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Abstract—This paper examines if machine learning (ML) and
signal processing can be used for on-line condition monitoring to
reveal inter-turn short circuit fault (ITSC) in the field winding
of salient pole synchronous generators (SPSG). This was done
by creating several ML classifiers to detect ITSC faults. A data
set for ML was built using power spectral density of the air
gap magnetic field extracted by fast Fourier transform (FFT),
discrete wavelet transform energies, and time series feature ex-
traction based on scalable hypothesis tests (TSFRESH) to extract
features from measurements of SPSG operated under several
different severities of ITSC fault. Using this data set, a wide
range of classifiers were trained to detect the presence of ITSC
faults. The classifiers evaluated were logistic regression, K-nearest
neighbours, radial basis function support vector machine (SVM),
linear SVM, XGBoost decision tree forest, multi-layer perceptron
(MLP), and a stacking ensemble classifier including all of the
aforementioned. The classifiers were optimised using hyper-
parameter grid searches. In addition, some feature selection and
reduction algorithms were assessed such as random forest feature
selection, TSFRESH feature selection, and principal component
analysis. This resulted in a classifier capable of detecting 84.5%
of samples containing ITSC fault, with a 92.7% chance that fault
detections are correct.

Index Terms—Air-gap magnetic field, fault diagnosis, feature
extraction, machine learning, signal processing, salient pole
synchronous generator.

I. INTRODUCTION

SALIENT pole synchronous machines are the machines
most commonly used in hydroelectric plants [1], and so

are ubiquitous throughout the Norwegian power system. In
fact, hydroelectric generation accounted for 95 % of the total
electric energy produced in Norway in 2018 [2]. Failure of
the synchronous generators that generate the electricity that the
Norwegian society is run on can incur not only a great expense
in restoring power plants, but also a large cost to society. These
machines are under ever-increasing operational demands as
intermittent power sources enter the power system. The proper
running and maintenance of synchronous machines, and by
extension the timely detection and diagnosis of their faults,
more important than ever. Hydroelectric generators can suffer
failure as a result of undetected incipient faults that induce
larger faults. The state-of-the art in on-line fault detection
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in salient pole synchronous generators is still lacking in this
respect [3], [4].

In the transition from reactive to predictive maintenance,
it is vital with accurate estimations of machine states. This
involves integrating sensors, signal analysis, and decision-
making algorithms. The potential benefits to society are
immense, estimated by McKinsey Digital to reach a total
potential economic value of 11 trillion USD in 2025 [5],
and the power generation sector is no exception. By applying
on-line condition monitoring, incipient machine faults can be
detected in real-time and faults can be detected before they
cause unscheduled stops and further damage to the machine.

The rotor winding inter-turn short-circuit (ITSC) is the
failure of insulation between turns in the rotor winding coil
so that the number of turns in the coil is effectively reduced
[1]. This can be due to overheating causing damage to the
insulation, thermal deformation or mechanical stresses [6].
The fault can then propagate to cause the rotor winding to
be further short-circuited and eventually a short to ground [6].
Another issue that could arise from the uneven magnetic field
is uneven mechanical stresses that further compromise other
machine components [6].

The pole-drop test is the most commonly applied off-line
test to detect short-circuited turns in the field winding [6].
It is done by applying low voltage AC to terminals of the
field winding and measuring the voltage across each pole. A
faulty pole will have a lower voltage across it compared to the
other poles [6]. The disadvantage of this test is that it requires
the machine to be taken off-line. Off-line tests require the
shut-down of the machine and are therefore expensive. They
also occur while the machine is at a standstill and therefore
faults that are induced due to rotational forces can become
invisible [6]. To find the faults present during operation, it is
necessary to conduct on-line monitoring and tests [6]. On-line
condition monitoring for diagnosing rotor winding ITSC is
often done using flux probe measurements, where the magnetic
field registered by a flux probe placed on a stator tooth in
the air gap of the machine is analyzed by comparison to a
healthy case [7]. The extracted feature for ITSC fault based
on measured air gap magnetic field is done either in steady-
state [7] or transient operation of the synchronous machine
[8].

Numerous non-invasive approaches exist to diagnose ITSC
fault in SPSG based on stray flux analysis [9], harmonics of
stator current and voltage [10], and unbalanced circulating
current in the stator winding [11]. In [12], a sensorless method
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Fig. 1. Procedure of health statues determination of SPSG based on intelligent
data-driven approach.

based on measurements of the induced voltage in the screw
located in the stator core was proposed. Although the induced
voltage in the screw is mirrored the air gap magnetic field
of the synchronous generator, the method is not sensitive to
a low degree of ITSC. The magnetic field of the rotor shaft,
shaft voltage, and its current are also proposed in [13], where
it does not have adequate sensitivity to less severe ITSC faults
in synchronous generator rotor poles.

Numerous signal processing tools based on a frequency
domain or joint time-frequency domain were applied to the
aforementioned signals and different features were extracted
to identify the ITSC fault. However, interpretation of the
data requires an expert in the field. Therefore, data-driven
methods may exclude prior knowledge that is suitable for
fault detection. Artificial intelligence has become a useful
technique which may be employed in data-driven fault de-
tection of electrical machines. Both supervised and unsuper-
vised machine learning approaches have demonstrated their
effectiveness in fault diagnosis [14]. Unsupervised methods
are trained on unlabeled data, and are frequently used in fault
classification. K-means and self-organizing neural networks
such as ART networks in combination with wavelet are used
for fault detection purposes [15]–[17]. Support vector machine
(SVM) [18]–[20], K-nearest neighbor (KNN) and artificial
neural networks (ANN) [17], [21]–[23], fuzzy logic network
[24], principal component analysis [25], [26], convolutional
neural network [20] and XGBoost [27] are widely used as a
supervised machine learning classifiers for fault diagnosis of
electric machines. Although mentioned methods showed their
ability in classification of fault in electrical machine, accuracy

TABLE I
SPECIFICATION OF 100 kV A, 50 Hz, SYNCHRONOUS GENERATOR

Quantity Values Quantity Values
No. of slots 114 No. of damper bars/pole 7
Winding connection Wye Number of poles 14
No. of stator turns 8 No. of rotor turns / pole 35
Nominal speed 428 rpm Power factor 0.90
Nominal voltage 400 V Nominal current 144.3 A
Nominal exc. current 103 A No-load exc. current 53.2 A
Nominal exc. voltage 20 V No-load exc. Voltage 10.5 V

and classifier robustness is increased by integration of various
base learners in order to form an ensemble learner [28], [29].

This paper applies ensemble stacking classifiers in com-
bination with a sparse sensor application of a single air-gap
magnetic flux sensor to detect ITSC faults. This combination
of several ML algorithms into one improves predictive perfor-
mance, while the single sensor is minimally invasive. Previous
applications have used solitary ML models, whereas in this
paper it is shown that a superior result can be achieved by
combining ML models. Furthermore, generating feature-rich
data sets using automatic feature generation algorithms makes
the procedure nearly sensor agnostic. This system is applied
on data that is pre-processed to resemble samples likely to
be found in industry to avoid over-confident performance
assertions.

In order to investigate which machine learning models
perform the best, and if a single air gap magnetic field sensor
is sufficient for reliable ITSC fault diagnosis or not, a fault
classification system as shown in 1 has been created in this
paper that includes:

1) Automatic sample processing and segmentation from
longer sample series

2) A feature extraction process capable of processing and
organising an arbitrary number of samples

3) A feature selection process that employs several feature
selection methods

4) A process to assess the usefulness of feature selection,
select the best machine learning model among several,
and assess the performance of the final model

5) A final ensemble classifier to detect ITSC faults

II. LABORATORY TEST

A. Experimental Set-up

The data set is composed of two concurrent Hall-effect
sensor readings taken of a salient pole synchronous generator
running at synchronous speed in no-load and full-load with
several different ITSC-fault severities induced. The machine,
the sensors attached and the measurements are described as
below:

1) A 100 kV A, 400 V , synchronous generator with 14
salient poles constructed to resemble generators com-
monly situated in Norwegian hydroelectric power plants.
It is shown in Fig. 2. Its nameplate value and some
defining features of its topology are given in Table I.

2) The generator was driven by a 90 kW , 400 V induc-
tion motor with four poles and rated speed of 1482
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Fig. 2. The experimental test rig of a 100 kV A synchronous generator (top).
A copper shunt utilized to short circuit the field winding of SPSG. The location
of installed hall-effect sensor on a stator tooth in yellow circle (bottom).

rpm supplied by a three-phase converter. The speed of
the induction motor during all tests was set so that
the frequency of the generator’s electrical output was
50.004 Hz.

3) A gearbox was used to connect the shaft of the induction
motor to the synchronous generator.

4) A programmable converter was employed to control
the operation of the induction motor. The converter is
supplied by an external rectifier connected to the grid.

5) A 20 kW (LAB-HP/E2020) DC power source was
utilized to magnetize the field winding.

6) Two Hall-effect sensors (AST244) were placed into the
air gap and glued onto stator teeth at diametrically
opposing ends of the stator as shown in Fig. 2. The
dimensions of the sensors were (3.0 × 5.0 × 0.8)mm
with a flux density to a voltage ratio of 2.54 T/V . The
constant DC current supply is used to feed 4.75 mA
into the Hall-effect sensors. The data sheet specifies that
the sensor should be supplied by a 2 mA DC current
source. However, due to considerable electromagnetic
interference, the magnitude of the current power supply
was increased to 4 mA to increase the signal-to-noise
ratio.

7) A high-resolution oscilloscope (16-bit Tektronix MSO
3014), with a sampling frequency of 10, and 50 kHz,
was used for data acquisition.

8) A water-cooled resistor comprised of two parallel sets of
resistors, where the total resistance can be controlled and
adjusted in steps by contactors and relays in a separate
control panel. The per-phase resistance could be varied

Fig. 3. The connection diagram of experimental set-up.

TABLE II
THE SPECIFICATION OF GENERATOR FROM NO-LOAD TO FULL-LOAD IN

FOUR DIFFERENT CASES IN THE HEALTHY OPERATION OF SPSG

Characteristics No-load Load 1 Load 2 Load 3
Output Power - 30 kV A 40 kV A 65 kV A
Power Factor - 1.0 0.79 0.93
Exc. Current 56 A 60 A 77 A 84 A
Exc. Voltage 10.5 V 11.1 V 13.9 V 14.7 V
IR 0 A 43 A 43 A 84 A
IL 0 A 0 A 36 A 33 A

from a maximum of 160 Ω to a minimum of about 2.78
Ω. At the maximum load setting, the dissipated power
of the resistors amounts to about 57 kW .

9) Two inductive loads, in which each phase are connected
in series, are connected to the generator by a three-phase
transformer. The approximate value of the inductance in
each phase based on the turn ratio of the transformer is
equal to 22 mH .

10) A copper plate was used to make an ITSC fault on one
of rotor field winding by short circuiting 1, 2, 3, 7, or/
10 turns as shown in Fig. 2

B. Test Procedure

Fig. 3 presents a connection diagram of the experimental
test rig. The Procedure of experimental tests is as follows: tests
were performed in healthy and faulty cases in no-load, fully
resistive, and resistive-inductive load according to the table.
II. The SPSG which was coupled to an induction motor with
a help of a gearbox is accelerated until it reaches its nominal
synchronous speed. The magnetizing current is increased until
the stator voltage reaches its nominal value. The magnetizing
current is increased by increasing the load to maintain the
stator voltage in its nominal value. ITSC fault is conducted
at standstill by removing a certain desired number of turns
from the rotor field winding with a help of a copper plate.
As shown in Fig. 2 there exists a common tap on a rotor
field winding connected to a bolt located at the rotor which
is called a common point. There are 5 taps on the rotor field
winding that is connected to the bolts that enable to apply
ITSC fault by removing 1, 2, 3, 7, and 10 turns. For instance,
by connecting a common point and tap (7 ITSC) as shown in
Fig. 2 by using the copper plate, 7 turns are removed. In total
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Fig. 4. Two consecutive RSS that each of them represents one data set cut
from the same OSS. They are each of 7 electrical periods, with a 1 electrical
period between the two. Note the smaller negative peak occurring in periods
4 and 3 occurring of the first and second RSS respectively. The one period
shift between each RSS makes the fault indication appear one position earlier.

48 experiments were conducted, each of which sampled with
two sensors and two sampling frequencies. The temperature
effects on tests were examined by comparing the results in
the cold and warm operation of SPSG. Analysis shows that
temperature does not have an impact on the acquired signal.

III. METHOD AND RESULTS

A. Data Pre-processing

The data was processed to appear similar to something one
would sample in a production environment. In a production
deployment of the fault detection system, the measurement
series would need to be windowed with the classification run
on a sliding window of the last electrical periods to be able
to detect faults in near real-time. Since incipient faults are not
critical, a long window length of several mechanical periods is
possible. The minimum viable window length is 1 mechanical
period, as this is the window length necessary to ensure that
any fault will pass the sensors. An excessively long window
length is prohibitive since it will add little new information and
slow down feature extraction. However, the window length
should be long enough to remediate end effects in signal
processing tools that suffer from them. End effects can be
alleviated by analysing a concatenated series if the signal is
assumed to be periodic. Since the machine has 7 pole pairs, 7
electrical periods will capture 1 complete mechanical period.
The reduced sample series (RSS) extracted from original
sample series (OSS) are cut at rising zero-crossing to have
integer electrical periods in each RSS as shown in Fig. 4. Each
RSS represents a data set, indicating that, the total number
of RSS used for ML purposes in this paper by performing
48 experiments (8 healthy cases and 40 faulty cases) under
different load conditions and fault severity is approximately
equal to 2500.

B. Feature Extraction

To generate features, signal processing methods can be
used in concert with discipline knowledge. From a frequency

TABLE III
THE THREE DATA SETS TAKEN INTO MACHINE LEARNING.

Set Selection method Num. features
A None 417
B Random forest 81
C TSFRESH 301

spectrum generated by a signal processing method, one would
select the frequencies of the signal that are most informative
and generate some features from that. This could be the energy
spectrum of a certain decomposition level in discrete wavelet
transform, the intensity of some side-band frequencies relative
to a harmonic frequency, or any other property of the signal
or its transforms.

Raw time series are very sensitive to small perturbations
and thus not suited to be used directly as tabular training data.
Features are therefore extracted from each RSS that are then
used as a basis for feature selection and, finally, as training
data. The feature extraction methods used were fast Fourier
transform, discrete wavelet transform energies and TSFRESH
feature extraction. In total 475 distinct features were extracted.

1) Fast Fourier Transform: The frequency content of each
RSS was extracted by FFT. FFTs of healthy and faulty
signals showed that the faulty signal had a marked increase in
harmonic frequency components at intervals of fm = 50

7 Hz,
the mechanical frequency of the generator, outside of the odd
multiples of fundamental frequency compared to the healthy
case. The frequency components of integer multiples of fm
up to 500 Hz were extracted as features, see 1.

fk,extracted = k · fm = k · 2fsync
p

, k = 0, 1, 3, ... (1)

2) DWT wavelet energies: A 12-level-decomposition, Haar
wavelet DWT was taken of each RSS and instantaneous,
Teager, hierarchical, and relative wavelet energies were com-
puted for each decomposition level. An issue with DWT
is its end effects, which are worsened substantially in each
decomposition level since the length of the data series that is
transformed is effectively halved in each decomposition level
with the Haar wavelet. The adverse effects are diminished
as the length of the data series increases since the portions
affected by end effects are proportionally smaller. Therefore,
each RSS was concatenated to 4 times its length before
the DWT was taken. This exploits the assumption that the
generator behaviour is stationary.

3) TSFRESH: An algorithm to extract features from time
series, called FeatuRe Extraction based on Scalable Hypothesis
tests (FRESH) is proposed in [30]. Its intent is to automate
time series feature extraction while implementing feature
selection. The FRESH algorithm was integrated into a algorith-
mic feature generation package, called Time Series FeatuRe
Extraction based on Scalable Hypothesis tests (TSFRESH)
[31]. TSFRESH is able to generate a total of 794 time series
features, using 63 time series characterisation methods as
well as applying feature selection methods. A comprehensive
feature extraction was done using TSFRESH. TSFRESH’s
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FFT features were not included because TSFRESH did not
offer the ability to select frequencies of interest.

IV. FEATURE SELECTION

Two feature selection methods, random forest feature se-
lection and TSFRESH, were applied to the feature data set.
Before any feature selection was undertaken, a hold-out data
set was extracted from it to prevent any target leakage.

A. Random forest feature selection

The random forest feature selection was done using a forest
of 1000 decision tree estimators, which were trained on the
training set using Gini impurity as the splitting criterion.
During training, every feature is assigned an importance based
on its impurity. All features of greater than mean importance
were selected, the remainder discarded. This resulted in a
feature reduction from 417 to 81 features.

B. Time series feature extraction based on TSFRESH

Using the feature extraction module included in TSFRESH,
a subset of features deemed relevant was extracted. TSFRESH
was configured to assume dependent features. False discovery
rates in the interval 0.001, 0.01, 0.05, and 0.1 were tried, this
resulted in a similar amount of features. The false discovery
rate settled upon was 0.05, the rate used in [32]. This resulted
in a feature reduction from 417 to 301 features.

C. Selected Data Sets

The three versions of the feature data set, hereby termed
feature data sets A, B and C, are summarised in Table III.
By comparing the performance of classifiers trained upon
the different collections of features, some insight into which
features are most useful for classifying the fault can be gleaned
and which feature selection algorithms are most useful with
this data. In a final version of the fault detection system, this
knowledge could be used to selectively compute only the most
useful features.

V. MACHINE LEARNING

The following section details the development of a classifier
intended to detect the presence of ITSCs using the data sets
previously created. This is done in four phases:

1) Selection of the feature data set
2) Hyperparameter optimisation of single machine learning

models
3) Evaluation of stacking classifiers
4) Final classifier selection and evaluation on hold-out data

set
The first objective, selection of the feature data set, was

accomplished by evaluating the results of training a host of
different classifiers on each data set. The classifiers chosen
were:

1) Logistic Regression with and without PCA
2) KNN with and without PCA
3) Radial basis function SVM with and without PCA

4) Linear SVM with and without PCA
5) XGBoost
6) MLP
7) Stacking classifier
By implementing logistic regression, SVM and KNN with

and without a PCA, the effectiveness of PCA in this ap-
plication can be gauged as well. PCA was not combined
with XGBoost because PCA reduces the interpretability of
the model, a key strength of decision trees. The PCA was
identically executed in all four applications.

1) Evaluation Metrics: There are several ways to evaluate
the performance of classifiers, and they give differing results.
Perhaps the simplest method is to count the number of correct
classifications and divide by the total number of samples. This
is what is called the accuracy of the classifier, shown in 2. It
says something about the performance of the classifier, but
has trouble with unbalanced data sets. Given an unbalanced
electric machine measurement data set containing 99% of
samples of healthy machines and 1% of samples of faulty
machines, a classifier that always classifies a sample to be
healthy would have a 99% accuracy. This is obviously a poor
classifier as it would never correctly classify a single faulty
machine. This is addressed by including other measurements
that also emphasise the misclassified samples. A popular
metric that does this is the F-score. It works by combining
sensitivity, and precision.

accuracy =
TP + TN

TP + FP + FN + TN
(2)

A useful tool to talk about these measures is the confu-
sion matrix for a binary classifier that classifies samples as
belonging to the class, true, or not belonging to the class,
false. The confusion matrix contains the number of samples
that are: correctly classified as belonging to the class, true
positive (TP); incorrectly classified as belonging to the class,
false positive (FP); incorrectly classified as not belonging to
the class, false negative (FN); and correctly classified as not
belonging to the class, true negative (TN).

Sensitivity, shown in 3, is a measure of how well the model
picks up on the class, essentially the probability that the class
is detected.

sensitivity =
TP

TP + FN
(3)

Specificity, shown in 4, gives an impression of the model’s
capacity to correctly classify false samples.

specificity =
TN

TN + FP
(4)

Precision, shown in 5, is the ratio of true positives divided
by the total number of samples classified as true. A high
precision gives confidence that the classifier has made a correct
prediction when it returns true.

precision =
TP

TP + FP
(5)

Each of these has pit-falls when faced with unbalanced
data sets and classifiers that classify all samples as either
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Fig. 5. Three-fold cross-validation. Each fold is composed of a training and
validation set.

true or false. To balance the possible pitfalls, the F-score is
especially good for unbalanced classes. The F-score is defined
as the harmonic mean of precision and sensitivity, it weighs
the reliability of a classification together with its chance of
detecting the class [33]. The F1-score is shown in 6.

F1 − score = 2 · precision · sensitivity
precision + sensitivity

(6)

2) Cross-validation: Since data sets are not entirely uni-
form, the results of the train/test procedure are affected by
the way the data is split. One split may by chance give very
good test results, while another does the opposite. This could
result in selecting a model that generalises poorly even though
it performs well on the test set. To counter this, k-fold cross-
validation can be used [34]. k-fold cross-validation takes in a
data set and splits it into k folds. Each fold is composed of
a training set and a validation set. For each fold, the model
is trained on the training set and its performance measured
on the validation set. The models performance is then the
average performance across all the folds, and the performance
is more likely to reflect the true performance of the model on
unseen data.

Since what is of interest when testing a new model is its
performance on new and unseen data, a part of the data set
should be set aside to be used only to assess the performance
of the model. This is known as a hold-out data-set (as shown
in Fig. 5) that includes 20% of the data set. The data sets
were previously, during the feature selection process, split into
a hold-out test data set and a remainder data set. Since the
results of a single train/test cycle can be very dependant upon
the split of the samples, the classifiers were evaluated by their
average performance across a 5-fold CV. This produces 5 folds
of CV-train and CV-validation sets drawn from the remainder
data set of the initial split. The folds are identical across all
classifiers and feature data sets.

3) Standardisation: Logistic Regression, KNN and SVM
are sensitive to the variance of the samples, this is addressed
by applying standardisation. Each cross-validation split was
standardised to zero-mean and unity variance. The mean and
variance of every feature was calculated from the CV-train set.
Both CV-test and CV-validation sets were standardised using
the CV-train means and variances.

4) Results: This procedure was repeated for every classifier
on every feature data set and performance metrics were

TABLE IV
A SUMMARY OF THE RESULTS OF CLASSIFIERS TRAINED ON DATA SETS.

Data set Classifier Sensitivity Precision

A

Logistic Regression 0.8853 0.7722
Logistic Reg. with PCA 0.8622 0.8131
KNN 0.8269 0.6747
KNN with PCA 0.8201 0.6775
SVM (rbf) 0.8492 0.7050
SVM (rbf) with PCA 0.8538 0.6312
SVM (linear) 0.8859 0.7612
SVM (linear) with PCA 0.8576 0.8176
XGBoost 0.8518 0.7766
Multi-layer Perceptron 0.8833 0.7390
Stack 0.8652 0.8191
Average classifier score 0.8583 0.7443

B

Logistic Regression 0.8675 0.7772
Logistic Reg. with PCA 0.8140 0.7394
KNN 0.8074 0.7237
KNN with PCA 0.8392 0.7207
SVM (rbf) 0.8117 0.7029
SVM (rbf) with PCA 0.8149 0.6453
SVM (linear) 0.8790 0.7925
SVM (linear) with PCA 0.7878 0.7392
XGBoost 0.8407 0.7193
Multi-layer Perceptron 0.8702 0.7322
Stack 0.8712 0.7981
Average classifier score 0.8367 0.7355

C

Logistic Regression 0.8966 0.7998
Logistic Reg. with PCA 0.8663 0.8082
KNN 0.8282 0.6743
KNN with PCA 0.8222 0.6756
SVM (rbf) 0.8531 0.7226
SVM (rbf) with PCA 0.8492 0.6327
SVM (linear) 0.8972 0.8106
SVM (linear) with PCA 0.8615 0.8162
XGBoost 0.8313 0.7816
Multi-layer Perceptron 0.8859 0.7643
Stack 0.8714 0.8485
Average classifier score 0.8603 0.7577

gathered. The results are presented in Table IV. This method
of model fitting was used for every classifier evaluation at later
stages of the classifier development.

A. Feature selection and reduction performance

It appears that the choice of data set does not greatly affect
the performance of the classifiers, and the variance of the
results is large. However, feature data set C, the TSFRESH
feature selection data set, slightly outperforms the rest on every
averaged metric. Data set C is thus preferred, and will be
utilised from this point onward.

As for feature reduction, i.e. application of PCA, every
classifier suffered a drop in performance in nearly every metric
when PCA was applied. Of special note is that radial basis
function SVM with PCA had an ROC AUC consistently lower
than 0.5, which indicates that it performed worse than chance.
Due to this, PCA was abandoned. It might still have been
justified on grounds of reducing training and prediction time
if there were more features or an extremely large number of
samples, but no such considerations were necessary.

B. Hyperparameter optimisation and selection

Since a classifier’s performance is heavily dependent upon
its hyperparameters, all the candidate classifiers were opti-
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TABLE V
HYPERPARAMETER SEARCH GRIDS FOR LOGISTIC REGRESSION, KNN, SVM, AND XGBOOST CLASSIFIERS.

Classifier Hyperparameter Values Final Value Description

Log. Reg. C 10k, k = −10,−9.5, ..., 10 108.5 Inverse of regularisation strength
penalty ”l1”, ”l2” 12 Penalisation norm

KNN n neighbors 1, 3, 5, ..., 351 1 Number of nearest neighbours

SVM
C 10k, k = −1, 0, 1, 2, 3 10 Inverse of regularisation strength
gamma 10k, k = 0,−1,−2,−3,−4 1 Inverse of regularisation strength
kernel ”rbf”, ”linear” linear Kernel type

XGBoost

learning rate 0.01, 0.2, 0.3, 0.5 0.5 Learning rate
n estimators 100, 400, 700, 1000 100 Number of trees in ensemble
max depth 3, 10, 15, 25 3 Maximum tree depth
col sample bytree 0.8, 1 0.8 Per tree column subsampling ratio
subsample 0.6, 0.8, 1 1 Sample subsampling ratio
reg alpha 0.7, 1, 1.3 1.3 Lasso regularisation term on weights
reg lambda 0, 0.5, 1 0 Ridge regularisation term on weights

MLP

activation ’identity’, ’logistic’, ’tanh’, ’relu’ identity The activation function
batch size 200, 133, 66, 32 200 Size of minibatches
max iter 200, 500, 1000, 1200 200 The maximum number of epochs

hidden layer sizes (50,25,3), (100,50,7), Size and number of hidden layers(200,100,14), (300,150,21) (50, 25, 3)

TABLE VI
THE ACCURACY, SENSITIVITY, PRECISION AND F1-SCORE OF THE BEST

MODELS FOUND IN THE HYPER-PARAMETER GRID SEARCH.

Classifier Accuracy Sensitivity Precision F1-score
Logistic Regression 0.7986 0.8740 0.8376 0.8506
KNN 0.6395 0.8350 0.6990 0.7501
SVM 0.7940 0.8854 0.8247 0.8501
XGBoost 0.7438 0.8576 0.7846 0.8142
MLP 0.7958 0.9022 0.8170 0.8542

Fig. 6. A stacking classifier with Logistic Regression as its meta-classifier.

mised before selecting among them. The optimisation proce-
dure was a 5-fold cross-validating grid search. In this proce-
dure, a hyperparameter grid is defined that contains a range
of values for each of the hyperparameters to be optimised.
The grid search algorithm then executes a cross-validation of
the classifier for every possible combination of these hyperpa-
rameters. The mean cross-validation performance is calculated
for each hyperparameter combination, and the hyperparameter
combination that yields the best performance on the chosen
performance metric is selected. The performance metric used
is F1-score because it combines sensitivity and precision.

The hyperparameter sets with the greatest mean perfor-
mance across 5-fold cross-validation for each classifier are
presented as final value in Table V. Table VI shows the scores
of these classifiers across several metrics. Of the optimised
classifiers, the XGBoost and KNN models are outperformed
by the others. KNN’s accuracy was 64.0% in an imbalanced
data set of 65.9% majority class. This performance is worse
than that of a dummy classifier that classifies randomly or

TABLE VII
THE RESULTS FROM THE STACKING CLASSIFIER COMPARISON.

Meta-classifier Accuracy Sensitivity Precision F1-score
Logistic Regression 0.7840 0.8701 0.8260 0.8432
Multi-layer Perceptron 0.7479 0.8057 0.8276 0.8107
Gradient boosting forest 0.7663 0.8268 0.8304 0.8255
Random Forest 0.7704 0.8216 0.8388 0.8265

always classifying samples as the majority class. Furthermore,
KNN is entirely non-generalising with a k = 1, indicating that
the algorithm is not well suited for this problem.

C. Ensemble learners

Ensemble learners are learners that combine several weak
learners that may have poor performance to create a stronger
learner with better performance. There are a few methods of
accomplishing this, mainly bagging, boosting, and stacking.
Stacking is to train a meta-learner, a model that is trained
to interpret the outputs of several other models to make a
prediction based on the predictions of the other learners. The
learners that provide predictions to the meta-learner are termed
base-learners. It usually outperforms the base-learners it is
trained upon. Each of the base-learners are first fitted to the
training set, and their predictions upon the training set are
used as the training set for the meta-learner. The base-learners
can be any machine learning model that returns predictions.
This provides a benefit in that by including different models as
base-learners, the weaknesses of one model can be remedied
by another.

Since a stacking classifier improved the performance during
the feature data set selection, the same approach is made
again using the optimised classifiers. Four stacking classifiers
were made with different meta-classifiers, Logistic Regression,
MLP, gradient boosting forest, and a random forest classi-
fier. The gradient boosting forest classifier was chosen over
XGBoost as a meta-classifier due to greater compatibility
with Sci-kit Learn’s stacking framework. Since XGBoost is
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TABLE VIII
THE RESULTS OF THE BEST OF THE SINGLE AND STACKING CLASSIFIERS

ON THE HOLD-OUT DATA SAMPLES.

Classifier Accuracy Sensitivity Precision F1-score
Logistic Regression 0.7569 0.6961 0.9435 0.8011
Logistic Reg. stack 0.8448 0.8456 0.9274 0.8846

also a variant of gradient boosting forest, it should return
similar results at the expense of computing power. The stacks
all include the optimised Logistic Regression, SVM, MLP,
and XGBoost classifiers as base classifiers (Fig. 6). KNN
was again excluded due to its poor performance and slow
prediction time. Results are shown in Table VII. Of the
stacking classifiers, the Logistic Regression stacking classifier
outperformed the others by a large margin.

Comparing the performance of the best stacking classifier
with that of the best non-ensemble classifier, a somewhat
surprising result surfaces. The logistic regression classifier
alone on average slightly outperforms the stacking classifier
of which it is a part of across the cross-validation folds.

An advantage of stacking classifiers is that they often gener-
alise better than single classifiers, and they usually outperform
their base classifiers. However, the hyperparameters of the
meta-classifier have not been optimised on the training set
as is the case with the simple logistic regression classifier. To
gauge their performance on unseen samples, both are trained
on the entire training set and tested on the hold-out data set.
The results are presented in Table VIII.

On the hold-out set, the stacking classifier outperforms the
simple logistic regression classifier. The stacking classifier
could likely be further improved by running a grid-search for
the optimal hyper parameters of the logistic regression meta-
classifier.

VI. CONCLUSION

This paper has investigated how signal processing and
machine learning tools can be used to detect inter-turn short-
circuits in rotor field windings. This was done in three stages,
data pre-processing, feature extraction and selection, and clas-
sifier development as described below:

1) Signal partitioning is used to achieve a sufficient number
of data sets to train the intelligent system.

2) The features extracted were power spectral density of in-
teger multiples of the generator’s mechanical frequency
extracted by FFT, DWT wavelet energies, and the entire
TSFRESH feature extraction suite. The most useful
features were the wavelet energy features and some of
the TSFRESH features.

3) Linear machine learning models were best suited for
fault detection on this data set, especially the logistic
regression and linear SVM classifiers. The best classifier
was an ensemble stacking classifier with logistic regres-
sion as the meta-classifier taking inputs from logistic
regression, XGBoost, linear SVM, and MLP classifiers
as base-classifiers.

The results indicate that ITSC fault classification using
machine learning on air-gap magnetic field measurements from

a single sensor can yield good results. The logistic regression
stacking classifier had an accuracy of 0.8448, a sensitivity
of 0.8456, and a precision of 0.9274. This means that the
classifier correctly classified 84.48% of all the samples in the
hold-out data set, and 84.56% of the faulty samples present
were correctly classified as such. Of the samples that were
classified as faulty, 92.74% were correctly classified. Since
a large portion of faults go undetected, this fault detection
system should therefore not be relied upon as the only detec-
tion system. However, if the system alerts of a fault, it would
warrant investigation since it is likely to be correct.

A general trend during optimisation was that linear machine
learning models performed well and that the performance
of non-ensemble classifiers increased as the complexity de-
creased. The worst performance was exhibited by the K-
nearest neighbours classifier, performing worse than random
chance.

Future work in this research includes:
1) Using a combination of various sources of signals such

as vibration and stray magnetic field to achieve higher
accuracy and sensitivity in a classifier.

2) ITSC fault severity assessment using some of the same
methodology mentioned in this paper.

3) Application of ensemble stacking classifier in different
kinds of faults in synchronous generators such as eccen-
tricity fault, and broken damper fault.
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