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a b s t r a c t 

Introduction: Robust and reliable attenuation correction (AC) is a prerequisite for accurate quantification of 
activity concentration. In combined PET/MRI, AC is challenged by the lack of bone signal in the MRI from 

which the AC maps has to be derived. Deep learning-based image-to-image translation networks present itself 
as an optimal solution for MRI-derived AC (MR-AC). High robustness and generalizability of these networks are 
expected to be achieved through large training cohorts. In this study, we implemented an MR-AC method based 
on deep learning, and investigated how training cohort size, transfer learning, and MR input affected robustness, 
and subsequently evaluated the method in a clinical setup, with the overall aim to explore if this method could 
be implemented in clinical routine for PET/MRI examinations. 
Methods: A total cohort of 1037 adult subjects from the Siemens Biograph mMR with two different software ver- 
sions (VB20P and VE11P) was used. The software upgrade included updates to all MRI sequences. The impact of 
training group size was investigated by training a convolutional neural network (CNN) on an increasing training 
group size from 10 to 403. The ability to adapt to changes in the input images between software versions were 
evaluated using transfer learning from a large cohort to a smaller cohort, by varying training group size from 5 
to 91 subjects. The impact of MRI sequence was evaluated by training three networks based on the Dixon VIBE 
sequence (DeepDixon), T1-weighted MPRAGE (DeepT1), and ultra-short echo time (UTE) sequence (DeepUTE). 
Blinded clinical evaluation relative to the reference low-dose CT (CT-AC) was performed for DeepDixon in 104 
independent 2-[ 18 F]fluoro-2-deoxy- d -glucose ([ 18 F]FDG) PET patient studies performed for suspected neurode- 
generative disorder using statistical surface projections. 
Results: Robustness increased with group size in the training data set: 100 subjects were required to reduce the 
number of outliers compared to a state-of-the-art segmentation-based method, and a cohort > 400 subjects further 
increased robustness in terms of reduced variation and number of outliers. When using transfer learning to adapt 
to changes in the MRI input, as few as five subjects were sufficient to minimize outliers. Full robustness was 
achieved at 20 subjects. Comparable robust and accurate results were obtained using all three types of MRI input 
with a bias below 1% relative to CT-AC in any brain region. The clinical PET evaluation using DeepDixon showed 
no clinically relevant differences compared to CT-AC. 
Conclusion: Deep learning based AC requires a large training cohort to achieve accurate and robust performance. 
Using transfer learning, only five subjects were needed to fine-tune the method to large changes to the input 
images. No clinically relevant differences were found compared to CT-AC, indicating that clinical implementation 
of our deep learning-based MR-AC method will be feasible across MRI system types using transfer learning and 
a limited number of subjects. 
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. INTRODUCTION 

Positron emission tomography (PET) images need to be corrected
or photon attenuation to accurately quantify the measured radioac-
ive tissue concentration ( Andersen et al., 2014 ; Dickson et al., 2014 ).
n a dual modality PET and Magnetic Resonance Imaging (MRI) scan-
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er, a density map for attenuation correction (AC) has to be derived
rom the MRI. This was initially not possible, which hampered the
se of PET/MRI scanners, especially for brain studies in both clinical
nd research applications ( Vandenberghe and Marsden, 2015 ). Several
RI-guided attenuation correction techniques were proposed as poten-

ial solutions ( Chen and An, 2017 ; Izquierdo-garcia and Catana, 2016 ;
adefoged et al., 2016 ; Mehranian et al., 2016 ). Eleven state-of-the-art
C-methods were studied in a large cohort of adult subjects with nor-
al anatomy ( Ladefoged et al., 2016 ), which concluded that AC was a

olved topic in the brain when using one of the best performing meth-
ds. However, some of these methods, including our own segmentation-
ased RESOLUTE method ( Ladefoged et al., 2015 ), were later found to
e sensitive to specified MRI sequences, and, thus, vulnerable to system
oftware updates. 

Recently, artificial intelligence (AI) with deep learning convolutional
eural networks (CNN) is being considered as an alternative, as they of-
er a number of advantages over the existing methods. Deep learning
ethods can confer robustness towards changes to the input caused by
RI hardware or system software updates, as well as cross platform

ompatibility between vendors through the process of transfer learning.
urthermore, methods based on CNNs are usually very processing inten-
ive at the training step, but the generation of an attenuation map for
 given subject occurs within seconds, making them attractive tools as
 part of a clinical workflow where speed, accuracy, and robustness are
ey elements. 

Since the first use of deep learning to convert MR images to
T ( Han, 2017 ), numerous methods have been proposed, see e.g.
 Teuho et al., 2020 ; Torrado-Carvajal, 2020 )). Several state-of-the-
rt networks were employed, from traditional encoder-decoder ar-
hitectures ( Gong et al., 2018 ; Han, 2017 ; Torrado-Carvajal et al.,
019 ), to generative adversarial networks (GANs) ( Arabi et al., 2019 ;
azemifar et al., 2019 ), including variants accepting unpaired data
 Ge et al., 2019 ; Lei et al., 2020 ; Wolterink et al., 2017 ; Yang et al.,
018 ). Most methods from the literature use small training group
izes ( < 30) even though larger sizes could increase generalizability
nd robustness. The methods are based on single or multiple MRI
equences, spanning the common T1-weighted MPRAGE as well as
pecialized sequences capable of visualizing bone such as zero echo
ime (ZTE) or ultra-short echo time (UTE). The possible advantages
n the context of attenuation correction, especially in terms of ro-
ustness, from using large training cohorts as well as specialized se-
uences over traditional sequences remain to be thoroughly investigated
ystematically. 

Recently, methods converting non-attenuation corrected (NAC)
ET images directly to attenuation and scatter corrected PET im-
ges have emerged, mainly targeted for whole-body applications as
aired data are readily available in large numbers ( Arabi et al.,
020 ; Shiri et al., 2019 ; Van Hemmen et al., 2019 ; Yang et al.,
019 ). The drawbacks of these methods are their dependence towards
hoice of tracer and limited ability to extract structural information
 Arabi et al., 2020 ). In the brain, the performance of these new meth-
ds remains to be evaluated thoroughly on a cohort with neurologic
bnormalities. 

The aim of this study was to implement a deep learning CNN for
linical MR-AC use, and investigate the potential impact on the quanti-
ative accuracy and clinical reading of PET scans depending on training
roup size and choice of MRI input. This was achieved by utilizing a
arge cohort of subjects all examined on the same PET/MRI from two
ndependent sites including common and specialized MRI, as well as
ow-dose CT images used as reference. 1 
1 Code and models for inference available at https://github.com/CAAI/ 
eepMRAC 
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. MATERIALS AND METHODS 

The data included comprised studies acquired on two Siemens Bio-
raph mMR systems (Siemens Healthineers, Erlangen, Germany) span-
ing two different software versions. A larger cohort, imaged with soft-
are version VB20P, was used to investigate the impact of cohort size. A

maller cohort, with the most recent software update (VE11P), was used
o investigate the effect of transfer learning (based on VB20P data), im-
act of choice of MRI input, and to perform a clinical evaluation. 

.1. Patients 

Data sets from 1037 adult subjects were obtained retrospectively
rom two different centers; n = 1007 from Rigshospitalet, University
ospital Copenhagen, Denmark, and n = 30 from St. Olavs hospital,
rondheim University Hospital, Norway. Rigshospitalet provided data
ets from the complete cohort of subjects referred for a PET/MRI brain
xamination with matching same-day head CT between November 2013
nd April 2019, examined with software version VB20P ( n = 811) or
E11P ( n = 196). Data comprised PET/MRI studies imaged with various

racers, but only the MRI sequences were used to develop the method.
he subjects included from St. Olavs hospital were referred to a clini-
al 2-[ 18 F]fluoro-2-deoxy- d -glucose ([ 18 F]FDG) PET/MRI brain exami-
ation for dementia, all examined with VE11P, and had matching same-
ay head CT. Retrospective use of subjects from Rigshospitalet was ap-
roved by the Danish Patient Safety Authority (ref. 3–3013–1513/1).
he study from St. Olavs hospital was approved by the Regional Com-
ittee for ethics in Medical Research (REC Central) (ref. 2013/1371)

nd all subjects gave written informed consent. Data were extracted only
n fully anonymized form in compliance to The European General Data
rotection Regulation (GDPR). 

In each of the two groups (VB20P and VE11P), we divided the sub-
ects into training, validation, and test cohorts. The train and valida-
ion cohorts were used to develop the method. The subjects in the in-
ependent test cohort were all imaged with [ 18 F]FDG; none of these
ubjects had e.g. bone modifying cranio-facial surgical interventions,
ranial defects, hyperostoses, dysplasias, disfigurement or metal im-
lants besides dental implants. For the VB20P group, the test cohort
as identical to the patients recently used in our multi-center evalua-

ion ( Ladefoged et al., 2016 ), and the train/validation split was done
0/30. We initially developed the models for the VE11P group using
-fold cross validation. Once the models were finalized, we fixed the
raining/validation cohorts to be the first cross validation. The inde-
endent test cohort was prospectively acquired after the models were
rained. An illustration of the splits for each group is shown in Fig. 1 . 

.2. Imaging protocols 

.2.1. MRI 

The scan protocols always included a T1-weighted (T1w) MPRAGE,
 UTE AC sequence, and a Dixon-VIBE sequence (the vendor default
or MR-AC). The upgrade to VE11P included upgraded versions to all
hree sequences. The UTE AC sequence was re-implemented, changing
he relationship between the two echo images, with consequences espe-
ially to the signal in bone (Suppl. Fig. 1 A). Visually, the most notice-
ble change was to the Dixon-VIBE sequence, which is now available
n high-resolution, targeted for brain purposes (Suppl. Fig. 1 B). No ap-
arent differences could be observed for the T1-weighted MPRAGE se-
uence. Nevertheless, inspection of the area representing bone showed
 slight decrease in mean value following the upgrade (Suppl. Fig. 1 C).
equence details are available in Table 1 . 

.2.2. CT 

A reference low-dose CT scan (120 kVp, 36–40 mAs,
.6 × 0.6 × 3 mm 

3 voxels) of the head using a PET/CT system

https://github.com/CAAI/DeepMRAC
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Fig. 1. Separation of subjects into train, validation and test cohorts within each group, and further split to investigate the impact of training group size. Note, all 30 
patients from St. Olavs hospital were part of the 91 VE11P training cohort. For each MRI input type, four models are trained from the n = 403 patients of the VB20P 
cohort with increasing number of subjects. The performance of these models is evaluated using the independent VB20P test cohort ( n = 201). For VE11P, using the 
n = 91 training cohort patients, a total of four models are trained using transfer learning (TL) from the n = 403 VB20P model. An additional model is trained using 
all n = 91 training patients, but without any transfer learning (no TL). All VE11P models, and the n = 403 VB20P model applied directly without re-training, are 
evaluated using the independent VE11P test cohort ( n = 104). This setup is identical for DeepUTE, DeepDixon, and DeepT1. 

Table 1 

MRI sequence parameters. 

MRI Sequence Repetition time (TR) [ms] Echo time (TE) [ms] Flip angle [degrees] Acquisition time [s] Voxel size [mm 

3 ] Matrix size 

VB20P 

Dixon 3.6 1.23/2.46 10 19 2.6 × 2.6 × 3.1 126 × 192 × 128 

T1w 1900 2.44 9 300 0.5 × 0.5 × 1 512 × 512 × 192 

UTE 11.94 0.07/2.46 10 100 1.6 × 1.6 × 1.6 192 × 192 × 192 

VE11P 

Dixon 4.14 1.28/2.51 10 39 1.3 × 1.3 × 2 204 × 384 × 128 

T1w 1900 2.44 9 300 0.5 × 0.5 × 1 512 × 512 × 192 

UTE 4.64 0.07/2.46 10 118 1.6 × 1.6 × 1.6 192 × 192 × 192 

Table 2 

Patient characteristics in the [ 18 F]FDG PET test sets. 

Software version N Male/Female Age Mean (Range) Injected dose Mean (SD) Scan start p.i. Median (Range) 

VB20P 201 108/93 68 (23–96) y 203 ( + /- 20) MBq 51 (24–134) min 

VE11P 104 52/52 73 (41–93) y 200 ( + /- 11) MBq 47 (39–69) min 

p.i.: post injection. 
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Biograph TruePoint 40, 64, or Biograph mCT, Siemens Healthi-
eers) was acquired for all patients on the same day as the PET/MRI
xamination. 

.2.3. [ 18 F]FDG PET 

The test cohort included 201 (VB20P) and 104 (VE11P) subjects
or quantitative and clinical evaluation of [ 18 F]FDG PET data. The pa-
ients were referred for suspected neurodegenerative disease as part
f the clinical work-up. Patient characteristics are given in Table 2 .
he subjects were positioned head-first with arms down in the fully-

ntegrated PET/MRI system. Data were acquired over a single bed posi-
ion of 25.8 cm covering the head and neck for 10 min. For the purpose
f this study, the PET data from the PET/MRI acquisition were recon-
tructed using 3D Ordinary Poisson-Ordered Subset Expectation Maxi-
ization (OP-OSEM) with 4 iterations, 21 subsets, and 3 mm Gaussian
ost-filtering on 344 × 344 matrices (2.1 × 2.1 × 2.0 mm 

3 voxels) in
ine with the clinical protocols. Each MR-AC map was resampled to PET
esolution as a part of the reconstruction. No additional filtering was
pplied. 

.3. Deep convolutional neural network 

.3.1. Network structure 

The proposed network used in this study is shown in Supplemen-
ary Figure 2 . The 3D convolutional network is based on an encoder-
ecoder structure with symmetry concatenations between correspond-
ng states, inspired by the U-Net architecture ( Çiçek et al., 2016 ;
onneberger et al., 2015 ) but modified for an end-to-end image synthe-
is task. Specifically, each stage in the 3D-network consists of 3 × 3 × 3
ernels, batch normalization (BN), rectified linear unit (ReLU) activa-
ion, and a dropout layer with increasing fraction from 0.1–0.3 in the
ncoding part, and vice versa in the decoding part. The down sampling
etween stages was replaced by convolutions with stride 2. We used L 2 
enalties for kernel regularization on the convolution layers. 
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.3.2. Network training 

The proposed networks were implemented in TensorFlow (version
.1.0) ( Abadi et al., 2016 ). Our experiments used mean squared error
s loss function and the Adam optimizer ( Kingma and Ba, 2015 ) with a
earning rate of 1 × 10 − 4 trained for 100 epochs with a batch size of 16.
ll computations were performed on an IBM POWER9 server with four
VIDIA TESLA V100 GPUs. The networks uses 3D volumes as input con-

isting of 16 neighboring transaxial slices for each MRI scan (16 slices
 192 voxels x 192 voxels x C channels), where C denotes the number
f images in the MRI sequence (in- and opposed-phase for Dixon (two
hannels), echo images for UTE (two channels), and MPRAGE for T1w
one channel)), and outputs the corresponding CT slices (16 slices x 192
oxels x 192 voxels x 1 channel). All MRI sequences were first resampled
o the resolution of the UTE image, to ensure isotropic voxels and matrix
ize, and normalized to zero mean and unit variance. Subsequently, we
xtracted 3D volumes from the 192 × 192 × 192 MRI scans with a stride
f 4. The scanner bed and structures other than the patient was removed
rom the CT images, before they were converted to linear attenuation
oefficients and moved into PET/MRI space using a 6-parameter rigid
lignment procedure (minctracc, McConnell Imaging Center, Montreal,
anada) with normalized mutual information as objective function. A
ask of the CT-coverage was applied to the three MRI sequences during

he training phase. 

.3.3. Network prediction and post-processing 

To generate the deep learning attenuation maps, we extracted the
D stack-of-slices around each slice in the volume, and computed the
verage voxel values for each of the overlapping predicted slices. 

.4. Reference methods 

The rigidly co-registered CT images were used as our gold standard
C reference during both training and evaluation following conversion
f Hounsfield Units as implemented on the Siemens PET/CT system
 Carney et al., 2006 ). Due to the limited coverage in the neck region by
he acquired CT, we replaced the missing areas by the values from the
endor-provided UTE AC map. To ensure a fair comparison, this replace-
ent was also performed in all the other attenuation maps. In addition,
e also computed the RESOLUTE attenuation map ( Ladefoged et al.,
015 ) for VB20P patients from Rigshospitalet. RESOLUTE is calibrated
o VB20P UTE data, and was therefore not computed for the VE11P
atients. As part of the VE11P software upgrade, a vendor-provided
tlas-based MR-AC method was made available ( Koesters et al., 2016 ;
aulus et al., 2015 ), and was used as the MR-based reference for the
E11P test cohort. This method is prone to bone artifacts related to
isregistration in more than 20% of the cases ( Øen et al., 2019 ). There-

ore, patients with this type of artifacts were excluded from the analysis
f the atlas-based method. 

.5. PET evaluation metrics 

Due to the use of data from different software versions (VB20P and
E11P), causing differences in all MR images with varying degree, we
valuated the cohorts separately. 

We first moved all data to common MNI space using ANTs
 Avants et al., 2011 ) by diffeomorphic non-rigid registration of the
atient’s T1w MPRAGE image to the ICBM 152 2009a template
 Fonov et al., 2009 ). Voxels inside the MNI brain mask was considered
art of the brain mask if the PET activity was > 20% of the maximum
ntensity value of the brain. The voxel-wise percent difference relative
o PET with CT-AC, defined as: 

𝑒 𝑙 % = 

𝑃 𝐸 𝑇 𝑥 − 𝑃 𝐸 𝑇 𝐶 𝑇 

𝑃 𝐸 𝑇 𝐶 𝑇 
× 100 , 

s well as the absolute relative percent difference, defined as: 

𝑏 𝑠 % = 

|
|𝑃 𝐸 𝑇 𝑥 − 𝑃 𝐸 𝑇 𝐶 𝑇 

|
|

𝑃 𝐸 𝑇 
× 100 , 
𝐶 𝑇 
ere calculated for the PET images corrected with each of the MRI-based
C’s. 

As a measure of robustness towards outliers, we used the metric in-
roduced in Ladefoged et al. ( Ladefoged et al., 2016 ) to estimate the
umber of outliers measured in the PET images. The metric calculates
he percentage of patients within a 3% accuracy in the Rel % 

images for
arying voxel-wise fractions of the brain, varied from 0% to 100%. A
erfect score for a method is therefore to have 100% of the voxels in the
rain in 100% of the patients within ± 3% of PET with CT-AC. 

.6. Effect of cohort size and changes to the input on [ 18 F]FDG PET 

To evaluate the effect of training group size, we trained in total four
etworks with sizes of n = {10, 50, 100, 403}. The subjects were sampled
ith replacement. 

The robustness towards changes to the input images was evaluated
sing images from the VE11P cohort. In recognition of the changes to the
R images following the software upgrade, it was expected that further
ne-tuning of the network was needed to adapt to these changes. The
urpose of the analysis was to test the number of subjects needed for this
daptation. We compared a network trained using a group of all avail-
ble training subjects ( n = 91) against n = {5, 20, 50}, all trained using
ransfer learning from the full VB20P training cohort ( n = 403). In addi-
ion, we also trained a network without transfer learning on the full co-
ort ( n = 91). The overview of the setup is shown in Fig. 1 . We repeated
he training of the two networks with lowest number of subjects ( n = 5
nd n = 20) a total of four times using different combinations of training
ubjects each time, to determine the robustness towards the selection of
ubjects. The comparisons were repeated for each MRI sequence type,
sing identical hyper parameters as presented in Section 2.3 . We com-
ared the networks based on the number of outliers measured in the
ET images, representing the robustness. 

.7. Effects of MRI sequence on [ 18 F]FDG PET 

We evaluated the effects of MRI sequence on accuracy by training
hree independent networks, one for each sequence: Dixon, T1w and
TE, respectively. Each network was trained on the full VB20P cohort,
nd subsequently fine-tuned using the full VE11P cohort, and desig-
ated: DeepDixon, DeepT1, and DeepUTE. We assessed the robustness
ependent on MRI sequence by comparing the number of outliers in the
E11P cohort. 

Full brain and regional performances of the networks were eval-
ated using anatomical predefined template regions from MNI space
 Collins et al., 1999 ; Fonov et al., 2009 ), with extraction of mean Rel % 

nd Abs % 

values. We furthermore generated parametric average and
tandard deviation Rel % 

-distribution images across all patients for each
ethod for visual inspection. 

.8. Clinical evaluation 

The [ 18 F]FDG PET images from the independent test cohort (VE11P,
 = 104) reconstructed using CT-AC and DeepDixon were analyzed by
I Neurology (Siemens Healthineers, Erlangen, Germany). Statistical

urface projections (z-score maps) were generated showing deviations
rom a vendor-provided database of healthy controls (46–79 years) us-
ng cerebellar gray matter as reference region. Statistical surface projec-
ions are widely used and accepted as the most sensitive method for the
dentification of metabolic reductions in [ 18 F]FDG PET. The projections
re routinely used in the reading of clinical [ 18 F]FDG PET scans provid-
ng information on regional patterns and severity of hypometabolism.
tatistical surface projections were produced for PET images created
ith CT-AC and DeepDixon, and for each patient presented (blinded
nd randomized) side by side to two expert nuclear medicine physicians
IL, OH). The readers first independently and then by consensus visu-
lly scored each pair of projections as “no difference ”, “minor, but not
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ignificant ”, or “clinically significant ” where the latter would indicate
 change of diagnosis or difference indicative of disease progression in
nly one of the PET images. This strategy was selected as the differences
n the images were expected to be small and barely discernible on direct
isual inspection, and statistical surface projections is the most sensitive
ethod to discrete changes in a clinical setting ( Burdette et al., 1996 ).
he reading, thus, simulates the clinical evaluation of a patient with
ollow-up imaging using standard clinical methodology, and includes
lso the indirect effects of perturbations in cortical uptake caused by AC
nduced effects on anatomical warp and reference region. 

. RESULTS 

Fig. 2 shows the axial and sagittal views for each proposed attenu-
tion method (DeepDixon, DeepT1 and DeepUTE) for a single sample
atient from the VE11P test cohort. Notice especially the excellent per-
ormance in the skull-base and nasal cavities in the proposed methods
eplicating the morphology of even small anatomical details from CT.
he network training time using the full VB20P cohort was 40 hrs, where
he fine-tuning to the full VE11P cohort was 12 hrs. The inference time
o predict an attenuation map for a new subject was 4 sec. A total of
3 patients (13%) had artifacts in their atlas-based attenuation map re-
ated to misplaced bone. These subjects were removed from the average
erformance evaluations of the atlas-based method only. 

.1. Effect of cohort size and changes to the input on [ 18 F]FDG PET 

The effect of VB20P cohort size in DeepUTE training is shown in
ig. 3 a, which shows a clear correlation between group size and model
erformance in terms of outliers at the 3% [ 18 F]FDG PET error-level.
raining using n = 10 subjects results in inadequate bone representation,

ncorrect attenuation values in brain tissue, and an overall smoother AC
ap with an 8–10% negative bias relative to PET with CT-AC ( Fig. 3 b).

ncreasing the group size decreased the blurring and increased the im-
ge contrast and overall detail level in the AC images. Furthermore, the
obustness clearly increased with group size. Thus, n = 100 was required
o outperform RESOLUTE in the number of outliers. When training us-
ng the full cohort, n = 403, DeepUTE markedly reduced the number
f outliers compared to RESOLUTE. The large amount of training data
mpowers our method to handle common artifacts such as signal voids
rom dental artifacts. An example of this is illustrated in Fig. 4 . A simi-
ig. 2. Attenuation map comparison for a representative patient from the VE11P co
he area outside the CT field-of-view. Each proposed MR-based attenuation map is pr
implicity, only second echo (TE2) and in-phase is shown for DepeUTE and DeepDi
ransfer learning from the corresponding VB20P full cohort models ( n = 403). 
ar relationship between training group size and number of outliers were
ound when using DeepDixon and DeepT1 (Suppl. Fig. 3 ). DeepT1 ap-
eared more robust towards training group size, as 10–50 subjects were
ufficient to achieve performance near RESOLUTE and increasing group
ize above 100 subjects did not improve robustness. 

Fig. 5 shows the effect of fine-tuning the DeepUTE network to a sig-
ificant change in the UTE MRI input sequence following the VB20P
o VE11P software upgrade. The VB20P model without transfer learn-
ng is shown, where it is apparent that transfer learning is necessary.
ransfer learning from VB20P cohort was performed on 5, 20, 50 and
he full n = 91 VE11P cohort with UTE MRI as input. Here, too, robust-
ess was correlated to the group size, but size needed for convergence
as markedly reduced to n = 5 subjects. Incremental robustness im-
rovements were achieved with increasing group size. For comparison,
raining the VE11P network without transfer learning using all n = 91
ubjects resulted in similar model accuracy as when using between 5 and
0 subjects with transfer learning. Overall similar results were observed
or DeepDixon, with the exception that all models with transfer learning
utperformed the model without transfer learning (Suppl. Fig. 4 A). As
xpected, DeepT1 trained only with VB20P patients generalized well to
he VE11P cohort without re-training, with performance surpassing the
tlas-based method (Suppl. Fig. 4 B). The number of outliers was simi-
ar to training with all n = 91 VE11P training subjects without transfer
earning, but fine-tuning with VE11P data further improved the robust-
ess. Repeating model training using different training subjects for n = 5
nd n = 20 appeared robust across all three MRI sequence types ( Fig. 5
nd Suppl. Fig. 4 ). 

.2. Effects of MRI input sequence on [ 18 F]FDG PET 

The number of outliers at the ± 3% level, representing the robustness
f the method, was similar across all three proposed methods when eval-
ated on the VB20P test patients ( Fig. 6 A) and on the VE11P test patients
 Fig. 6 B) after applying transfer learning. The methods showed a sub-
tantial improvement over both RESOLUTE and the atlas-based method.

The relative and absolute relative percent difference regional analy-
is for the VE11P cohort with transfer learning from the VB20P cohort is
hown in Fig. 7 and Supplementary Figure 5 , respectively. None of the
roposed methods exceeded ± 1% average relative error (Rel % 

) in any
egion of the brain. The atlas-based method achieved a low full brain
el % 

of 0.8 ± 2.4%, with higher regional errors subcortically of up to
hort. The attenuation images are shown prior to superimposing UTE values in 
eceded by the underlying MR image used for inference for reference. Note, for 
xon, respectively. All models were trained using the full cohort ( n = 91) with 



C.N. Ladefoged, A.E. Hansen and O.M. Henriksen et al. NeuroImage 222 (2020) 117221 

Fig. 3. The effect of training group size on model accu- 
racy of DeepUTE. A) An outlier analysis for VB20P test 
subjects ( n = 201) of model accuracy with increasing train- 
ing group size. B) Axial images of a representative patient 
with [ 18 F]FDG PET and corresponding DeepUTE AC-maps, 
and %-difference maps relative to PET CT-AC. The arrows 
in the AC-maps point to the nasal cavity and bone with 
a more distinct resemblance to the reference CT with in- 
creasing group size. The arrows in the PET images point 
to an occipital lobe [ 18 F]FDG PET hyper-intense area with 
convergent resemblance to the reference standard PET CT- 
AC. 

7  

w  

D  

b  

a  

f  

a  
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a  
%. The maximal outlier for a single patient in any region of the brain
as below 6% for all proposed methods (DeepUTE range: − 4% to 5%,
eepDixon range: − 4% to 5%, DeepT1 range: − 5% to 6%). For the atlas-
ased method, the errors ranged from − 15% to 14%. Similarly, average
bsolute relative error (Abs % 

) was below 2.5% in any region of the brain
or the proposed methods, and between 4% and 8% regionally for the
tlas-based method. The results for the regional analysis for the VB20P
ohort are shown in Supplementary Figure 6 . 

The averaged relative difference mean and standard deviation im-
ges are shown in Fig. 8 for the VE11P cohort and Supplementary
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Fig. 4. Example case showing robustness to metallic dental implants for Dee- 
pUTE trained with the full VB20P training group ( n = 403). Metal implants did 
not cause any noticeable artifacts in CT, but caused large signal voids in the UTE 
echo image. The artifacts resulted in large errors in the RESOLUTE attenuation 
map, whereas DeepUTE were able to largely correct for the artifact, as shown 
both in the axial and sagittal orientation. The attenuation images are shown 
prior to superimposing UTE values in the area outside the CT field-of-view. 

Fig. 5. Outlier analysis for the VE11P test patients ( n = 104) showing the effects 
of increasing group size on transfer learning model accuracy after fine-tuning 
the DeepUTE model. The dashed lines represent the performance of the Dee- 
pUTE model from the VB20P cohort applied to the VE11P test patients with- 
out transfer learning (TL). The pink line represents the performance of training 
the network (DeepUTE) from scratch without TL, but with the full train cohort 
( n = 91), where the remaining lines represents the performance of fine-tuning 
of DeepUTE with increasing training group size after transfer learning from the 
VB20P cohort. The shaded areas around n = 5 and n = 20 represents the 95% 

confidence interval after repeating the training four times with different sub- 
jects in each repetition. The atlas-based MR-AC method, shown for comparison, 
was only based on subjects without registration-related artifacts ( n = 91). 
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b  

Table 3 

Consensus scores from clinical evaluation of [ 18 F]FDG PET com- 
paring attenuation correction using CT and DeepDixon (VE11P; 
n = 104). 

Consensus score Number 

No difference 78 (75%) 

Minor, not significant 25 (24%) 

Clinically significant 1 (1%) ∗ 

∗ Difference caused by warp error in spatial normalization. 
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igure 7 for the VB20P cohort. Again, near equal performance is
chieved by applying either input MRI sequence to the deep learning
ethod. Compared to RESOLUTE, especially cortical regions close to

one was more accurate with a lower standard deviation (Suppl. Fig. 7 ).
.3. Clinical evaluation 

The 104 pairs of [ 18 F]FDG PET reconstructions (CT and DeepDixon)
ere evaluated, and 1 pair (1%) was scored as “clinically significant
ifferent ” based on the statistical surface projection where 103 pairs
99%) were scored as not clinically significantly different ( Table 3 ). On
irect clinical reading of the [ 18 F]FDG PET image of the single case
ated as “clinically significant different ” there was no visually discern-
ble change in voxel activity. The differences could be traced to a defect
patial normalization warp that would be found on routine quality con-
rol. Presumably it was brought on by scanning in extreme neck flexion
ombined with small differences in extra-cerebral activity. 

. DISCUSSION 

This study confirmed the usability of deep learning-based net-
orks for MRI-based attenuation correction in a clinical setting, and
emonstrated performances exceeding previous state-of-the-art non-
eep learning-based methods. By training a common auto-encoder ar-
hitecture using increasing group sizes, we showed a direct correlation
etween accuracy and size when the network was trained from scratch.
sing transfer-learning from the large cohort of subjects, however, we

howed the amount of training data needed to adapt to changes to the
RI sequence input could be reduced significantly to as low as 5 sub-

ects. Furthermore, we demonstrated robustness towards the choice of
RI sequence input, with identical performance when using a common
ixon-based MR-AC sequence as with the specialized UTE sequence. Fi-
ally, we demonstrated a retained clinical value and accuracy of our
ethodology compared to our reference CT-AC. 

The methodology employed in this study is not novel, as the auto-
ncoder architecture has been widely applied for MR-AC purposes al-
eady ( Gong et al., 2018 ; Han, 2017 ; Liu et al., 2017 ). The novelty of
ur study lies with the unprecedented amount of training data utilized
nd the analysis of robustness with respect to the size of the training
ata set and type of MRI input. Deep learning is usually associated with
arge amounts of training data, something that is difficult to obtain in
ost health-care applications. Previous publications employing CNNs

or MR-to-CT conversion are therefore often based on small cohorts, with
 group size ranging between 10 and 30 ( Gong et al., 2018 ; Han, 2017 ;
iu et al., 2017 ). To investigate the effect of size, we trained the net-
ork end-to-end from scratch using 10, 50, 100, and 403 subjects, re-

pectively. While there was an impact on the average performance with
n increasingly larger training group ( Fig. 3 B), a larger effect was deter-
ined to be in the number of associated outliers ( Fig. 3 A), with the best

verall performance achieved for the largest cohort ( n = 403). Interest-
ngly, to achieve the performance of RESOLUTE, measured in number of
utliers, a training group size between 50 and 100 subjects was needed
 Fig. 3 A and Suppl. Fig. 3 ). This suggests that the deep learning methods
ased on fewer than 50 subjects for training might be unstable, albeit
aving decent average errors. The model accuracy further improves with
ncreasing training group size from 100 to 403 in DeepUTE and Deep-
ixon, confirming findings in other domains where deep learning were
pplied ( Sun et al., 2017 ). Using T1w MPRAGE generally appears to be
ore stable (Suppl. Fig. 3 B), which could be due to the sequence being
ore standardized compared to Dixon-VIBE and UTE. 
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Fig. 6. Outlier analysis for the VB20P (left, n = 201) and VE11P (right, n = 104) test patients to show the effects on model robustness by varying the MRI sequence 
input type and across software upgrades. All models are trained using the full train cohorts, n = 403 for VB20P and n = 91 with transfer learning for VE11P. RESOLUTE 
and atlas-based methods are shown for comparison. Only subjects without registration-related artifacts were used to compute the outliers for the atlas-based method 
( n = 91). 

Fig. 7. Full brain and regional mean relative differences across all VE11P test 
patients ( n = 104) for each of the three networks with MRI sequences UTE, 
Dixon, and T1-weighted MPRAGE, all trained using the full train cohort ( n = 91) 
with transfer learning from the VB20P cohort, as well as the atlas-based MR- 
AC method for comparison. Only subjects without registration-related artifacts 
were used to compute the results for the atlas-based method ( n = 91). The bars 
represent the average relative difference to PET with CT-AC across patients. The 
black line in each represents the 95% confidence interval. 
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A popular and useful strategy to overcome small training group sizes
s to apply transfer learning ( Bengio et al., 2013 ). This strategy was also
sed by Han to initiate part of their network from a pretrained VGG-
6 layer model ( Han, 2017 ), by Jang et al. to train a model using 6
atients transfer learned from a model with 30 patients ( Jang et al.,
018 ), and by Torrado-Carvajal et al. to train a model pretrained on 19
1w brain images to synthesize Dixon-VIBE pelvis images from 19 pa-
ients ( Torrado-Carvajal et al., 2019 ). In this study, we employed trans-
er learning to re-calibrate the network to a new image appearance fol-
owing a major software upgrade. The results showed little effect of in-
reasing the number of subjects above 5, as 5–91 subjects for training
ielded similar model accuracy ( Fig. 5 and Suppl. Fig. 4 ). Training with
ransfer learning on only five subjects matched (DeepUTE) or exceeded
DeepDixon and DeepT1) the performance of training on all subjects
 n = 91) without transfer learning, demonstrating that information from
he original model trained on a large cohort is preserved and utilized.
hese findings have relevance not only for recalibrating methods after
ajor software upgrades, but also for distribution of models between

canners and centers when the models do not generalize well. Using
nly a limited number of subjects with paired CT and MRI, the model
an be adapted to match scanners at different locations, potentially even
rom different vendors. We hypothesize that such transfer learning will
lso apply to cohorts with different demographics (ethnicity etc.). 

There were differences, to a various degree, in all three MRI se-
uences pre- and post-upgrade, see Table 1 and Supplementary Figure
 , impacting the ability of the methods to generalize across the system
pgrade. The largest difference was observed with the Dixon sequence,
ainly expressed in change of resolution, but nonetheless, DeepDixon

chieved similar performance after transfer learning as DeepT1. This
uggests that similar domain adaptation to MRI sequences from other
endors are feasible, as differences in T1 weighted implementations
cross systems are no greater than between VB20P and VE11P for the
ixon-VIBE or UTE sequence. DeepT1 trained with VB20P data general-

zed well to VE11P data, producing images that were objectively identi-
al to the images produced after fine-tuning. The quantitative PET evalu-
tion resulted in a 1–2% overestimation on average (results not shown).
urther inspection revealed a general reduction in MRI intensity in the
rea representing bone in patients examined after the upgrade (Suppl.
ig. 1 C), causing DeepT1 to predict denser bone, ultimately causing the
verestimation. Despite this error being acceptable for most clinical pur-
oses, we found that fine-tuning reduced the PET bias, and indicates
hat fine-tuning is needed after all major upgrades of the MRI system.
raining the model with a more heterogeneous dataset with T1 weighted
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Fig. 8. Averaged relative difference (left four columns) and standard deviation (right four columns) images across all VE11P test patients Rel % images ( n = 104) 
for each of the three networks with MRI sequences UTE, Dixon, and T1-weighted MPRAGE, all trained with transfer learning from the VB20P cohort, as well as the 
atlas-based MR-AC method. Images computed for the atlas-based method were only based on subjects without registration-related artifacts ( n = 91). 
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PRAGE images from multiple sites and systems could potentially elim-
nate the need for fine-tuning completely. 

Using our method, the average relative bias is within 1% from PET
ith CT-AC in any region of the brain with any of the MR images as

nput ( Fig. 7 ). This is essential for clinical evaluation as in e.g. tumor
elineation and treatment response assessment ( Law et al., 2019 ), and
or neurological applications using the cerebellum as reference region
 Borghammer et al., 2010 ; Ishii et al., 2001 ; Yakushev et al., 2008 ). Uti-
izing the same patient cohort and metrics as was employed in a previous
ulti-center comparison ( Ladefoged et al., 2016 ), allows us to compare
ot only to RESOLUTE, but also indirectly to the other best performing
tate-of-the-art methods for the Siemens PET/MRI ( Burgos et al., 2014 ;
zquierdo-Garcia et al., 2014 ; Mérida et al., 2017 ). Across all metrics,
ur method was found to have similar or better performance than that
f the most promising methods. The methods based on deep learning
hat have been proposed in the literature report comparable PET bias
s was found in our work. Jang et al. ( Jang et al., 2018 ) and Liu et al.
 Liu et al., 2017 ) reported average regional Rel % 

[ 18 F]FDG PET bias
ithin ± 2% across eight subjects and ± 4% in 10 subjects, respectively,

ompared to a tissue-segmented three class (air, soft tissue, and bone)
T reference, where Gong et al. ( Gong et al., 2018 ) reported ± 3% in 12
ubjects compared to a reference CT-AC. However note that no outlier
nalysis or clinical evaluations were performed in these publications,
nd a robust regional performance is critical for clinical use. 

The atlas-based method had registration-related artifacts in 13 pa-
ients. Of these, four were positioned outside the patient volume, as
reviously reported ( Øen et al., 2019 ), and could have been manually
emoved prior to reconstruction. The remaining errors corrupted the im-
ge, rendering a rescan the only option. Despite removing these patients
rom the PET evaluation, the atlas-based method still had a global ab-
olute relative error of 5% (Suppl. Fig. 5 ), which is likely related to the
bsence of accurate air segmentation, see e.g. Fig. 2 . The PET bias was
igher than the previously reported 2.5% ( Øen et al., 2019 ), but is most
ikely due to a difference in patient cohort. 

Specialized sequences able to generate contrast in bone have little
iagnostic value, and the added contrast comes at the cost of increased
cquisition time, and thus less patient comfort and compliance. While
he specialized sequences have proven pivotal for segmentation-based
ethods ( Dickson et al., 2014 ), no evidence exists that such sequences

re needed in order for deep learning-based methods to succeed. Our
esults demonstrate that traditional MRI sequences are sufficient for
eep learning-based MR-AC, confirming the findings of several previous
orks ( Teuho et al., 2020 ). Of the three networks we chose to clinically
valuate the more simplified and patient compliant DeepDixon. In terms
f cross-vendor use, DeepT1 is the obvious choice, but on a Siemens
MR, the fast Dixon-VIBE sequence is always part of the PET acqui-

ition, and therefore inherently has reduced motion and optimal align-
ent of PET and MR images. In the 104 patient examinations evaluated,

wo experienced expert readers found no cases with clinically signifi-
ant differences between CT and DeepDixon. The spatial normalization
as performed individually for each PET image, which could partly ex-
lain the minor non-significant differences in 24% of the cases ( Table 3 ).
owever, limitations to DeepDixon in particular related to abnormal
one structures, surgical deformation and metallic implants should be
ept in mind. It is recommended that evaluation of DeepDixon for the
se in brain tumor evaluation is performed separately using tracer spe-
ific clinical metrics as done previously ( Ladefoged et al., 2019 , 2017 ).
onetheless, the frequency of potential errors/differences related to us-

ng DeepDixon is very low, and probably smaller and less frequent than
hat introduced by dental artifacts and motion on the PET/CT system.
n our center, we have now implemented DeepDixon MR-AC in routine
linical imaging and performed more than 200 [ 18 F]FDG PET scans in
dult patients referred for suspected neurodegeneration without routine
ow-dose CT. To further minimize potential errors, attenuation-maps are
arefully inspected for unusual structures and artifacts before the pa-
ient leaves the department and a low-dose CT is performed if errors are
uspected following image inspection. 

Our study had a number of limitations. We chose to focus on evalu-
ting the effects of group size and MRI sequence input. The conclusions
rawn here could potentially be different if other network types were
pplied. It was not the scope of this study to evaluate the effect of deep
earning architecture, but we recognize the potential improved accuracy
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ssociated with more sophisticated networks, such as the generative ad-
ersarial network ( Goodfellow et al., 2014 ). The high accuracy and low
umber of outliers presented here suggests, however, that only minor
mprovements are to be found. Moreover, a limitation of the compari-
on is the use of identical training setups for each training group size.
ailoring the hyperparameters to each model, or investigating the use
f 2D or 3D patches as input to boost amount of training samples could
otentially improve the results of the networks with a low number of
ubjects. 

. CONCLUSION 

We have described and evaluated a deep learning attenuation cor-
ection approach for PET/MRI neuroimaging using more than 1000 sub-
ects. We showed that a requirement for accurate and robust MR-AC is a
arge group size of at least 50 subjects for training, but further increas-
ng the size to 400 directly impacted the number of outliers significantly.
owever, using transfer learning from a large cohort, a group size of 5

ubjects was sufficient to recalibrate to changes in the MRI sequences.
ull robustness was achieved with only 20 subjects, with performance
t the same level or even surpassing that of a larger training cohort
 n = 91) without transfer learning. Furthermore, we demonstrated ro-
ustness towards the choice of MRI sequence input. The clinical eval-
ation showed no clinically relevant differences compared to CT-AC,
lthough knowledge about MR-AC limitations is important when used
n clinical routine. The combination of accuracy, outlier performance,
linical performance, robustness towards the choice of MRI sequence
nput, and low group size needed for re-training following a major soft-
are upgrade, indicates that the clinical implementation of our deep

earning-based MR-AC method will be feasible across MRI system types.
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upplementary Figures 

Supplementary Figure 1: Differences between VB20P and VE11P
or the three sequences UTE (A), Dixon-VIBE (B), and T1-weighted
PRAGE (C). Using the CT bone area (linear attenuation coefficient
 0.103 cm 

− 1 ) as a mask, the mean bone surrogate signal, measured
ith R2 ∗ from UTE sequences, are higher after the upgrade (A). For
1w MPRAGE, there is a decrease in the signal in the area representing
one (C). The effects of the resolution improvement (Table 1) for the
ixon-VIBE sequence are clearly seen visually (B). 

Supplementary Figure 2: CNN U-net-like architecture used in this
tudy. The network takes a stack-of-slices from 16 neighboring MR
lices, and outputs the corresponding pseudo-CT image. C represents
he number of MR channels: 2 for UTE (TE1 and TE2), 2 for Dixon (in-
nd opposed-phase), and 1 for T1w. 

Supplementary Figure 3 : The effects of group size on model ac-
uracy. Outlier analysis shown for VB20P test patients ( n = 201) for
ncreasing training group size for DeepDixon (A) and DeepT1 (B). RES-
LUTE is added for comparison. 

Supplementary Figure 4: Outlier analysis for the VE11P test pa-
ients ( n = 104) showing the effects of increasing group size on trans-
er learning model accuracy after fine-tuning the DeepDixon (A) and
eepT1 (B) models. The dashed lines represent the performance of the
odel from the VB20P cohort applied to the VE11P test patients with-

ut transfer learning (TL). The pink line represents the performance of
raining the network from scratch without TL, but with the full train
ohort ( n = 91), where the remaining lines represents the performance
f fine-tuning with increasing training group size after transfer learn-
ng from the VB20P cohort. The shaded area around n = 5 and n = 20
epresents the 95% confidence interval after repeating the training four
imes with different subjects in each repetition. The atlas-based MR-
C method, shown for comparison, was only based on subjects without
egistration-related artifacts ( n = 91). 

Supplementary Figure 5 : Global and regional mean absolute rel-
tive differences across all VE11P test patients ( n = 104) for each of
he three networks with MRI sequences UTE, Dixon, and T1-weighted
PRAGE, all trained with transfer learning from the VB20P cohort. The

tlas-based MR-AC method, shown for comparison, was only based on
ubjects without registration-related artifacts ( n = 91). The bars repre-
ent the average absolute relative difference to PET with CT-AC across
atients. The black line in each represents the 95% confidence interval.

Supplementary Figure 6 : Full brain and regional mean relative (up-
er) and absolute mean (lower) differences across all VB20P test patients
 n = 201) for each deep learning model. The bars represent the differ-
nce to PET with CT-AC across patients. The black line in each represents
he 95% confidence interval. RESOLUTE shown for comparison. 

Supplementary Figure 7 : Averaged relative difference (top three
ows) and standard deviation (bottom three rows) images across all
B20P testing patients ( n = 201). Please note the change of scale com-
ared to Figure 8. 

CKNOWLEDGMENTS 

The PET/MRI system at Rigshospitalet was kindly provided by the
ohn and Birthe Meyer Foundation, Denmark. Special thanks to the bio-
ngineers and radiographers at Rigshospitalet and St. Olavs Hospital for
atient preparations and image acquisitions. We thank IBM Denmark for
roviding two POWER9 servers with 4 Tesla V100 GPUs in each system.

upplementary materials 

Supplementary material associated with this article can be found, in
he online version, at doi:10.1016/j.neuroimage.2020.117221 . 

eferences 

badi, M., Barham, P., Chen, J., et al., 2016. TensorFlow: a System for Large-Scale Ma-
chine Learning, in: 12th USENIX Conference on Operating Systems Design and Imple-
mentation (OSDI 16). pp. 265–283. 

ndersen, F.L., Ladefoged, C.N., Beyer, T., et al., 2014. Combined PET/MR imaging in neu-
rology: mR-based attenuation correction implies a strong spatial bias when ignoring
bone. Neuroimage 84, 206–216. https://doi.org/10.1016/j.neuroimage.2013.08.042 .

rabi, H., Bortolin, K., Ginovart, N., Garibotto, V., Zaidi, H., 2020. Deep learning-guided
joint attenuation and scatter correction in multitracer neuroimaging studies. Hum.
Brain Mapp 1–13. https://doi.org/10.1002/hbm.25039 . 

rabi, H. , Zeng, G. , Zheng, G. , Zaidi, H. , 2019. Novel adversarial semantic structure deep
learning for MRI-guided attenuation correction in brain PET / MRI Novel adversarial
semantic structure deep learning for MRI-guided attenuation correction in brain PET
/ MRI. Eur. J. Nucl. Med. Mol. Imaging 46, 2746–2759 . 

vants, B.B., Tustison, N.J., Song, G., et al., 2011. A reproducible evaluation of ANTs sim-
ilarity metric performance in brain image registration. Neuroimage 54, 2033–2044.
https://doi.org/10.1016/j.neuroimage.2010.09.025 . 

engio, Y., Courville, A., Vincent, P., 2013. Representation learning: a review
and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.
https://doi.org/10.1109/TPAMI.2013.50 . 

orghammer, P., Chakravarty, M., Jonsdottir, K.Y., et al., 2010. Cortical hy-
pometabolism and hypoperfusion in Parkinson’s disease is extensive: prob-
ably even at early disease stages. Brain Struct Funct 214, 303–317.
https://doi.org/10.1007/s00429-010-0246-0 . 

urdette, J.H., Minoshima, S., Vander Borght, T., Tran, D.D., Kuhl, D.E., 1996.
Alzheimer disease: improved visual interpretation of PET images by using
three-dimensional stereotaxic surface projections. Radiology 198, 837–843.
https://doi.org/10.1148/radiology.198.3.8628880 . 

urgos, N., Cardoso, M.J., Thielemans, K., et al., 2014. Attenuation correction synthesis
for hybrid PET-MR scanners: application to brain studies. IEEE Trans Med Imaging
33, 2332–2341. https://doi.org/10.1109/TMI.2014.2340135 . 

https://doi.org/10.1016/j.neuroimage.2020.117221
https://doi.org/10.1016/j.neuroimage.2013.08.042
https://doi.org/10.1002/hbm.25039
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0004
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/s00429-010-0246-0
https://doi.org/10.1148/radiology.198.3.8628880
https://doi.org/10.1109/TMI.2014.2340135


C.N. Ladefoged, A.E. Hansen and O.M. Henriksen et al. NeuroImage 222 (2020) 117221 

C  

 

C  

Ç  

 

 

 

C  

 

 

D  

 

F  

 

G  

 

G  

 

G  

 

H  

I  

 

I  

I  

 

 

J  

 

K  

 

 

K  

K  

 

 

L  

 

 

L  

 

 

L  

 

 

L  

 

L  

 

 

L  

 

L  

 

M  

 

M  

 

Ø  

 

P  

 

R  

 

S  

 

S  

 

T  

 

 

T  

 

T  

 

V  

 

V  

 

W  

 

 

Y  

 

 

Y  

 

 

 

 

Y  

 

arney, J.P.J., Townsend, D.W., Rappoport, V., Bendriem, B., 2006. Method for transform-
ing CT images for attenuation correction in PET/CT imaging. Med. Phys. 33, 976–983.
https://doi.org/10.1118/1.2174132 . 

hen, Y., An, H., 2017. Attenuation correction of PET/MR imaging. Magn Reson Imaging
Clin N Am 25, 245–255. https://doi.org/10.1016/j.mric.2016.12.001 . 

içek, Ö. , Abdulkadir, A. , Lienkamp, S.S. , Brox, T. , Ronneberger, O. , 2016. 3D U-Net:
learning dense volumetric segmentation from sparse annotation. In: Ourselin, S.,
Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (Eds.). In: (Eds) Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2016. MICCAI 2016. Lecture
Notes in Computer Science, Vol 9901. Springer, Cham, pp. 424–432 . 

ollins, D.L. , Zijdenbos, A. , Baaré, W.C. , Evans, A. , 1999. ANIMAL+INSECT: improved
Cortical Structure Segmentation. In: Kuba, A., Š áamal, M., Todd-Pokropek, A. (Eds.),
(Eds.), Information Processing in Medical Imaging. Springer Berlin Heidelberg,
pp. 210–223 . 

ickson, J.C., O’Meara, C., Barnes, A., 2014. A comparison of CT- and MR-based attenua-
tion correction in neurological PET. Eur. J. Nucl. Med. Mol. Imaging 41, 1176–1189.
https://doi.org/10.1007/s00259-013-2652-z . 

onov, V.S., Evans, A.C., McKinstry, R.C., Almli, C.R., Collins, D.L., 2009. Unbiased non-
linear average age-appropriate brain templates from birth to adulthood. Neuroimage
47, S102. https://doi.org/10.1016/S1053-8119(09)70884-5 . 

e, Y. , Wei, D. , Xue, Z. , et al. , 2019. Unpaired Mr to CT Synthesis with Explicit Structural
Constrained Adversarial Learning, in: 2019. IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019). IEEE 1096–1099 . 

ong, K., Yang, J., Kim, K., et al., 2018. Attenuation correction for brain PET imaging
using deep neural network based on dixon and ZTE MR images. Phys. Med. Biol. 63,
1–15. https://doi.org/10.1088/1361-6560/aac763 . 

oodfellow, I., Pouget-Abadie, J., Mirza, M., et al., 2014. Generative adversarial nets, in:
advances in Neural Information Processing Systems 27 (NIPS 2014). pp. 2672–2680.

an, X., 2017. MR-based synthetic CT generation using a deep convolutional neural net-
work method. Med. Phys. 44, 1408–1419. https://doi.org/10.1002/mp.12155 . 

shii, K. , Willoch, F. , Minoshima, S. , et al. , 2001. Statistical brain mapping of 18F-FDG PET
in Alzheimer’s disease: validation of anatomic standardization for atrophied brains. J
Nucl Med 42, 548–557 . 

zquierdo-garcia, D., Catana, C., 2016. MR Imaging-Guided Attenuation Correction of PET
Data in PET/MR Imaging 11, 129–149. https://doi.org/10.1016/j.cpet.2015.10.002 

zquierdo-Garcia, D., Hansen, A.E., Forster, S., et al., 2014. An SPM8-based approach
for attenuation correction combining segmentation and nonrigid template forma-
tion: application to simultaneous PET/MR brain imaging. J Nucl Med 55, 1825–1830.
https://doi.org/10.2967/jnumed.113.136341 . 

ang, H., Liu, F., Zhao, G., Bradshaw, T., Mcmillan, A.B., 2018. Deep learning based
MRAC using rapid ultrashort echo time imaging. Med. Phys 45, 3697–3704.
https://doi.org/10.1002/mp.12964 . 

azemifar, S., McGuire, S., Timmerman, R., et al., 2019. MRI-only brain ra-
diotherapy: assessing the dosimetric accuracy of synthetic CT images gen-
erated using a deep learning approach. Radiother. Oncol. 136, 56–63.
https://doi.org/10.1016/j.radonc.2019.03.026 . 

ingma, D.P. , Ba, J. , 2015. Adam: a Method for Stochastic Optimization. 3rd Int. Conf.
Learn. Represent. (ICLR) . 

oesters, T., Friedman, K.P., Fenchel, M., et al., 2016. Dixon sequence with
superimposed model-based bone compartment provides highly accurate
PET/MR attenuation correction of the brain. J. Nucl. Med. 57, 918–924.
https://doi.org/10.2967/jnumed.115.166967 . 

adefoged, C.N., Andersen, F.L., Kjær, A., Højgaard, L., Law, I., 2017. RESO-
LUTE PET/MRI Attenuation Correction for O-(2-18F-fluoroethyl)- l -tyrosine (FET)
in Brain Tumor Patients with Metal Implants. Front. Neurosci. 11, 453.
https://doi.org/10.3389/fnins.2017.00453 . 

adefoged, C.N., Benoit, D., Law, I., et al., 2015. Region specific optimization
of continuous linear attenuation coefficients based on UTE (RESOLUTE):
application to PET/MR brain imaging. Phys. Med. Biol. 60, 8047–8065.
https://doi.org/10.1088/0031-9155/60/20/8047 . 

adefoged, C.N., Law, I., Anazodo, U., et al., 2016. A multi-centre evalua-
tion of eleven clinically feasible brain PET/MRI attenuation correction
techniques using a large cohort of patients. Neuroimage 147, 346–359.
https://doi.org/10.1016/j.neuroimage.2016.12.010 . 

adefoged, C.N., Marner, L., Hindsholm, A., et al., 2019. Deep learning based attenua-
tion correction of PET/MRI in pediatric brain tumor patients: evaluation in a clinical
setting. Front. Neurosci. 12, 1005. https://doi.org/10.3389/fnins.2018.01005 . 
aw, I., Albert, N.L., Arbizu, J., et al., 2019. Joint EANM/EANO/RANO practice guide-
lines/SNMMI procedure standards for imaging of gliomas using PET with radiola-
belled amino acids and [18 F] FDG: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 46,
540–557. https://doi.org/10.1007/s00259-018-4207-9 . 

ei, Y. , Dong, X. , Wang, T. , et al. , 2020. MRI-aided attenuation correction for PET imaging
with deep learning, in: medical Imaging 2020: biomedical Applications in Molecular.
Structural, and Functional Imaging, 1131723 . 

iu, F., Jang, H., Kijowski, R., Bradshaw, T., McMillan, A.B., 2017. Deep learning MR
imaging-based attenuation correction for PET/MR imaging. Radiology 286, 676–684.
https://doi.org/10.1148/radiol.2017170700 . 

ehranian, A., Arabi, H., Zaidi, H., 2016. Vision 20/20: magnetic resonance imaging-
guided attenuation correction in PET/MRI: challenges, solutions, and opportunities.
Med. Phys. 43, 1130–1155. https://doi.org/10.1118/1.4941014 . 

érida, I., Reilhac, A., Redouté, J., et al., 2017. Multi-atlas attenuation correction supports
full quantification of static and dynamic brain PET data in PET-MR. Phys. Med. Biol.
62, 2834–2858. https://doi.org/10.1088/1361-6560/aa5f6c . 

en, S.K., Keil, T.M., Berntsen, E.M., et al., 2019. Quantitative and clinical impact of MRI-
based attenuation correction methods in [18F] FDG evaluation of dementia. EJNMMI
Res 9, 83. https://doi.org/10.1186/s13550-019-0553-2 . 

aulus, D.H., Quick, H.H., Geppert, C., et al., 2015. Whole-body PET/MR imaging: quanti-
tative evaluation of a novel model-based MR attenuation correction method including
bone. J. Nucl. Med. 56, 1061–1066. https://doi.org/10.2967/jnumed.115.156000 . 

onneberger, O., Fischer, P., Brox, T., 2015. U-Net: convolutional Networks for Biomed-
ical Image Segmentation. Med. image Comput. Comput. Interv. 9351, 234–241.
https://doi.org/10.1007/978-3-319-24574-4_28 . 

hiri, I., Ghafarian, P., Geramifar, P., et al., 2019. Direct attenuation correction of brain
PET images using only emission data via a deep convolutional encoder-decoder (Deep-
DAC). Eur. Radiol. 29, 6867–6879. https://doi.org/10.1007/s00330-019-06229-1 . 

un, C., Shrivastava, A., Singh, S., Gupta, A., 2017. Revisiting unreasonable effectiveness
of data in deep learning era, in: proceedings of the IEEE International Conference on
Computer Vision. pp. 843–852. https://doi.org/10.1109/ICCV.2017.97 

euho, J., Torrado-Carvajal, A., Herzog, H., et al., 2020. Magnetic Resonance-Based Atten-
uation Correction and Scatter Correction in Neurological Positron Emission Tomog-
raphy/Magnetic Resonance Imaging —Current Status With Emerging Applications.
Front. Phys 7. https://doi.org/10.3389/fphy.2019.00243 . 

orrado-Carvajal, A., 2020. Importance of attenuation correction in PET/MR image quan-
tification: methods and applications. Rev. Española Med. Nucl. e Imagen Mol. (English
Ed. 39, 163–168. https://doi.org/10.1016/j.remnie.2020.03.002 . 

orrado-Carvajal, A. , Vera-Olmos, J. , Izquierdo-Garcia, D. , et al. , 2019. Dixon-VIBE deep
learning (DIVIDE) pseudo-CT synthesis for pelvis PET/MR attenuation correction. J.
Nucl. Med. 60, 429–435 . 

an Hemmen, H. , Massa, H. , Hurley, S. , et al. , 2019. A deep learning-based approach for
direct whole-body PET attenuation correction., in: journal of Nuclear Medicine. Soc
Nuclear Med 569 . 

andenberghe, S., Marsden, P.K., 2015. PET-MRI: a review of challenges and solutions
in the development of integrated multimodality imaging. Phys. Med. Biol. 60, R115.
https://doi.org/10.1088/0031-9155/60/4/R115 . 

olterink, J.M. , Dinkla, A.M. , Savenije, M.H.F. , et al. , 2017. Deep MR to CT synthesis
using unpaired data. In: Tsaftaris, S., Gooya, A., Frangi, A, Prince, J (Eds.). In: (Eds)
Simulation and Synthesis in Medical Imaging. SASHIMI 2017. Lecture Notes in Com-
puter Science, Vol 10557. Springer, Cham, pp. 14–23 . 

akushev, I., Landvogt, C., Buchholz, H.G., et al., 2008. Choice of refer-
ence area in studies of Alzheimer’s disease using positron emission to-
mography with fluorodeoxyglucose-F18. Psychiatry Res 164, 143–153.
https://doi.org/10.1016/j.pscychresns.2007.11.004 . 

ang, H. , Sun, J. , Carass, A. , et al. , 2018. Unpaired brain MR-to-CT synthe-
sis using a structure-constrained cyclegan. In: Stoyanov, D., et al. (Eds.).
In: (Eds) Deep Learning in Medical Image Analysis and Multimodal Learn-
ing For Clinical Decision Support. DLMIA 2018, ML-CDS 2018. Lecture Notes
in Computer Science, Vol 11045. Springer, Cham. Springer, pp. 174–182
https://doi.org/doi.org/10.1007/978-3-030-00889-5_20 . 

ang, J., Park, D., Gullberg, G.T., Seo, Y., 2019. Joint correction of attenuation and scatter
in image space using deep convolutional neural networks for dedicated brain 18F-FDG
PET. Phys. Med. Biol. 64, 075019. https://doi.org/10.1088/1361-6560/ab0606 . 

https://doi.org/10.1118/1.2174132
https://doi.org/10.1016/j.mric.2016.12.001
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0013
https://doi.org/10.1007/s00259-013-2652-z
https://doi.org/10.1016/S1053-8119\05009\05170884-5
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0016
https://doi.org/10.1088/1361-6560/aac763
https://doi.org/10.1002/mp.12155
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0020
https://doi.org/10.1016/j.cpet.2015.10.002
https://doi.org/10.2967/jnumed.113.136341
https://doi.org/10.1002/mp.12964
https://doi.org/10.1016/j.radonc.2019.03.026
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0025
https://doi.org/10.2967/jnumed.115.166967
https://doi.org/10.3389/fnins.2017.00453
https://doi.org/10.1088/0031-9155/60/20/8047
https://doi.org/10.1016/j.neuroimage.2016.12.010
https://doi.org/10.3389/fnins.2018.01005
https://doi.org/10.1007/s00259-018-4207-9
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0032
https://doi.org/10.1148/radiol.2017170700
https://doi.org/10.1118/1.4941014
https://doi.org/10.1088/1361-6560/aa5f6c
https://doi.org/10.1186/s13550-019-0553-2
https://doi.org/10.2967/jnumed.115.156000
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/s00330-019-06229-1
https://doi.org/10.1109/ICCV.2017.97
https://doi.org/10.3389/fphy.2019.00243
https://doi.org/10.1016/j.remnie.2020.03.002
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0044
https://doi.org/10.1088/0031-9155/60/4/R115
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0046
https://doi.org/10.1016/j.pscychresns.2007.11.004
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30707-2/sbref0048
https://doi.org/10.1088/1361-6560/ab0606

	AI-driven attenuation correction for brain PET/MRI: Clinical evaluation of a dementia cohort and importance of the training group size
	1 INTRODUCTION
	2 MATERIALS AND METHODS
	2.1 Patients
	2.2 Imaging protocols
	2.2.1 MRI
	2.2.2 CT
	2.2.3 [18F]FDG PET

	2.3 Deep convolutional neural network
	2.3.1 Network structure
	2.3.2 Network training
	2.3.3 Network prediction and post-processing

	2.4 Reference methods
	2.5 PET evaluation metrics
	2.6 Effect of cohort size and changes to the input on [18F]FDG PET
	2.7 Effects of MRI sequence on [18F]FDG PET
	2.8 Clinical evaluation

	3 RESULTS
	3.1 Effect of cohort size and changes to the input on [18F]FDG PET
	3.2 Effects of MRI input sequence on [18F]FDG PET
	3.3 Clinical evaluation

	4 DISCUSSION
	5 CONCLUSION
	CRediT author statement
	Supplementary Figures
	ACKNOWLEDGMENTS
	Supplementary materials
	References


