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Cancer is a heterogeneous and complex disease and one of the leading causes
of death worldwide. The high tumor heterogeneity between individuals affected by
the same cancer type is accompanied by distinct molecular and phenotypic tumor
profiles and variation in drug treatment response. In silico modeling of cancer as
an aberrantly regulated system of interacting signaling molecules provides a basis to
enhance our biological understanding of disease progression, and it offers the means
to use computer simulations to test and optimize drug therapy designs on particular
cancer types and subtypes. This sets the stage for precision medicine: the design of
treatments tailored to individuals or groups of patients based on their tumor-specific
molecular cancer profiles. Here, we show how a relatively large manually curated
logical model can be efficiently enhanced further by including components highlighted
by a multi-omics data analysis of data from Consensus Molecular Subtypes covering
colorectal cancer. The model expansion was performed in a pathway-centric manner,
following a partitioning of the model into functional subsystems, named modules. The
resulting approach constitutes a middle-out modeling strategy enabling a data-driven
expansion of a model from a generic and intermediate level of molecular detail to a
model better covering relevant processes that are affected in specific cancer subtypes,
comprising 183 biological entities and 603 interactions between them, partitioned in
25 functional modules of varying size and structure. We tested this model for its ability
to correctly predict drug combination synergies, against a dataset of experimentally
determined cell growth responses with 18 drugs in all combinations, on eight cancer
cell lines. The results indicate that the extended model had an improved accuracy
for drug synergy prediction for the majority of the experimentally tested cancer cell
lines, although significant improvements of the model’s predictive performance are still
needed. Our study demonstrates how a tumor-data driven middle-out approach toward
refining a logical model of a biological system can further customize a computer model
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to represent specific cancer cell lines and provide a basis for identifying synergistic
effects of drugs targeting specific regulatory proteins. This approach bridges between
preclinical cancer model data and clinical patient data and may thereby ultimately be of
help to develop patient-specific in silico models that can steer treatment decisions in
the clinic.

Keywords: logical model simulations, drug synergy prediction, systems medicine, model validation, middle-out
modeling, model curation, cancer cell fate decisions

INTRODUCTION

Computational models that describe biological systems can help
to provide insight into how these systems control regulatory
events at the molecular level (Smolen et al., 2000; Le Novère,
2015). The ability to correctly predict the effects of systems
perturbations by in silico simulations is a good indicator
of how well the computational model represents biological
reality. Indeed, computer models for diseased systems are being
used to simulate drug perturbations and to develop, evaluate
and prioritize putative drugs in silico (Flobak et al., 2015;
Rubio-Perez et al., 2015). Approaches that use quantitative
modeling rely on information including kinetic rate constants
for regulatory components and their interactions, but this type
of detailed quantitative data is only available for a small fraction
of the regulatory interactions that underlie cell fate decision
mechanisms. The much more abundant availability of binary
molecular interactions, also defined as ‘causal statements’ (Touré
et al., 2020) allows the use of the Boolean formalism as a powerful
alternative mathematical framework for in silico simulation
studies. The ability of Boolean models to represent discrete
levels of a system furthermore complies well with the need for
basic representations of cellular states, as these equate to stable
states of regulatory networks that are interconnected through
logical rules that may reach new stable states under different
conditions, e.g., normal, diseased, and drug-perturbed. In
systems medicine efforts to understand cancer, Boolean networks
have been used previously to model biological systems driving
cancer and were found useful for studying tumor progression
and understand cancer signaling mechanisms (Srihari et al.,
2014; Pirkl et al., 2016), predict tumor metastatic capabilities
and therapy resistance (Srinivas, 2015), identify cancer-specific
biomarkers, driver genes, drug targets (Irurzun-Arana et al.,
2017; Sahoo et al., 2018; Qiu et al., 2019), and predict drug
effects (Fumiã and Martins, 2013; Azuaje, 2017), including the
possible synergistic effect of combinations of drugs (Flobak et al.,
2015). Depending on the purpose of computational simulations,
Boolean models can describe either a very specific process, such
as a specific cancer-related signaling pathway (Grieco et al.,
2013), or a collection of processes that together result in a
biological phenomenon, such as the signaling pathways involved
in metastasis. These models can vary in size, but they rarely
comprise more than some tens of components.

In regulatory models based on the Boolean mathematical
framework, a model component, also called ‘node,’ can either be
active or inactive, which in Boolean algebra can be represented as
1 and 0, respectively. The state of a particular node (referred to as

local state) is updated according to logical rules that capture the
regulatory effects (activation or inhibition) of all the regulators
of that node in the network, taking into account their activity
state (Glass and Kauffman, 1973; Thomas, 1973). Logical rules
in Boolean models follow the logical formalism and employ
the operators AND, OR and NOT. Each Boolean model can be
represented as a graph of nodes connected by a set of directed
and signed edges, representing the causal interactions between
the nodes. The same network graph can support multiple Boolean
models, with logical rules specific for the system that the model
should represent. Starting from an initial state, Boolean models
that adequately represent biological systems are able to reach only
a limited set of stable states (often only one), called attractors
(Naldi et al., 2009; Helikar et al., 2012; Naldi et al., 2018), which
can be considered as the mathematical equivalent of cellular
states. Attractors can refer to a single stable state (singleton
attractor), a set of stable states that repeat themselves in sequence
(simple or complex cyclic attractor), or a set of stable states
in which the system randomly oscillates (Wang et al., 2012;
Irurzun-Arana et al., 2017). If a Boolean model can reach a stable
state in which its node activities match experimentally observed
activity states of their biological counterparts (e.g., the results of
biomarker analysis), it indicates that the model captures to some
extent relevant aspects of the biological system.

Boolean modeling toolkits (Gonzalez et al., 2006; Naldi et al.,
2018) provide for a variety of analyses that can be further used to
test, validate and enhance a model. Apart from being descriptive
of a biological system and identifying attractors that comply
with a particular state of a cell, Boolean models can also be
predictive and be explored to simulate cellular behavior under
perturbed conditions (Joo et al., 2018). Perturbation analysis
allows the simulation of a system under different conditions,
similar to knock-out, over-expression, or chemically induced
perturbations in laboratory experiments. Such simulations can be
designed for a variety of purposes, e.g., to analyze the regulatory
system per se and identify critical nodes whose perturbation
leads to significant functional changes in the system, thereby
generating hypotheses as to their biological function in the
system. Attractor analysis is also important to identify trajectories
(a series of states that the network traverses through while
reaching a stable state) in the system’s behavior (Huang et al.,
2005). In the case of gene regulatory networks, attractors are
usually associated with specific phenotypes (Cho et al., 2016;
Yang J. M. et al., 2018). Furthermore, a disruption of the balance
found in these stable states of normal cellular systems can many
times be associated with specific diseases, including cancers,
allowing the mechanistic understanding of cancer development
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and progression (Bachmann et al., 2012), which can provide an
important advantage when designing cancer therapies.

This paper focuses on a specific use of Boolean modeling,
namely its use for computer simulations to identify effective
combinations of targeted drugs that act synergistically in growth
inhibition of a set of cancer cell lines. It is well known that
a combination of drugs can have a higher effect on treated
cells than the individual drugs alone would suggest if their
effect were only additive (Roell et al., 2017). This effect, called
drug synergy, results from systems interactions between the
drugs and may yield a higher treatment efficacy. The use of
synergistic drug combinations may address some of the current
treatment limitations in cancer by reducing the emergence
of drug resistance, which is frequently observed with single-
agent therapies (Al-Lazikani et al., 2012; Gottesman et al.,
2016), and lowering the chance of potential side effects and
toxicity because the individual drugs can be used at lower
dosages (Crystal et al., 2014; Trairatphisan et al., 2016). The
use of drug combinations may serve as a stepping stone
toward precision medicine, in which limitations of single-
agent treatment, such as low response rates and acquired drug
resistance, may be overcome by treatment regimes that use
drug combination therapy optimized for the individual patient
(Madani Tonekaboni et al., 2018). Combinatorial treatment
refers to the targeting of multiple molecular components of a
tumor cell-fate decision network, either by the combination of
two or more targeted drugs or by combining targeted drugs with
other therapies like immunotherapy, antibody-based therapy,
and chemotherapy, with the aim to exploit synthetic lethality
and tumor vulnerabilities and dependencies to treat cancer
(Al-Lazikani et al., 2012).

With the availability of a relatively large number of targeted
drugs (Yu et al., 2019), this may provide for a substantial number
of potentially powerful combinations of drugs, but despite the
availability of automated screening platforms using efficient
high throughput technologies, the testing of combinatorial drug
effects in the laboratory depends on vast amounts of large-
scale dose-response data that is extremely time and resource-
demanding (Pirkl et al., 2016; Joshi and Durden, 2019). The
collection of all possible combinations of the large repertoire of
targeted drugs presents a vast search space, and the number of
possible interactions that need to be screened quickly becomes
unmanageable, especially when taking into account different drug
doses, combinations with more than 2 drugs, timing effects of
drug administration, and the high intratumor, interpatient and
cancer type variability that needs to be replicated in assays.
Consequently, the screening for potential synergy is currently
conducted mainly on compounds with an already known
effect and/or where the combination of specific drugs makes
sense based on empirical observations, significantly limiting the
subspace of possible combinations that are actually tested (Cheng
et al., 2019). In silico methods, therefore, pose an attractive pre-
screening possibility, provided that the computer predictions
can reliably limit the experimental search space (Crystal et al.,
2014; Tolcher et al., 2018). More specifically, this means that
predictive models must accurately predict the cellular response
to medication, reveal the potential synergy between different

drugs, produce few or no false-negative predictions (potentially
powerful drug combinations that would be excluded from
further testing) and preferably also few false positives (drug
combinations that in further testing prove to be ineffective).
Computational models that meet these criteria can alleviate the
screening burden and create insight in the molecular mechanisms
that lead to perturbational synergy (Flobak et al., 2015; Jeon
et al., 2018; Madani Tonekaboni et al., 2018; Cheng et al., 2019;
Tang et al., 2019).

Therefore, it is of high importance to develop high-quality
logical models for predicting drug synergies and validating them
by testing against experimental observations. The construction of
computational models of biological systems can either involve a
top-down approach that uses genome-wide omics data analysis to
reveal the underlying regulatory network structure, or a bottom-
up approach, in which a regulatory network is built from single
entities and their interactions, often based on literature that
describes their detailed analysis in various experimental settings
(Shahzad and Loor, 2012). Bottom-up approaches are usually
based on the manual curation of models, focusing on entities
of interest, such as biological entities that are also drug targets,
or driver genes for cancer. During this manual curation, the
modeler many times confronts a series of subjective decisions
on the relevance of entities, interactions and, more generally, the
specific cellular processes to incorporate in a model, to properly
represent a biological system. For the purpose of assessing the
effect of particular perturbations, there is the additional challenge
to identify and encode multi-level nodes that can be directly
associated with a phenotype and, thus, serve as phenotypic
readouts in the model. These phenotypic output nodes provide
a convenient way to assess and quantify the effect of the drugs
in silico simulations.

Here it is presented how a top-down multi-omics data analysis
can identify candidate genes that should be considered for
addition to an existing model, serving as seed genes that provide
guidance for additional bottom-up modeling. The cell signaling
components used were highlighted by the analysis of multi-
omics data from the Consensus Molecular Subtypes (CMSs)
(Guinney et al., 2015) study of colorectal cancer (CRC), to
expand the generic cancer cell fate decision network CASCADE
2.0 that was built previously by our group (Niederdorfer
et al., 2020). This approach effectively constitutes a middle-
out strategy that allowed the expansion in a pathway-centric
manner, capturing processes that were highlighted as possibly
important for CRC subtype development. Furthermore, the
model was manually partitioned into functional subsystems,
named modules, allowing a continuous switching between
top-down (finding modules and seed genes) and bottom-up
modeling (module completion) during the manual curation of
each module, in order to comprehensively capture cell fate
decision mechanisms. Additionally, modules served as a “binning
principle” of nodes and regulatory relationships, providing an
intermediate network level, placed between the individual binary
interactions and a fully connected network. This allowed for a
multilevel assessment of the system, focusing on the modular
regulatory effect on output nodes, and their perturbational
response to targeted drugs. The evaluation of the performance
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of the model in predicting experimentally validated synergies of
combinations of 18 established cancer drugs in a panel of eight
cancer cell lines revealed that the model performs similarly well
for a majority of carcinoma cell lines in the panel, and not only for
colorectal cancer that it was originally specialized for. Our results
suggest that a middle-out modeling approach may be appropriate
for optimizing the representation of specific cancers or cancer
cell lines, or indeed other disease types for which multi-omics
data is available.

MATERIALS AND METHODS

Tools, Data Standards, and Exchange
Formats
An overview of the software tools and their versions used
in this study can be found in the Supplementary Material.
Genes and proteins were represented with the standard identifier
nomenclature for each entity type, namely HUGO Gene
Nomenclature Committee (HGNC) symbols and UniProt IDs,
respectively. Several files are available at are publicly available at
https://github.com/druglogics/cascade, with information about
the CASCADE 3.0 model: the model’s interactions as a
Simple Interaction File (SIF); a file containing the supporting
evidence for each of the interactions in the model; a file with
information about node translation and module assignment; and
a cytoscape.cys file of the network and its topology as shown in
Figure 3. The github repository also contains information about
other CASCADE models, including the CASCADE 2.0 model
that was used as the basis for this work.

Model Assembly by Manual Curation
Logical models are usually created manually by carefully
screening the literature for evidence that supports the linking
of components and their regulatory relationships in a Prior
Knowledge Network (PKN) that represents a biological system.
The CASCADE 2.0 model is a manually curated logical model,
representative for the most prevalent cancer types (Niederdorfer
et al., 2020). The CASCADE 2.0 model consists of 144 nodes and
366 interactions, including two output nodes called Prosurvival
and Antisurvival. Each node was annotated with its HUGO
gene symbol. In the case of several isoforms, a family-node
representative of all isoforms was used. Family nodes are notated
with a \_f in their name, while protein complexes and genes are
notated with \_c and \_g, respectively.

Niederdorfer et al. (2020) describe several model versions,
including a version in which the model topology was refined
so that it better recapitulates the biological mechanisms of
the analyzed cell lines. In the current analyses, the more
generic cancer model was used. These different models were
all constructed according to the following design principles: (1)
include targets of specific drugs for which the effects should be
simulated; (2) contain entities that are known to be involved in
specific or more general oncogenic processes, and (3) contain
specific nodes that will allow a read-out of the state of the cell
fate (phenotype output nodes): actively dividing (Prosurvival)
or growth-inhibited/apoptotic (Antisurvival). In this study, the

CASCADE 2.0 model was taken as a basis for extending into a
logical model that contains the major components and processes
that can be identified as significantly perturbed in one or more of
the colorectal cancer Consensus Molecular Subtype datasets (see
below), which was named CASCADE 3.0.

Identification of Affected Processes in
Consensus Molecular Subtypes of
Colorectal Cancer
An expression-based classification of the patients in the TCGA-
COAD cohort was performed according to the Consensus
Molecular Subtypes (CMS) classification for colorectal cancer
(CRC), as described in the Supplementary Material. This patient
classification aimed to identify commonalities and differences
between the four subtypes at a genomic, transcriptional and
functional (i.e., pathway) level. All the subsequent analyses were
conducted separately for each CMS class of patients unless stated
otherwise, and p-values were adjusted using the Benjamini–
Hochberg method, to correct for the false discovery rate (FDR)
across multiple tests (Benjamini and Hochberg, 1995).

The omics data used in the current project (i.e., mRNA
expression, somatic copy number variation and mutation data)
were publicly available data published as part of the TCGA-
COAD project (Cancer Genome Atlas Network, 2012). Data from
patients that were not classified into one of the CMS classes were
not used in the analyses, while non-tumorous data from adjacent
tissues of the classified patients were used when needed (further
discussed in the following sections).

Differential Expression Analysis
Using the RNA-sequencing data of TCGA-COAD, a statistical
analysis of differential expression was performed on the
transcriptomes of the tumor samples using the edgeR RNA-Seq
expression analysis package (Robinson et al., 2010). Data from
the same patient, but originating from different vials, portions,
analytes or aliquots, were averaged. RNAs with very low counts
across all libraries (fewer than 6–7 counts) and genes that were
expressed in only one sample were discarded, as they were
deemed not significant. Since the high expression of some genes
in a sample can lead to the under-sampling of the others, a
normalization step to correct for differences in the library sizes
was performed. The same filtering and normalization steps were
performed in available normal tissue samples of TCGA. The
differential expression analysis (DEA) was carried out against
this collection of normal samples, for all the subtypes. Protein-
coding genes with an FDR-adjusted p-value of less than 0.05 and
a logarithmic fold change (logFC) greater than 2 or lower than
−2 were deemed significantly differentially expressed.

Somatic Copy-Number Alterations (SCNV) Analysis
The GISTIC 2.0 tool (Mermel et al., 2011) in the GenePattern
platform (Reich et al., 2006) was used to identify genomic regions
that were significantly amplified or deleted across the different
subtypes, based on the amplitude of the aberrations as well as
their frequency of occurrence across the tumor samples. For
this analysis, masked segment copy number variation data of
TCGA-COAD were retrieved and used. In masked data, segments
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with probes known to contain germline mutations are removed
allowing the identification of the cancer-associated, somatic copy
number variation. The recurrently aberrant regions and their
containing genes were identified with a threshold FDR < 0.01.

Recurrent Somatic Mutation Analysis
The MutSigCV tool (Lawrence et al., 2013) in the GenePattern
platform (Reich et al., 2006) was used to identify recurrent
mutations in the cancer genome of TCGA-COAD patients.
The mutational profile of TCGA-COAD patients containing
information on mutation type, category and its effect, was
used to. Recurrent mutations are identified by calculating the
probability of a non-silent mutation to have happened by
chance compared to the background mutation rate estimated by
silent mutations and other patient-specific and position-based
confounding covariates. A threshold FDR < 0.05 was used.

Functional Analysis by Enrichment
Initially, genes that were found to be either differentially
expressed, located in recurrently aberrant chromosomal regions
or recurrently mutated were considered important for colorectal
cancer cells. To further investigate the functional role of the
affected genes in each subtype, independent enrichment analyses
were performed against the Reactome (Fabregat et al., 2018),
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000), and Atlas of Cancer Signaling Networks (ACSN)
(Kuperstein et al., 2015) databases. For KEGG and Reactome
databases the clusterProfiler package was used (Yu et al., 2012)
while the ACSNmineR package (Deveau et al., 2016) was used
for ACSN. Results with FDR-adjusted p-values lower than 0.05
were considered significant. In parallel, similar enrichment
analyses were performed with the CASCADE 2.0 components
(Niederdorfer et al., 2020), to identify the main pathways and
processes represented in this model. A comparison of the results
of these analyses revealed the processes that were affected in the
CMS classes but not significantly represented in the topology of
the CASCADE 2.0 model.

The CASCADE 3.0 Model
Middle-Out Expansion of the Initial Model
The middle-out modeling process was characterized by a
combination of a top-down and bottom-up approach. As
already described, the first steps were governed by the genome-
wide analysis of relevant omics data, a typical approach
in top-down modeling where correlations between genes
or proteins are investigated by deploying various statistical
and bioinformatics analyses. More specifically, the top-down
step and overrepresentation analysis highlighted the affected
processes in the different CMSs, after which the nodes of
CASCADE 2.0 network could be annotated and mapped to these
overrepresented signaling pathways and biological processes.
However, as additional missing process and pathway components
were added during the construction of CASCADE 3.0, the
module assignment for some nodes had to be further refined,
in ways that it better represented the role of these entities in
the modeled system.

When most of the nodes were assigned to modules, four
of the initial modules were divided into two segments: one
containing entities involved in the core signaling pathway and
the other containing the negative regulators of that pathway.
The core signaling pathway included proteins involved in signal
transduction, starting mostly from receptors sensing a signal
and all the signaling proteins (i.e., the positive regulators of
the response and the main effector of the pathway) that enable
the regulatory response to the signal. The negative regulators
were placed in the other module, including entities involved in
negatively regulating the pathway’s main effector, meaning that
they are involved in potential regulatory feedback loops, as seen
for example in the WNT and MAPKs modules.

As a next step, a bottom-up approach was employed to expand
the modules so that they comprehensively represent relevant
pathways. As is common practice in bottom-up approaches,
this step was focused on individual biological entities and their
interactions, using a variety of databases, knowledge bases and
sometimes literature. The expansion of the modules and the
construction of the extended CASCADE 3.0 model was an
iterative process of manual curation: Each module was manually
checked against existing knowledge to comprehensively capture
its intra- and inter-modular regulatory, causal interactions
that would likely contribute to the overall cell fate decision
mechanism that the model should represent. A detailed list of
all the knowledge resources used during the curation processes
is presented in the Supplementary Material. Most of the initial
curation work drew on the cell signaling pathway database Signor
(Perfetto et al., 2016), which, in combination with the primary
modules from the original CASCADE 2.0, guided the addition
of new nodes in each of the pre-existing modules. An important
part of this curation process was the identification of the context
under which an interaction was observed. In order to retain high
confidence in the accuracy with which the model describes the
biology of colorectal cancer cells, only regulatory interactions
relevant for cells of tissues from which CRC subtypes originate
were selected. In case interactions were reported in other tissues,
additional literature was checked to decide whether to include
or discard the interaction. Furthermore, interactions that were
reported for specific biological processes not relevant to the
biological system that the models should capture, for example,
cardiac development, were omitted.

Taking into account the possible cross-talk of signaling
pathways and the multi-functionality of many biological
molecules, all nodes were examined for their potential
participation in several pathways. Because of this, some
nodes, including entities such as adaptor proteins or cytoplasmic
kinases, were functionally attributed to multiple modules, but
are presented and analyzed in CASCADE 3.0 only as members
of one main module. The assignment to these modules was
based on the available knowledge on the functional role of the
nodes and the number of interactions it shared with the other
members of that module.

Logical Modeling
The transformation of the expanded PKN into a Boolean model
was done by the definition of logical rules that describe the overall
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regulatory input that each node receives: for this, the regulatory
effect of each of the input nodes (activating or inhibiting) was
combined with the logical AND, OR and NOT operators. The
local state of each entity depends on the state of the combined
set of nodes that regulate it. As described above, those regulations
are captured in the logical rules that govern the update of the
state of each node. As a point of departure, general logical rules
that assume that an entity is active if any of its activators is active
and none of its inhibitors is active were defined. According to the
general rules, a protein’s activity will be downregulated by any
active inhibitor, regardless of the upregulation input of one or
more activators (Shmulevich et al., 2002).

According to the notation of the logical formalism, the rules of
the nodes’ activities are of the form:

Node X = (Activator A OR Activator B . . . Activator n) AND
NOT (Inhibitor A OR Inhibitor B OR . . . Inhibitor n)

Two additional “phenotype” nodes were added to the model,
representing the two cellular states Prosurvival and Antisurvival.
These nodes were implemented as multivalued nodes (with
possible local states 0, 1, 2, or 3) which serve as cellular state
readout and allow to assess the overall proliferative state of the
system. The global state of the system is computed as the overall
sum of the negative value of Antisurvival and the positive value
of Prosurvival, ranging between−3 and+3.

Drug Synergy Prediction
Drug synergy predictions were performed with a custom-built
modeling pipeline that combines several software modules that
together provide a highly automated computational framework
for logical model assemble and simulations (Flobak et al.,
manuscript in preparation)1. The pipeline can customize a
general logical model to a specific cell line, after which it uses a
collection of models (ensemble) each equally fit to represent a
cell type to predict the effect of a drug perturbation, as well as
their potential synergies in case of drug combinations. Initially,
omics data of a specific cell type are translated into entity
steady state activities (1 or 0). Such omics data can be either
genome-wide or biomarker-specific, and can include among
others proteomics, genomics, and transcriptomics data, either
separately or in combination. The omics data serves to produce
a training set of steady state activities that the network nodes
should display when the logical model reaches a stable state. As
this is dependent on the exact configuration of the overall logical
rules of the model, these logical rules are optimized with the
help of a genetic algorithm that changes sets of logical rules and
analyses the steady state values from the altered model against
this training set.

The genetic algorithm iteratively “mutates” the logical rules of
some nodes each time, by randomly switching between AND and
NOT and then the global stable states of the mutated models are
calculated using the BNReduction tool (Veliz-Cuba et al., 2014).
The mutated models that show the highest fitness (their stable
state node activities better resemble the data in the training set)
are further mutated for a selected number of iterations.

1https://druglogics.github.io/druglogics-doc/index.html

This optimization process results in an ensemble of models,
all having the same topology but with slight differences in their
logical rule structures, each model of an ensemble complying
more or less equally well with the regulatory system that should
be represented. The logical model ensemble is next systematically
subjected to a set of in silico drug perturbations by assessing
the combinatorial effects of drugs on the models as observed
by the combination of states of the phenotype output nodes.
These output nodes are multi-valued (global state ranging from
−3 to +3) and the state of these nodes is defined by the
predicted local states of key nodes that provide ‘regulatory
input’ to these phenotype nodes, such as the cyclins, MYC
and other survival factors that add additively to Prosurvival
and the caspases and other pro-apoptotic entities that add
to Antisurvival. With the global state ranging from −3 (only
activity from anti-survival nodes) to +3 (only activity from pro-
survival nodes), the quantification of the effect of the drugs to
the viability of a system after single and combinatorial drug
simulations was possible. For example, a drug that results in
a global state of −3 has a more prominent effect than a drug
that results in a global state of −2 or −1. The global state of
the combinatorial treatment was then compared to the global
states of the treatment of each individual drug. If the drugs that
together result in a viability (i.e., output nodes’ state) smaller
than the minimum of the viability of each individual drug,
they were scored as synergistic. These predictions were then
compared to observed synergies validated by experimental data
produced by the combination of 19 small molecule inhibitors
and their 171 combinations (Flobak et al., 2019). As discussed
in Niederdorfer et al. (2020), an inhibitor of PTEN (SF-1670)
that was found to be under characterized regarding its off-target
effects and was involved in the majority of synergies was not
included in the analysis, reducing the data used to 18 small
molecule inhibitors and their 153 combinations. The inhibitors
were targeting various modules of the models and were tested in
all eight cell lines used in the simulations. Furthermore, all drugs
used in the screen were subjected to in depth characterization
including an extensive target profiling, in associating the drugs
and their targets with the model’s nodes. The overall performance
of the model with respect to true positive, false positive,
true negative and false negative drug synergy predictions was
assessed using AUC-ROC curves as performance measurement
(Sammut and Webb, 2017).

In this project, three different sets of inferred entity states
were used as training data to the genetic algorithm. Two of the
data sets include activity states inferred from two distinct sets of
omics data, using the Paradigm tool (Vaske et al., 2010), while the
third set contains protein activities inferred from transcription
factor activity information, using the Viper tool (Alvarez et al.,
2016). The first set of activity states from Paradigm, referred as
Combination-based, makes use of cell line specific copy number
variation, gene expression, RPPA for total protein abundance
and RPPA for phosphosites to infer entity states. The second
set of states from Paradigm, referred as mRNA expression-based,
uses only the cell-line specific mRNA expression data. For the
TF activity based, data from “Genomics of Drug Sensitivity in
Cancer” (GDSC) project were used as an input for Viper.
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The model optimization work indicated that larger sized
training sets not necessarily correlated with higher AUC values.
This might be explained by imperfections in the training data:
inferred data, so not experimentally confirmed data, may have
errors in it that limit the “freedom” available to the genetic
algorithm to adequately fit model steady states to the real
biological state of the system. For that reason, the Combination-
based and mRNA expression-based datasets were reduced to only
those nodes for which the smaller data sets also contained a
predicted state. That also allowed a more direct assessment of
training data sets with respect to their ability to correctly serve
as local states that would be observed in biological reality. More
details about the reduction of the training data can be found
in the Supplementary Material. All three training sets were
subsequently used to evaluate how the model performs for eight
cancer cell lines (see Table 1).

RESULTS

Identification of Affected Processes
Omics Data Analysis
The candidates for regulatory network inclusion were identified
through a multi-omics data analysis that included transcriptomic
(i.e., gene expression data) and genomic (i.e., somatic mutations
and copy number alterations) profiles of CRC patients, effectively
identifying affected processes and pathways in these patients’
tumors. The differential gene expression analysis identified the
highest number of affected genes and displayed a significant
overlap between the differentially expressed genes in the
subtypes, all involved in fundamentally dysregulated processes in
cancer, such as DNA repair, cell adhesion, and cell cycle control.
The identification of somatic copy number alterations (SCNAs)

corroborated the profiles of the molecular subtypes and revealed
both known and novel aberrant chromosomal regions. CMS2
and CMS4 displayed the highest number of SCNAs, whereas
the two remaining subtypes had a low number of aberrant
regions. Interestingly, a much higher number of genes was
found correlating with deleted peaks than with amplified peaks,
for all the subtypes. Among the 114 unique aberrant regions
across all subtypes, five regions were altered in all subtypes.
Four of those regions (16p13.2, 20p12.1, 5q12.1, and 4q22.1)
showed deletions, while 8p11.21 was amplified in all the subtypes.
The 20p12.1 region has been previously reported as recurrent
in CRC (Davison et al., 2005), but there are no reports for
the presence of known cancer genes in any of the regions.
Some of the identified SCNAs have been previously reported
for their involvement in other cancer types, but not in CRC.
A number of genes located in these chromosomal regions have
been associated with clinical characteristics of cancer patients and
could potentially be investigated as biomarkers or drug targets
for CRC (Coppedè et al., 2014). The somatic mutation analysis
did not show any association between the mutation of specific
pathways and specific subtypes, as the major signaling pathways
known to be altered in CRC tend to be mutated in all the subtypes.
Given its Microsatellite Instability (MSI) status resulting from a
defective DNA mismatch repair machinery, CMS1 patients are
expected to have a predisposition to hypermutability (Yu et al.,
2019). For that reason, CMS1 patients had the highest number of
recurrently mutated genes.

A list of the affected genes was produced for each subtype
and classified as either differentially expressed in comparison to
normal tissue, recurrently mutated, or located in a recurrently
amplified or deleted region with respect to normal copy number.
The total number of affected genes per category in each subtype
is presented in Table 2, and their overlap in Figure 1.

TABLE 1 | Description of the eight cancer cell lines used in the synergy prediction analysis.

Cell line ID Tissue Disease

AGS RRID:CVCL_0139 Stomach Gastric adenocarcinoma

Colo205 RRID:CVCL_0218 Colon; derived from metastatic site: ascites Colon adenocarcinoma

DU145 RRID:CVCL_0105 Prostate; derived from metastatic site: brain Prostate carcinoma

SW620 RRID:CVCL_0547 Colon; derived from metastatic site: lymph node Colon adenocarcinoma

MDA-MB-468 RRID:CVCL_0419 Breast; derived from metastatic site: pleural effusion Breast adenocarcinoma

A498 RRID:CVCL_1056 Kidney Renal cell carcinoma

SF295 RRID:CVCL_1690 Brain Glioblastoma

UACC62 RRID:CVCL_1780 Skin Melanoma

TABLE 2 | Total number of genes that were found to be affected in the omics data analysis.

Subtype Recurrently mutated genes Amplified genes Deleted genes Upregulated genes Downregulated genes

CMS1 55 541 135 1625 1658

CMS2 6 438 2508 1793 1789

CMS3 11 12 2054 1185 1501

CMS4 10 587 3461 2003 919

Affected genes are defined as genes that were either differentially expressed in comparison to normal tissue, amplified or deleted with respect to normal copy number or
recurrently mutated.
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FIGURE 1 | Venn diagram showing the overlap between genes affected in the
four CSMs.

Functional Analysis of CMS Genes by Enrichment
An analysis of the affected genes for their functional enrichment
was performed against the ACSN, Reactome, and KEGG
databases (Kanehisa and Goto, 2000; Kuperstein et al., 2015;
Fabregat et al., 2018). The results are shown in Figure 2 and
are represented as individual, non-redundant, cancer-related
pathways. Non-cancer related pathways and processes mainly
found in cancer-associated cells in the tumor microenvironment,
such as cancer-associated fibroblasts and immune cells, were
not included in the results as the model does not account for
inter-cellular interaction. Since the model aims to represent
regulatory interactions involved in signaling pathways, metabolic
pathways that were found to be deregulated, especially in the
case of the metabolic subtype, could not be represented in the
model and thus were also excluded from the results. A similar
enrichment and aggregation analysis was done for the nodes of
the CASCADE 2.0 model and a comparison with the affected
CMS pathways (see Figure 3) highlights the signaling pathways
that are affected in CRC but were not included in CASCADE 2.0.
The identified missing processes included the Hippo, Hedgehog,
and Notch signaling pathways, as well as DNA repair and
cell adhesion, all with well documented involvement in both
CRC and cancer in general (Wierzbicki and Rybarczyk, 2015;
Vinson et al., 2016; Wu et al., 2017; Boesch et al., 2018;
Mirza-Aghazadeh-Attari et al., 2018).

Construction of the CASCADE 3.0 Model
Manual Extension of the CASCADE 2.0 Model
Guided by the results of the top-down analysis and founded
on prior knowledge from several databases and the literature,
the CASCADE 3.0 model was constructed through the addition
of nodes and edges to describe fundamentally dysregulated
processes in all CRC subtypes. Those processes involved cell fate
controlling processes such as cell cycle progression, regulation
of apoptosis and response to DNA damage, as well as signaling

pathways that were identified to be missing from the CASCADE
2.0. The final network consists of 183 nodes and 605 edges
(see Figure 3). In addition to the inclusion of new nodes and
interactions, small refinements were performed in the model.
Nodes representing genes (notated with _g in CASCADE 2.0) were
removed from the model, and replaced with their gene product
node, including their regulatory interactions. Additionally, the
CK1_f node, containing CSNK1A1, CSNK1D, and CSNK1E
isoforms was split into two nodes, due to the involvement
of the two latter isoforms in a newly added Hippo pathway
module. Finally, in order to more accurately represent the
regulation of the cell cycle by MYC (Bretones et al., 2015),
the edge representing the direct interaction of MYC with the
Prosurvival output node was replaced by an edge representing
the promotion of proliferation through the activation of CCND1.
Finally, in addition to the Prosurvival and Antisurvival output
nodes, a new output node representing Metastasis could be
included, based on the observation that several pathways
were involved in metastasis-related processes (e.g., Epithelial-
to-Mesenchymal transition and cell motility). However, due to
the lack of appropriate screening data for this effect, it was
omitted from the model, but it could be considered in future
extensions of the model.

Topological Comparison of Original and Extended
Models - Final Modules
The 183 nodes of the extended model were grouped into
25 manually curated pathways modules representing altered
pathways or functions in the CMSs of colorectal cancer.
Additionally, four of those modules (WNT, PI3K/AKT, TGFβ,
and JAK/STAT) represent the negative regulators of a specific
pathway and its respective main effector. An example of such a
set of negative regulators is the β-catenin destruction complex.
The components of the complex (i.e., APC, AXIN1, CK1, and
GSK3B), are involved in the WNT pathway, but they negatively
regulate its main effector (β-catenin), so they were assigned to
a separate module (WNT negative regulators module) than the
core signaling pathway (WNT module). The resulting modules
vary in size and structure, and nodes grouped in a module
do not necessarily share interactions with each other. This is
specifically the case for modules with entities exerting similar
regulatory functions (e.g., the Anti-apoptotic module), but do
not necessarily interact with each other to achieve that function.
The modules share numerous interactions with each other,
a reflection of the fact that biological pathways cannot be
delineated as completely independent groups, and perturbations
in one module are likely to affect the behavior of other modules.
In biological systems, module cross-talk can give rise to emerging
functions that differ from their original functions (Lorenz et al.,
2011). This is especially true when cells execute more complex
behaviors, such as invasion in cancer systems, which are often
controlled by many processes and a result of the interaction of
many modules (Koutsogiannouli et al., 2013).

A side-by-side comparison of the topologies of the two
networks is shown in Figure 3, allowing an easy identification
of the added or expanded modules in CASCADE 3.0. Of
the 144 nodes of the CASCADE 2.0, 36 were among the
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FIGURE 2 | Discrete heatmap of the presence or absence of signaling pathways and biological processes that were identified as affected in the Consensus
Molecular Subtypes of colorectal cancer and/or represented in the CASCADE 2.0 model. Blue colored cells represent the enrichment of a process in a subtype
and/or the model.

genes affected in at least one of the molecular subtypes
of CRC and these were assigned to 16 different modules.
These modules represented key oncogenic processes, such as
proliferation-promoting transcription factors, apoptosis, the
JAK/STAT signaling pathway, and MAPK cascades. The majority
of the affected genes present in CASCADE 2.0 was found to be
part of signaling pathways whose dysregulation is considered to
be a driver event in colorectal cancer: the PI3K/AKT, WNT and
Transforming Growth Factor-β signaling pathways (Tiwari et al.,
2018). While only five modules representing missing pathways
identified in the enrichment analysis step were added, all other
modules were expanded either with a few entities or, in some
cases, a substantial number of them. The modules that had the
most nodes added represented processes such as adhesion and
EMT, negative regulation of apoptosis, cell cycle control and
checkpoints, and DNA damage response and repair.

Drug Synergy Prediction
Evaluation of the Model’s Overall Performance
The drug synergy predictions were performed with three sets
of models, each trained with a different set of inferred node
activity states: TF-, Combination-, and mRNA expression-based.
Model optimization and drug synergy scoring was as described in
Methods, and prediction performance was benchmarked against
experimental data obtained for eight cancer cell lines (Flobak
et al., 2019) and evaluated using AUC values that define the ability

of a model to distinguish experimentally validated synergies and
non-synergies (Sammut and Webb, 2017).

The distribution of AUC values between 0.5 (no prediction
efficiency) and 1.0 (optimal model predictions) shows that
the model’s performance depends both on the training data
that was used and the cell line for which predictions were
produced. As shown in Figure 4, models tend to perform better
when trained to the Combination-based training set, and model
performance can be very high for some cell lines, while for
other cell lines drug synergies prove to be difficult to predict
with any training set. The model displayed a (relatively) good
performance for both the colorectal adenocarcinoma (Colo205)
and gastric adenocarcinoma (AGS) cell lines. Synergy predictions
for the prostate carcinoma cell line DU145 were consistently of
moderate accuracy (AUC values ∼0.6–0.7), while predictions for
the melanoma cell line (UACC62) was consistently the poorest,
with an AUC value lower than 0.5 for the TF activity training data
set. Prediction performance for the other cell lines range from
moderate to very high, depending on the training set used. In
order to ensure that the performance of the Combination-based
training set was significantly improved when compared to the
other training data sets, a one-sided t-test was performed. The
comparison of the performance between the Combination- and
TF activity-based training data showed significant improvement
(p-value = 0.024). At the same time, the difference between
the Combination- and mRNA-based training data sets was not
significant (p-value of 0.2671). However, all but two cell lines have
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FIGURE 3 | The CASCADE 3.0 (A) and CASCADE 2.0 (B) models. The nodes are grouped according to pathway modules. The modules are grouped based on
their promotion of apoptosis (blue colored modules), metastasis (green colored modules) or proliferation (red colored modules) when the pathways they represent are
active. The position of a module in the figure displays its proximity to the output node: the smaller the average shortest path of the module to the output node it is
related to, the closer to the output it is placed. Empty slots in the CASCADE 2.0 topology show the individual nodes or complete pathway modules that were added
in the CASCADE 3.0 model. Gray rectangular nodes represent the output nodes.

an improved performance with the Combination-based data and
these data were therefore selected as the one yielding the highest
performance. This variance in performance could indicate the
inability of specific computational tools to correctly infer node
activity states for specific cell lines, the importance of these states
when training the model, or that models for these cell lines
need specific topology optimization in addition to the logical

rule optimization, to make them more stable with respect to
the training data.

As the Combination-based training data set was the most
informative one, this set was used as the basis for a comparison
of the performance between the initial (i.e., CASCADE 2.0)
and the updated (CASCADE 3.0) model. The obtained AUC
scores for each cell line are shown in Figure 5, with the model
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FIGURE 4 | Synergy prediction AUCs per cell line. The plot shows the AUC values of the ROC curves produced for drug synergy prediction performance using
CASCADE 3.0 optimized to three different training sets. Colors represent different cell lines. The AUC values are plotted on the X-axis. The training sets are shown
on the Y-axis.

performances shown side by side. The statistical significance of
the difference between the performances of the two models was
computed by a paired Wilcoxon signed-rank test. The median
AUC of CASCADE 2.0 was found to be significantly less than
the median AUC of CASCADE 3.0 (p-value of 0.03). As seen

in Figure 5, with CASCADE 3.0, there was a considerable
improvement of the performance in all cell lines except the kidney
carcinoma cell line, A498. As mentioned above, CASCADE 3.0’s
improvement was most conspicuous for the Colo205 cell line.
While CASCADE 3.0 overall seems to perform better for almost
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FIGURE 5 | Comparison of the performances of CASCADE 2.0 (left) and CASCADE 3.0 (right) with respect to their ability to predict drug synergies. Performance is
measured in AUC values and presented in the y-axis. On the x-axis, cell lines are grouped based on their tissue of origin and each point of the plot represents a
different cell line.

all cell lines, the range of improvement is most noticeable for
cell lines originating from adenocarcinomas. This may indicate
that the model extensions may better capture processes relevant
to adenocarcinomas in general, rather than those specific for
colorectal cancer and its subtypes.

Analysis of the Individual Predicted Synergies in
Different Cell Lines
The mapping of the interactions between the 18 drugs used
in this project and their target-entities revealed that the 20
entities of the model that serve as a target to those drugs are
members of only 11 of the 25 modules. Two of the 18 drugs
had no experimentally observed involvement in any synergy,
reducing the number of modules involved in drug synergies to
ten. Multiple drugs included in the screening and simulations
were found targeting entities belonging to the same module.
Specifically, four, three and two different drugs were targeting the
PI3K/AKT, JNK/p38, and JAK/STAT modules, respectively. As
many times cancer therapies take advantage of the dependency of
cancer cells on an oncogene and/or loss of a tumor suppressor,
and with the aforementioned pathways being among the most

frequently altered pathways in several types of cancer, it is
expected that multiple drugs have been designed to target these
specific pathways (Thomas et al., 2015; Mayer and Arteaga, 2016;
Martínez-Limón et al., 2020). The remaining seven modules
included only one drug target each.

To visualize potential patterns in the ability of the model
to correctly predict experimentally observed synergies, Figure 6
displays the synergies in a module, represented as connecting
edges between the drug targets, and in a cell line-specific manner.
The Figure 6A shows all experimentally observed synergies, and
Figure 6B shows the observed synergies that were also predicted.
Only predictions obtained with the best performing training data
set (Combination-based) are shown.

Three modules, PI3K/AKT, JNK/p38, and RAC, appear to
be involved in the majority of the observed synergies, with
most of the synergies observed in at least four cell lines.
Additionally, the PI3K/AKT and JNK/p38 modules presented
cases of intra-module synergies, with targeting of two entities
in these individual modules resulting in synergistic response.
Some modules, such as the one composed of the WNT
negative regulators, were involved in synergies observed in
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FIGURE 6 | Network modules and synergy prediction. Network representing the experimentally observed (A) and the predicted and experimentally observed (B)
synergies as edges connecting the drug targets involved. Colored circles represent modules with targeted nodes, while circle size reflects the number of nodes in
each module. The colors of the edges represent the cell line for which a synergy was observed and/or predicted.

only a few cell lines. It is interesting to note that the model
fails to correctly predict drug synergies for the two modules
with drug targets displayed toward the left in Figure 6 (i.e.,
the modules that promote apoptosis when active), for any
of the cell lines.

DISCUSSION

As standard treatment plans for cancer patients are often
thwarted by acquired drug resistance of tumors, or the
adverse effects and toxicities of monoregimen therapies

(DeVita et al., 1975) combinatorial treatment with multiple
chemical agents is being proposed as a solution (Kummar et al.,
2010; Al-Lazikani et al., 2012; Madani Tonekaboni et al., 2018;
Goldman et al., 2019). In silico screening of drug combinations
may be particularly helpful in the pre-clinical stage, as it may
serve to identify large numbers of combinations that need not
be tested because they are unlikely to exhibit synergy (Celebi
et al., 2019). In silico pre-screening may therefore solve many of
the logistical and financial challenges that testing the enormous
combinatorial drug compound space poses for screening
facilities, provided that the computations predictions are of
sufficient quality. Since the testing in the laboratory will only
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include a subset of the possible combinations (Cheng et al., 2019),
it is critical to have a pre-screening procedure that produces
low numbers of false negatives, as any potential blockbuster
combination among them would not be tested.

Several approaches for in silico identification of drug synergies
have been explored, some of them employing the computational
modeling framework (Klinger et al., 2013; Miller et al., 2013;
Flobak et al., 2015; Vitali et al., 2016; Eduati et al., 2017;
Niederdorfer et al., 2020), as the current paper. In addition,
machine learning (Jeon et al., 2018; Preuer et al., 2018; Sidorov
et al., 2019; Yang et al., 2020), graph theory (Li et al., 2018),
and multi-omics integration and analysis (Celebi et al., 2019;
John et al., 2020) have been used. While machine learning
approaches can be both highly flexible and accurate, there are
certain limitations that should be acknowledged, such as the
need to include expensive, hard to obtain training datasets,
and for certain approaches (e.g., neural networks) they offer
limited insights to what features confer predictability. On the
other side, with logical models that make use of the abundantly
available interaction data, synergy predictions can be successfully
obtained from combining a prior knowledge network with
observations, without the need for actual drug synergy training
data, as demonstrated in the current manuscript. However,
in a community effort to assess the computational prediction
approaches (Menden et al., 2019), it was underlined that in silico
synergy prediction remains a challenge even with using training
data, and before such applications reach the clinic certain
obstacles have to be overcome. One of these, the ability to tailor a
computer model to the unique patient-specific molecular profiles,
is key for the development of personalized therapies (Menden
et al., 2019). To overcome this bottleneck, several methods
to integrate patient-specific molecular characteristics have been
proposed, with most of them exploring the use of multi-omics
and perturbation data. As also demonstrated by our paper as well
as others, logical models can be trained to both omics (Silverbush
et al., 2017; Béal et al., 2019) and/or perturbation data (Fey et al.,
2015; Eduati et al., 2020) in order to be further specified to specific
cell lines or even patients.

The main aim of the project was to explore the use of
multi-omics data to further extend and enhance a logical
model that was produced by a manual curation effort. Analysis
of colorectal tumor-derived omics data was used to define
pathway modules representing functionally-related groups of
proteins. Modules relevant for colorectal cancer were obtained
through a workflow that combined multiple omics data to
identify pathways and processes affected in the consensus
molecular subtypes (CMS) of colorectal cancer (CRC). This top-
down approach efficiently revealed CRC-specific processes, all
with well-documented roles either in general tumor formation,
or specific colorectal and/or general adenocarcinoma tumor
ontogenesis. Next, a bottom-up approach was performed to
extend an existing cancer model (CASCADE 2.0) with the new
network nodes together with additional functionally relevant
pathway and module components, to produce CASCADE 3.0.
These approaches together exemplify an efficient middle-out
workflow for cell fate decision network building, combining
the best of well established top-down and bottom-up modeling

approaches (Xavier et al., 2014). The top level results (affected
pathways) were used to set the boundaries regarding the
processes that should be present in the model, while the study of
the individual entities involved in these pathways (bottom level)
was guiding the curation and integration of these entities and
their interacting partners in the system. The main advantage of
this approach is that it provides a direct link between a collection
of clinically relevant molecular phenotypes for very specific
cancer (colorectal cancer subtypes) and a general model scaffold
for cancer-related cell fate decisions. More specifically, it provides
a modeler with very direct guidance for model refinement,
essentially a blueprint of the modules whose inclusion should be
considered. Similar workflows should allow model refinements
for essentially any cellular system, provided that ample genome-
wide information of that biological system is available. The
modeler, however, will still face the responsibility to critically
assess each model extension and guarantee the overall quality of
the final model.

The broad availability of curated pathway resources and the
definition of condition- and context specific modules could
alleviate this workload, but it would be even better if a collection
of reusable and interchangeable modular structures would be
available that could be added or removed according to the
different modeling purposes for different biological systems.
The capacity of modules as building blocks has indeed been
investigated in various types of biological networks (Segal et al.,
2004; Schroeder, 2015), and the interest in building models in a
modular manner is increasing.

To assess the quality of the CASCADE 3.0 model to predict
drug synergies, simulations were performed for eight different
cancer cell lines from various tissue origins, using three training
sets for model configuration. The expectation was that the CMS
extensions to the CASCADE 2.0 model would enhance the
model performance for colorectal cancer. Model predictions were
tested against experimentally observed synergies, and the AUC
values indicated that CASCADE 3.0 had an improved prediction
for Colo205, a colorectal adenocarcinoma cell line. However,
the second adenocarcinoma cell line, SW620, displayed a more
variable performance across the training data, with AUC values
ranging from almost random (∼0.5) to 0.7. Interestingly, a multi-
omics analysis of 34 colorectal adenocarcinoma cell lines (Berg
et al., 2017) classified Colo205 and SW620 to different colorectal
consensus molecular subtypes, as they have significant molecular
differences. Among others, their CNV and gene expression
profiles are quite distinct, causing Colo205 to be classified
as a colon-like cell line, and SW620 as an undifferentiated
cell line. These molecular differences and different subgroup
classifications may indicate different underlying cellular signaling
network activities or even different network topologies of these
seemingly similar colorectal cancer cell lines, which in turn may
explain the difference in CASCADE 3.0 model performance. In
addition to Colo205, other well-performing cell lines include the
gastric and prostate cancer cell lines. Interestingly, Colo205, AGS
and DU145 all originate from the same tissue type, the epithelial,
hinting to a pattern in the model’s performance. By grouping
the cell lines by their tissues of origin, it became evident that
the model had a tendency to perform considerably better for
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the epithelial cancers (i.e., adenocarcinomas and carcinomas),
and not only for the colorectal adenocarcinoma that it was
specified for. Tumors are often classified by the organ they arise
in. However, the molecular profiling of major cancer types has
revealed surprising similarities between the molecular profiles of
tumors arising from the same tissue type, but in different organs
(Lin et al., 2017). For instance, the oncogenic role of the newly
added Hippo, Hedgehog, and Notch modules is well reported
in both prostate cancer (Zhang et al., 2015; Su and Xin, 2016;
Buttyan et al., 2018) and gastric cancer (Kang et al., 2016; Yao
et al., 2017; Akyala and Peppelenbosch, 2018). Together with
the notion that targeted therapy based on molecular features
is more effective (Senft et al., 2017), as practiced in precision
medicine, the observation that CASCADE 3.0 has an overall
better performance on cell lines displaying similar molecular
phenotypes, may provide a handle on further optimizing logical
modules for cancer cell line sets with shared other molecular
profiles. This hypothesis could be further investigated in larger
scale datasets, where the predictions of the model can be tested
against additional drug combination data, as for example the
drug synergy data reported in DrugComb (Zagidullin et al., 2019)
and SYNERGxDB (Seo et al., 2020), and potentially in a broader
set of cell lines.

The combination of proteomics with genomics data has
been proposed as the most effective way to infer the state of
an entity (Senft et al., 2017), corroborating our observation
that models trained to the combined data set tend to perform
generally better. The noticeable variation of the performance with
different training data even for a specific cell line underlines
the importance of correctly assessing the entities’ states before
training a model, which would need careful, high-quality assays
for all proteins represented in the logical model. In most
biological systems, however, it is assumed that the state of only
a specific subset of its nodes is rather sufficient to control
the global state of the system (Gao et al., 2014; Dnyane
et al., 2018; Yang J. M. et al., 2018). Based on this, the
accurate identification of the states of a well-chosen subset
of nodes in the model rather than the majority of its nodes
can be an attractive alternative (Niederdorfer et al., 2020).
However, since the behavior of Boolean networks depends on
multiple node and network features (Kauffman et al., 2004;
Kochi et al., 2014), and often on the combined effect of
those individual features (Kochi et al., 2014), it is essential to
identify which of those features can be best used to assess
the importance of a node for the global state of a system.
Several features, including well-established or novel topology
metrics (e.g., in-degree, out-degree, various path lengths, and
centrality measures) and dynamical characteristics (e.g., bias and
sensitivity of Boolean functions, presence of feedback loops),
have been proposed to identify those nodes (Kochi et al., 2014;
Sheikhahmadi et al., 2015; Wang et al., 2017). These findings
suggest that further work on identifying such ‘high leverage’
nodes, or even complete modules that are critical for a model’s
performance and whose state therefore should be accurately
assessed, is much needed.

Most of the observed synergies that could be predicted
involve one of the PI3K/AKT, JNK/p38, or RAC modules. These

modules play a central regulatory role in both normal and
malignant cells, and many studies have already investigated and
supported the effectiveness of combinatorial over single-agent
treatment targeting these pathways, either in combination with
each other or together with other pathways (Jain et al., 2017;
Pons-Tostivint et al., 2017; Rocca et al., 2018). Alternatively, the
apparent higher success rate for these modules may also be a
consequence of the bias of this study toward drugs targeting
the PI3K/AKT and JNK/p38 modules (seven of the 18 drugs).
The classification of the modules (see Figure 3) based on
whether they promote apoptosis, metastasis or proliferation,
when the pathway they represent is active, revealed that the
model fails to predict synergies for drugs targeting module
combinations from different functional classes (apoptosis and
proliferation), while it could predict most synergies that involved
a combinatorial targeting of proliferation-associated modules.
This observation may indicate a lack of regulatory detail in
specific subparts, namely the apoptosis-related modules, or their
cross-talk with the other parts of the network, especially given
their direct interaction with the Antisurvival phenotype. To
test this, additional curation efforts could be performed in
an iterative way while testing model performance. Additional
reasons that might affect the performance of the model
in drug synergy prediction may be found in the lack of
knowledge about the specificity of some cancer drugs (Rázga
and Némethová, 2017). They may have unforeseen off-target
effects that for a variety of reasons cannot be taken into
account in the perturbed model simulations, which could
seriously affect the model’s performance (Saginc et al., 2017).
For the moment, there are additional frontiers that need to be
crossed before logical model-based therapy design can become
relevant for the clinic.

In summary, this paper illustrates that middle-out model
building provides an efficient approach to extend and optimize
a logical model for specific cancer cell lines, or even individual
patients, for more accurate drug effect simulations. The results
illustrate that guided extensions of models to optimize their
representation of a disease system can provide important
insights and guide experimental design toward the identification
of effective drug combinations. This approach allows the
prioritization of the proposed synergies in a pre-clinical setting,
to facilitate the selection of candidate drugs combinations that
should be experimentally tested on cell lines.
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