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Abstract34

In nature, individual reproductive success is seldom independent from year to35

year, due to factors such as reproductive costs and individual heterogeneity.36

However, population projection models that incorporate temporal37

autocorrelations in individual reproduction can be difficult to parameterize,38

particularly when data are sparse. We therefore examine whether such39

models are necessary to avoid biased estimates of stochastic population40

growth and extinction risk, by comparing output from a matrix population41

model that incorporates reproductive autocorrelations to output from a42

standard age-structured matrix model that does not. We use a range of43

parameterizations, including a case study using moose data, treating44

probabilities of switching reproductive class as either fixed or fluctuating.45

Expected time to extinction from the two models is found to differ by only46

small amounts (under 10%) for most parameterizations, indicating that47

explicitly accounting for individual reproductive autocorrelations is in most48

cases not necessary to avoid bias in extinction estimates.49
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INTRODUCTION50

The stochastic dynamics and structure of populations is determined by patterns of51

variation in fecundity and survival over the lifetime of individuals. Age-dependence52

is one important source of such patterns, and age-structured population models are53

therefore extensively used in studies of population dynamics (e.g. Caswell 2001).54

However, survival and reproduction are realized at the level of individuals, and55

individual demographic rates are not necessarily independent. This gives rise to56

correlations in individual demographic rates, potentially influencing population57

dynamics. For instance, trade-offs between reproduction and survival have been58

widely documented (Stearns 1989), and simulation studies have shown that these59

trade-offs can have major effects on population dynamics (Proaktor et al. 2008;60

Kuparinen et al. 2012). Similarly, trade-offs between current and future61

reproduction have frequently been documented (Stearns 1989; Roff 2002), but62

population effects of these trade-offs are more difficult to study using traditional63

population models, due to the temporal aspect of the correlation.64

Correlations in individual reproductive success from one year (or time65

step) to the next (hereafter “reproductive autocorrelations”) are found in a wide66

range of taxa, including birds (Cam et al. 1998; Veran & Beissinger 2009),67

mammals (Boyd et al. 1995; Hamel et al. 2010), amphibians (Yurewicz et al. 2004),68

reptiles (Rivalan et al. 2005) and plants (Obeso 2002). Such autocorrelations can69

be produced by different underlying biological processes. If reproduction carries a70

cost in terms of energy use (Stearns 1992; Edward & Chapman 2011) we might71

expect negative reproductive autocorrelation if offspring production in one year72
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reduces the energy an individual has available for offspring production the next73

year, or if energy from non-breeding years can be saved up for future breeding (Roff74

2002; Yurewicz et al. 2004; Hamel et al. 2010). Individual heterogeneity in female75

quality is more likely to cause positive autocorrelation with some females76

consistently producing more offspring than others (Högstedt 1980; Weladji et al.77

2008). There are two main explanations for individual heterogeneity. There may be78

differences among individuals that are fixed from birth or shortly after (“fixed79

heterogeneity”; e.g., individuals with different probabilities of producing offspring),80

or differences may be the outcome of stochastic processes with identical underlying81

fitness traits (“dynamic heterogeneity”; e.g., individuals with the same underlying82

probability of producing offspring but with different realized offspring production)83

(Tuljapurkar et al. 2009; Cam et al. 2016). Although we generally assume one or84

the other in population models, it is likely that both types of heterogeneity are85

present in real populations (Steiner et al. 2010; Plard et al. 2015; Cam et al. 2016).86

Previous studies have shown that temporal autocorrelation in the87

environment can affect the dynamics and expected time to extinction of88

populations (Petchey et al. 1997; Levine & Rees 2004; Ruokolainen et al. 2009).89

However, empirical studies suggest that long-term effects on population growth of90

vital rate autocorrelations caused by stochastic environments are small (Morris91

et al. 2011; Ferguson et al. 2016), and theoretical analyses indicate that the92

temporal scaling of environmental autocorrelation must be long to have real impact93

on long-term population growth rates (Engen et al. 2013). Environmental94

fluctuations affect vital rates of all individuals in a population simultaneously (but95
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not necessarily identically), and can therefore create autocorrelations in the total96

reproductive output of the population. The environmental variance, σ2
e , captures97

this by measuring among-year variation in the expected individual contributions to98

the future population, caused by temporal fluctuations in the environment (Engen99

et al. 2009). In contrast, the within-individual reproductive autocorrelations we100

focus on here create (or are created by) differences among individuals, and can be101

more stable over time. These autocorrelations in individual reproductive histories102

can be expected to affect the demographic variance, σ2
d, which measures the103

temporal mean of the within-year variance in individual contributions (calculated104

from the variance in individual contributions to the future population from within105

each class, as well as covariances between them, weighted by the stable stage106

structure; see Engen et al. (2009) and Appendix S1) (Kendall & Fox 2002;107

Vindenes et al. 2008). Both environmental and demographic stochasticity108

(measured by σ2
e and σ2

d) act to decrease long-run stochastic population growth109

(Lande et al. 2003). It is therefore important to account for them when analyzing110

stochastic population dynamics and extinction risk.111

In the presence of reproductive autocorrelations, age-structured projection112

matrices are no longer independent across time steps, potentially introducing biases113

in estimated stochastic population dynamics. Models that classify individuals by114

reproductive success or stage in addition to age can be used to project population115

dynamics in the presence of reproductive autocorrelations (Cam et al. 2002;116

Jenouvrier et al. 2005, 2015; Steiner et al. 2010; Waugh et al. 2015), but they117

require estimation of a large number of parameters, requiring high-quality118
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long-term data sets that are available for a limited number of populations. This119

raises the question of how much individual reproductive autocorrelations affect120

stochastic population dynamics, and how much bias is likely to be introduced into121

estimates of extinction dynamics if such autocorrelations are present without being122

accounted for in our models.123

Here, we examine the effect of incorporating autocorrelations in individual124

reproductive rates when calculating population growth rates and expected time to125

extinction. We derive the demographic variance in a stochastic matrix population126

model that incorporates different types of autocorrelation in individual127

reproductive rates, and analyze different parameterizations of this model, with and128

without environmental fluctuations. Calculated growth rates and extinction times129

are compared to those obtained from a standard age-structured model without130

autocorrelations. Finally, we present a case study, parameterizing the model with131

estimates from a wild population of moose, Alces alces, that show positive132

reproductive autocorrelations.133

MATERIAL AND METHODS134

General model135

Consider an age-structured population model with a stochastic projection matrix,136

L, such that nτ+1 = Lnτ describes the population vector at time τ + 1, given the137

population vector at time τ . The population vector is a column vector of the138

number of females in each of k age classes, nτ = (n1, n2, . . . , nk)
T , where the139
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superscript T indicates a transposed vector. Each age class is further divided into140

classes based on number of offspring produced, such that ni = ni,0, ni,1, . . . , ni,αi
,141

where the second subscript indicates the number of offspring, and αi is the142

maximum number of offspring produced by a female of age i. As presented, this143

model is most useful for species with low αi-values (but see Appendix S2).144

We assume individuals are counted after reproduction, so that the number145

of offspring produced by each individual is known. However, in contrast to ordinary146

postbreeding census models (Caswell 2001), this model does not have a class of147

newborns. Offspring that survive their first year enter the class of one-year-olds one148

time step after they are born. Up until that point they are included in the model149

through their mother only. Since females are classified according to number of150

offspring produced, the count of females in different classes also contains151

information about the number of newborn offspring in the population. The last age152

class is assumed to have 0 survival.153

In the classical, age-structured case, all surviving individuals of age i enter154

the single class of (i+ 1)-year-olds at the next time step. However, in our model155

there are αi+1 possible classes for surviving i-year-olds to enter, depending on their156

offspring production at age i+ 1. Thus, transitions are driven by the product of157

survival probability and the probability of producing m offspring at time τ + 1.158

Both of these probabilities could depend on the number of offspring produced at159

time τ . Let si,j (for i > 0) be the survival probability from age i to i+ 1 of an160

individual that produced j offspring at age i, and let qi,mj be the probability of161

such an individual producing m offspring at age i+ 1, given survival. Note that the162
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comma in the subscripts separates age indices from reproductive class indices.163

Then, an individual from age class i that produced j offspring has probabilities164

(si,jqi,0j; si,jqi,1j; ...; si,jqi,αi+1j) of surviving and producing 0, 1, ..., αi+1 offspring,165

respectively, at age i+ 1, as well as a probability 1 − si,j of not surviving. The166

mean projection matrix has the same general form as a standard Leslie matrix,167

with fecundities b1, . . . , bk in the first row, and survival and transition into the next168

age class, p1, . . . , pk−1, on the subdiagonal (Caswell 2001). However, instead of each169

entry being a single number, as in the classical age-structured case, each entry now170

consists of a submatrix of the form171

pi =


si,0qi,00 . . . si,αi

qi,0αi

...
. . .

...

si,0qi,αi+10 . . . si,αi
qi,αi+1αi

 , (1)

where each possible combination of offspring production at age i and i+ 1 has an172

entry, resulting in a projection matrix with
∑k

i=1(αi + 1) rows and
∑k

i=1(αi + 1)173

columns. The qi,mj sum to one within each column. The exact form of the174

submatrices depends on assumptions of the model (see Appendix S2).175

If we can assume that one-year-olds do not reproduce, such that all176

offspring enter the same class, the bi entries are b1 = 0, and177

bi = (s0 · 0, s0 · 1, . . . , s0 · αi) = (0, s0, . . . , s0αi) for i > 1, where s0 is the probability178

of newborns being female and surviving to age one. Since the model only keeps179

track of females, we have merged offspring survival and sex ratio into a single rate180

to simplify notation. The number of offspring born is given directly by the class of181
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mothers (0, 1, . . . , αi) within each age. If one-year-olds do reproduce we must keep182

track of both which class the mother is in, and which class the offspring end up in.183

Then, each bi can be written as184

bi =


0 s0t0 . . . s0αit0
...

...
. . .

...

0 s0tα1 . . . s0αitα1

 , (2)

where tk is the probability of a one-year-old producing k offspring. Some useful185

expansions of this model are presented in Appendix S2. Derivation of the186

demographic and environmental variances is presented in Appendix S1.187

Model analysis188

We used our model to calculate σ2
d for several systems with autocorrelations in189

reproductive success, and compared these quantities to σ2
d calculated from a190

standard age-structured model (Leslie matrix) of the same systems (equation 4 in191

Engen et al. 2009). The survival and fecundity parameters for the Leslie matrix192

were calculated from the parameters for each subclass in the more complicated193

reproductive autocorrelation model by weighting them by the stable stage structure194

(found from the right eigenvector of the mean projection matrix; Caswell 2001).195

We calculated the distribution of expected time to extinction using the equation196

P (Text ≤ τ) = exp

[
− 2N0 ln(λ)

σ2
d(1 − e− ln(λ)τ )

]
, (3)
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where Text is time to extinction, τ is time, and N0 is the population size at time 0197

(Cox & Miller 1970; Engen et al. 2005b). This equation utilizes the fact that a198

diffusion approximation with just three parameters (the expected growth rate and199

the demographic and environmental variances) gives accurate estimates of the200

distribution of population size over time in age-structured populations (Engen201

et al. 2005b). We confirmed that this also holds for the model with reproductive202

autocorrelations by comparing simulated population trajectories with diffusion203

approximations (Appendix S3). The estimated distributions from equation 3204

matched time to extinction found from simulations of the full system (Appendix205

S3). In systems with environmental stochasticity, expected time to extinction was206

found by simulation. We selected systems to cover a range from extreme levels of207

reproductive autocorrelation to moderate levels that we expect to be common in208

natural populations, focusing on systems with relatively long-lived individuals209

where lifetime reproductive success is gained through several reproductive events.210

We tested the sensitivity of our results to the choice of survival parameters211

by calculating the maximum deviation in mean expected time to extinction212

(max(∆T̄ext); i.e. how much the expected time to extinction deviated from that of213

the Leslie model in the most extreme case of each model) when s0 and then si were214

varied one at a time. Here, ∆T̄ext = (T̄ext,Les − T̄ext,Rac)/T̄ext,Les, where T̄ext,Les and215

T̄ext,Rac are the calculated mean expected time to extinction in the plain216

age-structured model (Les) and the model with reproductive autocorrelations217

(Rac), respectively. The number of age classes in the model was adjusted such that218

the proportion of individuals expected to reach the last age class (after which they219
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all die) was just under 0.05.220

System 1, Switching or staying: In our first system females produced 0221

or 1 offspring, and the probability of switching reproductive status, w, was the222

same for all ages and in both directions (i.e., the probability of transitioning from223

breeder to nonbreeder equaled the probability of transitioning from nonbreeder to224

breeder; Appendix S4). Survival was set relatively high (s0 = 0.25, si = 0.85), and225

results were found for a range of w, from 0.0001 to 0.9999. Here, w = 0.5 describes226

a system without reproductive autocorrelations, w < 0.5 gives positive227

autocorrelations (at any time step individuals are more likely to stay in the same228

reproductive class than to switch), and w > 0.5 gives negative autocorrelations229

(probability of switching reproductive status is greater than probability of not230

switching). All remaining individuals were assumed to die at age 11. We added231

environmental stochasticity by letting the probability of breeding at age 1, t1, vary232

over time according to a symmetric beta distribution with mean 0.5 and different233

variances. This gives a hump-shaped distribution centered on 0.5 (see Fig. S5.1 in234

Appendix S5). As the variance increases, the distribution eventually becomes235

uniform (flat) between 0 and 1.236

System 2, Individual heterogeneity: In our second system, females237

could produce 0 or 1 offspring at age one, and 0, 1 or 2 offspring at older ages. The238

probability of staying in the same breeding class from one time step to the next, h,239

varied from 0.49 to 0.96, while the probability of going from nonbreeder (0240

offspring) to highly successful (2 offspring) or back was very low (0.02). This241

created varying degrees of heterogeneity among individuals (see Appendix S4 for242
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full transition matrix). We adjusted t1 to hold λ constant as h varied. This was not243

necessary in the first system due to symmetry in the transition probabilities. We244

calculated the demographic variance and expected time to extinction given the245

different values of h, and then calculated a new time to extinction when h was246

allowed to vary stochastically through time according to a symmetric beta247

distribution with mean 0.725.248

System 3, Gradual increase in reproductive success: Finally, we249

analyzed a system where individuals were likely to improve their breeding situation250

over time, such that highly successful breeders were likely to remain successful,251

females with a single offspring were likely to produce one or two offspring at the252

next time step, and nonbreeders were likely to either remain as nonbreeders or253

produce one offspring. We expect this to be a common situation in long-lived254

species. The probability of transitioning to a more successful state increased as h255

was varied from 0.49 to 0.96 (Appendix S4). λ was again held constant by256

adjusting t1.257

All calculations were performed in R 3.3.2 (R Core Team 2016). R code for258

setting up and analyzing matrix models with reproductive autocorrelations is259

provided in Appendix S6.260

RESULTS261

In systems without reproductive autocorrelations our model gave the same262

demographic variance, σ2
d, as an age-structured Leslie model (Fig. 1a), but as263

14



reproductive autocorrelations became stronger (positive or negative) the264

demographic variance deviated from that found from a Leslie matrix (Fig. 1a, 2a).265

Positive autocorrelations increased the demographic variance (Fig. 1a, 2a) and266

shortened the expected time to extinction (Fig. 1b, 2b), whereas negative267

autocorrelations decreased the demographic variance (Fig. 1a) and hence increased268

expected time to extinction (Fig. 1b). However, these deviations were small in all269

but the most extreme cases. In the “Switching or staying” system, the calculated270

σ2
d ranged from 0.69 when the probability of switching reproductive status271

w = 0.0001 to 0.32 when w = 0.9999 (Fig. 1a), causing the mean expected time to272

extinction of a population starting at 100 females to range from 47.3 to 57.2 (Fig.273

1b). The equivalent Leslie matrix model gave σ2
d = 0.35 and mean time to274

extinction 56.0. Thus, in the most extreme case (w = 0.0001), the mean expected275

time to extinction was reduced by 15.5% compared to that calculated from the276

Leslie matrix model, but in most cases the deviation was much lower (4.5% when277

w = 0.2). Adjusting the size of the initial population caused only minor changes in278

these results (for example, the 15.5% became 12.7% at N0 = 50 and 17.8% at279

N0 = 300). The “Individual heterogeneity” and “Gradual increase in reproductive280

success” systems showed only minor deviations in all cases (Fig. 2a,b, maximum281

deviation 8.0%; Fig. 3a,b, maximum deviation 2.3%).282

The deviations in mean time to extinction (∆T̄ext) showed little sensitivity283

to specific parameter choices. When survival was particularly high, “Switching or284

staying” systems with extremely low probability of switching reproductive status285

(w = 0.0001) reached deviations of 18% (Fig. 1b,c; s0 = 0.322 and si = 0.85 gave286
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max(∆T̄ext)= 0.181; s0 = 0.25 and si = 0.888 gave max(∆T̄ext)= 0.175). In these287

cases, λ was close to 1 (0.988 and 0.987). Increasing w to 0.2 brought max(∆T̄ext)288

in these cases down to 0.069 and 0.057. Deviations in the other two systems never289

exceeded 12.8% (”Individual heterogeneity”) and 2.4% (”Gradual increase in290

reproductive success”) (Fig. 2b,c 3b,c).291

Introducing environmental stochasticity in the probability of one-year-olds292

producing offspring (i.e. letting the t-values vary over time) showed only small293

increases in the environmental variance (σ2
e = 0.011 when w = 0.0001 and t1 varied294

according to a uniform distribution between 0 and 1. Other values were smaller; see295

Fig. S5.2a in Appendix S5), and negligible change in expected time to extinction296

(Fig. S5.2b in Appendix S5). Letting the probability of remaining in the same297

breeding class from one time step to the next fluctuate stochastically within the298

range 0.49-0.96 also had no measurable effects on time to extinction (Fig. S5.2d in299

Appendix S5), as would be expected given the weak influence of h on the300

demographic variance (Fig. 2a).301

Moose Case Study302

We applied our model to data from a population of moose (Alces alces) on the303

island of Vega off the coast of northern Norway. Females in this population can304

give birth to up to two calves per year from the time they are two years old.305

Estimates of transition probabilities between different breeding states (0, 1 or 2306

calves) in this population show that the probability of twinning increases with the307
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number of offspring produced at the previous time step, making it an example of308

the ”Gradual increase in reproductive success” type of system (System 3 above)309

(Table 1). Transition and survival estimates were obtained from multistate models310

run in E-SURGE (Appendix S7, Choquet et al. 2009). Mortality in the system311

comes mainly from hunting. It has previously been shown that environmental312

stochasticity has little effect on the dynamics of this population (Sæther et al.313

2007). Environmental effects were therefore ignored. More details of the multistate314

models can be found in Appendix S7.315

In order to isolate the effect of reproductive autocorrelations on the316

demographic variance, we first parameterized the model assuming no covariation317

between survival and fecundity. In other words, survival was estimated for each age318

class, but was assumed not to differ among breeding states within an age class319

(Appendix S7). We parameterized the model with these estimates, calculated the320

demographic variance, and then compared this to the demographic variance321

calculated from the model parameterized with the same survival estimates but322

simple age-specific fecundity rates (Appendix S7). Using estimated parameters323

directly in the model without incorporating uncertainty gave estimates of σ2
d = 0.33324

when accounting for reproductive autocorrelations and σ2
d = 0.29 from the standard325

age-structured model. Such high estimates of σ2
d are quite common in long-lived326

species with positive growth rates (Sæther et al. 2013). Next, we incorporated327

uncertainty in the parameter estimates by repeating the analysis, drawing 10000328

values from the distributions for each parameter and performing the calculations329

for each of the 10000 sets of parameters. The resulting distributions of σ2
d showed330
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only a very slight difference between the two models (Fig. 4a).331

Finally, we investigated the effect of incorporating covariance in survival332

and fecundity. In the model with reproductive autocorrelations this meant allowing333

survival estimates to differ among the different breeding states (Appendix S7). In334

the standard age-structured models this was accounted for by adding a covariance335

term in the expression for σ2
d (Engen et al. 2009). The moose show positive336

covariance between survival and fecundity because hunters prefer to shoot337

individuals without calves (Appendix S7, Sæther & Haagenrud 1983). Adding this338

covariance to the model increased estimates of σ2
d (Fig. 4b). The increase was339

greatest in the standard age-structured model which treats this type of variation as340

random variation among average individuals, whereas the model with demographic341

autocorrelations treats this as systematic structured differences among breeding342

states (Fox & Kendall 2002; Lee et al. 2017).343

DISCUSSION344

Demographic and environmental stochasticity both have negative effects on345

population growth rates (Lande et al. 2003), necessitating population models that346

accurately incorporate stochastic effects, in particular when predicting expected347

impacts of environmental changes on the population size of threatened or348

endangered species (Doak et al. 2005; Engen et al. 2005b; Morris et al. 2008;349

Jenouvrier 2013). However, as models become more complex the number of350

parameters that must be estimated increases, causing challenges when applying the351
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models to sparse population data. We have therefore examined how much the use352

of standard age-structured models that do not account for autocorrelations in353

individual reproductive success biases estimates of expected time to extinction354

when used on populations where such autocorrelations are present. Our results355

show that such biases can be assumed to be small in all but the most extreme cases.356

In extreme cases, we found that reproductive autocorrelations could357

shorten the expected time to extinction by nearly 20% (Fig. 1c,d). However, this358

required that females have an extremely low probability of switching reproductive359

status between years, and that they be long-lived. In real populations, we would360

expect probabilities of switching reproductive status to be less extreme and less361

consistent over time and age. In a more realistic scenario, expected time to362

extinction was reduced by just over 2% (Fig. 3b). Overall, most of the systems we363

studied showed decreases in expected time to extinction that were well under 10%364

(Fig. 2b,c 3b,c). Given the uncertainty that is typically present in estimates of365

stochastic population dynamics and extinction risk from population data, such366

small differences in the theoretical time to extinction are in most cases unlikely to367

merit the use of these more complex models. This conclusion is supported by our368

case study on moose, where differences in σ2
d were less pronounced after accounting369

for uncertainty in the parameter estimates (Fig. 4a). The differences in σ2
d370

estimated for the moose case study using mean parameter estimates without371

accounting for uncertainty were of the magnitude predicted by our theoretical372

results (Fig. 3a).373

For simplicity, our theoretical results focus on systems in which adults have374
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constant (expected) vital rates, independent of age. However, probabilities of375

breeding are known to depend on age in many species (e.g., Sedinger et al. 2001;376

Beauplet et al. 2006; Arroyo et al. 2007). Our model is constructed to accomodate377

this, and can be used to quantify the effect of reproductive autocorrelations in378

systems with more complicated structure (see e.g the moose case study). However,379

in general we expect even smaller differences in the demographic variance when380

breeding probabilities vary with age, compared to the systems studied here. For381

example, if the switching probability in Fig. 1 were 0.0001 for some ages, but382

higher for others, the demographic variance would be lower than shown, causing383

less change in the expected time to extinction.384

Our results indicate that reproductive autocorrelations must be very strong385

to have any measurable effect on long-term population growth. This is consistent386

with empirical findings and theoretical results on related questions. For example, in387

the California spotted owl (Strix occidentalis occidentalis) it has been shown that388

negative reproductive autocorrelation caused by costly breeding has the potential389

to create biennial cycles in population-level reproductive output in the presence of390

environmental variation (Stoelting et al. 2015), but lasting cycles only occured391

when the autocorrelation was very strong. Morris et al. (2011) found that effects of392

vital rate autocorrelations caused by stochastic environments on long-term fitness393

in seven primate species were extremely weak, and theoretical analyses have shown394

that long-term population growth rates are only affected by environmental395

autocorrelations when the temporal scaling is long (Engen et al. 2013). In addition,396

it has been shown that the realized correlation between the reproductive stages of397
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an individual over time is quite low in many species (Tuljapurkar et al. 2009).398

Thus, our results give a good indication that using models that do not incorporate399

reproductive autocorrelations should give reasonable estimates of demographic400

variance and expected time to extinction in most populations.401

Models that classify individuals by reproductive success or stage in402

addition to age, such as the one used here, require estimation of a large number of403

parameters. Obtaining accurate estimates of all these parameters is challenging,404

particularly in small, endangered populations, causing high uncertainty in results.405

Thus, it may be good news that simple age-structured models seem to give good406

estimates of expected time to extinction in the face of reproductive407

autocorrelations. However, it is essential to note that these results were based on408

accurate estimates of mean fecundity for each age class in the model. Only the409

autocorrelations were ignored. In the wild, breeders and nonbreders often have410

different detection probabilities (Katzner et al. 2011). Failing to account for this, or411

estimating fecundity based on a non-random subset of the population (e.g., only412

breeders), introduces much more serious biases than those examined here (Lee413

et al. 2017). Models that classify individuals by reproductive success therefore have414

an important role in analyzing the dynamics of certain types of populations.415

In the wild, environmental conditions have been shown to affect breeding416

probabilites of both first-time breeders (e.g., Reed et al. 2003) and adults (e.g.,417

Cubaynes et al. 2011), as well as survival rates (e.g., Cayuela et al. 2014). One418

might therefore expect the strength of reproductive autocorrelations to vary from419

year to year, for example if differences among individuals were more pronounced in420
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years with poor (or conversely, with good) environmental conditions (Pfister &421

Wang 2005; Hamel et al. 2009b; Pesendorfer et al. 2016). We analyzed a system422

where the probability of staying in the same breeding class from one time step to423

the next varied stochastically from year to year, causing the reproductive424

autocorrelations to vary in strength over time. We found that this caused the425

effects of the reproductive autocorrelations to be so weak that estimates of426

expected time to extinction were practically identical in the models with and427

without such environmental fluctuations (Fig. S5.2d in Appendix S5). It has428

previously been shown that the deterministic population growth rate tends to be429

less sensitive to changes in breeding probabilities than to changes in survival,430

particularly in long-lived species (Lee et al. 2017). Then we would also expect431

fluctuations in breeding probabilities to have less effect on population growth and432

extinction, thus weakening the selection pressures that may lead to demographic433

buffering (Pfister 1998; Gaillard et al. 2000).434

Survival rates that differ among reproductive classes give rise to covariance435

between survival and reproduction (Lee et al. 2017). This covariance can be436

directly accounted for when estimating the demographic variance from a standard437

age-structured model (Engen et al. 2009; Lee et al. 2017). However, structured438

variation of this type can actually decrease the demographic variance compared to439

that found in homogeneous populations (“variance reduction effect”, Fox & Kendall440

2002; Lee et al. 2017). Thus, increases in estimates of σ2
d caused by this covariance,441

such as that seen in figure 4b do not necessarily reflect increases in the random442

variation among individuals. Negative covariance between survival and443
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reproduction can allow populations to persist in a wider range of environmental444

conditions, through demographic compensation (Doak et al. 2005; Villellas et al.445

2015).446

In our model, heterogeneity in individual life history trajectories is driven447

by stochastic transition processes between reproductive classes (dynamic448

heterogeneity; Tuljapurkar et al. 2009; Cam et al. 2016). When reproductive costs449

and individual heterogeneity are both present in a population, positive and450

negative autocorrelations could cancel each other out, masking the underlying451

processes (Beauplet et al. 2006; Hamel et al. 2009a). Although population452

dynamics depend only on the realized autocorrelations, this creates a challenge for453

understanding the individual processes (Hamel et al. 2009a). Thus, results from our454

model cannot be used to infer for example an absence of reproductive costs directly.455

It is also important to note that our results focus on differences in the demographic456

variance calculated from models that either do or do not account for reproductive457

autocorrelations. Reproductive autocorrelations can also affect the deterministic458

growth rate of populations by affecting the proportion of breeders in the459

population. This would be reflected in fecundity estimates and should therefore not460

cause additional deviations between estimates from the two types of model. In our461

analyses, the deterministic growth rate was held constant as we varied the strength462

of reproductive autocorrelations in order to isolate the changes in the demographic463

variance. Thus, our results do not imply that reproductive autocorrelations have464

negligible effects on population growth itself.465

As shown by Engen et al. (2005a) and Lee et al. (2011), the method we466
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used for deriving the demographic variance can also be used to study effective467

population size. This requires including males in the model, and can be468

accomplished following the logic of Lee et al. (2011), defining male reproduction by469

number of mates. Number of offspring produced is treated as a property of the470

females, and number of offspring per male is determined by his mates. The471

demographic variance and generation time calculated from the two-sex model can472

then be used to quantify genetic drift in the population (Engen et al. 2005a), and473

thus to predict loss of genetic diversity. In general, small populations with low474

demographic stochasticity are expected to lose genetic diversity at a lower rate475

than small populations with high demographic stochasticity (Engen et al. 2005a).476

In addition, Shpak (2007) showed that in finite populations selection tends to favor477

genotypes that decrease demographic stochasticity. This might suggest that478

positive reproductive autocorrelations could give a selective disadvantage in some479

cases, but the effect would be weak.480

In conclusion, although positive autocorrelations in individual reproduction481

were shown to increase the demographic variance such that population models that482

did not account for these autocorrelations overestimated the expected time to483

extinction, the effects were found to be small. Environmental fluctuations in484

transition rates between different breeding states were found to have negligible485

effects on expected time to extinction. Thus, our results indicate that ignoring486

reproductive autocorrelations in population models is unlikely to cause any serious487

bias in estimates of population growth and expected time to extinction, except in488

extreme cases.489
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Figure 1: Model output for System 1 (“Switching or staying”) with 11 age classes,654

0 or 1 offspring produced per female at each time step (α = 1), adult survival,655

si = 0.85, offspring survival and probability of being female, s0 = 0.25, and656

probability of breeding at age 1, t1 = 0.5. a) Demographic variance estimates from657

our model with reproductive autocorrelations (solid line) compared to those from a658

standard age structured model (grey dashed line). The probability of switching659

reproductive status, w, is varied from 0.0001 to 0.9999. Points at w = 0.0001, 0.5660

and 0.9999 are marked by dots with fill corresponding to line types shown in panel661

b. b) Distribution of time to extinction, starting with 100 females, when662
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w = 0.0001 (solid line), 0.5 (dashed line; equal to the Leslie model) and 0.9999663

(dotted line) (i.e, points on panel a). λ = 0.927. c) Maximum deviation in mean664

expected time to extinction (max(∆T̄ext), found at w = 0.0001) when s0 is varied665

from 0.15 to 0.35 and the number of age classes is adjusted from 8 to 13 to ensure666

that the proportion of individuals expected to reach the last age class stays just667

under 0.05. λ varies from 0.789 to 0.998. d) Maximum deviation in mean expected668

time to extinction (max(∆T̄ext), found at w = 0.0001) when si is varied from 0.75669

to 0.90 and the number of age classes is adjusted from 7 to 16 to ensure that the670

proportion of individuals expected to reach the last age class stays just under 0.05.671

λ varies from 0.780 to 0.997.672

Figure 2: Model output for System 2 (“Individual heterogeneity”) with 7 age673

classes, 0 or 1 offspring produced per female at age 1, and 0, 1 or 2 offspring674

thereafter (α1 = 1, α2−7 = 2), adult survival, si = 0.75, offspring survival and675

probability of being female, s0 = 0.25, and probability of breeding at age 1, t1676

adjusted to keep λ constant (t1 varied from 0.262 to 0.696, λ = 0.868). a)677

Demographic variance estimates from our model with reproductive autocorrelations678

(solid line) compared to those from a standard age structured model (dashed grey679

line). The probability of staying in the same breeding class, h, was varied from 0.49680

to 0.96. Points at h = 0.49, 0.725 and 0.96 are marked by dots with fill681

corresponding to line types shown in panel b. b) Distribution of time to extinction,682

starting with 100 females, when h = 0.49 (dotted line), h = 0.725 (solid line) and683

h = 0.96 (dashed line). The long-dashed grey line shows time to extinction684
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calculated from a standard age structured model without reproductive685

autocorrelations. c) Maximum deviation in mean expected time to extinction686

(max(∆T̄ext), found at h = 0.96) when s0 is varied from 0.23 to 0.38 and the687

number of age classes is adjusted from 7 to 9 to ensure that the proportion of688

individuals expected to reach the last age class stays just under 0.05. λ varies from689

0.850 to 0.999. d) Maximum deviation in mean expected time to extinction690

(max(∆T̄ext), found at h = 0.96) when si is varied from 0.70 to 0.835 and the691

number of age classes is adjusted from 6 to 10 to ensure that the proportion of692

individuals expected to reach the last age class stays just under 0.05. λ varies from693

0.798 to 0.992.694

Figure 3: Model output for System 3 (“Gradual increase in reproductive success”)695

with 7 age classes, 0 or 1 offspring produced per female at age 1, and 0, 1 or 2696

offspring thereafter (α1 = 1, α2−7 = 2), adult survival, si = 0.75, offspring survival697

and probability of being female, s0 = 0.25, and probability of breeding at age 1, t1698

adjusted to keep λ constant (t1 varied from 0.890 to 0.137, λ = 0.986). a)699

Demographic variance estimates from our model with reproductive autocorrelations700

(solid line) compared to those from a standard age structured model (dashed line).701

h, which here controls the probability of transitioning to a more successful state702

(see Appendix S4 for more details), was varied from 0.49 to 0.96. b) Distribution of703

time to extinction, starting with 100 females, when h = 0.588 (dotted line on panel704

a). The long-dashed grey line shows time to extinction calculated from a standard705

age structured model without reproductive autocorrelations. c) Maximum706
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deviation in mean expected time to extinction (max(∆T̄ext), found at h = 0.588)707

when s0 is varied from 0.15 to 0.26 and the number of age classes is adjusted from 5708

to 7 to ensure that the proportion of individuals expected to reach the last age709

class stays just under 0.05. λ varies from 0.788 to 0.996. d) Maximum deviation in710

mean expected time to extinction (max(∆T̄ext), found at h = 0.588) when si is711

varied from 0.59 to 0.76 and the number of age classes is adjusted from 5 to 7 to712

ensure that the proportion of individuals expected to reach the last age class stays713

just under 0.05. λ varies from 0.787 to 0.995.714

Figure 4: Outlines of barplots showing distribution of estimated values of σ2
d from715

10000 parameter draws for the moose population. Black lines (leftmost peak) are716

estimated from a model with reproductive autocorrelations. Grey lines (rightmost717

peak) are estimated from a standard age-structured model without accounting for718

reproductive autocorrelations a) Model without covariance between survival and719

fecundity. b) Model with positive covariance between survival and fecundity.720
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