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Utility of T2‑weighted MRI 
texture analysis in assessment 
of peripheral zone prostate cancer 
aggressiveness: a single‑arm, 
multicenter study
Gabriel A. Nketiah1,2*, Mattijs Elschot1,2, Tom W. Scheenen3, Marnix C. Maas3, 
Tone F. Bathen1,2, Kirsten M. Selnæs1,2 & The PCa-MAP Consortium*

T2-weighted (T2W) MRI provides high spatial resolution and tissue-specific contrast, but it is 
predominantly used for qualitative evaluation of prostate anatomy and anomalies. This retrospective 
multicenter study evaluated the potential of T2W image-derived textural features for quantitative 
assessment of peripheral zone prostate cancer (PCa) aggressiveness. A standardized preoperative 
multiparametric MRI was performed on 87 PCa patients across 6 institutions. T2W intensity and 
apparent diffusion coefficient (ADC) histogram, and T2W textural features were computed from tumor 
volumes annotated based on whole-mount histology. Spearman correlations were used to evaluate 
association between textural features and PCa grade groups (i.e. 1–5). Feature utility in differentiating 
and classifying low-(grade group 1) vs. intermediate/high-(grade group ≥ 2) aggressive cancers was 
evaluated using Mann–Whitney U-tests, and a support vector machine classifier employing “hold-
one-institution-out” cross-validation scheme, respectively. Textural features indicating image 
homogeneity and disorder/complexity correlated significantly (p < 0.05) with PCa grade groups. In 
the intermediate/high-aggressive cancers, textural homogeneity and disorder/complexity were 
significantly lower and higher, respectively, compared to the low-aggressive cancers. The mean 
classification accuracy across the centers was highest for the combined ADC and T2W intensity-
textural features (84%) compared to ADC histogram (75%), T2W histogram (72%), T2W textural 
(72%) features alone or T2W histogram and texture (77%), T2W and ADC histogram (79%) combined. 
Texture analysis of T2W images provides quantitative information or features that are associated with 
peripheral zone PCa aggressiveness and can augment their classification.

Accurate assessment of localized prostate cancer aggressiveness is of utmost importance for determining patient 
treatment and follow-up strategies. Currently, this is determined based on Gleason and/or International Society 
of Urological Pathology (ISUP) grading1,2 of histological specimens, traditionally obtained by systematic tran-
srectal ultrasound-guided biopsy sampling. Although the introduction of targeted approaches has improved 
biopsy sampling and cancer detection accuracies3, it is still limited to small portions of the prostate. With pros-
tate cancer being a heterogeneous and multifocal disease, this can sometimes lead to inaccurate estimation of 
the disease extent, and thus undertreatment or overtreatment4,5. Moreover, biopsy sampling is invasive, and the 
risk of post-biopsy complications has become an increasing concern due to multidrug-resistance6. This makes 
repeated biopsy sampling unattractive in clinical practice, especially for active surveillance patients.

Multiparametric MRI (mpMRI) enables non-invasive acquisition of both anatomical [i.e. T2-weighted (T2W)] 
and functional [mainly diffusion-weighted (DW), and dynamic contrast-enhanced (DCE)] images of the entire 
prostate for cancer detection, staging, treatment planning, and response evaluation7. The introduction of mpMRI 
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and the Prostate Imaging—Reporting and Data System (PI-RADS) guidelines8 have improved prostate cancer 
detection and accuracy9. DW and DCE MRI provide quantitative pathophysiological parameters such as apparent 
diffusion coefficient (ADC), and volume transfer constant (ktrans) and extravascular-extracellular volume fraction 
(Ve), which to some extent are capable of assessing prostate cancer aggressiveness10,11. Compared to DW and 
DCE, T2W MRI provides high spatial resolution and tissue-specific contrast, but currently, it is mainly used for 
qualitative evaluation of the prostate anatomy and anomalies.

Though important, qualitative assessment has several challenges and limitations, including dependency on 
subjective judgment of radiologists, which is prone to high inter-reader variability12 and the occurrence of 
equivocal findings in substantial number of cases13. Furthermore, with a multiparametric approach and the 
increasing availability of hybrid imaging modalities such as positron emission tomography/MRI14, the amount 
of data to be analyzed increases, making it also increasingly labor-intensive to manually collate all these images 
into meaningful information for clinical decision making.

Recently, radiomics, i.e. automatic high-throughput extraction of quantitative image features from radiologi-
cal images and their subsequent analysis15,16, has gained attention with potential to overcome the above limita-
tions and thus improve clinical decision making. Texture analysis constitutes a key methodology for extracting 
quantitative image features, particularly second- and high-order statistical image texture descriptors based on 
grey level co-occurrence matrix (GLCM)17 and grey level run length matrix (GLRLM)18, which examine spatial 
variations in pixel intensity distribution. Several interesting studies have reported the use of texture analysis in 
radiomics-based analysis of prostate cancer19–23, but have mostly been limited to single-center data. Previously, 
we24 showed that GLCM-based textural features derived from T2W images could potentially serve as non-invasive 
markers for assessing prostate cancer aggressiveness. Particularly, we found homogeneity and entropy features 
to correlate significantly with prostate cancer aggressiveness (i.e. grade groups 2 and 3) as defined on pathol-
ogy, as well as with ADC and ktrans. Also, the augmentation of quantitative MRI parameters with T2W image 
textural features enabled better classification. However, these preliminary findings were based on a relatively 
small number of patients recruited from single center. The aim of this current work was to validate and extend 
these findings using a multicenter cohort, and to investigate their performance in the classification of biopsy-
proven prostate cancers.

Materials and methods
Patient population and data collection.  The patient cohort data for this retrospective multicenter 
study constitutes part of a prospectively collected (between June 2010 and August 2015) data for the Pros-
tate Cancer localization with a Multiparametric MR Approach trial (PCa-MAP; ClinicalTrials.gov Identifier 
NCT01138527)25. Eligible patients (N = 128) from six institutions: Johns Hopkins University, Baltimore (n = 20); 
Norwegian University of Science and Technology, Trondheim (n = 22); Radboud University Medical Centre, 
Nijmegen (n = 30); University of California, Los Angeles (n = 20); University Health Network, Toronto (n = 10); 
and Medical University of Vienna (n = 26) were included in this study. All patients were diagnosed with pri-
mary prostate cancer and were scheduled to undergo preoperative mpMRI with subsequent radical prostatec-
tomy. The Regional Committee for Medical and Health Ethics (Mid Norway), the PCa-MAP trial consortium 
review board, as well the review board of each participating institution (HIPAA-compliant for USA institutions) 
approved this study and waived the requirement for written informed consent. All methods were performed in 
accordance with local institutional, national and international guidelines and regulations.

MRI examination.  The image acquisition protocol and/or settings were standardized across all centers, 
hence the term ‘single-arm’ in the title. All imaging was performed on 3T MRI systems (Siemens Healthineers) 
using standard vendor-supplied body and spine phased array coils for signal detection, without an endorectal 
coil. A minimum of four weeks was allowed between the last biopsy and MRI to avoid hemorrhage artifacts. The 
acquisition consisted of localizer scans, T2W, DW, DCE, and spectroscopic imaging. In this study, we utilized 
only the transverse T2W and DW images, which were acquired with a turbo spin-echo sequence (repetition/
echo time (TR/TE): 4000/101 ms; field of view (FOV): 200 × 200 mm; matrix: 320 × 320; slice thickness: 3 mm; 
interslice gap: 0.6 mm), and a single-shot echo-planar sequence with four b-values: 0, 100, 400, and 800 s/mm2 
(TR/TE: 3300/60 ms; FOV: 260 × 211 mm; matrix: 160 × 130; slice thickness: 3.6 mm), respectively. The images 
were oriented along the longest axis of the prostate, perpendicular to the urethra to best match routine histo-
logic sectioning of the prostate. Pre-imaging preparations were performed in accordance with local institutional 
guidelines.

Histopathologic examination and tumor delineation.  Patients underwent radical prostatectomy 
within 12 weeks after the MRI examination. The prostatectomy specimens were prepared locally according to 
histopathology protocols at each institution, which included fixation, serial sectioning (perpendicular to the 
urethra to facilitate spatial matching to MRI) into ~ 3–4 mm axial slices, and hematoxylin and eosin staining of 
microsections. An experienced local uro-pathologist examined the stained slides, outlined cancer foci, described 
cancer location, and graded them in accordance with the Gleason scoring system1,2.

The annotated whole-mount histology sections were visually matched to the T2W images based on anatomi-
cal landmarks such as urethra, ejaculatory ducts, size/shape of the peripheral zone and apex/base proximity. 
Moreover, descriptions from the pathology report were used as guidance. Tumor volumes of interest (VOIs) were 
then manually delineated (by Gabriel A. Nketiah, 5 years’ experience in prostate MRI; and guided by a radiologist 
Jurgen J. Fütterer with > 11 years’ experience) based on their location in histology and shape/appearance on the 
T2W images. The VOIs were subsequently transformed to the corresponding DW images via intensity-based rigid 
registration (Elastix toolbox26) using Mattes mutual information similarity metric (Fig. 1a). This was done by first 
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co-registering the T2W images to the b = 0 s/mm2 images, and then applying the resulting transformation to the 
VOI masks. The co-registrations were visually verified, and manually corrected in case of mis-registration, for 
instance due to geometric distortion on the DW images. Each tumor was assigned a grade group (GG) accord-
ing to the ISUP prostate cancer grading system2, and then dichotomized into low-(GG 1) and intermediate/
high-(GG ≥ 2) aggressive cancers.

Post‑processing and feature extraction.  Two types of features were computed from the image VOIs: 
traditional intensity histogram features (number of features, nf = 11) from the T2W images and ADC maps, and 
second and high-order statistical image textural features (nf = 29) based on GLCM17 and GLRLM18 from the T2W 
images. The “2D average” approach27 was employed to compute textural features from the tumor VOIs (Fig. 1b). 
First, the intensities within each VOI were discretized into 32 grey levels via fixed bin number quantization. The 
GLCMs and GLRLMs were computed per slice at one-pixel distance (∂ = 1) in four symmetric directions, θ = 0°, 
45°, 90° and 135°. Textural features were computed from each directional matrix, and the mean of each feature 
across the slices was obtained. Finally, the average of each feature across the four directions was calculated to 
eliminate potential differences in directionality. This 2D approach was preferred over 3D texture analysis due to 
the presence of interslice gaps in our data acquisition. ADC maps were calculated from the nonzero b-value DW 
image datasets (100, 400, and 800 s/mm2) by fitting a monoexponential decay model to the image intensities as a 
function of b-value in each voxel. ADC histogram features were then computed for each tumor VOI. The b = 0 s/
mm2 image was excluded from ADC map computation to eliminate possible perfusion effects. The ADC was 
included as a benchmark metric for aggressiveness classification, since it has been previously shown to correlate 
with prostate cancer aggressiveness10.

Figure 1.   Illustration of tumor volume-of-interest (VOI) delineation and grey level co-occurrence matric 
(GLCM) texture feature extraction. (a) Histopathology slides were visually matched to the T2-weighted (T2W) 
images using anatomical landmarks. Peripheral (red) and transition (yellow) zone tumors were manually 
outlined on the T2W images based on their location on histology and appearance on T2W images, and then 
transformed to corresponding apparent diffusion coefficient (ADC) maps via registration or manually if the 
registration was deemed suboptimal. (b) Textural feature extraction from T2W VOIs using 2D average approach. 
For illustration purposes, the number of grey level bins was limited to four in this schematic, instead of the 32 
used in actual computations.
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Prior to feature extraction, the T2W images were corrected for intensity non-uniformity using the N4 bias 
field correction algorithm28, and subsequently normalized using the automated dual-reference tissue normali-
zation approach29. Briefly, two aggregate feature channel object detectors were separately trained to detect fat 
and muscle tissue regions, from which reference intensity values (90th and 10th percentiles, respectively) were 
calculated, and then utilized to normalize the 3D image intensities to pseudo T2 values by linearly scaling the 
reference values to their corresponding T2 values at 3T from literature. Unlike T2W image intensities, the ADCs 
were not normalized because they are quantitative measurements in nature. Also, outlier voxels within each 
VOI, defined as intensities outside the range [µ − 3σ, µ + 3σ]30 were excluded; where μ and σ denote the mean 
and standard deviation of the intensities within each VOI. All features were computed in accordance with the 
image biomarker standardization initiative27.

Statistical analysis and classification modeling.  Spearman correlation coefficients were calculated to 
investigate associations between the T2W image features and prostate cancer grade groups (i.e. 1–5). Differences 
in feature values between the two aggressiveness classes (i.e. low versus intermediate/high) were evaluated using 
two-tailed Mann–Whitney U-tests. p values were corrected for multiple testing using Benjamini and Hochberg’s 
approach31 at false discovery rate of 0.05, with values < 0.05 considered statistically significant.

To evaluate the utility of the features in classifying the two cancer aggressiveness classes, a linear support 
vector machine (SVM) classifier was trained and tested separately for each feature set (i.e. ADC histogram, T2W 
histogram and T2W textural features), and the following combinations: T2W histogram + textural features, ADC 
histogram + T2W histogram, and ADC histogram + T2W histogram + textural features. In this analysis, we were 
particularly interested in how well cancer aggressiveness at one institution could be predicted by a model trained 
on data from the other institutions, using histogram features with and without textural features augmentation. 
For this, the classifier was iteratively (i = 1:number of institutions, ni) trained and tested, each time using data from 
ni − i institutions as training set, with the ith institution held out as an independent external test set (Fig. 2). The 
training employed stratified 10-fold cross-validation for hyperparameter tuning and feature selection. Hyper-
parameter (misclassification cost, C) tuning and feature selection during training were performed concurrently 
via grid search over seven logarithmically spaced values between − 1 and 1 inclusive, and using recursive feature 
elimination32, respectively. The hyperparameter and feature sets with the lowest mean misclassification error 
over all 10-folds were selected to build the model. The cross-validation partitioning of the data during training 
was done on patient level rather than on tumor level to ensure that multiple tumors from the same patient were 
all either in the training or in the validation subset. Predictions on the test set (i.e. data from the hold out institu-
tion) were however done on tumor-level.

Receiver operating characteristic (ROC) curves were computed for each test set, from which the area under 
the curve (AUC) and 95% confidence intervals (95CI), accuracy, sensitivity and specificity were calculated to 
evaluate the performances of the classifiers (i.e. feature sets) across the centers. The optimal threshold for calcu-
lating the accuracy, sensitivity and specificity was determined from the training based on the Youden index33, 
and then applied to the test set.

The added value of T2W textural features was evaluated using two approaches. First, at each institution, the 
AUCs before (i.e. ADC histogram, T2W histogram, and ADC + T2W histogram) and after augmentation with 
T2W textural features (i.e. T2W histogram + textural features, and ADC histogram + T2W histogram + textural 
features) were compared using Delong’s nonparametric approach for comparing the areas under two or more 
correlated receiver operating characteristic curves34. Secondly, the differences in performances across the insti-
tutions before and after augmentation with T2W textural features were compared using paired student t-test.

Prior to the classification modelling, two-way ANOVA was performed to evaluate potential effects of data 
origin (i.e. institution) and cancer aggressiveness on the features. Features for which the interaction between 
institution and cancer aggressiveness or main effect of institution were significant were excluded from the model. 
Each feature was log transformed to meet normality assumption requirement of ANOVA. The SVM classification 

Figure 2.   Schematic of the cross-validation scheme employed in support vector machine classifier training and 
testing across six institutional centers. At each iteration, data from one institution was held out for testing, and 
data from the remaining 5 institutions used for training.
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modelling was performed with scikit-learn library35 in python (version 3.7, www.pytho​n.org), and other statisti-
cal analyses were performed in MATLAB R2019a (Mathworks).

Results
Out of the 128 eligible patients, 32 patients were excluded due to unavailable MRI (n = 5), MRI artifacts and/or 
distortion (n = 4), no pathology report/grading (n = 15), unsatisfactory matching between histopathology and 
MRI (n = 8). Data of 96 patients (mean age = 61.3 ± 6.1 years) for whom good quality MRI and post-surgical 
histopathology data were available were included in this study. In these patients, 127 tumor volumes (mean 
[range] = 469 [101–1397] voxels) were identified, of which 104 were in the peripheral zone and 23 were in the 
transition zone. Figure 3 shows the flowchart of patient inclusion and exclusion. Due to the limited number of 
transition zone tumors, only the peripheral zone tumors (in 87 patients) were analyzed, of which 30 were strati-
fied as low-aggressive, and 74 as intermediate/high-aggressive cancers. The overview of the characteristics of 
patients and tumors is given in Table 1.

Feature association with prostate cancer grade group.  The Spearman correlation between the 
image features and cancer grade groups was significant (p < 0.05) for eight T2W intensity histogram and nine 
textural features (Table 2). Differences in features between the two cancer aggressiveness classes were significant 
for seven intensity histogram and 16 textural features. Generally, the textural features reflected higher disorder/
complexity (i.e. high entropy or lower homogeneity) in intermediate/high-aggressive tumors, and vice versa in 
low-aggressive tumors (Fig. 4). As expected, the majority of these features (7 intensity and 9 texture features) 
were found to be common between the two statistical tests.

The two-way ANOVA showed no statistically significant interaction between the effects of data origin (insti-
tution) and cancer aggressiveness on any feature. Similarly, the main effect of institution was not significant.

Classification of low versus intermediate/high‑aggressive cancers.  Table 3 and Fig. 5 show com-
parisons of the performance of the feature sets in SVM classification of the two aggressiveness classes at the 
various institutions. The added value of T2W textural features varied generally between the sites. At the indi-
vidual centers, the augmentation of ADC and T2W histogram features with T2W textural features resulted in 
improvement in AUCs at four centers, though not statistically significant (p > 0.05). When considering the over-
all performance across the centers, the differences in AUCs before and after augmentation with textural features 

Figure 3.   Flow chart of patients and datasets included in study. mpMRI multiparametric MRI, PCa prostate 
cancer, TZ transition zone.

http://www.python.org
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were not significant. However, the difference in accuracy was significant (p = 0.0218) for ADC + T2W histogram 
versus ADC histogram + T2W histogram + T2W texture features (Fig. 5). In terms of feature importance within 
the classifier, a similar trend as in the feature association with cancer grade group was observed. Textural features 
relating to similarity (grey level non-uniformity), maximum probability, and textural complexity (information 
measure of correlation) were the most frequently selected, in addition to minimum and 10th percentile from 
intensity histogram (Table 4).

Discussion
T2W MRI provides high spatial resolution and tissue-specific contrast compared to DW and DCE imaging, but 
it is predominantly limited to qualitative radiological evaluation of the prostate. In a preliminary study using 
single-center data24, we showed that quantitatively derived T2W image textural features have the potential to 
serve as non-invasive markers for assessing aggressiveness. In this work, we extended and confirmed these find-
ings in a multicenter cohort. T2W image textural features, particularly those reflecting homogeneity/similarity 
(angular second moment, run length non-uniformity, grey level non-uniformity), disorder (entropy) and textural 
complexity (information measure of correlation) correlated significantly with prostate cancer aggressiveness; and 
differed significantly between low- and intermediate/high-aggressive prostate cancers as defined by histopathol-
ogy. Compared to the classifier based on the commonly used histogram metrics from ADC and T2W images, 
the classifier utilizing histogram features augmented with T2W textural features performed better, an indication 
that quantitative texture analysis of anatomical images has the potential to reveal additional morphological and 
pathophysiological information for radiomics-based assessment of prostate cancer aggressiveness.

The usefulness of entropy/complexity and homogeneity associated textural features in prostate cancer 
aggressiveness assessment and classification was shown in our previous study24, and has also been reported by 
others23,36,37. Histologically, aggressive prostate cancers are characterized by poor differentiation, glandular struc-
ture deformation, and loss of cellular integrity of the prostate gland. This disrupts the tissue cyto-architectural 
patterns, potentially leading to decreased homogeneity and high disorder. Correlations between textural features 
and prognostic factors and clinical outcome have also been reported36,38. If validated, these quantitatively derived 
T2W image features could be combined with other MRI parameters as evidence-based markers for prostate can-
cer. In the context of this study setup, the findings could particularly be useful in active surveillance situations 
to follow-up on low-risk cancer patients thereby limiting the need for repeated biopsies.

Although a number of promising studies have reported the utility of MRI texture analysis in prostate 
cancer19–23,36–38, very few are based on multicenter cohorts22 or focused on aggressiveness prediction/classifica-
tion19,21,23,36. Multicenter data sharing is important to fulfill the high data demand for training radiomics-based 
decision support systems. Furthermore, multicenter studies are necessary to ascertain the applicability and 
robustness of texture analysis and radiomics, and to facilitate their clinical transition across centers. Texture 
analysis, which considers spatial relationships between pixels rather than individual pixel intensities as in a 
histogram, could possibly contribute to overcome the inter-institution and scanner variability challenges asso-
ciated with multicenter data. Compared to DW and DCE imaging, T2W imaging is generally regarded as the 
most stable sequence in terms of imperviousness to scanner variations and gradient artifacts, and tolerance in 
patients (i.e. contrast agent-free). Although these factors add to its importance, T2W imaging is not currently 
used for quantitative assessment of prostate cancer aggressiveness mainly due to the non-quantitative nature of 
its signal intensities.

We found the classification performances of the individual feature sets (ADC histogram, T2W histogram and 
T2W texture) across the sites to be complementary and in some cases comparable, while the best performance 
was achieved when the feature sets were combined. The latter observation confirms the preliminary findings from 
our single-center study24. The improved classification performance of T2W intensity histogram features compared 
to some reported studies19,37 may be attributable to the post-processing (i.e. intensity non-uniformity correction 
and standardization) of the T2W images, which ensured that the intensities were comparable and had consistent 
quantitative interpretation across the patients and institutions. Our results are consistent with the findings of 

Table 1.   Characteristics of patients and tumors. PSA prostate specific antigen, L low, I intermediate, H high.

Institutions

A B C D E F Overall

Number of patients 17 15 21 16 8 10 87

Age, years [range] 56 [46–70] 61 [52–73] 62 [51–69] 60 [55–69] 64 [50–71] 64 [52–76] 62 [46–76]

PSA ng/mL [range] 5.5 [1.7–18] 7.3 [1.9–11.2] 5.4 [2.5–20.8] 6.1 [3.6–12.5] 5.9 [3.1–17.3] 6.4 [5.2–31] 6.1 [1.7–31]

Tumor grade group (aggressiveness class)

1 (L) 5 1 10 3 6 5 30

2 (I) 8 9 11 7 1 – 36

3 (H) 4 7 1 9 1 4 26

4 (H) 1 – 4 - 1 – 6

5 (H) 1 – 1 1 1 2 6

Total 19 17 27 20 10 11 104
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previous single-center studies by Fehr et al.37 and Chen et al.19 who also reported improved characterization of 
prostate cancer aggressiveness when using combined textural features from ADC and T2W images, compared 
to only mean ADC values or the individual feature sets respectively. On the contrary, Bonekamp et al.20 found 

Table 2.   List of computed features from T2-weighted images and ADC maps, and their association with 
prostate cancer aggressiveness. Bolded p values indicate features differed significantly between low- (grade 
group 1) and I/H-aggressive (grade group ≥ 2) prostate cancers. ASM angular second moment, IMC 
information measure of correlation, IDM inverse difference moment, HGLRE high grey level run emphasis, 
LGLRE Low grey level run emphasis, GLE grey level emphasis, RLNU run length non-uniformity, I/H 
intermediate/high, ρ spearman correlation coefficient between features and cancer grade groups. *Indicates 
feature correlated significantly with cancer grade group. The correlation coefficients were calculated for the 
entire grade groups (i.e. 1–5) and not for the dichotomized aggressive classes (i.e. grade groups 1 and ≥ 2).

Feature type List of computed features

Correlation (ρ) 
with cancer grade 
group

Differentiation 
of low versus I/H 
aggressive cancers: 
p values

ADC T2W ADC T2W

Intensity histogram

Kurtosis − 0.15 0.14 0.133 0.283

Maximum − 0.37* − 0.23* 0.015 0.283

Mean − 0.45* − 0.34* 0.001 0.016

Median − 0.44* − 0.34* 0.002 0.015

Minimum − 0.50* − 0.46* < 0.0001 < 0.0001

10th percentile − 0.51* − 0.39* < 0.0001 0.002

25th percentile − 0.47* − 0.35* 0.001 0.006

75th percentile − 0.41* − 0.33* 0.005 0.027

90th percentile − 0.40* − 0.31* 0.006 0.048

Skewness − 0.06 0.08 0.597 0.135

Standard deviation 0.14 − 0.04 0.152 0.422

Textural (GLCM & GLRLM) features

ASM − 0.34* 0.043

Autocorrelation − 0.02 0.597

Cluster Prominence − 0.19 0.048

Cluster shade 0.02 0.422

Contrast − 0.18 0.019

Correlation 0.03 0.597

Difference entropy − 0.09 0.084

Difference variance − 0.19 0.019

Dissimilarity − 0.17 0.027

Entropy 0.38* 0.028

IMC 1 0.51* < 0.0001

IMC 2 − 0.48* < 0.0001

IDM 0.13 0.048

Maximum probability − 0.32* 0.048

Sum average − 0.02 0.495

Sum entropy 0.11 0.940

Sum variance − 0.23* 0.027

Variance − 0.25* 0.012

Grey level non-uniformity 0.52* < 0.0001

HGLRE − 0.06 0.364

LGLRE − 0.18 0.345

Long run emphasis 0.17 0.046

Long run high GLE − 0.02 0.651

Long run low GLE − 0.14 0.557

RLNU 0.50* 0.001

Run percentage − 0.17 0.046

Short run emphasis − 0.15 0.051

Short run high GLE − 0.07 0.293

Short run low GLE − 0.18 0.330
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the performance of mean ADC values to be comparable to that of combined radiomics features from ADC 
and T2W images when classifying benign versus malignant prostate lesions. One possible explanation for this 
observation is that their study was focused on cancer detection, which could be regarded as a relatively simpler 
task than aggressiveness classification. Similarly, the aggressiveness dichotomization in our study [i.e. low (grade 
group 1) vs. intermediate/high (grade group 2–5)] could be considered as a relatively simple classification task 
compared to for instance grade group 3 versus grade group 4, or the classification of the five distinct groups as 
in the PROSTATEx-2 Challenge39. Surprisingly, in some instances the classifier performance was reduced when 
textural features were added. Whereas this observation is worth further investigation, we suppose it could be 
due to potential inefficiencies in the feature selection process.

The goal of this study was to investigate the added value of T2W image textural features in prostate cancer 
aggressiveness assessment with respect to traditional histogram features. Hence, we opted to limit our texture 
feature extraction to this image sequence even though textural features can also be extracted from ADC maps. 
Similarly, a wide variety of other radiomic feature types exist that can be extracted including shape, Gabor, wave-
let, grey level size zone matrix, neighbouring grey tone difference matrix, etc., features40,41. Our choice of using 
only GLCM and GLRLM features is not based on preference, but, these features have been extensively studied in 
different tissues and image modalities, and are generally regarded as intuitive. Nevertheless, including additional 
features may further enhance the classification of prostate cancer aggressiveness.

Feature repeatability and reproducibility are important aspects of radiomics pipeline, especially in a mul-
ticenter setting as in this study. Ideally, one would expect a good radiomic feature to be reproducible or stable 
across centers under the same conditions. A number of studies have recently investigated the repeatability of 
radiomic features mostly via test–retest analysis39,42–44. However, there is no consensus on which feature sets 
are most repeatable, mainly because the features are heavily influenced by pre-processing configurations dur-
ing extraction. Most studies43,44 show that shape features are more repeatable. In our analysis we found neither 
interaction between the effects of data origin and aggressiveness nor the main effect of data origin to be significant 
on any feature, an indication that features were reproducible or stable across the institutions. Despite this, the 
classification accuracies varied generally within mean relative deviation [7–18%] across the institutions, which 
may suggest cross-site inconsistency in feature performance. Even though the two statistics (ANOVA & classifi-
cation) are not directly comparable, a plausible explanation for this latter observation could be due to the highly 
imbalanced distribution of the data (i.e. classification classes) across the institutions. Even if significant effects 
were found in the former, it could be due to other potential confounding factors such as inherent differences in 
the cohort tumor heterogeneity across centers or possible inter-observer differences in the histopathologic grad-
ing that was used as ground truth, rather than the features. An alternative and possibly a more robust method of 

Figure 4.   Box plots showing the distributions of apparent diffusion coefficient (ADC) and T2-weighted (T2W) 
histogram (10th percentile), and T2W textural (angular second moment) features between low-aggressive (L) and 
intermediate/high-aggressive (I/H) prostate cancers at the participating institutions or sites. Notice that, where 
the T2W histogram feature (middle; Site F) overlap between the two cancer groups, an improved separation 
is observed for the textural feature (right; Site F), and vice-versa, indicating that the feature sets contain 
complementary information. *Indicates mean value.
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evaluating cross-site reproducibility of radiomics features could be through bootstrapping as employed in the 
studies by Chirra et al.39 and Leo et al. studies45, but this method requires a relative higher number of patients 
per-center.

Our study data and hence methods had some limitations. Despite being a multicenter study, our cohort size 
is relatively small and the distribution of patients or cancer aggressiveness classes across the centers is imbal-
anced (Table 1). This could affect our study results, especially the significance of T2W textural features in the 
classification performance. For instance, in a similar classification task performed by Fehr et al.37, the added 
value of textural features was found to be significant only after high imbalances in data was corrected for via 
sample augmentation. Clinically, prostate cancers are usually categorized into three aggressiveness classes (low, 
intermediate and high) or more46. Due to our study cohort size, however, tumor aggressiveness was stratified 
into low and intermediate/high. Although this stratification is inadequate for prostate cancer management, it 
serves as an important basis in the disease management pathway and could also be used as a benchmark for 
further clinical evaluation in larger multicenter studies. For instance, it is important to rule out low-risk cancers 
not needing active treatment, which otherwise can be overtreated with associated side effects. The inadequate 
number of transition zone tumors for analysis limits the applicability of our results to only the peripheral zone. 
Cancers originating from the transition zone have different radiomic features22, they tend to be elusive and are 
primarily assessed based on their appearance on T2W imaging8. Hence, the utility of quantitatively derived T2W 
image textural features for transition zone tumor characterization would be of great interest. Machine learning 
classifier performances are typically evaluated based on their classification accuracy. In this study for instance, 

Table 3.   Performance of ADC, T2W histogram and T2W textural features in SVM classification of low-
(grade group 1) vs. intermediate/high-aggressive (grade group ≥ 2) prostate cancers at the various institutions. 
An SVM classifier was trained and tested for each individual institution, where the test data were from the 
institution being evaluated, and the training data were obtained from the remaining 5 institutions. ADC 
apparent diffusion coefficient, T2W T2-weighted, CI confidence interval, SVM support vector machine, RD 
relative deviation. *Nan indicates there is no interval.

Feature type

Center for Testing: AUC [95CI] %

Mean [RD]A B C D E F

ADC histogram 71 [37–1] 100 [*Nan] 66 [44–88] 88 [73–100] 67 [20–100] 100 [*Nan] 82 [17]

T2W histogram 83 [60–100] 100 [*Nan] 86 [70–100] 94 [81–100] 88 [61–100] 73 [39–100] 87 [7]

T2W texture 77 [55–99] 100[*Nan] 51[28–74] 96[87–100] 96[84–100] 87[64–100] 84 [16]

T2W histogram + Tex-
ture 80 [60–100] 94 [*Nan] 76 [57–95] 100 [*Nan] 92 [73–100] 93 [78–100] 89 [8]

ADC + T2W histogram 74 [42–100] 94 [*Nan] 78 [57–98] 96 [87–100] 88 [65–100] 80 [47–100] 85 [9]

ADC + T2W + Texture 77 [56–99] 94 [*Nan] 75[54–95] 100[*Nan] 96[84–100] 93[78–100] 89 [10]

Accuracy %

ADC histogram 66 88 66 79 63 92 75 [14]

T2W histogram 79 88 64 82 58 63 72 [15]

T2W texture 62 78 44 88 88 73 72 [18]

T2W histogram + Tex-
ture 72 94 64 85 75 72 77 [11]

ADC + T2W histogram 79 91 71 79 83 72 79 [7]

ADC + T2W + Texture 79 94 73 85 92 80 84 [8]

Sensitivity/specificity %

ADC histogram 71/60 75/100 82/50 59/100 75/50 83/100 74/77 [8/30]

T2W histogram 79/80 75/100 88/40 65/100 100/17 67/60 79/66 [13/41]

T2W texture 64/60 56/100 47/40 76/100 75/100 76/80 64/80 [13/25]

T2W histogram + Tex-
ture 64/80 88/100 88/40 71/100 100/50 83/60 82/72 [12//30]

ADC + T2W histogram 79/80 81/100 82/60 59/100 100/67 83/60 81/78 [10/20]

ADC + T2W + Texture 79/80 88/100 76/70 71/100 100/83 100/60 86/82[12/15]
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the added of value T2W textural features can be better appreciated when looking at accuracy scores. Imbalances 
in datasets that are unrepresentative of the overall population can therefore lead to inflated assessment of the clas-
sifier accuracy. However, this was taken into account during the training and prediction (i.e. balanced accuracy) 
by adjusting the sample weights to be inversely proportional to the class frequencies. Feature repeatability is an 
important aspect of radiomics pipeline, hence, the lack of this tests in our study is another limitation.

Our study also lacks comparison with clinical readings involving PI-RADS scores, which were not available 
for this study. However, previous studies19,47 have shown radiomics-based models from combined ADC and T2W 
to outperform PI-RADS scores in prostate cancer detection and aggressiveness assessment. Our study setup was 
based on biopsy proven cases. The performance of textural features in prostate cancer detection and characteri-
zation remains to be evaluated prospectively without knowledge of lesion presence and location, especially as 
textural properties could be affected by inflammation or prostatitis. Also, in future multicenter studies, it would 
be interesting to perform PI-RADS scoring and VOI segmentation locally at each institution similarly to the 
histopathology evaluation. Ultimately, further studies in a much larger multicenter cohort are worth investigating.

Conclusion
This multicenter study confirms that texture analysis of T2W images provides quantitative information for assess-
ment of peripheral zone prostate cancer aggressiveness. T2W MRI-derived textural features correlated signifi-
cantly with pathological findings (cancer grade group) from multiple institutions and were sensitive to underlying 
pathological differences between low- and intermediate/high-grade prostate cancers in the peripheral zone. 
Although, we found the added value of T2W textural features in the classification of these cancer aggressiveness 
classes to be moderate, our study suggests that T2W textural features may have the potential to improve prostate 
cancer classification in multicenter settings. With a wide array of proposed radiomics features, further studies 
in larger multicenter cohort would be needed to ascertain their added value and robustness.

Figure 5.   Performance of apparent diffusion coefficient (ADC), T2-weighted (T2W) histogram and T2W 
textual features in SVM classification of low-aggressive (grade group 1) versus intermediate/high-aggressive 
(grade group ≥ 2) prostate cancers. (a) Receiver operating characteristic curves showing the added value of T2W 
image textural features over traditional intensity histogram features alone. (b) Box plot comparing classification 
accuracies. * indicates significant difference.
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Table 4.   Frequency of feature selection for SVM classification of low-(grade group 1) vs. intermediate/
high-(grade group ≥ 2) aggressive prostate cancers across six institutions. SVM support vector machine, ADC 
apparent diffusion coefficient, T2W T2-weighted, ASM angular second moment, IMC information measure of 
correlation, IDM inverse difference moment, GLNU grey level non-uniformity, HGLRE high grey level run 
emphasis, LGLRE low grey level run emphasis, GLE grey level emphasis, RLNU run length non-uniformity.

Features

Classification model

ADC T2W Histogram T2W Texture T2W + Texture ADC + T2W ADC + T2W + Texture

ADC kurtosis 5 5 2

ADC maximum 2 1 0

ADC mean 4 4 1

ADC median 2 3 0

ADC minimum 6 5 3

ADC 10th percentile 4 5 6

ADC 25th percentile 2 5 3

ADC 75th percentile 0 3 1

ADC 90th percentile 3 2 0

ADC Skewness 2 3 0

ADC standard deviation 4 4 2

T2W kurtosis 4 1 1 0

T2W maximum 6 4 5 0

T2W mean 1 1 1 0

T2W median 3 1 1 1

T2W minimum 6 5 6 6

T2W 10th percentile 4 3 4 4

T2W 25th percentile 2 1 4 1

T2W 75th percentile 3 4 2 0

T2W 90th percentile 1 1 0 0

T2W skewness 2 2 4 1

T2W standard deviation 4 5 4 5

T2W ASM 1 3 1

T2W Autocorrelation 1 2 0

T2W cluster prominence 0 1 0

T2W cluster shade 5 2 1

T2W contrast 2 2 2

T2W correlation 1 1 0

T2W difference entropy 2 1 0

T2W difference variance 2 3 1

T2W dissimilarity 0 2 0

T2W entropy 1 1 0

T2W IMC 1 6 3 4

T2W IMC2 3 3 3

T2W IDM 0 1 0

T2W maximum probability 2 5 4

T2W sum average 0 2 0

T2W sum entropy 2 4 1

T2W sum variance 0 2 0

T2W variance 1 3 0

T2W GLNU 5 4 4

T2W HGLRE 0 1 0

T2W LGLRE 0 2 0

T2W long run emphasis 0 2 0

T2W long run high GLE 2 3 0

T2W long run low GLE 1 3 1

T2W RLNU 1 1 1

T2W run percentage 0 0 0

T2W short run emphasis 0 1 0

T2W short run high GLE 0 0 0

T2W short run low GLE 1 1 0
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