices or quaternions control the full attitude,
and therefore cannot be directly applied to fixed-wing aircraft using banked turn maneu-
vers. One approach could be to feedback the true yaw angle into the desired rotation
matrix and as such use a rotation error representation for roll and pitch only. However,
this representation is highly redundant, as 9 parameters are used to parametrize a two-
dimensional subspace. A simpler approach, that does not require the full machinery of
working in SO(3), is to consider a reduced-attitude representation, evolving on the two-
sphere, S2 ⊂ R3 [45]. In this space of reduced attitude, all rotations that are related by a
rotation about some fixed axis, are considered the same [27]. Control systems with reduced
attitude evolving on S2 have previously been studied in the context of spin-axis [45] and
boresight-axis [46] control for satellites, pendulum stabilization [31], path-following con-
trol of underwater vehicles [47], thrust-vector control for multirotor UAVs [48,49] and for
general rigid bodies [50–52]. Controllers developed on S2 are relatively simple compared
to those developed using rotation matrices and require fewer matrix operations.

It is well known that a desired attitude (full or reduced) cannot be globally stabilized
using continuous state-feedback control laws [26]. This stems from the topological proper-
ties of SO(3) and S2, which are compact, boundaryless manifolds that are not diffeomorphic
to any Euclidean space. The largest possible attraction basins under continuous feedback
are almost global, i.e., excluding a zero-measure set, which corresponds to the stable mani-
folds of additional unstable equilibrium points [53]. However, global asymptotic stability
can be achieved by using tools from hybrid dynamical systems, where hysteresis-based
switching ensures that all trajectories converge to the desired equilibrium [49,50,52,54–57].

1.2. Scope and Contributions

In this paper, we present smooth, nonlinear reduced-attitude controllers for fixed-wing
UAVs, in a coordinate-free manner, using a global, singularity-free attitude representation
on S2. The method applies to UAVs with fully actuated rotational dynamics, e.g., those
that are equipped with a full set of control surfaces, such as ailerons, elevator, and rudder.
The chosen reduced-attitude representation is independent of the yaw angle and thus
enables traditional banked-turn maneuvers. A consequence of this is that the presented
approach can be deployed in conjunction with state-of-the-art hierarchical flight control
architectures that rely on roll and pitch control in the inner loop, such as [1], and those
implemented in open-source autopilots such as ArduPilot [43] and PX4 [44]. Furthermore,
no lateral/longitudinal decoupling assumptions are used in the design, allowing the
attitude controller to compensate for coupling effects that arise when such assumptions are
violated.

The reduced-attitude representation allows for a convenient decomposition of the
dynamics and a natural corresponding decoupling of the control objective into two parts:
(1) reduced-attitude (roll/pitch) control, and (2) control of the angular velocity about the
inertial z-axis (turn rate control). Using Lyapunov theory, almost global asymptotic stability
is established for three controllers: one constructed based on an energy-like Lyapunov
function, a variation of this based on a backstepping procedure, and lastly an adaptive
version of the latter that estimates the net aerodynamic moment caused by the translational
dynamics (flow angles). This alleviates the need for expensive flow angle measurement
equipment, as well as the knowledge of an accurate aerodynamic model. Furthermore,
we show that only a rough estimate of the input matrix is needed to achieve ultimate
boundedness. The suitability of the proposed attitude control algorithm is demonstrated
in realistic software-in-the-loop simulations.

1.3. Related Work

The existing work in the literature that shares the most similarities with this paper can
be found in [58–61], where nonlinear attitude controllers for fixed-wing UAVs are devel-
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oped using quaternions, and that also use a model of the rotational dynamics. In [58,59],
the translational and rotational subsystems are decoupled by estimating the higher-order
derivatives of the angle of attack and sideslip angle. This enables controllers for the two
subsystems to be designed separately. In [60], a nonlinear PID controller for fixed-wing
UAV (full) attitude control is presented. The control law is based on unit quaternions
and compensates for aerodynamic coupling effects using integral action. This approach
is extended in [61] to apply also to rudderless (i.e., underactuated in attitude) fixed-wing
UAVs by using a projection of the quaternion error to a yaw-free subspace. In [62], a gain-
scheduled attitude controller based on Euler angles is given. An algorithm for automatic
tuning is provided, and the control system is verified experimentally in a wind tunnel.

Reduced-attitude control has been extensively applied for thrust-vector control of
multirotor UAVs, e.g., [48]. Fixed-wing UAVs on the other hand, are subject to additional
aerodynamic forces and moments that make control of such vehicles fundamentally dif-
ferent. Besides, the reduced-attitude representation used in this paper (gravity direction
represented in body-fixed frame) is different than the thrust-direction of multirotors (body-
fixed axis represented in the inertial frame). The representation used here is similar to that
used to stabilize the inverted equilibrium manifold of the 3-D pendulum in [31,63].

The idea of separately controlling reduced attitude and another variable that is decou-
pled from the reduced-attitude vector is not new. In [64], the reduced attitude is steered
along a geodesic path, while the full attitude is stabilized. In [65,66], the attitude control of a
quadrotor is decoupled into thrust-vector control on S2, and control of the angle of rotation
about the thrust vector. A similar approach is taken in [67] with a control allocation strategy
that allows to prioritize reduced-attitude correction over yaw errors. Different rotational
error metrics for quadrotor control, defined in terms of both full and reduced attitude are
compared in [68]. In [69], a vector-projection algorithm is used for trajectory tracking for an
agile fixed-wing UAV (where aerodynamics are dominated by the propeller). The roll angle
is decoupled from the reference attitude such that thrust and lift forces can be pointed such
that position tracking is achieved. Compared to these works, we simultaneously control
reduced attitude and an angular velocity around the reduced-attitude vector.

While the present work employs Lyapunov-based methods to develop lightweight
control laws with stability guarantees, other approaches using optimal control algorithms
have also been proposed, using deep reinforcement learning [70] and nonlinear model
predictive control [71].

Preliminary results of the work presented in this paper have previously been reported
in [72], and some initial work towards extending this by applying tools from hybrid control
can be found in [73].

1.4. Organization of the Paper

The rest of the paper is organized as follows: Section 2 presents some notation and
preliminaries on the reduced-attitude representation. The UAV equations of motion are
given in Section 3, and the control objective is stated in Section 4 along with the definitions
of the error functions used. In Section 5, the controllers for the nominal model are presented.
Some robustness considerations are stated in Section 6, where we also give an adaptive
version of the backstepping-based control law. The simulation results are presented in
Section 7, and some concluding remarks are given in Section 8. All lengthy proofs have
been relegated to the appendices.

2. Preliminaries

In this section, we establish some notation and useful mathematical relations that are
used throughout the text, before presenting the reduced-attitude representation.

2.1. Notation and Definitions

For a ∈ R and x ∈ Rn, let |a| and ‖x‖ =
√

x>x denote the absolute value and the
Euclidean norm, respectively. Positive (resp. non-negative) real numbers are denoted
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R+ (R≥0), and the maximum and minimum eigenvalues of a square matrix A is denoted
λmax(A), λmin(A), respectively. The induced 2-norm of a matrix A is ‖A‖ = σmax(A),
where σmax(A) is the largest singular value of A. For square, real symmetric positive
semidefinite matrices A, λmax(A) = σmax(A). Any square matrix A can be written as the
sum of a symmetric and skew symmetric part, A = sym(A) + skew(A), where sym(A) =
(A + A>)/2 and skew(A) = (A− A>)/2. For a symmetric matrix A = A>, we have the
following inequality for quadratic forms: λmin‖x‖2 ≤ x>Ax ≤ λmax‖x‖2.

For any u, v ∈ R3, the matrix S(u) = −S>(u) ∈ so(3) is the skew-symmetric matrix
such that S(u)v = u× v. From properties of the cross product we have S(u)v = −S(v)u,
S(u)u = 0 and u>S(v)u = 0, which implies that u>Au = u> sym(A)u for any square
matrix A.

We make use of standard right-handed coordinate frames: {n}, a local north-east-
down tangent frame (assumed inertial), and {b}, a body-fixed frame centered at the center
of gravity of the UAV, with the x-axis in the longitudinal direction and the y-axis pointing
towards the right wing.

The three-dimensional special orthogonal group is the set of three-dimensional rota-
tion matrices, given by

SO(3) = {R ∈ R3×3 : R>R = I3, det R = 1},

where I3 ∈ R3×3 is the identity matrix. The two-sphere S2 ⊂ R3 is defined by

S2 = {x ∈ R3 : ‖x‖ = 1}.

The tangent space at a point x ∈ S2 can be identified with the vectors that are orthogonal
to x:

TxS2 = {v ∈ R3 : x>v = 0},

and the normal space NxS2 is the set of vectors parallel to x:

NxS2 = {w ∈ R3 : w>v = 0 for all v ∈ TxS2}.

Define the orthogonal and parallel projections Π⊥x : R3 → TxS2 and Π‖x : R3 → NxS2 by

Π⊥x = I3 − xx> = −S2(x), Π‖x = xx>. (1)

Then, any vector v ∈ R3 can be written as the sum v = Π⊥x v + Π‖xv.

2.2. Reduced-Attitude Representation

Let R ∈ SO(3) be the rotation matrix transforming vectors from {b} to {n}, and let
e3 = [0 0 1]> represent the inertial z-direction (direction of gravitational acceleration). We
employ the following reduced-attitude representation:

η = R>e3 ∈ S2, (2)

which is interpreted as the inertial z-axis, expressed in {b}. By expanding (2) using the
roll-pitch-yaw Euler-angle parametrization of R [1], the reduced-attitude vector η can
be expressed in terms of the roll angle φ ∈ [−π, π] and pitch angle θ ∈ (−π/2, π/2)
as follows:

η =

 − sin(θ)
cos(θ) sin(φ)
cos(θ) cos(φ)

. (3)

Observe that this particular choice of attitude representation is invariant to changes in
the heading/yaw angle ψ. The reduced attitude representation is illustrated in Figure 2,
where a section of the sphere corresponding to θ = 0 is shown. Figure 3 shows another
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section where the aircraft is shown from the side with a possible nonzero roll angle. As
shown, the vector η is expressed in the body-fixed frame and points towards the ground.

Figure 2. Reduced-attitude representation illustrated with a section of the two-sphere corresponding
to θ = 0.

The reduced-attitude representation (2) is the same as the one considered for the 3-D
pendulum in [31], but different compared to the one used for thrust-vector control for
multirotor UAVs, which is the thrust direction in the inertial-frame [48].

Let ω ∈ R3 be the angular velocity of the body-fixed frame relative to the inertial
frame, expressed in the body-fixed frame. The reduced-attitude vector η satisfies

η̇ = η ×ω, (4)

which can be derived from (2) and the relation Ṙ = RS(ω) [74].
Using (1), we can perform an orthogonal decomposition of the angular velocity ω

with respect to η such that ω = ω⊥ + ω‖, where

ω⊥ , Π⊥η ω ∈ TηS2 ω‖ , Π‖ηω ∈ NηS2. (5)

Applying this decomposition of ω in combination with (4) gives

η̇ = η × (ω⊥ + ω‖) = η ×ω⊥. (6)

The parallel component ω‖ is the angular velocity about the inertial z-axis (expressed in
the body-fixed frame) and does not influence η̇.
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Remark 1. Note that since the two-sphere S2 is a two-dimensional manifold, in principle two
degrees of freedom (DOFs) are sufficient to control reduced attitude. However, since η is fixed in the
inertial frame, the two required DOFs (control directions) vary with the orientation of the vehicle
and are thus not fixed in {b}. Therefore, we need three actuators to make the reduced attitude fully
controllable throughout the configuration space. In this paper, we consider only UAVs with fully
actuated rotational dynamics, and at each time instant, we use the remaining DOF to control ω‖.

Figure 3. Reduced-attitude representation. The aircraft is shown from the side, illustrated with a
section of the two-sphere possibly with a non-zero roll angle.

3. UAV Rotational Dynamics

A standard dynamic model of the rigid-body rotational dynamics is given by the Euler
equations [1]

Jω̇ + ω× Jω = M,

where J = J> > 0 is the inertia matrix and M ∈ R3 is a vector of applied torques, typically
a sum of aerodynamic and propulsion effects. In this respect, we write M = Ma + Mp,
where Ma denotes the aerodynamic torque, while Mp is caused by a rotating propeller.

3.1. Aerodynamics

Aerodynamic forces and moments are in general nonlinear functions that are difficult
to model accurately. Identification of parameters for even simple linear models from flight
data remains a challenging problem [75,76]. Following [1,77] we define the aerodynamic
torque as a function of the angular velocity ω, the body-fixed relative velocity vr ∈ R3 of
the UAV (with respect to the surrounding air mass), and a vector u ∈ R3 of control surface
deflections used to control the attitude of the UAV:

Ma = Ma(ω, vr, u).

Reynolds and Mach number effects are usually ignored for small UAVs moving at airspeeds
well below the speed of sound [1].
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The airspeed Va ∈ R≥0, angle of attack α ∈ [−π, π] and sideslip angle β ∈ [−π, π] are
defined by

Va = ‖vr‖ =
√

v2
r1
+ v2

r2
+ v2

r3

α = atan2(vr3 , vr1), β = atan2(vr2 , vr1),

where atan2(y, x) is the four-quadrant inverse tangent.
Let ρ, b, c, S ∈ R+ be the air density, wingspan, mean wing chord, and wing planform

area of the UAV, respectively. A first approximation of the aerodynamic moments that is
commonly used in the literature [1,77], and can be useful for control design is given by the
control-affine model

Ma(ω, vr, u) = h(vr) + VaDω + V2
a Bu,

with

h(vr) =
ρV2

a S
2

 bClβ
β

c(Cm0 + Cmα α)
bCnβ

β


D =

ρS
4

b2Clp 0 b2Clr
0 c2Cmq 0

b2Cnp 0 b2Cnr


B =

ρS
2

bClδa
0 bClδr

0 cCmδe
0

bCnδa
0 bCnδr

,

where the parameters C(·) are dimensionless aerodynamic coefficients.

3.2. Propulsion Effects

Let Ωp ∈ R be the rotational speed of the propeller, given in radians per second,
and without loss of generality, assume that the propeller thrust axis is aligned with the
body-frame x axis. Following [1], for some constant kΩ ∈ R, we write

Mp =

kΩΩ2
p

0
0

.

This is a reaction torque caused by the motor of the UAV. Since the motor torque is bounded,
we can write ‖Mp‖ ≤ cΩ. If the propeller axis is not properly aligned with the x-axis of
the body frame, we will get additional small non-zero elements in Mp, but the bound
still holds for some cΩ. If we also consider a gyroscopic torque (typically small, but
sometimes actually used to control aircraft attitude, see Lomcevak maneuver [78]), the
subsequent analysis must be adjusted slightly, since the gyroscopic moment also depends
on the angular velocity of the UAV. Instead of considering Mp as a bounded time-varying
exogenous signal, we could then write ‖Mp‖ ≤ a + b‖ω‖ for suitable constants a and b.
Additional modeling of complex phenomena generated by the interplay between the main
body of the UAV and its propeller (slipstream effects) can be found in [79].

3.3. Control-Oriented Model

To summarize, the UAV rotational dynamics can be written

Jω̇ = S(Jω)ω + h(vr) + VaDω + V2
a Bu + Mp. (7)
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In horizontal, level flight, the angular velocity ω is zero. To ensure equilibrium flight
(“trim conditions”), define

utrim =
1

(V∗a )2 B−1
[
−h(v∗r )−M∗p

]
,

where V∗a , v∗r , M∗p is the trim airspeed, trim relative velocity and trim propeller moment
(corresponding to the trim throttle setting), respectively. If u = utrim and ω = 0, then ω̇ = 0
during trimmed flight. Now define

∆(vr, t) = V2
a Butrim + h(vr) + Mp (8)

which represents the deviation from trimmed flight. We can now combine (8), the rotational
dynamics (7) and the reduced-attitude kinematics (4) to obtain the following model that is
the basis for control design:

η̇ = η ×ω (9)

Jω̇ = S(Jω)ω + VaDω + V2
a B[u− utrim] + ∆(vr, t). (10)

The state is represented by (η, ω) ∈ S2 ×R3, the control input is u ∈ R3, and we consider
vr (and thus Va) as an exogenous bounded input.

To fascilitate control design, we will assume the following:

Assumption 1. The airspeed Va is strictly positive and bounded with bounded derivative
0 < Vmin ≤ Va ≤ Vmax.

Assumption 2. The moment vector ∆(vr, t) and its derivative ∆̇(vr, t) are bounded.

Assumption 3. The control effectiveness matrix B is invertible.

Assumption 4. The damping matrix D satisfies x>Dx ≤ 0, ∀x ∈ R3.

Remark 2. Assumption 2 is an assumption on the translational dynamics, which is assumed to
affect the rotational dynamics through the exogenous signal vr (may also be considered as “internal
dynamics”). In practice, since we are dealing with a physical system, ∆(vr, t) and ∆̇(vr, t) will
always be of bounded magnitude. However, since the control input is bounded, we would want these
bounds to be relatively small. In particular, during nominal flight, the angle of attack α is usually
small, and the lift coefficient is such that a perturbation in α tends to be restored [1]. However, if
the stall angle of attack is reached, the slope of the lift coefficient changes such that the α-dynamics
might go unstable, which in turn results in a high aerodynamic moment ∆(vr, t).

Remark 3. A square matrix B corresponds to a fixed-wing UAV that has fully actuated rotational
dynamics, i.e., three independent actuators. Now B is invertible if it has full rank. It can be
shown that the full rank condition corresponds to primary control coefficients being larger than
the coefficients associated with secondary roll-yaw coupling effects. The full rank assumption is
therefore reasonable for most common fully actuated control surface configurations.

Remark 4. Assumption 4 is a dissipation assumption and is equivalent to requiring that sym(D)
has nonpositive eigenvalues. In nominal flight conditions, this will be true for most airframes [77]
but can be relaxed by using a higher derivative gain (adding damping to the system). See Remark 8.

4. Almost Global Reduced-Attitude Tracking Control for Fixed-Wing UAVs
4.1. Error Functions

The goal is to design a state-feedback control law u ∈ R3 to make the reduced attitude
η ∈ S2 asymptotically track a smooth, time-varying reference ηd ∈ S2 and at the same
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time drive ω‖ to ω
‖
d , where ω

‖
d ∈ NηS2 denotes the desired value of ω‖, yet to be specified.

Furthermore, let the desired reduced-attitude vector ηd satisfy the reference model

η̇d = ηd ×ω⊥d , (11)

where ω⊥d ∈ TηdS2.

Assumption 5. The angular velocity references ω⊥d , ω
‖
d and their derivatives ω̇⊥d , d

dt ω⊥d ,

ω̇
‖
d , d

dt ω
‖
d can be bounded a priori by

‖ω‖d‖ ≤ c
ω
‖
d
‖ω̇‖d‖ ≤ b

ω̇
‖
d
‖ω‖+ c

ω̇
‖
d

‖ω⊥d ‖ ≤ cω⊥d
‖ω̇⊥d ‖ ≤ cω̇⊥d

,
(12)

where c
ω
‖
d
, c

ω̇
‖
d
, cω⊥d

, cω̇⊥d
, b

ω̇
‖
d
∈ R+ are appropriate constant parameters.

Let a smooth configuration error function Ψ : S2 × S2 → R be defined by

Ψ(η, ηd) = 1− η>d η = 1− cos ν, (13)

where ν is the angle between η and ηd. The function Ψ measures the “distance” between
two points η and ηd on S2, and is clearly positive definite with respect to η = ηd. There
are two critical points: A minimum when η = ηd, and a maximum when η = −ηd. In
subsequent Lyapunov analysis, Ψ is used as a pseudo-potential energy term in Lyapunov
functions.

We proceed by defining the following error vectors:

eη , η × ηd ∈ TηS2 (14)

eω , ω−ωd ∈ R3, (15)

where ωd = Π⊥η ω⊥d + ω
‖
d . The error vector eη can be viewed as a gradient vector field on S2

induced by the potential function Ψ [53]. As ‖eη‖ = |sin ν|, eη vanishes at the critical points
of Ψ. The error terms eη and eω are also compatible in the sense that Ψ̇ = e>ω eη , which will
cancel with the proportional feedback term defined later when calculating the derivative of
a Lyapunov function. The error vector eη is geodesic in the sense that its direction defines
an axis of rotation which connects η and ηd with the shortest possible curve on S2.

Differentiating eη gives

ėη = −S(ηd)S(η)ω⊥ + S(η)S(ηd)ω
⊥
d (16)

= −S(ω⊥d )eη − S(ηd)S(η)eω, (17)

where we have used (15), the fact that η ×ω‖ = 0 and the identity S(S(a)b) = S(a)S(b)−
S(b)S(a) for any a, b ∈ R (which can be derived using the Jacobi identity of vector cross
products).

From (10), the derivative of eω satisfies

Jėω = S(Jω)ω + VaDω + V2
a B[u− utrim] + ∆(vr, t)− Jω̇d. (18)

4.2. Control Objective

From our definition of eω, Equation (15), note that eω can be decomposed into two
orthogonal parts:

eω = (ω⊥ −Π⊥η ω⊥d )︸ ︷︷ ︸
∈TηS2

+ (ω‖ −ω
‖
d)︸ ︷︷ ︸

∈NηS2

. (19)
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This means that as eω converges to zero, ω⊥ → Π⊥η ω⊥d and ω‖ → ω
‖
d , in a decoupled

manner. If in addition eη = 0, then Π⊥η ω⊥d = ω⊥d .
The reduced-attitude error vector eη is zero when η = ηd. However, this is also the

case when η = −ηd. Naturally, this choice of configuration error leads to an additional
undesired equilibrium point at η = −ηd, but due to the topology of the sphere (it is
a compact manifold), this is unavoidable when using continuous feedback [26]. The
presence of more than one equilibrium prevents us from designing globally stabilizing
feedback laws. A suitable notion of stability in this context is the concept of almost global
asymptotic stability.

Definition 1. An equilibrium solution of a dynamical system is said to be almost globally
asymptotically stable if it is asymptotically stable with an almost global domain of attraction, i.e.,
the domain of attraction is the entire state space excluding a set of Lebesgue measure zero [56].

As we consider continuous feedback on a compact configuration manifold, almost
global asymptotic stability is the best possible achievable result [27]. In our setting, if the
equilibrium point (η, eω) = (ηd, 0) is almost globally asymptotically stable, then almost all
trajectories converge to it, except for those with initial velocity (depending on the initial
configuration error) that are exactly such that ω⊥(t)−Π⊥η ωd(t)⊥ = 0 when η(t) = −ηd(t).
This set of initial conditions has a dimension lower than the dimension of the state space,
and therefore has measure zero.

We now presicely state the control objective as follows:

Almost Global Reduced-Attitude Tracking

Design a state-feedback control law u such that for almost all eη(t0), eω(t0), η(t)→ ηd(t)
and eω(t)→ 0 as t→ ∞.

Remark 5. Other configuration error vectors (with corresponding potential functions) on S2 could
be used in place of (14), without changing the general approach considered in this paper. The
advantage of using (14) for proportional feedback is that it is simple, smooth, and globally defined.
However, there are some performance issues, since for initial reduced-attitudes arbitrarily close to
−ηd, the control action will be close to zero, and the reduced attitude will stay there for an extended
period before converging to the desired reduced attitude. Some alternative error vectors that do not
vanish when approaching −ηd, but are not defined at this point, are given in [45,51,63].

Before continuing with the controller design, we proceed with a discussion on different
design choices for ω

‖
d .

4.3. Coordinated-Turn Equation

The coordinated-turn equation provides an approximation of the relationship between
heading rate and the roll angle during banked-turn maneuvers, and is given by [1],

ψ̇ =
g

Va
tan φ, (20)

where g is the acceleration of gravity, Va > 0, and the roll angle φ has to satisfy |φ| 6= π/2.
With ω = [p q r]>, the heading rate can be also be written as a function of ω and the Euler
angles roll and pitch as

ψ̇ = q
sin φ

cos θ
+ r

cos φ

cos θ
, |θ| 6= π

2
. (21)

From (3) and (21) we can relate ω‖ to ψ̇ as follows:

ω‖ = (η>ω)η = (−p sin θ + ψ̇ cos2 θ)η. (22)
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Although the heading rate ψ̇, given by (21), is not well defined for |θ| = π/2, ω‖ is globally
defined. Furthermore, if |θ| 6= π/2, the body-fixed roll rate p satisfies p = φ̇− ψ̇ sin θ.
Therefore, for |θ| < π/2, Equations (21) and (22) can be combined to obtain

ω‖ = (ψ̇− φ̇ sin θ)η. (23)

Motivated by (23) and the coordinated-turn Equation (20), we propose the following
design for ω

‖
d that satisfies Assumption 5:

ω
‖
d =

(
g

Va
tan φd − φ̇d sin θd

)
η, (24)

where θd and φd are consistent with ηd (in the sense that (3) is satisfied). Clearly, since (23) is
only valid for |θ| 6= π/2, and (24) contains tan φd, we restrict the desired reduced-attitude
as follows:

Assumption 6. The desired reduced-attitude ηd is such that |θd| ≤ cθd < π/2 and
|φd| ≤ cφd < π/2, for some cθd , cφd ∈ R+, and ηd, φd, θd satisfy Equation (3).

Remark 6. We stress that the mentioned singularities at φ = ±π/2 and θ = ±π/2 are only
present for the reference angles. The allowed reference orientations cover most typical flight condi-
tions, except for certain aerobatic maneuvers. The controller design, however, is globally defined,
which enables recovery from large reduced-attitude errors, e.g., resulting from large wind gusts.

Alternative design choices for ω
‖
d :

It is possible to consider some variations of the preceding design of ω
‖
d . We now

present a few of these options, but leave it as an exercise to the reader to fully explore
these possibilities.

• An alternative to (24) is to define ω
‖
d in terms of ηd and then project to NηS2:

ω
‖
d = Π‖η

[(
g

Va
tan(φd)− φ̇d sin θd

)
ηd

]
=

(
g

Va
tan(φd)− φ̇d sin θd

)
(η>d η)η.

The extra term η>d η = cos(ν) puts less emphasis on turn coordination when errors in
reduced attitude are large.

• Equation (24) only satisfies the coordinated-turn Equation (20) asymptotically, as
η → ηd (and φ→ φd). One might consider to instead use the actual value of φ instead
of φd, but in the case, we cannot guarantee a priori that ω

‖
d and its derivative are

bounded. This means that the subsequent stability analysis needs to be adjusted. A
pragmatic solution could be to use a saturation function in combination with (24).

To summarize, the expression for the total desired angular velocity ωd in (15) is

ωd = Π⊥η ω⊥d + ω
‖
d ,

where ω
‖
d ∈ NηS2 is given by (24), and ω⊥d ∈ TηdS2. An explicit expression for ω̇d, which is

needed in the control law, is given in Appendix A. Equation (24) satisfies Assumption 5 with

c
ω
‖
d
=

g
Vmin

tan cφd + cφ̇d
sin cθd ,
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where cφ̇d
is a bound for φ̇d, i.e., |φ̇d| ≤ cφ̇d

. Furthermore, ω̇
‖
d can be bounded using

appropriate constants b
ω̇
‖
d

and c
ω̇
‖
d

that depends on the bounds on the airspeed, reference

angles and their derivatives. See Appendix A for details. Furthermore, we write

‖ωd‖ ≤ ‖ω⊥d ‖+ ‖ω
‖
d‖ ≤ cω⊥d

+ c
ω
‖
d
, cωd . (25)

Remark 7. The coordinated turn Equation (20) has an alternative formulation in terms of the
course angle [1], which is often used to perform course control. Course control based on the
coordinated-turn equation is thoroughly studied in [41].

5. Control Laws—Nominal Case

In this section, we present nominal state-feedback control laws assuming perfect
knowledge of the rotational dynamics. Two different controllers are presented: one based
on an energy-like Lyapunov function, and another based on the backstepping procedure.
Although perfect model knowledge is assumed, we do not perform feedback lineariza-
tion/dynamic inversion, but rather exploit model structure such as skew-symmetry and
positive definiteness of matrices. This way, we avoid canceling “good” terms, while other
terms are dominated in the stability proof.

5.1. Control Design Based on an Energy-Like Lyapunov Function

Proposition 1. Consider the tracking error dynamics (18), and for kp > 0, Kd = K>d > 0, define
the control input as

u = utrim +
1

V2
a

B−1[upd + uff − ∆(vr, t)
]
, (26)

where

upd = −kpeη − Kdeω (27)

uff = Jω̇d − S(Jωd)ωd −VaDωd, (28)

and the matrix Kd is chosen such that

λ
Kd
min − λJ

maxcωd ≥ γ, (29)

for some γ > 0. Then the following holds:

(i) There are two closed-loop equilibria, given by (η, eω) = (±ηd, 0).
(ii) The equilibrium (η, eω) = (−ηd, 0) is unstable.
(iii) The desired equilibrium (η, eω) = (ηd, 0) is almost globally asymptotically stable.
(iv) The desired equilibrium (η, eω) = (ηd, 0) is locally exponentially stable. In addition, if the

initial conditions η(0), ηd(0), eω(0) satisfy

Ψ(η(0), ηd(0)) < 2 (30)

kpΨ(η(0), ηd(0)) +
1
2

e>ω (0)Jeω(0) < 2kp, (31)

then the energy-like function V(t) , kpΨ(η, ηd) + (1/2)e>ω Jeω converges exponentially to
zero.

(v) ω⊥ → ω⊥d and ω‖ → ω
‖
d as t→ ∞.

Proof. See Appendix B.

Remark 8. If Assumption 4 is not satisfied, it is not difficult to show that the result still holds if
Kd is chosen such that λ

Kd
min > λJ

maxcωd + Vmaxσ
sym(D)
max .
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Remark 9. The region of exponential convergence to the desired equilibrium point can be made
(almost) arbitrarily large by increasing kp (“semi-global” property). However, the region of conver-
gence can never include the unstable equilibrium point and its corresponding unstable manifold [53].

Figure 4 shows a block diagram that illustrates how this controller integrates into a
typical guidance, navigation and control (GNC) architecture for a fixed-wing UAV. The
references for reduced-attitude, angular velocity, and angular acceleration are generated
by some outer-loop guidance controller, and the reduced-attitude control law is combined
with a control law for airspeed control, e.g., a PI-controller [1]. The controller uses estimates
of the rotation matrix R, the angular velocity ω, as well as the relative velocity vr, which are
all made available through a state estimation module. The use of vr is relaxed in Section 6.

The control law (26) is based on proportional action that is proportional to the error
term (14), which defines an axis of revolution for the direct, shortest rotation connecting η
and ηd (forming a geodesic curve on the sphere). This is convenient when dealing with large
rotation errors and is a property that is not shared with controllers based on Euler angles.
A comparison between a geodesic controller like (26) and one based on Euler angles is
presented in [72], which indicates that the geodesic controller spends less control energy
than the controller based on Euler angles.

Fixed-Wing UAV
Dynamics

Airspeed Controller

Reduced-Attitude +
Turn Rate
Controller

Guidance

Wind

Sensors and State
Estimation

Path Planning
Path

State estimates

Path specification

Figure 4. Block diagram of a guidance, navigation and control (GNC) architecture for a fixed-wing
UAV.

5.2. Backstepping Design

A disadvantage of the controller design in the previous section is that the scalar
proportional gain kp is restrictive. In this section, we present a backstepping controller
that allows for a matrix proportional gain, which gives the flexibility for the control to
be more aggressive along certain body-fixed axes, which is important due to geometric
and aerodynamic asymmetries of aircraft. In the previous section, the proportional action
defines a torque that is aligned with the axis of shortest rotation. The backstepping controller,
on the other hand, defines a desired angular velocity that generates a geodesic curve on
the sphere.

To this end, define the virtual control signal

ϕ(η, ηd, ω⊥d ) , −κeη + Π⊥η ω⊥d ∈ TηS2, (32)

where κ ∈ R+ is a user specified parameter. We will show that ω⊥ = ϕ(η, ηd, ω⊥d ) solves
the kinematic reduced-attitude tracking problem (see the proof of Proposition 2). Now,
introduce the tracking-error signal

z ,
(

ω⊥ − ϕ(η, ηd, ω⊥d )
)

︸ ︷︷ ︸
∈TηS2

+ (ω‖ −ω
‖
d)︸ ︷︷ ︸

∈NηS2

= ω− ω̄d, (33)
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where ω̄d = ϕ(η, ηd, ω⊥d ) + ω
‖
d . Note that ω̄d = ωd − κeη and z can be written as

z = eω + κeη . Due to orthogonality properties, z defined as in (33) has the nice property that
as z converges to zero, ω⊥ → ϕ(η, ηd, ω⊥d ), which stabilizes the desired reduced-attitude,

and at the same time, ω‖ converges to ω
‖
d .

Proposition 2. Consider the tracking error dynamics (18), and for k1 > 0, K2 = K>2 > 0, define
the control input as

u = utrim +
1

V2
a

B−1[upd + uff − ∆(vr, t)
]

(34)

where

upd = −k1eη − K2z (35)

uff = J ˙̄ωd − S(Jω̄d)ω̄d −VaDω̄d, (36)

and the matrix K2 is chosen such that

λK2
min − λJ

max(cωd + κ) ≥ γ, (37)

for some γ > 0. Then the following holds:

(i) There are two closed-loop equilibria, given by (η, z) = (±ηd, 0).
(ii) The equilibrium (η, z) = (−ηd, 0) is unstable.
(iii) The desired equilibrium (η, z) = (ηd, 0) is almost globally asymptotically stable.
(iv) The desired equilibrium (η, z) = (ηd, 0) is locally exponentially stable. In addition, if the

initial conditions η(0), ηd(0), z(0) satisfy

Ψ(η(0), ηd(0)) < 2 (38)

k1Ψ(η(0), ηd(0)) +
1
2

z>(0)Jz(0) < 2k1, (39)

then the energy function V2(t) , k1Ψ(η, ηd) + (1/2)z> Jz converges exponentially to zero.
(v) ω⊥ → ω⊥d and ω‖ → ω

‖
d as t→ ∞.

Proof. See Appendix C.

As for the previous design, a statement similar to Remark 8 holds true also here.
The control laws (26) and (34) might seem similar at first glance, but by inserting

z = eω + κeη we can rewrite Equation (34) in terms of eω and ωd:

upd = −
[
K(t) + κ2S(Jeη)

]
eη − [K2 − κ JS(ηd)S(η)]eω

uff = Jω̇d − S(Jωd)ωd −VaDωd,

where K(t) = k1 + κ[K2 −VaD− JS(ω⊥d ) + S(ωd)J − S(Jωd)], and the time-dependence is
implicit through Va, ω⊥d and ωd. Here, the feed-forward part is the same as (28), but the
change of variables imposed by the backstepping procedure has introduced a time-varying
matrix proportional gain K(t), a time-varying derivative gain, as well as a nonlinear
feedback-term −κ2S(Jeη)eη .

6. Robustness Considerations

There are a few drawbacks to the controller designs presented in Section 5. In particu-
lar, the control laws (26) and (34) require the knowledge of the inertia matrix J, the damping
matrix D, the input-matrix B, and the aerodynamic moment ∆(vr, t). In this section, we
focus on the control law (34) and state some properties regarding robustness to uncertainty
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in our model estimates. In addition, an adaptive version of (34) is presented, that provides
integral action by estimating ∆(vr, t) under a slowly time-varying assumption.

Assumption 7. The aerodynamic moment disturbance ∆(vr, t) is slowly varying, satisfying
∆̇(vr, t) ≈ 0.

6.1. Integral Action

The assumption that ∆(vr, t) is known is particularly restrictive. The aerodynamics
of aircraft is highly uncertain. Moreover, the explicit computation of ∆(vr, t) requires
the knowledge of the surrounding flow field. Although the airspeed can be measured
using a small pitot-static tube, equipment that measures the flow angles α and β is usually
not readily available for small UAVs. There exists some available technologies [80], but
such equipment can be expensive, too large or too heavy, or just impractical to install on
small UAVs that often perform belly landings [81]. Several approaches for flow angle
estimation have been proposed in the literature [81–84], but it remains a challenging
problem. Therefore, we focus our attention to instead estimating the aerodynamic moments
directly. The control input during trim, utrim can often be quite easily identified during
manual flight, so we turn our attention to estimating ∆(vr, t) instead of hr(vr). This also
removes the need for an explicit estimate of Mp.

Proposition 3. Consider the tracking error dynamics (18), and let ∆̂ be an estimate of ∆(vr, t).
Define the estimation error ∆̃ , ∆̂− ∆(vr, t), let K2, K3 be symmetric, positive definite matrices
and define the control input as

u = utrim +
1

V2
a

B−1[upd + uff − ∆̂
]

(40)

where

upd = −k1eη − K2z (41)

uff = J ˙̄ωd − S(Jω̄d)ω̄d −VaDω̄d, (42)

where the update law for ∆̂ is given by
˙̂∆ = K3z, (43)

and the matrix K2 is chosen such that

λK2
min − λJ

max(cωd + κ) ≥ γ, (44)

for some γ > 0. Then the following holds:

i There are two closed-loop equilibria, given by (η, z, ∆̃) = (±ηd, 0, 0).
ii The equilibrium (η, z, ∆̃) = (−ηd, 0, 0) is unstable.
iii The desired equilibrium (η, z, ∆̃) = (ηd, 0, 0) is almost globally asymptotically stable and

locally exponentially stable.

Proof. See Appendix D.

While the controller in the previous section is of PD type, this is a PID controller with
feedforward terms. Integral action removes any steady-state error between the desired and
actual angular velocity.

6.2. Uncertain Model

Sometimes it is desirable not to include integral action in the inner loops of cascaded
control systems since this introduces limitations on achievable bandwidth in the inner
loop [1]. Therefore, we focus on a version of the controller that uses a fixed—possibly
time- and state-varying, but bounded—disturbance estimate. This estimate does not
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necessarily equal the true value of ∆. Besides, for some hierarchical flight control loops, the
angular velocity reference is not made available for the inner loop. We thus remove the
assumption that ω⊥d is known in the control design, and redefine the backstepping variable

as ẑ = ω − ω̂d, and ω̂d = ω
‖
d − κeη . The backstepping procedure in the previous section

has provided us with a strict Lyapunov function that can be used to show uniform ultimate
boundedness of the solutions of the closed-loop system.

To account for model uncertainties, consider again the control law (34)

u = utrim +
1

V2
a

B̂−1
[
upd + uff − ∆̂(vr, t)

]
(45)

where

upd = −k1eη − K2ẑ (46)

uff = Ĵ ˙̂ω
′
d − S( Ĵω̂d)ω̂d −VaD̂ω̂d, (47)

and ∆̂(vr, t), B̂, Ĵ, D̂ are estimates of ∆(vr, t), B, J, D, respectively. The term ˙̂ω
′
d is defined as

the parts of ˙̂ωd that do not require reference angular velocities or accelerations:

˙̂ω
′
d =

(
g

Va
tan φd

)
η̇ − g

V2
a

tan(φd)V̇aη − κ(η̇ × ηd). (48)

The next proposition states that, for sufficiently small model uncertainties, and suffi-
ciently small ω⊥d , the solutions are ultimately bounded. This is essentially a local input-to-
state stability (ISS) property [85].

To parametrize the model uncertainty, let δB , BB̂−1, E , I3 − δB, J̃ , Ĵ − J, and
D̃ , D̂− D. For compactness, we define cJ = ‖ J̃‖+ ‖E‖‖ Ĵ‖ and cD = ‖D̃‖+ ‖E‖‖D̂‖.

Proposition 4. Consider the tracking error dynamics (18) and the perturbed controller (45).
Assume that δB satisifes x>δBx > 0, ∀x 6= 0. Then, there exists some gain matrix K2 = K>2 > 0
such that the matrix sym(δBK2) is positive definite. If the matrix K2 is chosen such that

λ
sym(δBK2)
min >

a2

4κk1
+ λJ

max(cω
‖
d
+ κ) + b, (49)

where a = k1‖E‖+ k1cω⊥d
+ κcDVmax + cJκ

(
2κ + 2c

ω
‖
d
+ b

ω̇
‖
d

)
+ λ Ĵ

max‖δB‖κcφ̇d
sin cθd and

b = cJ(κ + b
ω̇
‖
d
) + λ Ĵ

max‖δB‖cφ̇d
sin cθd , and if c as defined by Equation (A11) is sufficiently small,

then the solutions of the closed-loop system are uniformly ultimately bounded, with an ultimate
bound that depends on the controller parameters, the model estimation errors, and the reference
velocity bounds.

Proof. See Appendix E.

In essence, the matrix K2 can be chosen such that the controller is robust to model
uncertainties, even when the derivatives of the reduced-attitude reference are not available.
However, a necessary condition is that the uncertainty in the input matrix is not too large.
The condition x>δBx > 0 implies that the control direction is known up to an error of
90 degrees.

Remark 10. Global stability of the nominal system is a necessary condition for (global) ISS. Due
to the topological obstruction to global stabilization on compact manifolds such as S2, a relaxed
property of almost (global) ISS has been proposed in [86], and sufficient conditions based on dual
Lyapunov techniques (density functions) [87] are given. In [88], a combination of Lyapunov and
density functions are used to show almost ISS for systems with rotational degrees of freedom,
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illustrated using a perturbed nonlinear observer. In [89], a complementary set of tools is given,
based on Lyapunov functions and the theory of stable and unstable manifolds of dynamical systems.
It is shown that the downward equilibrium of a perturbed pendulum with friction is almost ISS.
This is a system that is very much of a similar nature to the one considered in this paper. In [90],
robustness on SO(3) is considered in the context of nonlinear complementary filters in the presence
of measurement errors. “Divergence” of trajectories on SO(3) is defined as trajectories that converge
to the manifold of maximum distance, i.e., the manifold of all rotations of angle 180 degrees. In
contrast to [89], only kinematic systems are considered. While almost ISS could probably be shown
in our case, the result of [89] only considers a perturbation that is independent of the state. Since in
our case, the perturbation is state-dependent, we settle for a local property.

7. Simulation Results

In this section, simulation results are presented. We show results from an ideal Matlab-
environment, as well as realistic software-in-the-loop simulations where discretization
effects and simulated sensor noise are present. In both cases, reduced-attitude references
are generated from roll and pitch angle references using Equation (3).

7.1. Matlab

Figures 5–10 show the simulation results for the adaptive backstepping controller (40)
applied to a simulation model of the Aerosonde UAV [1]. The controller uses perfect
estimates of the matrices B, J, and D but no information about ∆(vr, t). While the con-
trol surface deflections are controlled by the attitude controller, a PI controller is used
to control airspeed using throttle [1]. The airspeed reference is constant and set to
35 m s−1. The attitude controller parameters are set to κ = 1, k1 = 1, K2 = diag(7, 5, 7) and
K3 = diag(40, 30, 40). During the first 20 s, the reduced-attitude reference is constant, cor-
responding to φd = 60 deg and θd = 15 deg, which might correspond to a sharp, climbing
turn. During the last 20 s, we use the time-varying reference A cos(2π f (t − 20)), with
amplitude A equal to the initial 20 s, and f = 0.1 Hz for roll and f = 0.08 Hz for pitch. The
initial conditions are set to ω(0) = 0, φ(0) = −40 deg and θ(0) = −20 deg.

Figure 5 shows the tracking performance in terms of roll and pitch angles, while
Figure 6 shows the vector coordinates η ∈ S2. The errors converge quickly from large initial
values, and the velocity errors are kept close to zero throughout the maneuver. During
the latter half of the simulated trajectory, a slightly deteriorated tracking performance
is observed in pitch. This also applies to the turn rate, visualized in Figure 7. This is
explained by looking at Figure 8: When stabilizing a constant reference, the assumption that
aerodynamic moments are slowly-varying applies quite well, and the disturbance estimates
converge towards their true values. When tracking a time-varying trajectory, however, this
assumption seems to break down, which has a negative impact on tracking performance.
This variation seems to be attributed to the variations in the angle of attack seen in Figure 9.
Nevertheless, this simulated case study shows adequate tracking performance for both
constant and time-varying reference trajectories. The effect of turn-coordination can be
seen by observing the sideslip angle in Figure 9. During the first 20 s, the sideslip angle is
reduced to zero. During the last 20 s, some variation is seen, but the sideslip angle is still
kept at small values (less than 2 degrees). The control surface deflections are shown in the
bottom half of Figure 9, and are smooth and well below the saturation limits, which in the
simulation is set to ±20 deg. Finally, the start of the maneuver is illustrated as a path on
the two-sphere in Figure 10, which is an alternative to showing roll and pitch angles when
visualizing reduced-attitude trajectories.
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Figure 5. Roll and pitch angles vs. references, and velocity tracking error eω .
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Figure 6. Reduced attitude η (blue) and the reduced-attitude reference ηd (red).
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Figure 8. Disturbance estimates (blue) vs. their true values (red).
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Figure 9. Top: angle of attack α and sideslip angle β; Bottom: control surface deflections aileron δa,
elevator δe and rudder δr.

Figure 10. Path on the two-sphere for the 17 first seconds. Red asterisk marks the initial configuration,
while the constant reference is marked green.
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7.2. Software-in-the-Loop Simulation

This section showcases the efficacy of the control design via realistic software-in-the-
loop (SITL) simulations. The controller is implemented in the ArduPilot [43] open-source
autopilot framework for fixed-wing UAVs. We simulate our code using ArduPilot’s SITL
framework, using the JSBSim flight dynamics engine with a model of a SIG Rascal 110.

Roll and pitch reference angles are provided by ArduPilot’s guidance system. Lateral
guidance is performed using a nonlinear guidance law [14,15], often called L1 guidance,
by commanding a lateral acceleration ascmd using

ascmd = KL1

V2
g

L1
sin(ϕ), (50)

where Vg is the ground speed of the UAV, L1 is the distance to a reference point on the
desired path, ahead of the UAV, KL1 is a tuning parameter, and ϕ is the angle between the
ground speed vector and the L1 vector pointing from the UAV to the reference point on the
path. The desired lateral acceleration is then converted into a desired roll angle φd using a
simplified version of the coordinated turn equation:

φd = cos(θ) atan
(

ascmd

g

)
. (51)

The pitch angle reference is calculated using the total energy control system (TECS) [91].
TECS is based on energy principles, and accounts for dynamic coupling in the longitudinal
dynamics of the aircraft by simultaneously controlling altitude and airspeed using pitch
and throttle. The pitch angle is used to control the energy distribution ED, i.e., the difference
between (specific/per mass) potential and kinetic energy, given by

ED = gh− 1
2

V2
a , (52)

where h is the altitude. For a desired altitude hd ∈ R and desired airspeed Va,d ∈ R+, define
the desired specific energy distribution ED,d = ghd −V2

a,d/2 and the error ẼD = ED,d − ED.
Then, the pitch reference is prescribed as follows:

θd = k1ẼD + k2

∫ t

0
ẼDdτ + k3

˙̃ED + k4ĖD,d, (53)

where ki ∈ R+, i = 1 . . . 4 are tuning gains.
Figures 11–14 shows the results of a simulation run of the adaptive backstepping

controller (40). As the derivatives of the reduced-attitude reference are not available in the
ArduPilot code, we use a version of (40) where no information about the angular velocity
reference is used in the feedforward part of the controller. In addition, up to 20 percent
uncertainty is added to all elements of the matrices J, B and D. This makes the controller
more akin to (45), but with added integral action. The controller parameters are set to
κ = 2, k1 = 10, K2 = diag(5, 7, 5) and K3 = diag(0.1, 0.25, 0.1).

The simulated UAV is tasked with following a square pattern, shown in Figure 11.
The actual horizontal position and altitude are shown, from takeoff and until a few rounds
have been completed. It is clear that the proposed reduced-attitude controller success-
fully integrates into the ArduPilot infrastructure. Roll and pitch responses are shown in
Figure 12, while Figure 13 shows the vector coordinates η. The UAV tracks the reference
well, except when there are large steps in roll angle going into a turn. This is where a
feedforward from the angular velocity reference could help reduce the errors. Anyhow, the
errors are relatively small and do not interfere with the overall control objective. Figure 11
shows that the altitude is kept approximately constant at 100 m, with only minor drops in
altitude during sharp turns. The control input is shown in Figure 14. Except for some large
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spikes in the control surface deflections (due to large steps in roll reference when going
into sharp turns), the control input is well behaved.

35°21'50"S

35°21'40"S

L
a
ti
tu

d
e

149°09'40"E 149°09'50"E

Longitude

Esri, HERE

0 100 200 300 400

Time [s]

0

20

40

60

80

100

120

A
lt
it
u
d
e
 [
m

]

Figure 11. SITL: Horizontal path of the UAV (left) and altitude in meters above home position (right).
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Figure 12. SITL: Roll and pitch angles (red) vs. reference angles (blue).
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Figure 13. SITL: Reduced-attitude vector η (red) vs. reference attitude (blue).
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Figure 14. SITL: Control input. Control surface deflections are normalized to [−1, 1] and the throttle
to [0, 1].

8. Conclusions

Nonlinear reduced-attitude controllers for fixed-wing UAVs have been proposed,
using geometric methods on the unit two-sphere. The attitude representation is singularity-
free, independent of the yaw/heading angle and allows the UAV to perform banked-
turn maneuvers while simultaneously tracking a turn rate satisfying the coordinated-
turn equation. Using an aerodynamic model of the rotational dynamics, almost global
asymptotic stability is established for the proposed controllers.

The suitability of the presented approach has been verified using Matlab-simulations
as well as more realistic SITL simulations, where the control law shows that it successfully
completes the defined control objectives in the presence of uncertain aerodynamics and
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reference velocities, and integrates into a state-of-the-art open-source autopilot for fixed-
wing UAVs. The next step is to validate the controllers in flight experiments using a
physical fixed-wing UAV.

The simulation results show some deterioration of tracking performance when the
flow angles are not slowly varying. Therefore, future work could consider different robust
and/or adaptive control techniques to better compensate for a wider class of exogenous
disturbances, including harsh wind conditions. Also, the coordinated-turn equation,
Equation (20), is only an approximation of the relationship between roll angle and turn
rate. Future work could seek to relax the assumptions used to derive this relation, e.g., by
considering the equations derived in [41], and do a comparative study of different turn
coordination methods for fixed-wing UAVs. Another topic for future work is to investigate
if a tailor-made guidance scheme can be designed that directly produces a reduced-attitude
vector reference.
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Appendix A. Time Derivative of Desired Velocities

The total time derivative of ωd is

ω̇d =
d
dt
[Π⊥η ω⊥d ] + ω̇

‖
d ,

with
d
dt
[Π⊥η ω⊥d ] = Π⊥η ω̇⊥d + ω⊥ × (Π‖ηω⊥d )−Π‖η(ω⊥ ×ω⊥d ),

and

ω̇
‖
d =

(
g

Va
tan φd − φ̇d sin θd

)
S(η)ω⊥ − g

V2
a

tan(φd)V̇aη

+

(
g

Va

1
cos2(φd)

φ̇d − φ̈d sin θd − φ̇d θ̇d cos θd

)
η.

Let |θ̇d| ≤ cθ̇d
, |φ̈d| ≤ cφ̈d

, and |V̇a| ≤ cV̇a
, for some cθ̇d

, cφ̈d
, cV̇a
∈ R+. Then, the norm

of ω̇
‖
d can be bounded as follows:

‖ω̇‖d‖ ≤ b
ω̇
‖
d
‖ω‖+ c

ω̇
‖
d
,



Appl. Sci. 2021, 11, 3147 26 of 34

where c
ω̇
‖
d
= c

ω
‖
d

and

b
ω̇
‖
d
=

g
Vmin cos2(cφd)

+ cφ̈d
sin cθd + cφ̇d

cθ̇d
+

g
V2

min
cV̇a

tan cφd .

Appendix B. Proof of Proposition 1

The control law (26) in combination with (18) results in the closed-loop error dynamics

Jėω = −kpeη − [Kd −VaD + S(ωd)J]eω + S(J(eω + ωd))eω. (A1)

Note that the system is time-varying due to the presence of ωd and Va.

Appendix B.1. Equilibrium Solutions

When η = ±ηd, then eη = 0. By substituting (eη , eω) = (0, 0) into (A1) and (17), we
see that (η(t), eω(t)) = (±ηd(t), 0) indeed represent equilibrium solutions of the closed-
loop dynamics. To see that all solution converge to either of these equilibria, consider the
Lyapunov function candidate

V(η, ηd, eω) = kpΨ(η, ηd) +
1
2

e>ω Jeω ≥ 0, (A2)

whose time-derivative along the solutions of (A1), (4) and (11) satisfies

V̇ = kpe>ω eη + e>ω Jėω = −e>ω [Kd −VaD + S(ωd)J]eω.

By Assumption 4 and the gain condition (29) (inspired by [93]), we get

V̇ ≤ −
(

λ
Kd
min − λJ

maxcωd

)
‖eω‖2 ≤ −γ‖eω‖2 ≤ 0. (A3)

From V ≥ 0 and V̇ ≤ 0 we get that eω is bounded. In addition, the limit V∞ = lim
t→∞

V(t)

exists and is finite ([94], Lemma 3.2.3). This means that
∫ ∞

t0
V̇dτ = V∞ −V(t0). Therefore,

the function W = γ‖eω‖2 satisfies
∫ ∞

t0
Wdτ ≤ −

∫ ∞
t0

V̇dτ = V(t0) − V∞ < ∞, so the

limit lim
t→∞

∫ t
t0

Wdτ exists and is finite. By definition, eη is bounded. Since eω is bounded,

ėω is bounded. This follows from (A1) and the boundedness of ωd and Va. Now, since
Ẇ = 2γe>ω ėω is bounded, it follows that W(t) is a uniformly continuous function. From
Barbalat’s Lemma ([94], Lemma 3.2.6), W(t) (and thus eω(t)) converges to zero as t→ ∞.

To show convergence of eη to zero we make use of the following lemma:

Lemma A1. Let x(t) denote a solution to the differential equation ẋ = a(t) + b(t) with a(t) a
uniformly continuous function. Assume that limt→∞ x(t) = c and limt→∞ b(t) = 0, with c a
constant value. Then, limt→∞ ẋ(t) = 0 [48,92].

From (A1) we can write Jėω = a(t) + b(t), where

a(t) , −kpeη

b(t) , −[Kd −VaD + S(ωd)J]eω + S(J(eω + ωd))eω

Since eω converges to zero, we know that b(t) converges to zero. From (17), the derivative
of a(t) is given by

ȧ(t) = −kp ėη = kp

[
S(ω⊥d )eη + S(ηd)S(η)eω

]
,

which is bounded because eη , eω and ω⊥d are bounded. Therefore, a(t) is uniformly contin-
uous, and convergence of eη to zero follows from Lemma A1.
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To summarize, all solutions converge to one of the two equilibria given by
(η, eω) = (±ηd, 0).

Remark A1. The Lyapunov function (A2) is quadratic, and as we will show, leads to exponential
stability, which in general leads to good performance and robustness to perturbations [85]. In [95],
it is shown that non-quadratic Lyapunov functions could lead to better performance. Therefore,
future work based on the general approach presented in this paper might explore whether different
Lyapunov functions than (A2), possibly non-quadratic ones, could lead to better performance.

Appendix B.2. Instability of the Undesired Equilibrium Point

At the equilibrium point (η, eω) = (−ηd, 0), the value of the Lyapunov function
is V = 2kp. To show that this equilibrium is unstable, it suffices to show that for any
neighbourhood U around this point, one can find η∗, e∗ω such that V < 2kp. Since V
is non-increasing and all solution converge to either of the two equilibria, any solution
starting at (η∗, e∗ω) must converge to (η, eω) = (η, 0). Consider η∗ arbitrarily close to
−ηd, say at an angle ε away from −ηd. Then, ψ(η, ηd) = 1− cos(π − ε) ≈ 2− ε and
V ≈ kp(2− ε) + e∗>ω Je∗ω/2. This means that, if we choose e∗ω small enough, then V < 2kp
and we conclude that the equilibrium point is unstable.

Remark A2. This line of reasoning parallels that of Chetaev’s Theorem, for which a version for
time-invariant systems is given in Theorem 4.3 in [85].

Appendix B.3. Stability of the Desired Equilibrium

We proceed by studying the asymptotic stability of the equilibrium point where η = ηd.
To this end, consider again the Lyapunov function candidate (A2). From [52], we know
that in some neighborhood of (η, eω) = (ηd, 0), V can be lower and upper bounded by

kp

2
‖eη‖2 +

λJ
min
2
‖eω‖2 ≤ V ≤

kp

2− Ψ̄
‖eη‖2 +

λJ
max

2
‖eω‖2.

V̇ ≤ 0 together with the positive definite bounds on V makes the equilibrium point
(η, eω) = (ηd, 0) uniformly stable ([85], Theorem 4.8).

Convergence combined with Lyapunov stability leads to asymptotic stability of the
desired equilibrium point (η, eω) = (ηd, 0). The stable manifold of the unstable equilibrium
is less than the dimension of the state space of the system and therefore has measure zero.
The region of attraction to the stable equilibrium point excludes this manifold, so we
conclude that the desired equilibrium is almost globally asymptotically stable.

Appendix B.4. Exponential Stability

To show exponential stability, let ε > 0 (arbitarily small) and consider the Lyapunov
function (A2) augmented with a cross-term:

Vε = V + εe>η Jeω.

which is positive definite for small ε. The time-derivative of Vε along the closed-loop
trajectories satisfies

V̇ε = V̇ + εe>η Jėω + εe>ω Jėη .

We calculate the last two terms separately. From (A1) and (17) we get

εe>η Jėω = −εkpe>η eη + εe>η S(Jeω)eω − εe>η [Kd −VaD + S(ωd)J − S(Jωd)]eω

≤ −εkp‖eη‖2 + ελJ
max‖eω‖2 + ε(λ

Kd
max + VmaxσD

max + 2λJ
maxcωd)‖eη‖‖eω‖,
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since ‖eη‖ ≤ 1. The other terms becomes

εe>ω Jėη = −εe>ω J
[
S(ω⊥d )eη + S(ηd)S(η)eω

]
≤ ελJ

maxcω⊥d
‖eη‖‖eω‖+ ελJ

max‖eω‖2.

Combining this with (A3) gives

V̇ε ≤ −εkp‖eη‖2 − (γ− 2ελJ
max)‖eω‖2 + ε(λ

Kd
max + VmaxσD

max + λJ
max(2cωd + cω⊥d

)‖eη‖‖eω‖.

Let x , [‖eη‖ ‖eω‖]>. Then, we can write V̇ε ≤ −x>Mx, where the matrix M is given
by

M =

[
εkp − εξ

2
− εξ

2 γ− 2ελJ
max

]
,

where ξ = λ
Kd
max + VmaxσD

max + λJ
max(2cωd + cω⊥d

). The matrix M is positive definite if the
following inequality is satisfied:

ε <
4kpγ

8kpλJ
max + ξ2

.

Since ε can be chosen arbitrarily small, this inequality can always be satisfied. With
V̇ε negative definite, and with quadratic bounds on Vε, we conclude that the desired
equilibrium is exponentially stable. For estimation of the region of exponential convergence,
see [72].

Appendix B.5. Convergence of Angular Velocities

Since eη converges to zero, Π⊥η ω⊥d → ω⊥d . Now, Equation (19) proves our point due
to the orthogonality of the two parenthesized terms.

Appendix C. Proof of Proposition 2

We begin by establishing that ω⊥ = ϕ(η, ηd, ω⊥d ) stabilizes the desired reduced-
attitude with V1 = k1Ψ(η, ηd) as a Lyapunov function. The derivative of V1 under the
stated virtual control becomes V̇1 = −κk1‖eη‖2. When ω⊥ 6= ϕ(η, ηd, ω⊥d ) we use (33)
and get:

V̇1 = −κk1‖eη‖2 + k1z>eη ,

since e>η ω‖ = e>η ωct = 0.
From (18) and (33), the derivative of z satisfies

Jż = [S(J(z + ω̄d)) + VaD](z + ω̄d) + V2
a B[u− utrim] + ∆(vr, t)− J ˙̄ωd. (A4)

In closed loop with the control law (34), we get

Jż = −k1eη − [K2 −VaD + S(ω̄d)J]z + S(J(z + ω̄d))z. (A5)

Let a Lyapunov function candidate for the complete system be given by

V2 = V1 +
1
2

z> Jz,

whose total time-derivative satisfies

V̇2 = −κk1e>η eη + z>
[
k1eη + Jż

]
≤ −κk1e>η eη − z>[K2 + S(ω̄d)J]z

≤ −κk1‖eη‖2 −
(

λK2
min − (λJ

maxcωd + κ)
)
‖z‖2 ≤ −κk1‖eη‖2 − γ‖z‖2,

where we have used (37), (A5) and Assumption 4.
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The rest of the proof follows the same arguments as in the proof of Proposition 1.

Appendix D. Proof of Proposition 3

By combining (A4) with the control law (40), we now get the closed-loop error dynamics

Jż = −k1eη − [K2 −VaD + S(ω̄d)J]z + S(J(z + ω̄d))z− ∆̃. (A6)

This is similar to (A5), but with the extra estimation-error term −∆̃. Again, calculating V̇2
gives

V̇2 ≤ −κk1‖eη‖2 − γ‖z‖2 − z>∆̃.

For some symmetric, positive definite gain matrix K3 = K>3 > 0, let an augmented
Lyapunov function candidate be given by

V3 = V2 +
1
2

∆̃>K−1
3 ∆̃.

Differentiating V3 gives

V̇3 = V̇2 + ∆̃>K−1
3

˙̂∆ ≤ −κk1‖eη‖2 − γ‖z‖2 + ∆̃>K−1
3

[
˙̂∆− K3z

]
.

If the update law for ∆̂ is chosen as
˙̂∆ = K3z,

we are left with
V̇3 ≤ −κk1‖eη‖2 − γ‖z‖2.

By Barbalat’s lemma, V̇ goes to zero asymptotically, and so does eη and z, and therefore
also eω. From (A6), we have Jż = a(t) + b(t), where

a(t) , −∆̃

b(t) , −k1eη − [K2 −VaD + S(ω̄d)J]z + S(J(z + ω̄d))z

Since eη and z converges to zero, we know that b(t) converges to zero. The derivative of
a(t) is given by

ȧ(t) = − ˙̂∆ = −K3z

which is bounded by the boundedness of z. Therefore, a(t) is uniformly continuous. From
Lemma A1, we get that ∆̃ converges to zero as well. The rest of the proof follows closely
that of Proposition 1.

To show exponential stability, for ε > 0, consider

V4 = V3 + ε∆̃> Jz,

whose time-derivative satisfies

V̇4 = V̇3 + ε∆̃> Jż + εz> J ˙̂∆ ≤ −κk1‖eη‖2 − γ‖z‖2 + εz> JK3z + ε∆̃> Jż

From (A6), we calculate the last term as

ε∆̃> Jż = −ε∆̃>∆̃ + ε∆̃>S(J(z + ω̄d))z− εk1∆̃>eη − ε∆̃>[K2 −VaD + S(ω̄d)J]z

≤ −ε‖∆̃‖2 + ελJ
max(cωd + κ)‖z‖2‖∆̃‖+ εk1‖eη‖‖∆̃‖

+ ε
(

λK2
max + σ

D(Va)
max + λJ

max(cωd + κ)
)
‖z‖‖∆̃‖
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Now, for z such that ‖z‖ ≤ cz, we can write V̇4 ≤ −x̄>Nx̄, where x̄ = [‖eη‖ ‖z‖ ‖∆̃‖]>
and the matrix N is given by

N =

 κk1 0 − εk1
2

0 γ− ελJ
maxλK3

max − εξ
2

− εk1
2 − εξ

2 ε

,

where ξ = λK2
max + VmaxσD

max + (1 + cz)λ
J
max(cωd + κ). The parameter ε can be chosen small

enough such that N is positive definite. Requiring a positive determinant leads to a second-
order inequality in ε of the form aε2 − bε + c > 0, where a, b, c are positive coefficients.
Clearly, since c > 0, there exists some ε (arbitrarily small) that satisfies this inequality.

Appendix E. Proof of Proposition 4

The derivative of ẑ satisifies

J ˙̂z = [S(J(z + ω̂d)) + VaD](z + ω̂d) + V2
a B[u− utrim] + ∆(vr, t)− J ˙̂ωd. (A7)

In closed loop with the control law (45), we get

J ˙̂z = δB
[
−k1eη − K2ẑ− ∆̃

]
+ [VaD + S(ω̂d)J]ẑ + S(J(ẑ + ω̂d))ẑ + d1, (A8)

where

d1 = E∆(vr, t) + [ J̃ − EĴ] ˙̂ωd −Va[D̃− ED̂]ω̂d + S( J̃ω̂d)ω̂d − ES( Ĵω̂d)ω̂d − δBĴ( ˙̂ωd − ˙̂ω
′
d).

The time derivative of V1 = k1Ψ(η, ηd) now becomes

V̇1 = k1

(
ω−ω

‖
d −Π⊥η ω⊥d

)>
eη = k1

(
ẑ− κeη −Π⊥η ω⊥d

)>
eη

= −κk1‖eη‖2 + k1ẑ>eη − k1e>η Π⊥η ω⊥d .

Let a Lyapunov function candidate be given by V̂2 = V1 + ẑ> Jẑ/2, whose time
derivative satisfies

˙̂V2 = V̇1 + ẑ> J ˙̂z = −κk1‖eη‖2 − k1e>η Π⊥η ω⊥d + ẑ>
[
k1eη + J ˙̂z

]
= −κk1‖eη‖2 − ẑ>[δBK2 + S(ω̂d)J]ẑ + ẑ>d2,

where d2 = d1 − δB∆̃ + k1Eeη − k1e>η Π⊥η ω⊥d .
The time derivative of ω̂d is

˙̂ωd = ω̇
‖
d − κėη ,

where ėη can be bounded using

‖ėη‖ ≤ ‖ω⊥d ‖+ ‖eω‖ ≤ 2‖ω⊥d ‖+ ‖ẑ‖+ κ‖eη‖.

From Assumption 5 we get

‖ ˙̂ωd‖ ≤ b
ω̇
‖
d
‖ω‖+ c

ω̇
‖
d
+ 2κ‖ω⊥d ‖+ κ‖ẑ‖+ κ2‖eη‖

≤ κ(κ + b
ω̇
‖
d
)‖eη‖+ (κ + b

ω̇
‖
d
)‖ẑ‖+

(
b

ω̇
‖
d
c

ω
‖
d
+ c

ω̇
‖
d
+ 2κcω⊥d

)
,

where we have used ‖ω‖ ≤ ‖ẑ‖+ ‖ω‖d‖+ κ‖eη‖, from the definition of ẑ.
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Now, it is not difficult to show that d2 satisfies

‖d2‖ ≤ a‖eη‖+ b‖ẑ‖+ c,

where

a = k1‖E‖+ k1cω⊥d
+ κcDVmax + cJκ

(
2κ + 2c

ω
‖
d
+ b

ω̇
‖
d

)
+ λ Ĵ

max‖δB‖κcφ̇d
sin cθd (A9)

b = cJ(κ + b
ω̇
‖
d
) + λ Ĵ

max‖δB‖cφ̇d
sin cθd (A10)

c = cJ

(
(c

ω
‖
d
)2 + b

ω̇
‖
d
c

ω
‖
d
+ c

ω̇
‖
d
+ 2κcω⊥d

)
+ cDVmaxc

ω
‖
d
+ ‖E‖‖∆‖+ ‖δB‖‖∆̃‖

+ λ Ĵ
max‖δB‖

(
c

ω
‖
d
cφ̇d

sin cθd + κcω⊥d
+

g
Vmin cos2(cφd)

cφ̇d
+ cφ̇d

cθ̇d
+ cφ̈d

sin cθd

)
. (A11)

Inserting this into the expression for ˙̂V2 gives

˙̂V2 ≤ −κk1‖eη‖2 −
[

λ
sym(δBK2)
min − λJ

max(cω
‖
d
+ κ)

]
‖ẑ‖2 + ‖ẑ‖‖d2‖

≤ −κk1‖eη‖2 −
[

λ
sym(δBK2)
min − λJ

max(cω
‖
d
+ κ)− b

]
‖ẑ‖2 + a‖eη‖‖ẑ‖+ c‖ẑ‖.

Let γ = λ
sym(δBK2)
min − λJ

max(cω
‖
d
+ κ)− b. Then,

˙̂V2 ≤ −κk1‖eη‖2 − γ‖ẑ‖2 + a‖eη‖‖ẑ‖+ c‖ζ‖ = −ζ>Lζ + c‖ζ‖,

where ζ = [‖eη‖ ‖ẑ‖]> and

L =

[
κk1 − a

2
− a

2 γ

]
,

which is positive definite if γ > a2/(4κk1). Clearly, the matrix sym(δBK2) must be positive
definite, and sufficiently so, satisfying

λ
sym(δBK2)
min >

a2

4κk1
+ λJ

max(cω
‖
d
+ κ) + b.

If this holds, and c is sufficiently small, then the solutions are ultimately bounded with
an ultimate bound that depends on the controller gains, model estimation errors, and the
bounds on reference velocities [85].
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