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Biofeedback Treatment App for Pediatric Migraine: 
Development and Usability Study

Anker Stubberud, MD ; Erling Tronvik, PhD ; Alexander Olsen, PhD ; Gøril Gravdahl, MSc;  
Mattias Linde, PhD

Objective.—The objective of this study was to develop and investigate the usability of a biofeedback treatment smartphone 
app for adolescent migraine sufferers.

Background.—Biofeedback is effective in treating pediatric migraine. However, biofeedback is not widely used due to the 
necessity of a trained therapist and specialized equipment. Emerging digital technology, including smartphones and wearables, 
enables new ways of administering biofeedback.

Methods.—In a prospective open-label development and usability study, 10 adolescent migraine sufferers used a newly  
developed biofeedback app with wearable sensors that measured their muscle tension, finger temperature, and heart rate. Three 
iterative rounds of usability testing, including a 2-week home testing period, were completed. A biofeedback algorithm, combin-
ing and optimizing the 3 physiological modalities, and several algorithms for sham-treatment were created. Usability was evalu-
ated statistically and summarized thematically.

Results.—Five of ten participants completed all 3 rounds of usability testing. A total of 72 biofeedback sessions were 
completed. Usability scoring was consistently high, with median scores ranging from 3.5 to 4.5 on a 5-point scale. The bio-
feedback optimization algorithm correlated excellently to the raw physiological measurements (r  =  0.85, P  <  .001). The inter-
vention was safe and tolerable.

Conclusion.—We developed an app for young migraine sufferers to receive therapist-independent biofeedback. The app 
underwent a rigorous development process as well as usability and feasibility testing. It is now ready for clinical trials.
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INTRODUCTION
Pediatric migraine is highly prevalent and associated 

with the substantial deterioration of social functioning 
and mental health.1,2 There are few viable options for 
prophylactic medications, with many options having 
limited efficacy or adverse effects.3,4 However, behavioral 
prophylaxis appears to be a valid treatment option for 
pediatric pain and headache.5,6 Specifically, biofeedback 
is one of the most prominent behavioral approaches, and 
meta-analytical evidence suggests that it is effective in 
treating pediatric migraine.7

Despite being effective, biofeedback has limited 
population coverage. This is possibly because it is 
time-consuming and costly with its provision tradition-
ally through specialist clinics. Typically, to be effective, 
biofeedback treatment requires a trained therapist, as 
well as specialized equipment measuring surface elec-
tromyography, peripheral skin temperature, or heart 
rate.8 However, new digital technologies, including  
wearable sensors and the use of smartphones for med-
ical purposes mobile health (mHealth), provide new 
possibilities.9 Recent research suggests that behavioral 
mHealth interventions for headache are feasible, but 
development processes and usability testing remain 
insufficient.10 Additionally, efficacy measures are  
uncertain.11 Currently, there are no biofeedback smart-
phone applications available specifically targeted at 
pediatric migraine.12 To address this, we have recently 
performed a study showing that wearable sensors are 
suitable for biofeedback,13 similar to studies that have 

validated the use of wearables for other medical pur-
poses.14,15 Nonetheless, mHealth treatment is entirely 
dependent on robust development and usability testing 
to ensure adherence and efficacy.10,16

We present a development and usability study 
aimed at (1) developing a new biofeedback app for ad-
olescents with migraine and evaluating and improving 
its feasibility and usability; (2) developing and optimiz-
ing an algorithm for the multimodal combination of 
data from selected physiological measures to provide 
personalized and therapist-independent biofeedback; 
and (3) developing a sham biofeedback paradigm to be 
used as a control in efficacy trials.

METHOD
Study Design and Participants.—The study was  

designed as a prospective open-label iterative and  
incremental development and usability study at St. 
Olavs University Hospital in Trondheim, Norway, from 
September 2017 to June 2018. Ten adolescent migraine 
sufferers (aged 13-17 years) were recruited from the mu-
nicipality using social media and the hospital intranet.  
No statistical power calculation was conducted prior 
to the study, and the sample size was based on recom-
mendations for usability studies. All diagnoses were 
confirmed by a consultant neurologist with head-
ache expertise. The participants completed 3 cycles of  
usability testing with a smartphone biofeedback app. 
The first two were conducted in a makeshift usability 
lab, while the final cycle was performed over 14 days 
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at home. After the usability testing, the data collect-
ed were used to develop an algorithm to process and 
combine multimodal physiological data for biofeed-
back, develop an algorithm for sham-treatment, and 
finalize the app design to be used and further tested in 
clinical trials. The study was approved by the region-
al committee for medical and health research ethics 
(2017/582-3) and the Norwegian Centre for Research 
Data (project number: 54571).

Inclusion criteria were age between 12 and 
18  years; migraine with or without aura (MWA or 
MWoA) diagnosed according to the International 
Classification of  Headache Disorders 3;17 2 to 6  
attacks per month; not using prophylactic migraine 
medication; experience with using an iPhone® (Apple 
Inc.); and informed signed consent provided by their 
guardian. Exclusion criteria were lack of  proficiency 
in the Norwegian language; reduced vision, hearing, 
or sensibility to a degree that hampered study partici-
pation; or if  they had any serious neurological or psy-
chiatric disorders.

Biofeedback Setup.—The biofeedback setup con-
sisted of 3 sensors measuring muscle tension, finger 
temperature, and heart rate, all transmitting signals 
via Bluetooth® Smart/4.0 to an iPhone® 6 or newer. 
A small compact bipolar surface electromyography 
sensor (NeckSensor™; EXPAIN AS, Oslo, Norway) 
was used for measuring muscle tension from the up-
per trapezius muscle fibers. A PASPORT Skin/Surface 
Temperature Thermistor Probe, PS-2131 (Pasco, Rose-
ville, CA, USA) was held between the index finger and 
thumb of the right hand to measure finger tempera-
ture. Finally, a MIO Fuse™ (Mio Global, Physical  
Enterprises) heart rate wristband was used to measure 
heart rate over the dorsal aspect of the left wrist.

Usability Evaluation and App Development.— 
Usability evaluation and biofeedback app develop-
ment consisted of 3 iterative cycles. Each cycle includ-
ed the following steps: (1) app programing and design; 
(2) intervention review by a neurologist, neuropsychol-
ogist, computer engineer, and medical student; and (3) 
usability testing by adolescent migraine sufferers. The 
initial version of the app-user interface was based on a 
literature review and evaluation from a previous study 
that validated wearable sensors as suitable for biofeed-
back.13

The first two usability-testing cycles were com-
pleted as one-hour sessions in a consultation room at 
the hospital. During the first cycle, the participants 
were initially given an introduction, a description of 
the rationale of the treatment, and instructions on 
how to use the app. Subsequently, they were asked to 
set up the equipment, start the app, and complete a 
ten-minute biofeedback session. Participants were not 
trained or instructed in relaxation or stress manage-
ment techniques. For the second cycle, the participants 
completed 3 sessions of 5  minutes, with 20  minutes 
rest time between each session. The final cycle was 
conducted at home for 2 weeks. The participants were 
provided with sensors to be used with their personal 
iPhone®. They downloaded the app from a webpage 
and were asked to complete a daily biofeedback ses-
sion of 10 minutes. Following this, they completed a 
headache diary in the app. After each usability cycle, 
the participants were asked to complete a compre-
hensive, structured age-appropriate user evaluation 
(Supporting Information 1). The user evaluation form 
was based on commonly structured surveys such as the 
Post Study System Usability Questionnaire, the System 
Usability Survey, and a recently developed mobile app 
rating scale.18 The 5 main domains included in the  
evaluation were (1) engagement; (2) functionality;  
(3) design; (4) information; and (5) understanding of the 
biofeedback. The user evaluation also included ques-
tions regarding any discomfort they experienced while 
using the app or sensors and an open-ended adverse 
events assessment. During the 2 first sessions, 1 of the  
investigators was present to assist participants with 
completing the evaluation. Experiences and findings 
from the intervention review and usability testing from 
each cycle were used to implement changes to the app 
for the next iteration of testing. Descriptive analyses 
of changes to the app interface and development were 
summarized by a simple thematic analysis categorized 
under the same 5 domains as the questionnaire.18

Biofeedback Algorithm Development.—The bio
feedback algorithm was designed to give a compound 
feedback signal based on all 3 input parameters, that 
is, muscle tension, finger temperature, and heart rate. 
To optimize feedback, 2 settings of the algorithm were 
individually adjusted to each user. First, the default up-
per and lower measurement limits for the 3 physiologic 
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parameters were defined based on normalizing graphs  
of participant data. A factor was then defined as to 
how the upper and lower limits would be adjusted  
between each session. Based on the upper and lower indi-
vidual physiological limits, a 0-100 score for each param-
eter was created. Second, we defined an internal weight-
ing factor for combining the 3 parameter scores. This was 
to ensure that a lack of improvement in 1 parameter for 
a session and absence of a decreasing score would still 
result in a moderate positive combined score. These vari-
able factors were decided based on the usability evalua-
tion and confirmed as suitable using a regression analysis 
after the final iteration.

We also developed a set of sham-algorithms by 
manipulating the raw data. The sham algorithms were 
visually and statistically analyzed to evaluate if  they 
produced sufficient disruption between the physiolog-
ical data and feedback, while, importantly, still retain-
ing masking and motivation for the user.

Data Management and Statistics.—The average 
number of hours of daily smartphone use, general  
experience with apps, and experience with wearable 
sensors were averaged over the 3 cycles for each partic-
ipant. Usability evaluations were scored on a 5-point 
Likert interval scale, ranging from 1-“completely dis-
agree” to 5-“completely agree.” These scores were 
averaged over each domain for all participants. We 
used the principle of last observed value carried for-
ward (LOCF) for missing data from dropouts in the  
usability analyses. We also made an analysis of com-
plete data to serve as a comparison to the imputed 
data. Baseline feedback score and change in feedback 
score (ie, the change from the start to the end of a  
session) for surface electromyographic voltage, skin 
temperature, and heart rate were registered for all 
completed sessions. Combined unweighted “raw” 
scores were created using an equal 33.3% weighting 
for each of the 3 physiologic parameter scores, while 
biofeedback algorithm weighted change values were 
calculated using the above-described biofeedback  
algorithm. We used only complete data for analyses of 
physiological measurements without imputing data.

Data were reported as means, standard devia-
tions (SD), medians, and interquartile ranges (IQR). 
Usability scores were compared between cycles with a 
two-tailed Wilcoxon signed-rank test and summarized 

with medians and IQR. We calculated the Pearson cor-
relation coefficient to assess the association between 
the combined unweighted scores and biofeedback  
algorithm scores and described the association using 
a two-tailed linear regression analysis. The regression 
analysis was applied to evaluate if  the biofeedback 
algorithm would provide a non-random and system-
atic improvement in feedback scores. All normality 
assumptions were checked by visual inspection of his-
tograms. P values <.05 were considered statistically 
significant.

This is the primary analysis of data collected in 
this study. A priori we planned for analyses to compare 
scores across usability cycles and analyze for correla-
tion between the raw feedback scores and the algorithm 
scores. Analyses of correlation between familiarity 
with apps and wearables and usability scores were also 
planned a priori but were omitted as data were under-
powered and not suited for regression analyses.

All statistical analyses were performed and fig-
ures were made using Stata v14 (Stata Corp, College 
Station, TX, USA) and Python v3.6 (Python Software 
Foundation) with the pandas v0.20.3, NumPy v1.17.2, 
matplotlib v3.1.1, and scikit-learn v0.21.3 libraries.

RESULTS
Participants and Demographics.—Ten participants 

with a mean age of 15 ± 1.6 years (range, 13-17 years) 
were included in the study. Seven were male. One partic-
ipant did not attend the first cycle. In the second cycle, 2 
dropped out, and 1 did not attend. In the final cycle, 2 
additional participants dropped out, and 1 had problems 
with making the setup work properly. Five participants 
completed all usability cycles and 5 of 10 participants 
dropped out (50% attrition rate). The average daily pre-
vious smartphone usage was 3.7 ± 1.6 hours. The medi-
an value familiarity with previous smartphone apps was 
4 (good familiarity), with a mean of 4.0 ± 0.8, while the 
median value familiarity with wearable sensors was 1  
(very little familiarity), with a mean of 1.5  ±  1.0. A  
total of 72 biofeedback sessions were completed  
throughout the study, with an average per participant of 
8.4 in the 2 weeks of the third cycle.

Usability Metrics and App Development.— 
Figure 1 shows the median and IQR usability scor-
ing for the 5 primary domains of usability assessment 
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for each of the 3 iterations. No statistically signifi-
cant difference was found from the first to the second  
cycle and from the second to the third cycle for 
any of the domains (Fig. 1). The complete data analysis 
without LOCF imputation resulted in lower estimates 
in the third cycle domains of engaging and biofeed-
back, with medians (IQR) at 3.3 (2.9-3.6) and 3.2 (3.0-
3.5), respectively. Thematic descriptions of the changes 
in the app interface and app development implemented 

after each cycle are provided in Table 1. Figures 2 and 
3 depict the app interface before the first iteration and 
after the final iteration.

Biofeedback Algorithm and Sham Develop-
ment.—The mean value ±2 standard deviations was 
used to establish the default upper and lower measure-
ment limits for all physiologic parameters. Out of the 
251,874 data points for muscle tension measurements, 
95% of the values fell within a range of 0.01-0.16 mV. 

Fig. 1.—Boxplot showing the usability scoring for the 5 main domains through the 3 usability cycles. Green horizontal lines represent 
medians, blue boxes represent inter quartile ranges (IQR), whiskers represent IQR × 1.5, and green dots represent outliers. Usability 
scores were compared between cycles with a two-tailed Wilcoxon signed-rank test. No statistically significant changes were found 
between iterations for each of the 5 domains. Test statistics and P value for the domain of design from first to second cycle was not 
calculable because all ranks were tied. [Color figure can be viewed at wileyonlinelibrary.com]

Table 1.—Thematic Summary of  the Most Important App Development and Interface Changes Implemented After Each 
Cycle. Themes are Classified According to the 5 Main Usability Domains18 – Biofeedback, Design, Engaging, Functionality, 

and Information

Cycle 1 Biofeedback – Feedback as separate visualizations for each parameter instead of a combined circle implemented
Design – Bright light, and especially bright blue colors avoided
Functionality – Enabled easier navigation and flow between app screens

Cycle 2 Biofeedback – Feedback sometimes perceived as too sensitive was thereby smoothed over a short window
Engaging – Included reminder function at set timepoint daily
Information – Provided better information on how to use and connect sensors in the app

Cycle 3 Biofeedback – Algorithm for weighted and individualized feedback optimized
Design – Finished design with a desirable color palette of dark and green
Functionality – Included interactive diary that easily allows for viewing previous sessions and headache entries

www.wileyonlinelibrary.com
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Fig. 2.—Sample of screenshots from the first version of the app. Screenshot 1 shows the 3 physiological parameters combined as 
1 feedback visualization. Screenshot 2 shows the first edition of the headache diary with a subscreen or roll-down pane for each 
question. [Color figure can be viewed at wileyonlinelibrary.com]

Fig. 3.—Sample of screenshots from the final version of the app. Screenshot 1 shows the easily navigable headache diary. Screenshot 
2 shows the feedback as 3 separate feedback-indicators, 1 for each physiologic parameter. Screenshot 3 shows one of the pictures for 
instructions on connecting sensors. Screenshot 4 shows the headache diary overview. [Color figure can be viewed at wileyonlinelibrary.
com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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Similarly, from the 18,572 data points for heart rate 
measurements, 95% of the values fell within a range of 
46 to 90 beats per minute. Finally, out of the 20,734 
data points for the finger temperature measurements, 
95% of the values fell within a range of 25.3-39.0°C. 
This supernormal upper-temperature limit is caused by 
uncertainty in the absolute measurements of the tem-
perature sensor. Therefore, the default upper limit was 
set to 37.0°C and was allowed to vary around this limit. 
The default lower temperature limit was set according 
to the 2.5‰.

Data from 42 completed biofeedback sessions 
in the third cycle were used to calculate “raw” un-
weighted scores and biofeedback algorithm scores 
on a 0-100 scale. The unweighted baseline score was 
64.1  ±  10.6 and the end-session unweighted scores 
were 72.0 ± 10.3. Applying the biofeedback algorithm 
to the same dataset yielded a baseline session score of 
64.3 ± 10.6 and an end-session score of 78.5 ± 10.7. A 
Pearson’s product-moment correlation analysis estab-
lished a strong positive correlation between the change 
in unweighted and biofeedback algorithm scores, 
r(40) = 0.85, P < .001. The corresponding linear regres-
sion established that the unweighted scores accounted 
for 72% of the variation in the crude biofeedback  
algorithm scores with the following regression equation: 
biofeedback algorithm scores  =  7.41  +  0.85  ×  (un-
weighted score), F(1, 40), P < .001. Figure 4 is a scat-
ter plot showing the regression line of fit to visualize 
the linear correlation and illustrate how the biofeed-
back algorithm results in an improved feedback score, 
whereas a sham-algorithm leads to random feedback 
scores.

Four principal approaches were attempted to  
develop sham biofeedback. These are described in detail  
and evaluated in Table 2 and Figures 4 and 5. Sham 
biofeedback, where the feedback is distorted by a sine-
wave fluctuation, was considered the most suitable. 
This sham was judged to give incorrect feedback, but 
not to the degree that would promote unmasking.

Safety and Tolerability.—From the evaluation ques-
tionnaires, 12 out of the 20 ratings relating to interven-
tion discomfort were “very little discomfort,” while the 
remaining 8 were “little discomfort.” Out of the 20 rat-
ings relating to sensor discomfort, 14 were “very little 
discomfort,” 5 were rated as “little discomfort,” and  

1 was rated as “very great discomfort.” No serious  
adverse events were reported.

DISCUSSION
Principal Findings.—We developed a new mHealth 

biofeedback intervention for young migraine sufferers 
that is suitable for self-administration. The interven-
tion includes an algorithm that gives optimized and 
personalized compound feedback based on 3 physio-
logical parameters proven to be effective in migraine 
prophylaxis. The intervention was perceived as safe and 
received consistently high usability scores throughout  
the 3 cycles of usability testing.

Interpretation.—We developed an app with an  
algorithm that combines 3 physiological parameters, as 
opposed to traditional biofeedback where 1 parameter 
is used.19 This optimization algorithm was implement-
ed to overcome the challenge that not all biofeedback 
users experience an influence over the physiological 
parameter measured,20 and that different parameters 
may be useful for different users. For instance, if  a user  
excels at raising their finger temperature, but has trouble  
lowering their heart rate, the algorithm will fade out the  
latter throughout the session and thereby chose a more 
appropriate and “personalized” parameter for the  
individual. Comparably, the parameter that is most 
efficient for each user will be given the heaviest weight-
ing in the combined feedback score. This feature was 
implemented believing that it is likely to result in rele-
vant and useful feedback for a larger group of poten-
tial users. Moreover, the intervention did not include 
commonly used adjuvant therapies such as relaxation 
training and stress management techniques. This was a 
deliberate decision made to investigate both if  a ther-
apist may be completely excluded from the usual bio-
feedback treatment “package,” and to see if  the app 
itself  may to a certain degree replace the therapist. The 
algorithm was also deemed as suitable after a regres-
sion analysis, where the algorithm yielded systemati-
cally improved scores, with a significant proportion 
still attributable to the raw data. This confirmed the 
desired effect of  the biofeedback algorithm to give 
moderate positive combined feedback despite lack of 
continuous “improvement” in a physiological param-
eter. Additionally, the app enables personalized scor-
ing of physiological parameters in an age group that is 
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Fig. 4.—Scatterplots comparing “raw” unweighted feedback scores to the biofeedback algorithm scores (upper plot) and sham scores 
(lower plot) based on 42 biofeedback sessions completed by the 5 participants in the third usability cycle. The values on the axes 
represent change in feedback score from the start to the end of a biofeedback session (ie, a user’s performance during that session). 
The upper scatterplot shows biofeedback algorithm change values plotted against unweighted change values. The biofeedback 
algorithm change values are generally higher than the unweighted change values indicating that the biofeedback algorithm improves 
feedback scores. The predicted improvement in scores is given by the regression equation (red line) for the linear regression model: 
Biofeedback algorithm score = 7.41 + 0.85 × (unweighted score), F(1, 40), P < .001. Together, this illustrates that the biofeedback 
algorithm scores are improved while still preserving a relationship to the actual “raw” unweighted data. The lower scatterplot shows 
the inverted sham algorithm change values plotted against unweighted change values. Contrary to the biofeedback algorithm, there 
is no clear relationship between the sham change values and the unweighted change values. This sham gives a very random feedback 
and was thus deemed as unsuited because it would likely promote unmasking. [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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known to display great variance in their physiological 
properties.21,22 Together, this provides robust therapist- 
independent treatment.

In addition to the development of the biofeedback 
algorithm, we rigorously tested and evaluated several 
sham-treatments. An empirical evaluation of the sham 
algorithms would have been beneficial to accurately 
ascertain what type of sham would best perform in a 
controlled trial. However, this was not prioritized in 
this current study as our main aim focused on usabil-
ity. Nevertheless, this paper presents several potential 
shams of which both random fluctuation and sine-
wave fluctuation shams were considered suitable. The 
inverted weighting and full disruption shams should be 
avoided because they may promote unmasking of the 
sham control.

The intervention was considered tolerable and safe. 
One participant reported “very great discomfort” after 
using the intervention. This is most likely due to these 
questions having inverted scoring as compared to the 
majority of questions in the evaluation. We have pre-
viously captured experiences of unpleasantness when 

removing the electromyography electrodes,13 but this 
was not the case in this study. Finally, serious adverse 
events were not expected and have not been reported 
in the literature.7,19 No serious adverse events occurred 
during our study.

Throughout this study, we aimed to assess and 
improve the feasibility and usability of the app, which 
is essential to obtaining satisfactory adherence and 
an effective treatment.23,24 Such a rigorous usability 
approach yields important results that are highly in-
formative for further development, and critical for 
planning clinical trials. It may be considered as similar 
to the phase I-II development of new drug treatments.25 
Similar studies carried out within other medical fields 
have also detected and addressed several issues regard-
ing the feasibility and usability of mHealth interven-
tions. Among these, several26,27 also used an iterative 
approach, which is an established usability strategy.28 
Altogether, this highlights the necessity of develop-
ment and usability studies when creating mHealth  
interventions. In our study, the usability scorings were 
consistently high. We evaluated the effect of changes 

Table 2.—Sham Biofeedback Alternatives

Sham Name Description Evaluation

Inverted 
weighting

Inverting each parameter score and weighting 
of the 3 physiologic parameters

Applying the inverted weighting algorithm to the raw data 
yielded a baseline session score of 36.4 ± 12.4, and an  
end-session score of 50.3 ± 19.4. Moreover, it produced a 
nearly random feedback score with no clear relationship to 
the unweighted scores (Fig. 4) and was thus deemed unsuited

Sine-wave 
fluctuations

Applying a sine-wave fluctuation multiplier of 
amplitude a to the raw combined data:

The sine-wave fluctuation was evaluated at wavelength (w) 0.1, 
0.05, and 0.01π; and at amplitudes (a) 0.05, 0.10, 0.15, and 
0.20. The sine-wave fluctuations produced a sham signal 
deemed to be sufficiently disrupted form the raw data, but still 
not giving obvious signal deviations in cases such as volun-
tary contractions and loss of sensor contact. The most suited 
sine-wave sham version is visualized in Figure 5

Sham = sin(r × w × a)

Random 
fluctuations

Applying a pseudo-random fluctuation  
multiplier of amplitude a to the raw  
combined data:

The pseudo-random fluctuation multiplier was evaluated at 
frequencies 1, 0.5, 0.33, 0.25, and 0.1 Hz; and at amplitudes 
(a) 0.10, 0.15, and 0.25. The random fluctuations were  
evaluated as producing sufficient disruption of the signal, but 
to a degree that might promote unmasking, and thus deemed 
unsuitable. The most suited random fluctuation sham is 
visualized in Figure 5

Sham = r × random
{random ∈ ℝ | 1–a ≤ random ≤ 1+a}

Full disruption Providing a feedback signal completely 
separated from the actual physiological 
measurements

A full disconnection between the input physiologic data and the 
feedback visualization, for example, by presenting a  
completely random feedback, was evaluated as unsuited 
because it would easily lead to both unmasking and  
demotivation with the user
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Fig. 5.—Lineplots with the “raw” unweighted feedback scores (solid lines) and sham scores (dotted lines) for 3 representative 
participants by color. The upper plot shows the sine-wave fluctuation sham scores (dotted lines) with a wavelength of 0.05π and 
a multiplication amplitude of 0.15. The lower left plot shows the random fluctuation sham scores (dotted lines) with a frequency 
of 4 Hz and a multiplication amplitude of 0.15. The figures are intended to illustrate how the sham feedbacks are experienced by 
the user, as compared to the “raw” unweighted feedback scores. Arrow A and B points to a timepoint in the green participant’s 
biofeedback session with a sudden drop in “raw” feedback scores as may occur upon shrugging the shoulders (sudden increase in 
electromyographic voltage) or losing contact with the finger heart rate sensor (sudden fall in heart rate). In the upper plot, arrow A 
points to a corresponding decrease in the sine-wave fluctuation sham score. In the lower plot, arrow B points to a moment where the 
random sham results in a sudden increase in feedback scores, despite an obvious drop in the “raw” feedback score. Such randomness 
might promote unmasking, thus making a random fluctuation sham less suited. Moreover, the dotted horizontal lines C and D 
represent a time period where the “raw” feedback score for the red and blue participant is relatively stable. During this time period, 
the sine-wave fluctuations gives incorrect feedback which is slow and smooth, whereas the random fluctuation gives sharp and sudden 
changes in feedback score further promoting unmasking. [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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in each iteration on the usability scores, but no system-
atic statistically significant differences between cycles 
were found. This may be explained by both the original 
high scores and the sample size not providing sufficient 
power to detect a difference. On the contrary, the high 
attrition rate should also be considered as a measure-
ment of usability, and dropping out of the study may 
simply be the result of a participant not enjoying the 
app. Likewise, missing data as a result of attrition cer-
tainly impacts interpretation of usability scoring. If  
all dropouts were in fact not liking the app, the overall 
usability scoring would have been poorer. In addition 
to the quantification of the usability, the participants 
were asked several open-ended questions and inter-
viewed during the evaluation. Their comments pro-
vided valuable qualitative input for a thematic analysis 
on how the app could be improved. The app-user in-
terface and usability were qualitatively improved with 
each iteration even though this was not evident in the 
usability scoring. We believe this resulted in a final 
solution that is more likely to meet the desired needs 
of a larger group of users as compared to an undocu-
mented product directly being implemented in clinical 
efficacy trials.

Limitations and Strengths.—Several factors limit 
this study and make us reluctant to draw firm conclu-
sions. First, the questionnaire was not validated for our 
specific study but rather based on common usability 
surveys and validated mHealth questionnaires.29 Such 
questionnaires can be susceptible to response bias,30 
including acquiescence bias, in which participants  
automatically endorse statements to please the inter-
viewer.31 This may explain the high usability scorings 
in the initial cycle and the lower scores in home testing. 
Second, the first two usability cycles were conducted in 
a controlled environment, not fully representative of the 
intended use. In addition, the home testing session 
was conducted over a shorter than recommended  
period.32,33 Together, this adds some uncertainty con-
cerning the adherence to the intervention. Third, the 
study had a moderate sample size and suffered from  
attrition. This may represent poor usability and decrease  
the confidence in our findings. Nonetheless, the sam-
ple size was chosen according to recommendations for  
usability studies. Some researchers even argue that a 
sample size of approximately 5 participants is sufficient  

to uncover the majority of usability problems,34,35 
while others argue that such a small sample size is in-
sufficient and that sample sizes should be customized 
to individual studies.36 We ultimately chose a sam-
ple size of 10 people stratified across the adolescent 
age range to ensure essential usability problems were  
uncovered, while also receiving an evaluation from the 
whole heterogeneous age spectrum.

This is the first study of  adolescent migraine 
that uses mHealth to deliver migraine therapy and 
enables biofeedback treatment to be provided to 
a broader population. The optimizing algorithm  
included in the intervention makes it superior to tra-
ditional monitoring that requires a trained therapist 
for interpretation. This will, in turn, lower costs and 
increase availability. Moreover, the intervention was 
developed by a multidisciplinary team, including neu-
rologists with headache expertise, a neurophysiolo-
gist, and software engineers based on the guidelines 
for developing mHealth apps37 and guidelines for  
behavioral treatment trials.33 It used sensors that have 
previously been validated as appropriate for biofeed-
back and we involved the target group throughout the 
whole development process. These factors all helped 
to improve the final product.23,38 By using the same 
set of  participants for all cycles of  usability testing, 
we also overcame the challenge that biofeedback as a 
psychophysiological training method requires several 
rounds of  exposure to master.8 This also allowed us 
to complete a large number of  biofeedback sessions 
and repeated usability tests on the same individuals. 
Altogether, we believe that this new intervention has 
the potential to be effective and reach a broader pop-
ulation in need.

CONCLUSION
In this study, we developed a new biofeedback 

treatment app targeted at young migraine sufferers. 
The treatment includes wearable sensors, validated as 
appropriate for biofeedback, and a feasible and usable 
app developed specifically for the target population. 
Some study findings were limited by the low sample 
size, attrition, and response bias. Future studies should 
determine whether the migraine intervention devel-
oped in this study has a clinical effect on the migraine 
burden in adolescents.
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