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Abstract

Neuroevolution is a technique that evolves artificial neural networks through
evolutionary algorithms, inspired by the natural evolution of biological brains.
HyperNEAT is one such method, evolving patterns to determine neural networks’
weights based on their geometry within a substrate. Evolvable-Substrate Hy-
perNEAT (ES-HyperNEAT) has extended the method to additionally evolve
the network’s geometry. Multi-Spatial Substrate (MSS) extends HyperNEAT
in another direction, evolving separate patterns to determine the weights of a
network constructed across multiple substrates.

This thesis introduces the new framework Deep Evolvable-Substrate Hyper-
NEAT (DES-HyperNEAT), combining the characteristic features of Deep Hyper-
NEAT, ES-HyperNEAT and MSS. The principal novelty of DES-HyperNEAT
is the extension of ES-HyperNEAT, from network construction within a single
substrate, to network construction across multiple substrates. The new approach
essentially evolves deep neural networks by evolving and combining numerous
substrates. DES-HyperNEAT separates complexity over multiple substrates and
CPPNs, while also having the advantage of evolving node positions within each
substrate. Additionally, it dynamically evolves deeper networks by inserting new
substrates throughout evolution. The combination of these properties makes
DES-HyperNEAT unique.

Three implementations of the framework are proposed. Through statistical
analysis, the implementation Layered DES-HyperNEAT is selected, and its prop-
erties optimized. It evolves multiple unique CPPNs, one for each substrate and
each connection between them. Its performance is evaluated with the datasets
Iris, Wine, and Retina. It is shown that Layered DES-HyperNEAT consistently
outperforms HyperNEAT and ES-HyperNEAT both when comparing fitness to
runtime and number of generations.



ii



iii

Sammendrag

Neuroevolusjon er en metode som utvikler kunstige neurale nettverk via evo-
lusjonære algoritmer og er inspirert av den naturlige evolusjon av biologiske
hjerner. HyperNEAT er en slik metode. Den utvikler mønstre til å bestemme neu-
rale nettverks vekter basert på deres geometri i et substrat. Evolvable-Substrate
HyperNEAT (ES-HyperNEAT) har utvidet metoden til å også utvikle nettverkenes
geometri. Multi-Spatial Substrate (MSS) utvider HyperNEAT i en annen retning,
ved å utvikle forskjellige mønstre til å bestemme vektene i et nettverk som er
konstruert over flere substrater.

Denne oppgaven introduserer rammeverket Deep Evolvable-Substrate Hyper-
NEAT (DES-HyperNEAT), som kombinerer de karakteristiske egenskapene til
Deep HyperNEAT, ES-HyperNEAT og MSS. Den viktigste innovasjonen med
DES-HyperNEAT er utvidelsen av ES-HyperNEAT, fra nettverkskonstruksjon i et
enkelt substrat til nettverkskonstruksjon over flere substrater. Den nye metoden
utvikler dype nevrale nettverk ved å utvikle og kombinere en rekke substrater.
DES-HyperNEAT skiller kompleksitet over flere substrater og CPPN-er, samtidig
som den har fordelen med å utvikle node-posisjoner i hvert substrat. I tillegg
utvikler den dynamisk dypere nettverk, ved å sette inn nye substrater under
evolusjonen. Kombinasjonen av disse egenskapene gjør DES-HyperNEAT unik.

Tre implementasjoner av rammeverket foreslås. Basert på statistisk eval-
uering av disse blir implementasjonen kalt Layered DES-HyperNEAT valgt og
optimalisert. I denne utvikles flere unike CPPN-er, ett for hvert substrat og hver
forbindelse mellom dem. Metodens ytelse blir evaluert med datasettene Iris, Wine
og Retina. Det vises at Layered DES-HyperNEAT konsekvent gir bedre resultater
enn HyperNEAT og ES-HyperNEAT både når ytelse sammenliknes med kjøretid
og antall generasjoner.
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CHAPTER1
Introduction

The biological brain is an incredibly complex system, able to reason and solve
diverse problems. It has inspired the creation of Artificial Neural Networks
(ANNs), simulating the brain’s neurons and synapses. Neuroevolution is one of
the many approaches taken to create such artificial replicas. The field draws
inspiration from natural evolution and generates ANNs through evolutionary
algorithms. Neuroevolutionary methods have proven to generate solutions to
problems of moderate sizes, and can even outperform humans at specific tasks
[Hausknecht et al., 2014]. One such method is NeuroEvolution of Augmenting
Topologies (NEAT) [Stanley and Miikkulainen, 2002]. It evolves the structure of
neural networks and their weights, in contrast to other machine learning methods
that optimize the weights of fixed topologies. Networks evolved with NEAT are
initialized small, and their complexity increases during evolution. The evolutionary
process is terminated when a solution of sufficient quality is discovered so that
the solution is compact. It enables NEAT to adapt to problems of various sizes.

Although the sizes of networks produced by NEAT are adaptive in size, there is
an upper bound for feasible network sizes. NEAT uses a direct encoding, meaning
all nodes and connections are present in the genome. The direct representation,
where the genome’s contents directly map to the produced network, limits the
sizes of networks evolved with NEAT. Since NEAT mutates genomes at a node
and link level, the impact of a random mutation decreases as networks grow.
Gillespie et al. [2017] found that evolution is unlikely to find good weighs for large
genomes evolved with NEAT because the search space is too large compared to
the impact of isolated mutations.

An indirect representation is another way of encoding information about the
solution in a genome. Instead of representing all the information directly, it
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contains the information required to derive the solution. The indirect encoding is
more volatile because a modification to the description may alter the result more
than a modification to the result itself. The impact of isolated mutations can thus
be much more significant with indirect encodings. Indirect representations could
thus be able to evolve more complex networks that what is feasible with NEAT’s
direct encoding. Hypercube-based NEAT (HyperNEAT) [Stanley et al., 2009] is
an extension of NEAT that uses such a representation.

HyperNEAT relies on a predefined fixed topology network, defined in a two-
dimensional space called a substrate. An additional network is evolved with
NEAT and is used to assign weights to the arbitrarily large fixed topology. The
weight-assigning network is called a Compositional Pattern Producing Network
(CPPN) [Stanley, 2007], and assigns weights to connections of a network based
on the network’s node locations. The positions of two nodes are fed into the
CPPN. It then outputs the weight of the connection between the two nodes. A
significant drawback with this approach is that one has to manually construct the
fixed network, which can be an increasingly difficult task for higher complexity
problems. If networks are constructed with poor geometry, high-quality solutions
will be more difficult to discover by evolution [Pugh and Stanley, 2013], leading
to solutions of poor quality.

Evolvable-Substrate HyperNEAT (ES-HyperNEAT) [Risi and Stanley, 2012]
was designed to omit a manually defined topology requirement. The topology
is instead derived through analysis of the weight patterns output by the CPPN.
The topology of the network is thus evolved along with its weights, as in NEAT,
but with an indirect encoding. Without the limitation of a direct encoding, the
networks evolved by ES-HyperNEAT could potentially grow larger and solve more
complex problems. However, when the networks are more extensive, the CPPN
network must logically also be more complex, to support the increased number of
weights to assign. As the CPPN is evolved with NEAT, with a direct encoding, it
may become challenging to evolve sufficiently complex CPPNs.

Pugh and Stanley [2013] found that a single CPPN can struggle to generate
good weights for a network in a single substrate. They propose that the weights
of the HyperNEAT network are placed between multiple substrates, instead of in
a single one. Each pair of substrates can then have a dedicated CPPN output
node generate weights for the connections between nodes in the two substrates.
By distributing the work of assigning weights to multiple CPPN output nodes,
their complexity can be reduced. Instead of having one CPPN output capturing
the entire weight-space, multiple ones can optimize their unique network parts.
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Reduction of the required CPPN complexity will likely also benefit ES-
HyperNEAT because of its similarities with HyperNEAT. The topic of this
thesis is to investigate it by applying multiple substrates to ES-HyperNEAT.
Unlike the multi-substrate extension of HyperNEAT, the topology of substrates
will not be predefined and static. It will be evolved with NEAT, so no manual
construction is required, and the method can dynamically adapt the network size
to the problem’s complexity.

1.1 Goals and Research Questions

The goal of the thesis is as follows:

Goal Investigate how ES-HyperNEAT can be extended with multiple substrates
in an evolving topology, to reduce the required complexity encapsulated by a
single CPPN, and increase adaptation to problems through gradual complex-
ification.

It is desired to distribute the evolved network over multiple substrates and
use one CPPN output node per substrate. Additional CPPN outputs per pair
of substrates will also be used to generate weights for the connections between
substrates. The distribution will reduce the number of weights determined by
a single CPPN output node. It is hypothesized that it is easier to evolve good
weights when a single CPPN node no longer has to encapsulate the entire network’s
weights.

It is additionally desired to evolve the topology of substrates to make the
method dynamically adapt to problems of different complexities. The method
could initially use a single or a few substrates and gradually add new substrates
during evolution. As in NEAT, it should produce a compact solution while also
alleviating manual topology construction.

It is believed that achieving this goal will allow the method to adapt to
problems of different sizes and evolve good weights faster, even when the solution
requires high complexity.

The following research questions are explored to accomplish the goal:

Research question 1 How can the topology in a multi-substrate layout be evolved
in parallel with each of its individual substrates?

Research question 2 How can nodes in different substrates be connected in a
way that allows the layout’s topology to be evolved?

Research question 3 How should the inputs and outputs of the problem be
organized in substrates so that the method can produce the best results?
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1.2 Research Method

The chosen research method comprises three phases. First, an analytical process,
analyzing research within the fields of neuroevolution and HyperNEAT. Hyper-
NEAT related methods and extensions are analyzed, and their traits evaluated.
With the knowledge gathered in the first phase, the second phase comprises the
design and implementation of algorithmic models based on aspects of existing
work and new ideas. In the final phase, experiments are conducted to evaluate
critical aspects of the proposals through simulation. Statistical analysis is used to
evaluate them and for comparison with prior work.

1.3 Structured Literature Review Protocol

This section describes the protocol used to search for and gather relevant literature
to answer the research questions and accomplish the goal described in section 1.1.
The searched terms and sources are first presented in subsection 1.3.1, followed
by the selection criteria in subsection 1.3.2.

1.3.1 Search Terms and Sources

A literature review is initially conducted to gain knowledge relevant to accom-
plishing the goal and answering the research questions. The results of the initial
search mainly define the scope of this work. All the results of the search are
reviewed to make sure that no information is lost. The term hyperneat OR tweann
OR (neuroevolution AND deep) OR (((“indirect encoding” AND network) OR
“architecture search”) AND evolution) is used to search for relevant literature, with
the search engines IEEE Xplore and The ACM Guide to Computing Literature.
Relevant literature, either cited in or citing material from the search, is also
evaluated and included when appropriate.

After the initial literature search is completed, additional literature is gathered
by searching Google Scholar. It is chosen because the search engine indexes many
others, so a single relevance ordered list of results can be reviewed. In contrast to
the initial review, not all results from the additional searches are reviewed. The
initial review is extensive and discovers the methods and knowledge defining the
scope, while later searches refine it.

1.3.2 Selection Criteria

The following inclusion criteria (IC) and quality criteria (QC) are used to select
relevant literature from the search process described in subsection 1.3.1. Extra
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focus is given to methods with indirect encodings or increased depth, although
these features are not required.

IC1 The study’s primary concern is the evolution of both topology and weights of
neural networks.

IC2 The study’s focus is a method, not an application.

IC3 The study’s method does not employ CNN, is not specifically recurrent, and
does not require gradient descent.

IC4 The environments in which the study’s method is evaluated is static.

IC5 The study presents empirical results.

QC1 The study presents a precise aim.

QC2 The study is put into the context of other studies.

QC3 The study reflects on design decisions and their implications.

1.4 Preliminary Process

A research goal was developed by investigating how neuroevolutionary methods
can produce deep neural networks. Initial research focused on neuroevolution with
direct encodings. The focus then shifted to methods utilizing indirect encodings,
as these are able to produce deeper neural networks. Increased depth makes the
networks more complex, which likely enables them to solve more complex problems.
Research into evolving both the topology and weights with an indirect encoding
lead to the discovery of HyperNEAT. The limitation that networks must be
manually constructed was identified, and research into how it has been mitigated
was conducted. It led to the discovery of Evolvable Substrate HyperNEAT (ES-
HyperNEAT) [Risi and Stanley, 2012]. The method introduces the concept of an
evolving substrate, which alleviates manual network construction. However, the
method only utilizes a single substrate, in contrast to Multi-Spatial Substrate
HyperNEAT, which was researched alongside HyperNEAT. Therefore, it was
decided to devote this work to remove limitations that restricted the size of
networks crated with ES-HyperNEAT, specifically extend it to utilize multiple
substrates. It enables the evolution of deeper and more complex networks than in
ES-HyperNEAT. Therefore, it may solve more complex problems.
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1.5 Contributions

The main contribution within this thesis is the introduction of the framework
Deep Evolvable Substrate HyperNEAT (DES-HyperNEAT). It is the combination
of the dynamic node placement from ES-HyperNEAT [Risi and Stanley, 2012] and
an evolving substrate topology that is novel. The framework and implementation
are described in chapter 4.

A contribution is also made to the node search algorithm proposed by Risi and
Stanley [2012], specifically to allow for an identity function between substrates.
These modifications are described in section 4.2.

The final contribution is an open-source implementation of the DES-HyperNEAT
framework. It is available from a public Git repository at https://github.com/
tenstad/des-hyperneat.

1.6 Thesis Structure

The background theory is introduced in chapter 2, and the state of the art
is described in chapter 3. Chapter 4 presents the proposed framework, DES-
HyperNEAT, along with three implementations of it. The conducted experiments
are presented in chapter 5, and the findings are concluded in chapter 6.

https://github.com/tenstad/des-hyperneat
https://github.com/tenstad/des-hyperneat


CHAPTER2
Background Theory

The following chapter presents the background theory for this work. The field
of machine learning is presented in section 2.1 and artificial neural networks in
section 2.2. The background leading up to HyperNEAT is then presented in the
following order: evolutionary algorithms in section 2.3; the field of neuroevolution
in section 2.4; the neuroevolution of augmenting topologies algorithm in sec-
tion 2.5; compositional pattern-producing networks in section 2.6; HyperNEAT in
section 2.7. Finally, a brief comparison between deep learning and neuroevolution
is presented in section 2.8.

2.1 Machine Learning

A machine learning model is like a mathematical function. When it is given one
or more values x, it returns one or more values y, just like the function y = f(x).
Through experience in an environment, the model automatically updates its
internal representation to improve its performance, thereby learning.

This section presents two types of machine learning, supervised learning in
subsection 2.1.1, and reinforcement learning in subsection 2.1.2. The concept of
generalization is then presented in subsection 2.1.3.

2.1.1 Supervised Learning

In supervised learning, input-output pairs, (x, y), are used to train the model. It is
trained to yield the correct output y for each input x by learning the relationship
between the inputs and outputs. These pairs of data are often divided into three
sets: training data, validation data, and test data. The model uses the training

7
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Sepal length Sepal width Petal length Petal width Name

5.1 3.5 1.4 0.2 Setosa
5.4 3.9 1.7 0.4 Setosa
7.0 3.2 4.7 1.4 Versicolor
5.5 2.5 4.0 1.3 Versicolor
6.3 3.3 6.0 2.5 Virginica
5.8 2.7 5.1 1.9 Virginica

Table 2.1: Subset of the Iris dataset. Data from Dua and Graff [2017].

data to learn from and the validation data to evaluate its performance while
learning. The model’s performance is then finally evaluated with the test set,
containing data not used during training. The learning process and the three
datasets are further elaborated upon in subsection 2.1.3.

Classification is a type of supervised learning. The goal is to categorize
instances based on their attributes, often referred to as features. The set of classes
is finite, and each instance belongs to a single class. One approach is for the
model to predict a separate number for each class. The correctness of a prediction
can then be calculated by the mean squared error : 1

n

∑n

i=1(yi − ŷi)
2, where y is

the correct answer, ŷ the prediction, and n the number of examples in the dataset.
It is the square of the distance between the predicted number and the correct
answer, averaged over all predictions.

Instead of predicting a single class id, a probability can be predicted for each
class. When doing so, the output one-hot encoded. [0.1, 0.7, 0.2] is an example
prediction in classification with three classes. The array contains one probability
for each class: 0.1 for the first, 0.7 for the second, and 0.2 for the third. Thus,
the model believes the features it received most strongly corresponds with the
second class, although it is not entirely sure. When the prediction is one-hot
encoded, the cross-entropy loss is commonly used to evaluate the incorrectness of
a prediction. The formula from cross-entropy is

∑m

i=1 −yi · ln(ŷi), where m is the
number of classes in the array.

The Iris dataset [Dua and Graff, 2017] is a classification problem, shown in
Table 2.1. It contains the three flowers Iris Setosa, Iris Versicolour, and Iris
Virginica. Each row in the table is an example from the dataset, a data point.
They contain four measurements of a specific flower and its name. The goal is to
train a model to segment the four-dimensional feature space so that each segment
corresponds with a specific flower. Figure 2.1a illustrates such a segmentation,
although only two of the four dimensions are visualized. Each color represents
one of the tree species, and one can see that most examples from the dataset fall
within their respective segments. When such a class segmentation is learned, the
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model can predict the classes of previously unknown examples. It predicts a new
flower’s class based on the segment surrounding its position.

2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Virginica
Versicolor

Setosa

(a) Proper segmentation

2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

2.5

Virginica
Versicolor

Setosa

(b) Overfitting

Figure 2.1: Iris class segmentation. Instances are plotted with sepal width
along the x-axis and petal width along the y-axis. Data from Dua and Graff
[2017].

2.1.2 Reinforcement Learning

There are no pairs of inputs and outputs in Reinforcement Learning (RL). Instead,
the agent is either rewarded or punished after several actions in an environment.
In RL, the learning entity is often referred to as an agent, rather than a model.
The agent receives some input signals each timestep and performs an action that
leads to the next timestep. At some point, it is informed that it did either good
or bad. It does not know what caused the feedback, so it must learn without
knowing the correct action in every situation. Reinforcement learning can thus be
more complicated than supervised learning. The correct actions for each input
are unknown, so the agent cannot directly learn the relationship between inputs
and outputs.

2.1.3 Generalization

Generalization is an essential aspect of machine learning. A model can easily
remember what it has seen. What is essential is its ability to perform well in
new scenarios. When predicting the output of a never previously experienced
combination of inputs, it has to generalize based on what it has learned previously
and provide a reasonable output.
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When a machine learning model is incapable of reproducing outputs it has
already seen, it is generally not complex enough to capture all the information.
However, when it is too complex or trained too long, it often learns every little
detail about the training data. It is called overfitting and significantly reduces
the model’s ability to generalize beyond the training data.

Figure 2.1 illustrates an algorithms class segmentation in two different scenarios.
In Figure 2.1a, the model has correctly learned where the general class boundaries
lie. Although it might miss some outliers, it captures the general concept and can
generalize to new unseen data. Figure 2.1b has divided the instances into classes
such that every instance is correctly classified. It has been overfitting, resulting
in a complex boundary that is likely not correct. Because it overfits on a few
outliers, it lost the bigger picture and is unable to generalize. Therefore, it likely
performs worse than Figure 2.1a on the test data, even though its performance is
higher on the training data.

To combat overfitting, one can use a validation set to continuously validate
that further training on the training set is beneficial. When the model starts
to overfit, the validation error will increase, and one knows to stop training. A
non-biased performance score can be calculated by evaluating the model on a
separate test set after completing the training. It has to be another piece of
unseen data because the trained model is strongly affected by the training set,
and also the validation set to a certain degree. When evaluating the performance
on the test set, one can see whether the model can generalize.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are simplifications of the neural circuits found
in biological brains, where synapses connect neurons. A neural network is a
directed graph, where each connection between two nodes has an associated
weight, and each node a bias [Goodfellow et al., 2016]. Values are propagated
from input nodes, through the network, to one or more output nodes. The output
value of a neuron, y, shown in Equation 2.1 and Figure 2.2a, is the sum of each
incoming input, xi, multiplied by the corresponding connection weight, wi, plus
the node’s bias, b. The value is finally evaluated by an activation function, f .

y = f
(

n
∑

i=1

wixi + b
)

(2.1)

A neural network can be structured in various ways, although the most common
are a feed-forward networks. Information flows in a single direction within a feed-
forward network, from input to output. They are acyclic and do not possess any
form of memory. Networks are often constructed in layers, as seen in Figure 2.2b.
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Layered approaches are conventional because they can be executed in parallel, and
the reduced topology space is easier to exploit when manually designing networks.
Many nodes, as the one in Figure 2.2a, have been connected into an ANN in
Figure 2.2b. It consists of an input layer, a hidden layer, and an output layer.
Each node is connected to every node in its neighboring layers, making it a dense
network. ANNs can have hundreds of layers or only a few, and there exist many
different types of layers [Goodfellow et al., 2016].

ybx2

x1

...

xn

w1

w2

wn

(a) Single node activation

Hidden
layer

Input
layer

Output
layer

(b) Dense neural network

Figure 2.2: Neural network example. A dense neural network (b) comprising
many individual nodes (a).

2.3 Evolutionary Algorithms

This section presents the genetic algorithm in subsection 2.3.1 and two variations
of it, with indirect encodings in subsection 2.3.2 and speciation in subsection 2.3.3.

2.3.1 Genetic Algorithm

Genetic algorithms draw inspiration from evolution in nature, where the individuals
best fit to the environment are more likely to reproduce and generate offspring.
When two individuals mate, the produced offspring inherits some combination of
the parents’ genetic makeup. The process is not perfect, so the child is not always
an exact combination of its parents.
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Figure 2.3: Genetic algorithm process.

The genetic algorithm [Yang, 2014] simulates these processes from natural
selection in a controlled environment. The environment is represented by a
problem, where the corresponding population represents solutions to the problem.
Figure 2.3 illustrates the different steps of the algorithm. An initial population is
created in the first step. Each individual in the population has some variables
associated with it. These are called genes, and together they form a chromosome.
An example chromosome is the array [0, 1, 1, 0], consisting of four binary genes.
Another individual in the same population could be [0, 1, 0, 1]. The population
of chromosomes is often initialized randomly, but can also be initialized in a
controlled manner.

The next step is to evaluate the population. All individuals are evaluated by
their ability to solve the problem. They are assigned a value that reflects their
performance, called fitness. Based on the individual’s fitness, some are selected
and allowed to mate. This step is called selection, which can be performed in
various ways. Selection methods generally simulate nature by providing the
chromosomes with high fitness a higher probability to mate.

Selected individuals from the previous step are allowed to produce offspring.
The process is called crossover in the genetic algorithm. The parents’ genes are
combined into new sets of genes, forming children. The crossover operation often
resembles the biological mating process, where children’s genes are some random
combination of their parents’. Iteratively copying a gene from either parent is one
of many crossover approaches. With the example chromosomes described earlier,
a crossover between [0, 1, 1, 0] and [0, 1, 0, 1] could with the described method
produce [0, 1, 1, 1]. Both parents share the first two genes. The child’s third gene
was selected from the first parent and the last one from the second parent.

The genetic algorithm has a mutation step, replicating the imperfections
of nature, where children are imperfect combinations of their parents. The
offsprings’ geneses are modified randomly during mutation. With the binary
string chromosome, a mutation operation may be to flip one of the bits, making
[0, 1, 1, 1] into [1, 1, 1, 1]. When the children are mutated, they replace the parents
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and form the next generation. It is additionally common to assure that several
best-fit individuals are not replaced. The concept is called elitism, where some of
the best-fit parents are directly copied into the next generation.

The entire process is then repeated, as shown in Figure 2.3, starting with the
evaluation of the new generation. The evolutionary process is continued until
reaching a stopping criterion, upon which the current population’s best individual
represents the solution found by the algorithm.

2.3.2 Development and Indirect Encoding

When each chromosome directly represents a solution, it is a direct encoding
scheme. The information in the chromosome, the genotype, directly maps to the
solution. Although commonly used in bio-inspired methods, direct encodings
are not grounded in nature. Biological DNA contains a relatively small piece of
information compared to the complexity of the creatures it encodes. Complex
phenotypes are created from smaller genotypes through embryogeny, the growth
process in which the phenotype is developed.

With the inclusion of a process either mapping or developing genotypes into
phenotypes, it is the phenotypes that represent the solutions. Opposed to a direct
encoding, solutions can now be indirectly encoded. The genotypes can be seen as a
description of a solution rather than the solution itself. Use on indirect encodings
introduces an additional step before evaluation, where genotypes are developed
into phenotypes.

Bentley and Kumar [1999] have found that evolutionary computation can
significantly benefit indirect encodings. The indirect encoding enables the genotype
to be magnitudes smaller than the solution it produces, thereby reducing the
search space. Changes in the genotype may be reflected at multiple locations
in the phenotype. Mutations can consequently be more significant than with a
comparable change in a direct encoding. It enables faster traversal in the search
space, but might also become unstable. Features may also be reused at multiple
locations in the phenotype, instead of being discovered at multiple locations
independently.

2.3.3 Speciation

Creatures in nature are divided into species, each optimized to their specific niche.
Individuals within a species share some common traits, making them distinct
from other species. In the fight for reproduction, an individual only competes
with other individuals within the same species, not every individual on Earth.
The same concept can be introduced in the genetic algorithm, where solutions
only compete with other solutions in their near vicinity.
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First, some distance measure has to be determined, either between genotypes,
phenotypes, or between the behavior in an environment. Individuals are then
divided into species based on the distance measure so that the distances between
individuals of the same species are below a certain threshold.

The use of speciation in the genetic algorithm enables certain features. Species
can be optimized separately, almost like separate populations, or they can fight
for resources. The number of offsprings within a species can be determined based
on the species fitness, its age, or its ability to improve. Innovation could also
be rewarded, where new species are allocated more offsprings than old species.
Although concrete implementations vary, the general concept is to group the
population into species based on their similarities.

2.4 Neuroevolution

Neuroevolution draws inspiration from nature, in which complex brains with
billions of neurons and trillions of connections are the product of biological
evolution. Similarly, the field of neuroevolution attempts to evolve Artificial
Neural Networks (ANNs), described in section 2.2, with evolutionary algorithms
[Stanley et al., 2019]. They are though orders of magnitudes smaller than the
human brain. The genetic algorithm presented in subsection 2.3.1 is one of the
many evolutionary algorithms used to evolve ANNs.

Both the direct and indirect encodings, described in subsection 2.3.2, are used
in the field of neuroevolution. The genotype either directly contains information
about all the nodes and connection, or in some way indirectly specify how the
ANN should be constructed. When the genomes are mapped into ANNs, these
can be assigned fitness based on their performance in a task. When using GA,
this process follows the diagram in Figure 2.3. The best ANNs are selected for
reproduction. These are the parents of the next generation, and crossover is
performed on their genomes. The resulting children are then mutated, forming
the next generation.

Methods within this field can be divided into two groups [Xin Yao, 1999]. The
first group constitutes methods that evolve the weights of fixed topology networks.
The topology itself is additionally evolved in the second group.

2.5 Neuroevolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [Stanley and Miikkulainen,
2002] is a method that uses GA with speciation and a direct encoding to evolve
both the topology and weights of neural networks. Networks are initialized small,
and increase in complexity during evolution. Mutations either connect two existing
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nodes or insert a new node into an existing connection, splitting it in two. Both
operations increase the network complexity.

NEAT is built upon three main principles. First, targeting compact solutions
through incremental growth from minimal initialization. Second, while the network
topologies grow, the method keeps track of the innovations that mutate the
topology. It does so to enable the crossover operation to combine the correct parts
in two entirely different network topologies. Finally, NEAT utilizes speciation so
that individuals only compete with similar networks. When new topologies arise,
these therefore have time to optimize their weights before competing with the rest
of the population.

By incrementally expanding the topology while optimizing its weights, the
network complexity is adaptive. If the complexity required to solve a problem is
low, the algorithm can terminate early. If the problem requires a complex solution,
the GA runs for more iterations. Either way, NEAT produces compact solutions,
where the resulting ANN is not more complex than required for a specific fitness.
It may take many generations to reach the required complexity when starting
small, compared to methods that are initialized with some pre-defined topology.
However, early iterations are faster because of the smaller network sizes.

Stanley and Miikkulainen [2002] introduce the concept of global innovation
numbers. Any modification to the network topology is defined as an innovation.
Innovations receive a number that is global for the entire population. The same
innovation inn two different individuals will receive the same innovation number.
Nodes have global ids, so the same innovation means an innovation involving
nodes with the same ids. Each network is represented by a list of link genes,
as illustrated in Figure 2.4d. These genes all have a historical marking, an id
denoting which innovation created it. It is termed a marking when an innovation
number is assigned to a gene. The markings in the genes are used to keep track
of the networks’ elements so that crossover can be performed. The markings
indicate how two different topologies should be combined, even though parts
of the networks have evolved differently. The first time an innovation occurs
in a population, it is given a new innovation number from the global counter.
Whenever the same innovation occurs in another network, the existing innovation
number is assigned to the created gene. Therefore, it is later known that these
two innovations are the same, even though the two topologies may seemingly not
have anything in common. As seen in Figure 2.4d, all genes that connect the
same pair of nodes have the same marking.

The default NEAT implementation has two topological mutations, either
connect nodes or insert new. It can be extended to remove nodes and links as well.
The connect mutation connects to nodes that are not previously connected. It
can be seen in Figure 2.4b, where a mutation connected node c and e in parent B.
If these two nodes were not previously connected in any network, a new historical
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Parent A
1 (2) 3 4 5 8

a→d b→d c→d b→e e→d a→e

Parent B
1 (2) 3 4 (5) 6 7 9 10

a→d b→d c→d b→e e→d e→f f→d c→e a→f

Offspring
1 (2) 3 4 (5) 6 7 8 9 10

a→d b→d c→d b→e e→d e→f f→d a→e c→e a→f

(d) Genes

Figure 2.4: NEAT crossover operation. Offspring (c) is a result of crossover
between parent A and B. Their genes (d) consist of markings and source-target
pairs. Those in parenthesis are disabled. Adapted from Stanley and Miikkulainen
[2002].

marking, 9, was created by incrementing the global innovation number. The gene
[9, c→e] was then appended to the list of genes. If the same mutation were to
happen in parent A, the global innovation 9 would already exist. Therefore, the
global counter is not incremented. The gene [9, c→e] is directly appended to the
gene list.

Node insertions are the second topological mutation. Whenever a node is
added to a network, it is inserted into an existing link. In Figure 2.4b, the node f

has been inserted into parent B’s e→d link. Two new historical markings, 6 and
7, were created because the two links did not already exist in the population. The
two link genes [6, e→f ] and [7, f→d] was then appended to parent B’s genome.
At the same time, the old link gene, [5, e→d], was disabled because e→f→d

now replace e→d. Link e→f received a weight of 1.0, and the weight from e→d

was copied to f→d. Because the first weight is 1.0, it is an identity mapping,
meaning the value is propagated through the network without modification. Thus,
the functionality of the network remains the same even though a new node was
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inserted. Even though the network’s output is initially the same, future weight
mutations will later evolve these weights, and new links may be connected to or
from node f . The node insertion mutation can therefore be seen as a preparation
for future change, even though it does not itself affect the network functionality.

The historical markings simplify the crossover process as there is no need to
search through, compare, and combine the networks based on their topology alone.
When crossover is performed, the genes are lined up based on their marking, as
illustrated in Figure 2.4d. Genes with markings present in both parents are called
matching. These are randomly chosen from either parent and passed on to the
offspring. In contrast, markings only present in one of the parents are passed from
the more fit parent to the child. However, if parents are equally fit, the genes
with unique markings are passed on from both parents. In this case, gene 1 to 5
are matching, and each these are copied from a random parent onto the offspring.
Gene 5 is disabled in parent B, so it is also disabled in the offspring. The rest of
the genes do not match. All are passed on to the offspring because this example
assumes that both parents have equal fitness. Otherwise, only the fitter parent’s
genes are passed on. It would only be gene 8 if A was more fit and genes 6, 7, 9,
and 10 otherwise.

When new topologies arise within the population, they can initially be fragile
because they need time to optimize before yielding good results. Stanley and
Miikkulainen [2002] argue that when competing with the entire population, they
will not survive because new topologies often perform worse initially, even though
their innovation might be a long-term step in the right direction. The NEAT
algorithm protects innovations through speciation, where the individuals mainly
compete within their species. Species are formed based on compatibility distance,
so new innovations are likely to form a new species. This distance measure is
calculated from the number of disjoint genes and the internal difference between
overlapping genes. The population contains a list of species. New individuals
are inserted into the first species where the distance measure between it and the
species’ first individual is below a specific threshold value.

The number of offsprings each species produces is determined by its perfor-
mance relative to the other species. Also, young species are given more offsprings,
and stagnant species are given less. Individuals mainly mate within their species,
but there is a small probability for inter-species reproduction.
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2.6 Compositional Pattern-Producing Networks

Compositional Pattern-Producing Networks (CPPN) [Stanley, 2007] are neural
networks. They consist of nodes and connections, with activation functions and
weights. What makes them different from traditional neural networks is the
plethora of unique activation functions used within the same network. These
activation functions are used to enable the CPPN to generate intricate output
patterns. Gaussian, Sigmoid, Sine, Step, and Tanh are activation functions often
used in CPPNs, where Gaussian and Sine are quite uncommon in traditional
ANNs. The two have unique properties that are likely beneficial for a pattern
production. Sine is used for repetition, a feature that is difficult to accomplish
without a repeating activation function. The Gaussian function is mirrored around
the y-axis, and can therefore generate symmetric patterns.

CPPNs can be evolved with the NEAT algorithm, making them grow more
complex during evolution. NEAT has to be modified to additionally evolve and
randomly mutate an activation function for each of the network’s nodes. No
other modification is required before using NEAT to evolve CPPNs. Because of
the incremental complexification, the produced patterns are initially simple and
become more intricate throughout evolution.

A CPPN can be viewed as a function of n input parameters, yielding one or
more output values. The concept of a pattern arises when the CPPN is queried
for a continuous n-dimensional space. In two dimensions, this can be regarded as

yx

PP

SPP

P

G

(a) CPPN (b) Pattern

Figure 2.5: Compositional Pattern Producing Network. The CPPN (a), with
Gaussian (G), sine (S), and squared (P) as activation functions, generates the
pattern (b). Adapted from Stanley [2007].
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a height-map, where each x, y location has a specific height h. Let G be a grid
with a resolution r, in the area defined by −1 <= x <= 1 and −1 <= y <= 1.
When all the points within G are input to the CPPN, it will provide a pattern
within the output values.

An example pattern is provided in Figure 2.5b. A two-dimensional grid
between −1 and 1 is used. The resolution is 512, meaning the patterns consist of
512 · 512 = 262144 values. To create the illustration, each of these was collected
with a separate execution of the CPPN in Figure 2.5a. The output values were
normalized to produce the image. Within the grid, black illustrates the lowest
values, and white the highest. The CPPN was artificially created but could be
evolved with NEAT.

One of the features within this pattern is that it is circular. It arises from the
sum of x2 and y2, which crates gradually increasing values out from the center,
x = 0, y = 0. The dot in the middle and the ring around it is the works of the
sine function. When x2 + y2 are fed into it, the result is a wave that starts at
zero and moves outwards. The reason why a second ring is not visible is that the
left part of the CPPN, (x2 + y2)2, overshadows the negative output of the sine
function outside a radius of one. The slight variation along x = −y comes from
the fact that both x and y feed into the same node P in the center of the CPPN.
It is only a simple example of a pattern that may arise from a CPPN. Much more
intricate patterns may evolve through evolution.

2.7 Hypercube-Based NEAT

Hypercube-based NEAT (HyperNEAT) [Stanley et al., 2009] is a neuroevolutionary
method that uses CPPNs and an indirect encoding. A static neural network
topology is manually defined, and CPPNs are evolved to assign weight values to
it. For the CPPN to assign weights to the ANN’s connections, the network is
geometrically defined within a two-dimensional grid called a substrate. All the
network’s nodes are manually positioned within the substrate. They are placed
in the range −1 to 1 on the x and y-axis. Figure 2.6b illustrates a network’s
geometry within a substrate. All 12 nodes have a unique (x, y) position within the
substrate. These positions are used to assign weights to the network’s connections.

As described in section 2.6, a CPPN defines an n-dimensional pattern. The
pattern is used to assign weights to ANNs in HyperNEAT. Specifically, a 4-
dimensional pattern is used, meaning the CPPN has four inputs. Such a CPPN
is illustrated in Figure 2.6a, with the four inputs x1, y1, x2, y2, and the output w.
To assign a weight to a connection in the network in Figure 2.6b, the positions of
the two nodes forming the connection, (x1, y1) and (x2, y2), are used as inputs
to the CPPN. The output weight, w, is then assigned to the connection between
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Figure 2.6: HyperNEATweight assignment. The CPPN (a) produces a weight
w for the connection between each pair of nodes (x1, y1), (x2, y2) in the example
network with five inputs and three outputs (b). Adapted from Pugh and Stanley
[2013].

the two nodes in the substrate. Figure 2.6b has 32 connections, so 32 CPPN
executions are required to assign weights to the network. For each pair of nodes
with a connection between them, the CPPN in Figure 2.6a is queried for a weight
value. If the absolute value of the weight is higher than a specific threshold, the
connection is assigned the weight. However, if the magnitude is lower than the
threshold, the connection is deactivated.

Unlike NEAT, HyperNEAT does not explicitly denote all the network’s nodes
and weights in its genotype. The genotype in HyperNEAT encodes the CPPN,
which indirectly determines all the connection weights in the pre-determined static
network. The static networks may contain millions of connections, while the
CPPN only a hundred. Since only the CPPN is evolved, rather than the full-scale
network itself, HyperNEAT is searching in a compressed space. It may enable the
method to evolve the weights of networks that are larger than what is viable with
a direct encoding.

The conventional approach is to organize nodes based on the problem. An
example is shown in Figure 2.6, depicting the network used in a hypothetical
navigation problem. A robot has five distance sensors, left to right, and three
actions: turn left, turn right, and move forward. Based on the problems geometry,
the input nodes are placed evenly along y = −1, corresponding to their real-world
placement. Several hidden nodes are placed at y = 0 and the movement actions
left, forward, right at (−1, 1), (0, 1), and (1, 1), respectively. The network’s
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geometry within the substrate is constructed based on the problem so that the
CPPN may exploit spatial relations among the nodes when assigning weights their
connections. When constructed this way, the pattern may evolve to be symmetric.
When the pattern is symmetric along y = 0, the left and right section of the
network is mirrored. Such a network should work well in the navigation domain,
and will not be as easily to discover without the spatial relationship between the
network and the problem.

The bias of an ANN node is added to the sum of the incoming signals, as
described in section 2.2. Bias can be implemented in two ways in HyperNEAT.
The first approach is to place an extra input node within the substrate and connect
it to all other nodes. A constant value is input to the extra node whenever the
network is executed. Therefore, Connection weights between it and all other
nodes control the bias of the other nodes. Alternatively, the CPPN can have two
output nodes, one for determining weights within the network and another for
determining the bias of all nodes. Although the connections within the substrate
need all four CPPN inputs to be defined, nodes only need two. The bias is
therefore found by executing the CPPN with 0, 0, x, and y as the input. The two
obsolete dimensions are set to 0. The value from the CPPN bias output is then
assigned as the bias of the node at position x, y.

2.8 Deep Learning

Deep Learning (DL) is a type of machine learning that optimizes Artificial Neural
Networks (ANNs) to solve a variety of tasks. The concept deep comes from the use
of hidden layers in the networks, extending them from only an input and output
layer. While there is no concrete definition of what qualifies as deep networks,
they have gradually been constructed deeper and deeper. Toady’s use of the word
generally suggests more than a few hidden layers. Although NeuroEvolution (NE)
can generate deep neural networks, the field of deep learning generally revolves
around the use of backpropagation and gradient descent.

Deep learning methods typically use backpropagation and gradient descent
[Goodfellow et al., 2016] to improve the ANN’s weights gradually. Backpropagation
is a method that calculates the gradient of the loss function. Gradient descent is
the optimization method that updates the ANN’s weights through incremental
steps in the opposite direction of the gradient. The loss function, also known as
error, is a function that calculates how incorrect the model is. It is a function of
the model’s parameters. By computing the gradient of it with backpropagation,
and updating the parameters with gradient descent, the model is strategically
updated. It incrementally improves through small steps in the direction that
reduces error. However, it does require the error function to be differentiable.
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Although both the field of deep learning and neuroevolution are centered
around the construction of neural networks, networks are constructed and opti-
mized differently in the two fields. One fundamental difference between DL and
NE is how the weights of ANNs are optimized. Neuroevolution takes an entirely
different approach and uses evolutionary algorithms to evolve the weights. Each
update is not as targeted as with gradient descent, but there is no need for a
differentiable error function. It makes neuroevolution well suited for Reinforce-
ment Learning (RL), where there is no differentiable error function. Because a
population of solutions is maintained throughout evolution, NE is also much more
exploratory than the single search used in gradient descent.

Another difference between traditional DL and some NE methods is how the
network topology is determined. While some NE methods evolve the topology, it
is common to manually construct networks in layered architectures within the
field of deep learning. Multiple hand-crafted layers are linked together to form
entire networks. Finding the best architectures is a tedious and time-consuming
trial and error process that requires expert knowledge.



CHAPTER3
State of the Art

In contrast to the general introduction to neuroevolution and deep learning in
chapter 2, the following chapter contains details about selected topics and aspects
of state of the art methods. The topics and methods are mainly a result of the
literature review process. Deep neural networks are presented in section 3.1,
the relationship between depth and complexity in section 3.2, and the network’s
encoding in section 3.3. The following sections then focus on HyperNEAT and
various modifications and extensions of it. Network connectivity is presented in
section 3.4. Multiple substrates and CPPN complexity is presented in section 3.5,
followed by a description of the node search used in ES-HyperNEAT in section 3.6.

3.1 Deep Neural Networks

An Artificial Neural Network (ANN) is in itself only a model representation,
independent from its construction and optimization. Deep ANNs (DNNs) have
generally been very successful, able to surpass human performance in domains such
as board games [Silver et al., 2016] and strategic planning [Vinyals et al., 2019].
In the field of Deep Learning (DL), gradient descent has successfully optimized
complex networks with millions of weights [He et al., 2016] but requires the error
function to be differentiable. The network topologies are also typically manually
constructed, requiring a trial and error search process. Methods within the field
of NeuroEvolution (NE) have reached superhuman performance on specific tasks
as well [Hausknecht et al., 2014], but the networks are generally not as deep
and complex as in DL [Such et al., 2017]. However, NE has some desirable
traits generally not found within DL. Many neuroevolutionary methods do not
require the user to design the network topology, as it is done by evolution. NEAT
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[Stanley and Miikkulainen, 2002] and EANT [Kassahun and Sommer, 2005] are
two methods that evolve the weights and structure of neural networks without the
need for human expertise. By maintaining a population of solutions, the search is
also broader than the single targeted search in gradient descent.

Utilizing the benefits within the field of both DL and NE, hybrids have been
proposed. Sun et al. [2018] use the Genetic Algorithm (GA), commonly used in
NE, to generate DNN topologies and gradient descent to optimize their weights.
The method, called GA-CNN, is able to generate architectures that outperform
the compared architectures constructed by humans. It highlights the power of
search within evolutionary algorithms, where a population of solutions in GA can
traverse the architectural search space better than humans.

With the advantages of an automatically evolved topology, an exploratory
search, and without the need for a differentiable error function, neuroevolution
seems like the superior choice compared to gradient descent. However, NE
often struggles with complex problems and large search spaces [Verbancsics and
Harguess, 2015; Such et al., 2017]. Some deep networks have been evolved with
evolutionary algorithms [Such et al., 2017], but they are generally not able to
succeed in the same complexities and depths found in the state of the art within
deep learning.

3.2 Depth and Complexity

NEAT struggle with the large search space of deeper networks [Miikkulainen et al.,
2019]. It is a significant drawback, as deeper networks are advantageous in their
ability to represent more complex functions and solve more complex problems.
Recent advances by He et al. [2016] indicate that deeper networks can yield higher
accuracy, evident by their 152-layered network yielding higher performance than
their shallower networks and other state of the art architectures.

Even though deep networks are beneficial, there is an upper bound where
further depth increase does not increase the performance. In addition to the
152-layer deep network, He et al. [2016] also created a 1202-layered network, which
did not perform as well. They argue it is caused by the deeper network overfitting,
as the data it is trained on do not require such a complex network. The 152-layer
network was sufficiently deep for the given task and further depth increase reduced
performance. Therefore, the challenge is to find the point of optimal complexity,
where the network can learn the domain, but not so complex that it is likely
to overfit. Methods that employ gradual complexification automatically adapts
complexity without the need to test multiple complexities manually. CoDeepNEAT
[Miikkulainen et al., 2019] is one such method. It uses the gradual complexification
from the NEAT algorithm to evolve layer-based architectures. These are then
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trained with backpropagation like any other handcrafted deep learning methods.
Their results indicate that the approach is comparable to handcrafted architectures,
while its automation is advantageous.

Execution time is also worth considering when determining the complexities
of ANNs. More complex networks can capture larger domains, but will also use
more time when predicting an output. In some situations, one would like the
best possible result, no matter how long it will take to produce it. However,
sometimes the execution speed of the network is crucial, and the goal is to achieve
the best possible result in limited execution time. Neuroevolution has properties
that should make it succeed in this area. When execution speed is important,
the ANN topology is essential. One cannot use state of the art DNNs, as these
have too many connections and are computationally heavy to execute. Lan
et al. [2019] show that NEAT is able to evolve a compact object-recognizing
network with few connections, making it efficient enough to be executed on low-
performance hardware. However, they argue that the network could benefit the
use of backpropagation and gradient descent to optimize the final network, as
NEAT might not able to tune the weights sufficiently.

3.3 Network Encoding

Neuroevolutionary methods based on direct encodings, such as NEAT, have issues
optimizing large networks. Gillespie et al. [2017] argue that it may be caused by
the search space being too large compared to the impact of isolated mutations.
When each weight in the network is directly encoded in the genome, a mutation
to a single weight will not substantially impact the output. Therefore, it is highly
unlikely that directly encoded networks will be able to successfully evolve the
weights of networks with the complexities seen in deep learning.

The backpropagation method uses a direct representation. All weights in
the network are represented and updated in each iteration of the algorithm. It
manages to search the large weight spaces that NEAT cannot. It is likely due
to how the updates are determined. The targeted updates in backpropagation,
towards the area that reduces error the most, are able to advance the search. It
is therefore logical that the reason why NEAT cannot traverse the same space is
due to the combination of a direct encoding and evolutionary search. Evolution
can seemingly not handle search spaces at the scale used in deep learning with a
direct encoding.

An alternative to direct encoding is an indirect encoding. With an indirect
encoding, the genome no longer contains all the information about the neural
network, only an indirect description. Indirect encodings enable evolution of
more complex networks with smaller search spaces than direct encodings. They
might be better suited for evolving deep and complex networks with evolutionary
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methods because they can be searched in a compressed space [Koutnik et al.,
2010]. HyperNEAT [Stanley et al., 2009] is an extension of NEAT that uses an
indirect encoding. It is described in section 2.7. The main concept is to evolve a
weight-generating network called a Compositional Pattern Producing Network
(CPPN), described in section section 2.6, with the NEAT algorithm described
in section 2.5. The CPPN is used to assign weights to another network with a
static topology. There is no limit to the size of the static network, Therefore,
a small CPPN genome can define the weights of a much larger network. The
indirect encoding enables the evolution of networks that are much larger than
when evolved with NEAT.

3.4 Network Connectivity

With the manually constructed network topology in HyperNEAT, one can create
thousands of connections. However, not all of them are beneficial for the network.
To allow evolution to control which connections to use, HyperNEAT employs a
threshold technique. If the absolute value of the weight output by the CPPN
is below a certain threshold, the connection is disabled. It allows the CPPN to
determine which connections to include in addition to their weight.

When the same weight output value determines both whether to include the
connection and the weight of it, there is a strong relationship between the two.
Verbancsics and Stanley [2011] propose to decouple a connections presence from
its weight. They argue that evolution has more freedom when two separate
CPPN outputs determine presence and weight. The topology can then evolve
independently from the weight assignments. They accomplish it by extending the
CPPN to include an additional output node. The output provides what is called
a link expression. Connections are only included if their expression value is above
0. The weight value from the other CPPN output node is still used to determine
the weight. The extension is called Link Expression Output (LEO). They found
that evolving the connectivity pattern separate from the weights increase the
performance of HyperNEAT.

Another approach to limiting connectivity is associating a cost with each
connection, proportional to the square of its length. It punishes networks that
have connections between nodes that are far apart. Huizinga et al. [2014] employed
the technique in HyperNEAT, terming it HyperNEAT Connection Cost Technique
(HyperNEAT-CCT). The inclusion of connection cost results in sparser connectivity
within the substrate, where connections are more prone to exist between nodes
that are close to each other. The technique can be combined with either the
weight threshold in the original HyperNEAT or with LEO.

Evolvable Substrate HyperNEAT (ES-HyperNEAT) is an extension of Hyper-
NEAT that automatically constructs a network within the substrate. It is an
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entirely different approach than LEO and CCT, as the method constructs a net-
work instead of limiting the connections within an existing network. It is the other
way around. Unlike traditional HyperNEAT, no network is manually constructed
in ES-HyperNEAT. Only the input and output nodes are positioned within the
substrate. ES-HyperNEAT then determines the hidden node’s positions and the
connections between nodes based on the weight pattern produced by the CPPN.
Networks are constructed based on the variance within the pattern. Connections
are formed so that the variance between their weights are high. It ensures that
connections do not have uniform weights, while also alleviating manual network
construction. The method is described in detail in section 3.6.

3.5 Multiple Substrates and CPPN Complexity

When the output of a single CPPN is used to assign weights to an entire network
in HyperNEAT, as described in section 2.7, it must be able to produce complex
patterns. Each connection within the substrate is defined within a four-dimensional
space between −1 and 1 on each axis, by the positions of the two nodes it is
between. If a network with thousands of connections is defined within a single
substrate, the CPPN must produce adequate weights for all of them. It may
become an issue when constructing networks with many nodes tightly placed
within the substrate. All weights are determined by the four-dimensional CPPN
output pattern, called the hypercube. Connections that are spatially near each
other in the network are assigned weights that are near each other in the hypercube.
If these nearby connections should ideally have very different weights, the CPPN
must produce a hypercube pattern with distinct and complex transitions. The
required complexity of such a function makes it difficult to learn, and it might
not even be reachable by evolution.

The method Multi-Spatial Substrate (MSS) [Pugh and Stanley, 2013] extends
HyperNEAT from a single substrate to network construction across multiple
substrates. Pugh and Stanley [2013] proposed that inputs and outputs that are
not correlated should be placed in separate substrates. It would simplify the
manual construction of networks in HyperNEAT, which becomes difficult with
many input, output, and hidden nodes. They also argue that by grouping related
inputs and outputs, evolution can more easily discover good weights.

Nodes are still manually placed, but now distributed among multiple spatially
independent substrates. Figure 3.1 illustrates the same network as in Figure 2.6b,
only divided among three separate substrates. Connections are between substrates
instead of within substrates. Each pair of substrates are allocated a unique CPPN
output node. The CPPN still has four inputs, but the number of weight output
nodes is increased. The weight-producing CPPN used to determine the weights
of the network in Figure 3.1 will have two outputs. One determines the weights



CHAPTER 3. STATE OF THE ART 28

x

y

-1

1

-1 1

x

y

x

y

Input nodes

Hidden nodes

Output nodes

Figure 3.1: Multi-Spatial Substrates. Adapted from Pugh and Stanley [2013].

between input and hidden nodes and another the weights between hidden and
output nodes. These two weight producing CPPN output nodes create separate
hypercubes, independent from each other. The nodes can share substructure
within the CPPN, they can connect to the same groups of hidden nodes, but also
be entirely independent.

When multiple hypercube patterns assign weights to different parts of the
constructed network, they do not need to encapsulate the weights of the entire
network. Their complexity can thus be reduced because they only need to
optimize their separate are of the network. Pugh and Stanley [2013] designed
an experiment with a robot with multiple sensors and actuators. Some of the
sensors were of different types, and their corresponding input nodes were therefore
put in separate substrates. The CPPN could then optimize the use of different
sensors independently. They found that distributing the network among multiple
substrates, and thus the complexity among multiple CPPN outputs, improved the
performance of HyperNEAT significantly. Solutions to the problem were found in
over 80% of cases with MSS, compared to only 50% in the best single-substrate
network.

The use of multiple substrates is not only limited to the robotic experiment
performed by Pugh and Stanley [2013]. Any HyperNEAT network can be divided
among multiple substrates, regardless of the topology and input types. More
generally, when reducing the number of weights determined by each CPPN,
their complexity can be reduced. By distributing the network among multiple
substrates, the complexity of the hypercube pattern can be divided over multiple
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hypercubes. Each optimizes their separate part of the network, and together
optimize the entire network. Such a separation may be beneficial in any network
containing many connections, not only when there are multiple correlated groups
of inputs and outputs.

Deep HyperNEAT [Sosa and Stanley, 2018] is another method that uses
multiple substrates and CPPN output nodes. Although similar to MSS, two
aspects separate the two methods. Only input and output nodes are manually
placed in substrates in Deep HyperNEAT, and the number of substrates increases
during evolution. No hidden nodes are specified, as only substrates containing
input and output nodes are determined a priori. Deep HyperNEAT starts with
direct connections between these. During evolution, new substrates are added
in-between existing connections between substrates. The inserted substrates
contain nodes at pre-determined positions, which are connected to the nodes in
the two substrates they are inserted between. As in NEAT, an identity mapping
is created so that the addition of a new substrate does not affect the functionality
of the network. Details about such identity mappings are described in section 2.5.
Another mutation duplicates a substrate and all the connections from and to
nodes within it. The outgoing connections from the two substrates are halved
so that the network retains the same functionality, but can later evolve the two
substrates separately.

The CPPN in Deep HyperNEAT has one output for each pair of connected
substrates. As new substrates are added to the network, new output nodes are
added to the CPPN. These output nodes are connected in a way that enables
new substrates to be added without disrupting the network output, as described
earlier. It is accomplished by copying existing parts of the CPPN when duplicating
substrates. New output nodes are also manually connected when a substrate is
added, so that it produces an identity mapping output pattern.

Although Deep HyperNEAT alleviates manual positioning of nodes and con-
nections, their positions are still predetermined and not adapted during evolution.
The network topology does change when a new substrate is added, but the posi-
tions of nodes within the new substrates are the same each time. As HyperNEAT
determines the weights based on the node’s positions, these must be placed in
a way that enables the CPPN to learn good weights. If nodes are placed inade-
quately, the CPPN might not be able to produce a pattern that intersects the
correct hypercube positions with the correct weights.
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3.6 ES-HyperNEAT Node Search

Evolvable-Substrate HyperNEAT (ES-HyperNEAT) [Risi and Stanley, 2012] is
the topic if this section. Unlike the previous, the section presents a detailed
description of a method, not a topic. ES-HyperNEAT is an extension of Hyper-
NEAT that determines the network’s topology based on the pattern produced by
the Composition Pattern Producing Network (CPPN). The original HyperNEAT
method is described in section 2.7. It evolves a CPPN to assign weights of a
network that is manually constructed in a substrate. However, ES-HyperNEAT
only requires that the input and output nodes are placed within the substrate,
as the hidden nodes and all connections are determined by implicit information
within the evolved CPPN’s output pattern.

Risi and Stanley [2012] present the idea that because the CPPN determines
all the weights in HyperNEAT, implicit information within its output weight
pattern could also provide insight into the nodes’ placements. Each point in the
four-dimensional pattern represents a connection, and thereby two nodes. The
pattern is analyzed to find points of interest. Selected points correspond with the
included connections in the network. If points in uniform areas are selected as
connections in the network, the connection’s weights will be similar. When all
outgoing connections from a node have the same weight, the propagated value will
be the same for all of them. The authors argue that multiple uniform connections
are redundant and that points within areas of high variance should instead be
selected. They therefore propose a search algorithm that finds points in areas
of high variance in the hypercube. They construct a network with the substrate
nodes and connections that correlate with the selected hypercube points.

Iterative network completion is the name of the algorithm used to construct
networks in ES-HyperNEAT. A detailed description, along with pseudo-code, is
available in their publication [Risi and Stanley, 2012]. The algorithm essentially
constructs a neural network between the predefined input and output nodes, based
on an evolved CPPNs’ weight pattern. As the name suggests, it is an iterative
algorithm. The input nodes are the starting point, and these are used in the first
iteration. From each node, the pattern is searched for potential connections. If any
are found, the target nodes are added to the substrate, and the connections are
created. The new nodes are then searched in the next iteration, further increasing
the depth of the constructed network for each iteration. However, no cycles are
allowed, so they may not connect to nodes from earlier iterations. If no new nodes
are discovered in an iteration, or the iteration limit is reached, no more iterations
are performed. A final search within the pattern is then performed to determine
the hidden nodes that should be connected to the output nodes.

The node search is the main element within the algorithm. It takes the position
of a node as input and yields all the nodes it should be connected to as output,
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along with the connection weights. The four-dimensional CPPN weight pattern
is the basis for the search, where each point (x1, y1, x2, y2) corresponds with a
connection between a node at position (x1, y1) and another at (x2, y2). Two of
the four dimensions are specified by the x and y position of the searched node.
The searched pattern is therefore two-dimensional, where the two axes correspond
with the x and y value of the potential target nodes. Points within areas of
high variance in this pattern are chosen, and the point’s positions and values are
returned. The positions of the selected points within the pattern becomes the
positions of nodes added to the substrate. The weight at the selected positions
in the pattern becomes the weights of the connections between the search-input
node and the newly added nodes.

The values of the weight patterns are not initially known. The CPPN has to
be executed to find the value of each point within it. To avoid that the CPPN is
executed an unnecessary amount of times; a quad-tree search is used instead of a
fine grid. The two-dimensional pattern is divided into four quadrants, and the
value of each center is queried from the CPPN. When a section is divided into
four, the node is said to be expanded. These sections are then each further divided
and also their center values queried from the CPPN. Each section is a node in the
quad-tree, with the four sections it is divided into as children nodes. The root of
the tree is at the center of the entire pattern, and its children the four segments
the entire pattern is divided into. Figure 3.2a illustrates the segments after fully
expanding the tree, where the red dots are leaf nodes in the quad-tree. Regardless
of the variance, nodes are always expanded until a specific quad-tree depth, initial
resolution, is reached. Only the nodes with high variance are expanded further,
and no nodes are expanded past the max resolution depth limit. The section sizes
therefore vary in the illustration, where certain nodes are expanded deeper than
others. The sections with low variance are larger because they have not been
expanded as much.

When the quad-tree expansion phase is finished, the collection phase begins.
Starting at the root node, nodes are extracted if the variance between all leaf
nodes below it are below a specific threshold. If not, the same test is performed
for all of its four children. The result is that nodes in areas of high variance are
extracted at a deeper level than those in uniform areas. More nodes are therefore
included from areas of higher variance.

The final phase is the band pruning phase, where nodes that are not in a band
are discarded. Bands are areas that differ from their surroundings, like a valley
through an otherwise flat surface. The white and black rings in Figure 3.2b are
bands. The function β = max(min(dtop, dbottom), min(dleft, dright)) determine
the band value, where the d values are the difference between the value at the
current position and its neighboring sections. All positions with β below a certain
threshold value are discarded. Figure 3.2b shows the result of band pruning.
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(a) Variance based point selection (b) After band pruning

Figure 3.2: ES-HyperNEAT point selection. The points (a) are distributed
based on variance within the pattern, with higher density of points in areas of
high variance. Points outside bands are then pruned (b). Adapted from Risi and
Stanley [2012].

The remaining positions, the red dots, are inside the pattern’s bands. These are
the nodes that should be connected to the node at the position the search was
performed from.

As mentioned earlier, the search is used in every iteration of the iterative
network completion. A different weight pattern, as the one in Figure 3.2b, will be
searched for each node in each iteration. The same CPPN generates all patterns.
However, the patterns are different for each node because of the node’s different
positions. Each search then potentially yield new nodes that are added to the
network and searched in the next iteration. Finally, when no more nodes are
discovered, or the iteration limit reached, the output nodes are connected. It is
also a search, but different from all the others. Instead of searching for outgoing
connections, it is a search for incoming connections. The positions of the output
nodes are therefore searched, and if any nodes are discovered, they are connected
in reverse. Because they are searched in reverse, the CPPN is provided with
x, y, xn, yn, instead of xn, yn, x, y, where n is the searched position. It is so that
the direction of the searched connections are correct when the search is reversed.
When the output nodes are connected, the network is fully constructed. Finally,
any node not on a path between input and output nodes are excluded from the
network, as they do not affect its functionality.



CHAPTER4
Model

The following chapter introduces the proposed model, Deep Evolvable Substrate
HyperNEAT (DES-HyperNEAT). A description of the DES-HyperNEAT frame-
work is given in section 4.1, followed by the modifications made to the node
search from ES-HyperNEAT in section 4.2. Three different implementations
of the framework are presented and compared in section 4.3: Layered DES-
HyperNEAT (LaDES), Single-CPPN DES-HyperNEAT (SiDES) and Coevolu-
tional DES-HyperNEAT (CoDES). Design choices are discussed in section 4.4,
and implementation details are given in section 4.5.

4.1 DES-HyperNEAT

This section describes the DES-HyperNEAT framework proposed in this work. It
is itself not a concrete method, but a general framework that can be implemented
with various approaches. Subsection 4.1.1 introduces the framework. The con-
figuration of inputs and outputs is presented in subsection 4.1.2. Details about
the evolving layout and CPPNs are given in subsection 4.1.3 and subsection 4.1.4.
The assembling process is described in subsection 4.1.5.

4.1.1 Introduction

The novelty of DES-HyperNEAT is the extension of ES-HyperNEAT [Risi and
Stanley, 2012], from network construction within a single substrate, to network
construction across multiple substrates. The new approach essentially evolves deep
neural networks by evolving and combining multiple ES-HyperNEAT-networks,
in an evolved topology.
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Figure 4.1: Terminology. A network (b) is assembled within a layout (a).

In the context of ES-HyperNEAT, a substrate is a two-dimensional space that
contains neural network nodes. It provides a common spatial reference point
for the nodes and acts as a work surface on which networks are constructed.
Input and output nodes are manually positioned at specific positions within the
substrate, and ES-HyperNEAT essentially constructs a neural network between
the placed input and output nodes.

DES-HyperNEAT expands upon ES-HyperNEAT by using multiple substrates,
which are spatially independent of each other. Figure 4.1a contains three such
substrates. They are organized as a graph, with paths connecting them. A
configuration of substrates and paths is termed a layout. A network, as shown
in Figure 4.1b, is assembled within each layout in each generation. When doing
so, multiple hidden nodes are created and connected in each hidden substrate.
The nodes within different substrates are also connected together. As seen in
Figure 4.1, two connections are created for each of the two paths in the layout.
In this case, a connection cannot be created between the input nodes and the
output node directly because the layout does not contain a path between the
input substrate and the output substrate. To separate the two graph types in
Figure 4.1, the terminology substrate, path, and layout is used to describe the
topology of substrates. In contrast, node, connection, and network are used for
the ANNs that are evolved during this process.

Both input nodes and output nodes can be placed in multiple substrates
in DES-HyperNEAT, as in Multi-Spatial Substrate HyperNEAT. The layout in
Figure 4.1a has two input nodes within one substrate and an output node within
another. Substrates containing input nodes are called input substrates. Those
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containing outputs are output substrates, and substrates with no input or output
nodes are called hidden substrates. When layouts are initialized, they only contain
input and output substrates. They are then evolved with NEAT, described in
section 2.5, which inserts new substrates and connects paths between them. As
in ES-HyperNEAT, CPPNs are used to assemble networks. In DES-HyperNEAT,
one CPPN is assigned to each substrate and each path, and is used to assemble
that part of the layout in each generation.

initialize layouts
and CPPNs

configure I/O

assemble
networks

evaluate
network

stop?

evolve layouts
and CPPNs

ANN

no

yes

Figure 4.2: DES-HyperNEAT overview.

DES-HyperNEAT’s process is illustrated in Figure 4.2. The first step is to
position input and output nodes in substrates, represented by configure I/O in
the figure. The population is then initialized with layouts containing these input
and output substrates, along with a CPPN for each substrate. After initialization,
the process then enters the main loop within the figure. A network is assembled
in each layout, using its assigned CPPNs. They are assembled similarly to in
ES-HyperNEAT, by determining nodes and connections based on the weight
output pattern of the CPPNs, described in section 3.6. The assembled networks
are then evaluated in the next step, and their fitness contributed back to the
individuals that assembled them. If the stopping criterion, the diamond within
the figure, is not reached, a new generation is created. The fittest individuals are
selected for reproduction, and crossover performed on their layouts and CPPNs.
Both the children’s layouts and CPPNs are then mutated. The mutations insert
substrates and paths into the layouts and also add nodes and connections to the
CPPNs. The process then continues the same loop over and over again, until
the stopping criterion is reached. When doing so, the process ends, and the
population’s fittest ANN is returned.
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4.1.2 I/O Configuration

Similar to ES-HyperNEAT, the input and output (I/O) nodes are manually
positioned within substrates in DES-HyperNEAT. As in MSS-HyperNEAT [Pugh
and Stanley, 2013], the nodes can be positioned in multiple substrates. The
number of substrates used, and the nodes’ positions within these, is referred to as
the I/O configuration.

The I/O configuration requires that all input and output nodes are placed
in substrates. All nodes must be present, and a node cannot be placed more
than once. Substrates can not contain both input and output nodes. Nodes may
be placed alone in a substrate or grouped together. The I/O configuration is
manually predefined and remains static for all generations.

An example is given in Figure 4.3, with three inputs and a single output. It
represents a domain with three inputs and one output, and such a network will
be evolved with the configuration. Inputs are configured along y = 0 in a single
substrate, and the output is placed at (0, 0) in another. The configuration consists
of one input substrate and one output substrate, which is the starting point for
evolving the layout.

Output

Input

Figure 4.3: I/O configuration.

4.1.3 Layouts

Input and output substrates from the I/O configuration are used to initialize each
layout. All layouts contain the I/O configuration. As stated, the layouts are then
evolved using NEAT, inserting new substrates and connecting the substrates with
paths. Substrates and paths are called layout elements. A result of evolving a
layout with the I/O configuration of Figure 4.3 is presented in Figure 4.4a, where
seven elements have been added. Two hidden substrates have been inserted and
five paths connect the four substrates.

Layouts are the basis for assembling neural networks. They determine the
substrates that should be included and how these should be connected. They also
determine which CPPNs should be used to assemble each element. In Figure 4.4b,
the layout in Figure 4.4a has been assembled into a neural network. Networks
have been assembled within each hidden substrate. Connections have also been
created within each path, connecting everything together. As seen in the figure,
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Figure 4.4: An evolved layout (a) and the network (b) assembled within it.

connections between substrates may only be created within paths, and in the
direction of the path. Additionally, all connection weights are multiplied by the
weight of the path they are created within.

In addition to evolving the substrates and paths, the NEAT algorithm evolves
a depth-limit value within each substrate. The value is displayed within each of
the four substrates in Figure 4.4a. The value is used when assembling networks,
limiting the depth of the network assembled within substrates. These are randomly
mutated and included in the crossover operation between layouts. The depth-limit
is evolved between 0 and the max substrate depth hyperparameter. However, it
is fixed at 0 for all input and output substrates. The layout in Figure 4.4a has
depth-limits one and three in its hidden substrates. These depths are reflected in
the corresponding sub-networks in Figure 4.4b, where the depth of the networks
within each substrate is less or equal to the depth limit.

Similarly to ES-HyperNEAT, DES-HyperNEAT uses CPPNs to assemble
networks within substrates. DES-HyperNEAT also uses CPPNs to determine
the connections between substrates. Each substrate and path must therefore
have some CPPN assigned to it. How each layout element is assigned a CPPN is
not strictly defined in DES-HyperNEAT. The method is defined as a framework,
where this aspect differs between implementations. However, DES-HyperNEAT
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requires that a CPPN output node must be assigned to each layout element, and
the CPPNs are evolved in parallel with the layout. This is further elaborated
upon in subsection 4.1.4.

4.1.4 CPPNs

Compositional Pattern Producing Networks (CPPNs) [Stanley, 2007] are neural
networks that produce four-dimensional patterns. In HyperNEAT, the produced
patterns are used to determine the weights of connections, as described in sec-
tion 2.6. As Figure 4.5 illustrates, they have four inputs, x1, y1, x2, and y2, and
one output, w. The inputs are the positions of two potential nodes, relative to
the substrates they each are within. The output, w, outputs the four-dimensional
pattern over the four inputs. The pattern value at the coordinate corresponding
to the four inputs determine the weight of the connection between the two nodes
(x1, y1) and (x2, y2). The box labeled “CPPN” is an abstraction for all the hidden
nodes and connections within the network.

DES-HyperNEAT uses CPPNs, which have have two use-cases. The pattern
produced by a CPPN output node assigned to a substrate is used to assemble
the networks within that substrate, as in ES-HyperNEAT. Likewise, the pattern
from an output node assigned to a path is used to determine connections between
nodes in the two substrates connected by that path. In Figure 4.4, the CPPN
output assigned to the left-most hidden substrate is used to assemble the network
within the left-most substrate in Figure 4.4b. The CPPN output assigned to
the top left path is used to connect nodes within the mentioned substrate to the
output node, where two connections are created in the path.

As mentioned, the DES-HyperNEAT framework does not define how the
CPPNs are configured and evolved, only that each layout element must be
assigned a CPPN output node. These can be unique to each element or reused.
They can all be part of the same large CPPN, or from multiple CPPNs. The
CPPNs can be part of the same genome as the layouts, or external. Three
different implementations are described in section 4.3. The implementations all
differ in the mentioned aspects. The layered approach embeds a unique CPPN in
each substrate and path. The single CPPN approach maintains one large CPPN
alongside the layout in each genome, with a unique output node assigned each
layout element. The coevolutionary approach uses an entirely separate population
of CPPNs, where each layout element references a species in the CPPN population.
However different, they all share that all substrates and paths in some way have
been assigned a CPPN output node, and that the CPPNs are evolved alongside
the layouts.

In DES-HyperNEAT, the weight pattern from CPPNs are analyzed for the
connections to create, rather than the querying the CPPN for the weights of pre-
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Figure 4.5: DES-HyperNEAT CPPN. Adapted from Pugh and Stanley [2013].

determined connections. Similarly to ES-HyperNEAT [Risi and Stanley, 2012],
the weight pattern is searched to determine the positions of nodes and their
connections within a substrate. The process is described in detail in section 3.6,
and used to assemble networks. It is an algorithm that iteratively creates new
nodes within a substrate. Each iteration searches for new nodes within the
substrate by analyzing the CPPN produced weight pattern. An existing node’s
position is input to the search algorithm. It then outputs is the position of all
nodes that should be connected to the searched node. The search additionally
returns the weights of all the connections. Unique to DES-HyperNEAT, the
patterns are also searched for connections between substrates. Subsection 4.1.5
describes how networks are assembled across all substrates in a layout.

4.1.5 Assembling Networks

Layouts are the basis for assembling networks. They must be assembled in a
topologically sorted order, meaning a substrate cannot be assembled before all
paths pointing to it are assembled. Paths can also not be assembled until its
source substrate has been assembled. A topologically sorted order of the substrates
and paths composing the layout in Figure 4.7 is denoted by the # beside each
element. Since the layout is acyclic, there is always at least one valid ordering.
An ordering must be found before assembling each layout in each generation. The
exact ordering does not matter as long as it is a valid topological sorting.

Figure 4.6 and Figure 4.8 show the steps taken to assemble a network inside
the layout in Figure 4.7. The topological order of substrates and paths directly
relates to the steps shown in Figure 4.6 and 4.8, where one layout element is
assembled in each step.

The first element to be assembled is substrate #1 in Figure 4.7. Substrates are
assembled with the iterative network completion algorithm from ES-HyperNEAT,
which is described in section 3.6. When no more nodes are discovered, or the
search has reached the max depth determined by the substrate, that substrate
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is completely assembled. Since the depth value in substrate #1 is zero, zero
iterations are performed, and nothing happens in Step 1.

Step 2 and 3 in Figure 4.6 assemble paths #2 and #3 in Figure 4.7. Paths
are also assembled with the iterative network completion algorithm, though only
with a single iteration. The search for new nodes is performed from all nodes in
the source substrate. If the search returns any positions, nodes are added to the
target substrate at these positions. They are then connected to the node in the
source substrate from which they were discovered. A node at position p is said to
be discovered when a node search yields the position p, and it is discovered from
the node at the position used as input to the search.

Step 2 consists of a single iteration with three searches for nodes in the target
substrate, one search from each of the nodes in the source substrate. Figure 4.6b
shows the result of the three searches in this step. The search from node a returns
a single position. A node is added to that position in the target substrate. It is
then connected to a, the node it was discovered from. Similarly, a single node is
also discovered from, and connected to, b. The third and final search does not
return anything, so no more nodes are added to the target substrate. Therefore,
node c has no outgoing connections after Step 2.

Only one of the two paths to substrate #6 has been assembled at this point.
Path #5 in Figure 4.7 has yet to be assembled. Therefore, substrate #6 cannot be
assembled at this point. The process returns to the input substrate and assembles
the other outgoing path from the input substrate, path #3, in Step 3. This step
is very similar to Step 2, except that one node, h, is discovered from two different
nodes, b and c. These can be seen in Figure 4.6c, where both node b and c is

(a) Step 1

a b c

(b) Step 2

a b c

h

(c) Step 3 (d) Step 4

Figure 4.6: Multi-substrate iterative network completion part 1. The first
four steps where layout in Figure 4.4a is iteratively developed into the assembled
network in Figure 4.4b.
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connected to h. h is originally discovered from b, then later re-discovered from c.
A connection is created between c and h even though h already exists.

#1

#6 #4

#9

depth 0

depth 3 depth 1

depth 0

#2 #3

#5

#7 #8

Figure 4.7: Topologi-
cally sorted layout. Or-
der denoted by #.

When a node is re-discovered, a connection is
always created if a path is being assembled. However,
if a substrate is assembled, it is only connected if the
node was initially discovered the same iteration that
it was re-discovered. This is to avoid cycles within
the substrates. It is not an issue when assembling
of paths, because the layout itself is acyclic. No
cycles can therefore be formed when connecting nodes
in different substrates in accordance with the path
directions.

The substrate that was connected to the input
substrate in Step 3 is then assembled in Step 4. All
its inbound paths have been assembled at this point.
Two additional nodes are discovered in the first itera-
tion in this substrate. Because the depth of substrate
#4 is one, only a single iteration is performed. Step
5 in Figure 4.8 searches for nodes in the left-most
substrate, from all four nodes in the right-most sub-
strate. A single existing node is discovered and then
connected.

Step 6 is the only step with three iterations, as substrate #6 specifies a depth of
three. The first iteration searches from e and f , both discovering k and connecting
to it. The second iteration only searches from k, because e and f have already
been searched. l is discovered, connected, and then searched in the third and
final iteration. The only discovery when searching from l is a re-discovery of f .
Because f was initially discovered in another iteration, connecting it will cause a
cycle. It is therefore not connected.

Step 7 and 8 in Figure 4.8 are special because the assembled paths, #7 and
#8 in Figure 4.7, connect to an output substrate. The node search that discovers
nodes only search locations formed by a quadtree, meaning all potential node
discoveries follow a distinct position pattern. As there is no guarantee that the
output nodes are manually placed in locations discoverable from the node search,
these paths are also assembled in reverse. The reverse search enables output nodes
to connect to nodes in other substrates, regardless of the output node positions.
The concept is further described in section 3.6 and is a central part of the iterative
network completion from ES-HyperNEAT [Risi and Stanley, 2012]. Paths with
output substrates as target substrates are therefore searched both ways, and any
overlapping connections are merged.

Path #7 and #8 both point to an output substrate. Therefore, they are
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Figure 4.8: Multi-substrate iterative network completion part 2. The final
four steps.

searched both directions; from all nodes in both the source substrate and the
output nodes. The assembling of path #7 and #8 is shown in Figure 4.8c and
Figure 4.8d, where two connections are created in each search. In Step 8, either
the output node is discovered from the nodes in the source substrate; the nodes in
the source substrate are discovered from the output node; or both. The final step
is not shown, as substrate #9 has depth zero, and zero iterations are therefore
performed.

When all the layout elements are assembled, any nodes not on a path between
input and output are removed because they will not contribute to the network. The
node labeled i in Step 8 is therefore removed. After pruning, the network is fully
assembled. The network assembled in this process is illustrated in Figure 4.4b.

4.2 Modified Node Search

This section describes the modification made to how node positions are discovered,
based on implicit information in the produced CPPN weight patterns. The original
search from ES-HyperNEAT [Risi and Stanley, 2012], described in section 3.6,
has been modified with the primary goal of enabling the possibility of an identity
mapping. Such a mapping will for any search at position (x1, y1) yield exactly one
node at position (x2, y2), such that x1 = x2 and y1 = y2. It is the same concept
as the identity mapping with a weight of 1.0 in the NEAT algorithm, described in
section 2.5, although between substrates instead of nodes.

Support for an identity mapping is created so that a substrate can be placed
in-between two existing substrates in the substrate topology, similar to how nodes
are inserted in the NEAT algorithm [Stanley and Miikkulainen, 2002]. When
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(a) Prior network (b) Post substrate insertion

Figure 4.9: Identity mapping between substrates. A substrate is inserted into
the layout (a), resulting in (b). An identity mapping is created between the two
hidden substrates, so that the functionality of the network remains unchanged.

nodes are inserted in NEAT, they split an existing connection, creating two new.
One of them keeps the old weight value. The other weight is set to 1. The
connection with weight 1 is an identity mapping that ensures minimal disruption
to the network output.

DES-HyperNEAT’s substrate topology is evolved with the NEAT algorithm.
To avoid that insertion of a new substrate disrupts the network output, an identity
mapping between substrates is created. Since the connections between substrates
are determined by the node search from ES-HyperNEAT, the search must support
an identity mapping. The search is therefore modified such that this mapping
is possible to construct. Figure 4.9 visualizes this identity mapping. When a
substrate is inserted into the layout in Figure 4.9a, the CPPN assigned to the new
path is modified such that it produces an identity mapping pattern. The result
is displayed in Figure 4.9b, where two horizontal connections with weights 1.0
connect the two nodes in the existing hidden substrate to the same exact locations
in the newly inserted substrate. Since the CPPNs assigned to the other two paths
remain the same, the connections from and to the input and output nodes remain
unchanged. The functionality of both networks in Figure 4.9 is thus the same,
even though one has an additional substrate.

The formula Gaussian(7.5 · (7.5x1 − 7.5x2)
2 + 7.5 · (7.5y1 − 7.5y2)

2) is used
to create the identity mapping pattern. The function is created in the CPPN
whenever an identity mapping is wanted between two substrates. When sliced
in two dimensions, at x1 = a and y1 = b, it creates a small point at (a, b).
Figure 4.10a illustrates such a two-dimensional slice, where x1 = 0.125 and
y1 = 0.125. It has a white point at (0.125, 0.125). The point has a weight value of
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(a) Identity pattern slice (b) Searched pattern slice (c) Quad-tree

Figure 4.10: Searched identity mapping pattern. An identity pattern slice is
searched (b) with a quad tree (c). The four-dimensional pattern is searched at
x1 = 0.125 and y1 = 0.125, resulting in a two-dimensional slice (a) with a spot
with positive values at that position. Inspired by Risi and Stanley [2012].

1.0, in an otherwise uniform weight space represented by the black color. The node
search algorithm is modified so that the point in the weight space is discovered as
a node, and no other nodes are discovered.

When determining if a node or its children in the quadtree should be extracted,
the original algorithm, used in ES-HyperNEAT, checks if the variance among
the leaf nodes, 1

k

∑k

i=1(w̄ − wi)
2, is above the variance threshold. wi are the leaf

nodes’ weights, and w̄ is the mean weight value. If a quadtree was expanded to
a depth of 4 within the pattern in Figure 4.10a, there would be 63 nodes with
weight 0.0 and a single node with weight 1.0. Figure 4.10 illustrates this, where
the nodes within the quadtree are visualized both within the pattern (b) and as
a separate tree structure (c). In Figure 4.10c, nodes with borders surrounding
them are leaf nodes. The borders are colored based on the node’s depth within
the quadtree. Although not all nodes in this quadtree are expanded to the depth
4, there is only a single node with weight 1.0 among the 10 leaf nodes. The node
with weight 1.0 is the one positioned inside the white spot in Figure 4.10b and
the third node at the bottom row in Figure 4.10c. The original ES-HyperNEAT
search would determine that the variance within the quadtree’s root node is low.
Therefore, the node with weight 1.0 would not be extracted. Only the root’s four
children, the layer at depth 1 in Figure 4.10c, would be extracted with the original
method.

The search is modified to use the formula maxki=1(w̄ − wi)
2 instead of the

variance among leaf nodes. It does no longer matter that only a single leaf node
is different from the rest, because the max difference from the mean value is used.
The node within the white spot in Figure 4.10b is therefore extracted even though
it is outnumbered by a large number leaf nodes with uniform values.
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Another modification to the algorithm is that all tree nodes are used in the
previously mention formula, not only leaf nodes. The point of interest, with
weight 1.0, can be at any depth-level in the quadtree. If the identity pattern were
searched at x1 = 0.5, y2 = 0.5 instead, the node with weight 1.0 would be one
of the root’s children in Figure 4.10c. The formula must therefore use all nodes
within the quadtree and not only leaf nodes for the node with weight 1.0 to be
discovered.

The final modification is that weight values are normalized before the variation
metric is calculated. It is accomplished by dividing the variation by the max
absolute difference between the discovered weight values. The formula becomes
maxki=1(

w̄−wi

wmax−wmin

)2, where wmax and wmin are the max and min weight value
discovered in the quadtree. The modification emphasizes actual variation in the
weight pattern regardless of the size of the variation. When normalized, the
identity mapping CPPN output may work even when the activation is changed
from Gaussian. Since the pattern is normalized, it is the difference between
minimum and maximum value within the pattern that matters. The pattern does
not have to be between 0.0 and 1.0, as with Gaussian.

To summarize, three modifications are made. The max difference is used
instead of the mean difference; weight values from all tree nodes are used instead
of only leaf nodes; and the weight space is normalized during the search. These
three modifications can all be toggled on or off, resulting in 8 combinations.

Finally, a minor modification to NEAT was created, so that identity-mappings
only are created between hidden nodes. The modification is made because the
ES-HyperNEAT identity mapping does not work for any position, only those in
the quadtree. As there is no guarantee that nodes in input and output substrates
are at these locations, the mapping is only guaranteed between hidden substrates.
Because nodes in these substrates are discovered with the node search, they will
always be at locations where the identity-mapping works. When inserting a node
C between A and B in the original NEAT method [Stanley and Miikkulainen,
2002], the weight between A and C is set to 1.0. The weight between C and B

remains the old value between A and B. These weight assignments are slightly
modified so that the identity function is between C and B instead of A and C if
A is an input node.

4.3 DES-HyperNEAT Implementations

This section describes the three implementations of DES-HyperNEAT in detail. As
stated, they all use NEAT to evolve the layouts, but differ in their implementations
of CPPNs. They are named Layered DES-HyperNEAT (LaDES), Single-CPPN
DES-HyperNEAT (SiDES), and Coevolutional DES-HyperNEAT (CoDES).
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Figure 4.11: Layered DES-HyperNEAT. Each circle labeled a to l represents a
unique CPPN instance.

4.3.1 Layered DES-HyperNEAT

Layered DES-HyperNEAT (LaDES) embeds a unique CPPN in each of the layout’s
substrates and paths. Figure 4.11 illustrates two layouts, where each substrate
and path has a circle representing a CPPN. The individual CPPN’s are labeled
a to l. The implementation is called layered because each element in the layout
contains a CPPNs. Thus, there are two layers of graphs, where each node and
edge at the upper level contains an entire graph at the lower level. Thus, the
layouts constitute the upper level, and the CPPNs the lower level. The CPPN in
each layout element is structured as the one in Figure 4.5, with four inputs and a
single output. The produced weight output is used to assemble the layout element
containing the CPPN. In Figure 4.11a, CPPN a and b are used to assemble the
two input substrates. CPPN d and e are used to assemble the two paths, and
CPPN c is used to assemble the output substrate.

A single speciated population is evolved with the NEAT algorithm. A genome
consists of a layout, with a CPPN genome in each element, as shown in Figure 4.11a.
Whenever the layout is mutated, all its CPPNs are also mutated. Layout A and
B in Figure 4.11 are similar, although an additional substrate has been inserted
into layout B. As with the regular NEAT algorithm, described in section 2.5, each
element has an id that enables the correct elements to be matched during crossover.
Whenever crossover is performed between the two layouts, their substrates and
paths are matched by id. For each matching element, crossover is performed
on their CPPNs. When performing crossover on layout A and B in Figure 4.11,
the CPPN in the child’s output substrate will thus be the result of crossing over
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CPPN c and h. Likewise, CPPN d and j will be crossed over, and the result
inserted into the child layout’s left path. Crossing over two individuals thus
combines both layouts and the CPPNs. The pattern produced by a child’s CPPN
is a combination of the patterns produced by its parents. The distance measure
used for speciation is also a combination of both layouts and CPPNS, where
the distance between each matching substrate and path also encompasses the
difference between their CPPNs.

As elements in the layout are matched based on their id, crossover is only
performed on CPPNs within two substrates, or paths, with the same id. In
Figure 4.11, crossover may be performed on CPPN c and h, as the substrates
they are within have the same id. In this case, they are both output substrates.
CPPN c will never be crossed over with CPPN f or j. Thus, it can be regarded as
multiple CPPN groups exist within the population of Layered DES-HyperNEAT
individuals. There is one such grouping of CPPNs for each substrate id and path
id. CPPN c and h is part of the same group, as are d and j. The CPPNs in
each group share historical markings, but are totally independent of the other
CPPN groups. In the population, there is one state of innovations and marking
ids for the layouts themselves. Additionally, a state is maintained for each id in
the layout. It enables the CPPNs evolved to assemble the output substrate to be
completely independent of CPPNs used to assemble any other substrates. Each
area of the assembled network can thus optimize individually.

Whenever innovations are evolved in a layout, the new elements receive new
historical markings from the NEAT algorithm. A new CPPN is initialized and
put inside each of the new elements. A new state for CPPNs is also created
for each new historical marking in the layout. When the substrate containing i

was inserted into Figure 4.11b, the CPPNs i and k were initialized. As it is the
first time this exact innovation occurs within the population, two new states are
created alongside CPPN i and k. The next time a substrate is inserted between
an individual’s output substrate and right-most input substrate, the innovation
already exists within the layouts’ innovation log. It has already occurred within
the population. As in NEAT, the new substrate thus receives the same id as the
one inserted into Figure 4.11b. Additionally, the two CPPN states are not created,
as these also exist from the first innovation. Instead, the CPPN in the inserted
substrate becomes part of the same group as i. Likewise, the CPPN inserted into
the new path is part of the same group as k.
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Figure 4.12: Single CPPN DES-HyperNEAT. The elements in the layout (a)
are each assigned a unique output node in the CPPN (b).

4.3.2 Single CPPN DES-HyperNEAT

Single CPPN DES-HyperNEAT (SiDES) is inspired by MSS HyperNEAT [Pugh
and Stanley, 2013], where a single combined CPPN is used to assemble all layout
elements. The single CPPN is illustrated in Figure 4.12b. It has the usual four
inputs, but has three outputs instead of one. It has three outputs because the
layout it is used to assemble, in Figure 4.12a, has three elements. Each substrate
and path is assigned a unique CPPN output node. In Figure 4.12, the bottom
substrate is assembled with the pattern produced by output node wa. The top
substrate is assembled with wb, and the path is assembled with wc.

The genome in this implementation contains both the topology and CPPN.
Whenever a new substrate or path is created in the topology, new output nodes
are added to the CPPN. The number of output nodes in an individual’s CPPN
therefore increases linearly with the number of elements in its layout. NEAT
is used to evolve both graphs at the same time. Two states of innovations and
markings are maintained, one for layouts and another for CPPNs. The mutation
and crossover operations are performed on the layout and CPPN separately. The
distance between genomes, used for speciation, is the sum of the distance between
two individual’s layouts and CPPNs.

A downside with a single CPPN is that the entire CPPN has to executed
when only the value of a single output node is queried. This problem is omitted
by extracting the different output nodes into separate CPPNs before networks
are assembled. In this process, each output node is copied out from the CPPN,
and all the nodes it depends upon cloned with it. The output nodes can then be
executed separately, although their functionality remains the same. Separating
the CPPNs is also time consuming, but enables rapid execution of each output
value. The extracted clones are discarded once the network is assembled.
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Figure 4.13: Coevolutional DES-HyperNEAT. Each element in a layout (a)
references a species in the CPPN population (b). A random individual from the
referenced species is selected in each element.

4.3.3 Coevolutional DES-HyperNEAT

Coevolutional DES-HyperNEAT (CoDES) evolves two populations with NEAT
simultaneously, layouts and CPPNs [Stanley, 2007]. It is an application of
coevolutionary concepts from CoDeepNEAT [Miikkulainen et al., 2019] in DES-
HyperNEAT. Since NEAT employs evolution through speciation, each population
is divided into multiple species. As illustrated in Figure 4.13b, each substrate
and path in the layout reference one of the species in the CPPN population,
illustrated in Figure 4.13a. A randomly selected CPPN individual from each
of the referenced species is selected to assemble the corresponding part of the
layout in each iteration. The same CPPN can be used to assemble multiple
elements, if its species is referenced multiple times. An example selection is shown
in Figure 4.13c. The bottom substrate in the layout references species 1, so either
a or b is selected at random. In this case, a is selected for both the input and
output substrates. The path references species 3, and the CPPN individual g is
randomly selected from it.

The main concept is that new CPPNs are selected each time the layout is
assembled. Therefore, the elements are not assembled by the same CPPN every
generation. The same CPPN individual can also be reused, to assemble multiple
elements in the same or different layouts. Assigning fitness is a challenge because
multiple CPPN individuals contribute to assemble a single network. When the
assembled network is evaluated, the fitness is then returned to both the layouts and
the CPPNs that are used to assemble it. Fitness is assigned as in CoDeepNEAT,
where the fitness of a layout or CPPN is the average fitness of all assembled
networks to which they contribute. Each layout is developed once, so the fitness
of a layout is the fitness of the network assembled inside it. The fitness of a CPPN
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is the average fitness of all networks it was used to assemble, regardless if it was
assigned to assemble a single or multiple elements within the networks.

The coevolutional approach initializes all the CPPNs at the beginning, and no
new are created during evolution. In contrast to the other two implementations,
newly created layout elements do not receive new CPPNs. Instead, CoDES assigns
an existing species within the CPPN population, and an existing CPPN is used
when assembling the new layout element. It also makes the manually constructed
identity function discussed in section 4.2 useless, as there is no way it can be
assigned to the correct path. The identity mapping is therefore not used in this
implementation. CoDES therefore disrupts the network functionality whenever a
new substrate is inserted.

LaDES SiDES CoDES

Genome

CPPN genomes
embedded in each
element in the
layout genome.

Layout genome and
CPPN genome
concatenated.

Separate
populations with
layout genomes and
CPPN genomes.

Fitness
assignment

Accurate Accurate Less accurate

Number of
outputs in each
CPPN

1
Equal to number of
elements in layout.

1

CPPN reuse No Somewhat Yes

CPPN
initialization

A new CPPN is
initialized when a
layout element is
created.

A new output node
is added to the
CPPN when a
layout element is
created.

CPPNs are only
initialized the when
algorithm starts.

Identity
mapping

Yes Yes No

Implementa-
tion

Two-layered NEAT.
Each substrate and
path at contains an
entire CPPN.

NEAT with two
networks in each
individual.

Two populations
evolve with NEAT,
in parallel.

Table 4.1: Implementations comparison.
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4.3.4 Comparison

The three implementations are compared in Table 4.1. Layout genomes and CPPN
genomes exist within the same individual in LaDES and SiDES. CoDES uses two
separate populations, where each layout element references a species in the CPPN
population. Fitness can therefore be accurately assigned in LaDES and SiDES,
because a single individual determines how the network is assembled. However,
in CoDES, multiple individuals contribute, and the exact fitness contribution
from each CPPN individual is unknown. Averaging fitness over all the assembled
networks an individual contributes to introduces some randomness, so the fitness
assignment is less accurate in CoDES.

LaDES and CoDES both use CPPNs with a single output node, while SiDES
use one large CPPN with multiple outputs. A combined CPPN, with multiple
outputs, enables output nodes to share common substructure within the CPPN.
The same CPPN can therefore somewhat be reused to assemble multiple layout
elements. However, it is not the same explicit reuse as in CoDES, where multiple
layout elements can reference the same CPPN species. LaDES has no reuse,
meaning the CPPNs used to assemble different layout elements are entirely
independent. Nothing can be reused, but has to be evolved separately for separate
layout elements. If good CPPN structures are evolved in SiDES, or a good CPPN
is evolved in CoDES, these can utilized to assemble multiple layout elements.
However, it may also be a disadvantage. Different CPPN outputs in SiDES might
conflict and not be able to optimize at the same time when they share hidden
nodes. Also, multiple uses of the same CPPN in CoDES might create redundancies
within the network, adding complexity without improving performance.

A unique aspect of CoDES is that CPPNs are never created during evolution,
meaning new substrates use existing CPPNs instead of initializing new. LaDES
initialize an entirely new CPPN for each layout element, while CoDES adds a
new output node to the existing CPPN. Since a CPPN is not initialized when
inserting a substrate in CoDES, it does not support the identity mapping. There
is no way to guarantee that CPPN with the identity mapping function is assigned
the newly created path.

LaDES require that NEAT is extended to two layers, which increases the
implementation complexity. CoDES is also complex, because the two populations
must evolve in parallel. However, SiDES only require minor modification to NEAT
for it to evolve two networks in each individual.

4.4 Design Choices

Important choices made while developing the DES-HyperNEAT framework are
discussed in this section. The reason why DES-HyperNEAT is proposed as a
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framework instead of a method, is discussed in subsection 4.4.1. The depth and
complexity of networks within substrates are discussed in subsection 4.4.2.

4.4.1 Framework

DES-HyperNEAT is designed as a framework to enable comparisons between
multiple approaches. All the properties in Table 4.1 factor into the performance
and implementation complexity. The three proposed implementations all have
some properties that are thought to be beneficial, and others that might be
disadvantageous. The three implementations presented in section 4.3 are chosen
because they all have promising features, and each represents unique aspects.
By evaluating and comparing all three, insight into which features benefit DES-
HyperNEAT can be gained. An additional benefit is that when comparing methods
that represent multiple aspects of each property, it might also be apparent how
the features impact DES-HyperNEAT.

4.4.2 Search and Depth Limits

While developing the implementations, it was discovered that nodes sometimes
connected to almost every other possible node in the substrate. The increased
amount of nodes and connections slowed down evolution. Both the node search
algorithm’s and network execution’s runtime increase with the number of connec-
tions. It was observed that this property affected the reproducibility of results,
especially when the performance was measured after a specific time-period. Two
countermeasures were employed to avoid that some abnormally complex networks
emerged and slowed down evolution. The number of nodes expanded in the
node search quadtree was limited to 256, and the number of nodes discovered
when searching a single node was limited to 32. These numbers are chosen as
they seemingly can limit too many connections without impacting performance.
The quadtree search explores top-down and is stopped when reaching the node
expansion limit. Only the 32 outgoing connections with the highest absolute
weight are selected when limiting discovered nodes.

Depth limits within substrates are employed when assembling the networks
within substrates, for two reasons. First of all, more computation is required to
evolve deeper networks. If the complexity of a deeper network is not required, it
should not be created. The second reason is that substrate can limit the depth
even though the CPPN used to assemble it produces a weight space, that when
assembled with the iterative network completion algorithm, yields a deep network.
Instead of the algorithm stopping at the iteration where no more nodes are
discovered, it is stopped at the depth limit determined by the substrate. Different
substrates might require different depths, so this value is evolved separately in
each one.
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It is decided to lock the depth limit of input substrates at zero. It is to directly
distribute the network’s input signals among multiple substrates. If a complex
network is formed within the input substrates, the input signals will be processed
before reaching any hidden substrates. Critical information might be lost if the
networks in input substrates perform poorly. When the depth is zero, no new
nodes are discovered in the input substrates, and the input signals are thus directly
distributed to the hidden substrates.

4.5 Implementation Details

This section briefly elaborates upon the implementation details of some of the
methods and the simulator. The custom implementation of both methods and
the simulator is discussed in subsection 4.5.1, the representation implemented for
the NEAT algorithm is presented in subsection 4.5.2, and the activation functions
used in CPPNs are presented in subsection 4.5.3.

4.5.1 Custom Implementation

The proposed framework DES-HyperNEAT, and the three implementations, are
complex and require extensive modification to aspects of NEAT. The layered
DES-HyperNEAT implementation requires that the NEAT algorithm has two
layers, where each node and link on the upper level contains an entire network
that is also evolved. The single CPPN approach requires that two NEAT networks
are evolved simultaneously and that a mutation in the layout updates the CPPN.
The coevolutionary approach requires two separate populations and customized
fitness assignments. In addition to the three implementations, the search for nodes
in ES-HyperNEAT is also modified.

Because of the extensive modifications required to existing algorithms, it was
decided to create the entire implementation from scratch, instead of extending
existing code implementations. It was to gain full control over the simulator and
all the implemented methods. With the opportunity to design everything, the
parts were created with a modular design. It enabled that the NEAT algorithm
could be easily extended to support the three custom implementations. Therefore,
it simplified the DES-HyperNEAT extension as a whole, compared to extending
an existing ES-HyperNEAT implementation.

4.5.2 Representation

Stanley and Miikkulainen [2002] describe the NEAT algorithm with a list of
connection genes. It has been implemented as a HashMap, enabling fast lookup
for any connection based on the two nodes it connects. An additional data
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structure is used to lookup outgoing connections from any node. It is used when
assembling the genome into a neural network. Based on the HashMap of outgoing
connections, a topologically sorted order of nodes and edges is created. It is
transformed into a separate neural network representation, which can then be
executed element for element in linear time. Although the genome representation
may differ from common implementations, the linear execution time is not novel.

4.5.3 Activation Functions

The activation functions presented in Table 4.2 were implemented for the CPPNs.
These are adapted from earlier work [Green, 2006; McIntyre et al., 2017]. Exp is
limited to x values below 1.0, to avoid large values.

None x

Linear











1.0, if x ≥ 1.0

−1.0, if x ≤ −1.0

x, otherwise

Step

{

1.0, if x > 0.0

0.0, otherwise

ReLU

{

x, if x > 0.0

0.0, otherwise

Exp

{

ex, if x < 1.0

e, otherwise

Sigmoid 1

1+e−x

Tanh tanh(x)

Gaussian e−(2.5x)2

OffsetGaussian 2.0 · e−(2.5x)2 − 1.0

Sine sin(2x)

Square x2

Abs |x|

Table 4.2: Implemented activation functions. Formulas adapted from Green
[2006] and McIntyre et al. [2017].



CHAPTER5
Experiments and Results

The experiments conducted to gain knowledge and provide answers to the research
questions are the topic of this chapter. An introduction to the types of experiments
and how they are presented and conducted is given in section 5.1. The preliminary
testing is then presented in section 5.2, the experimental plan in section 5.3, and
the experimental setup in section 5.4. Finally, results from the four experimental
phases are presented and discussed in section 5.5 - 5.8.

5.1 Introduction

The following section describes how experiments are presented and conducted,
and how results are collected and presented. All experiments are defined by
experimental parameters, outlining the experiment. They may additionally have
some hyperparameters controlling the methods.

5.1.1 Experimental parameters

An example experiment comparing NEAT, HyperNEAT, and ES-HyperNEAT is
presented in Table 5.1. Its experiment number is presented in the top right corner
and its title in the text below the table. All four key-value pairs are experimental
parameters. They define the experiment. The three methods are evaluated in
their ability to learn the Iris, Wine, and Retina datasets. The comma-separated
list notation illustrates the grid of parameters that is executed. All combinations
of values within the lists are executed, while the parameters with single values
are static in all executions. Table 5.1 defines that three methods, three datasets,

55
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Exper iment X.1

method [NEAT, HyperNEAT, ES-HyperNEAT]
dataset [Iris, Wine, Retina]
stop criterion 200 generations
repeats 50

Table 5.1: Example experiment 1: Experimental parameters.

and a single stopping criterion is tested, which are nine combinations in total. All
of these each run for 200 generations and are repeated 50 times.

5.1.2 Hyperparameters

In addition to the experimental parameters, experiments may have some hyper-
parameters defined. These can either be static or part of a parameter search.
A large number of hyperparameters make a complete grid-search infeasible, due
to the enormous search space. Therefore, when determining parameters, it is
decided to adopt some from earlier work and only test those expected to impact
performance significantly. Parameters are also tested in batches to reduce the
search space further. Those that are thought to be correlated are tested together.
The hyperparameters with the highest expected impact are determined first.
Tested parameter grids are initially rough and refined through multiple iterations
of testing. Initial values are selected based on earlier work, to reduce the number
of iterations required to discover optimal values.

An example parameter search experiment is presented in Table 5.2. The top
part of the table contains experimental parameters described in subsection 5.1.1.
The middle determines that the activation function Sigmoid is overwriting the
default activation function in this experiment. The table additionally contains
batches with hyperparameter grids. Each batch is performed by running all
combinations of the experimental parameters, static hyperparameters, and batch
hyperparameters. Batch 1.1 thus comprises 1200 individual runs: all combinations
of methods, datasets, population sizes, and species targets, each running for 120
seconds, and each repeated 50 times.

When all runs in a batch iteration are complete, the average performance of
each combination is calculated. The top three or more combinations of batch
parameters are then reviewed for each combination of experimental and static
parameters. With two methods and two datasets, this results in reviewing 12
combinations when the top three in each are compared. The batch parameters
within these top 12 combinations are then evaluated based on the number of times
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Exper iment X.2

method [NEAT, HyperNEAT]
dataset [Iris, Wine]
stop criterion 120 seconds
repeats 50

activation function Sigmoid

Batch 1.1
population size [100, 400]
species target [None, 10, 20]

Batch 1.2
population size [75, 200]
species target [8, 12]

Batch 2
add node prob. [0.05, 0.15, 0.25]
add edge prob. [0.05, 0.15, 0.25]

Table 5.2: Example experiment 2: Parameter search.

NEAT HyperNEAT

Iris
0.988 {p.size: 100, s.target: 10} 0.960 {p.size: 100, s.target: 10}
0.986 {p.size: 400, s.target: 10} 0.959 {p.size: 100, s.target: None}
0.986 {p.size: 100, s.target: 20} 0.956 {p.size: 100, s.target: 20}

Wine
0.662 {p.size: 100, s.target: 20} 0.510 {p.size: 100, s.target: 10}
0.661 {p.size: 100, s.target: 10} 0.498 {p.size: 400, s.target: 10}
0.601 {p.size: 400, s.target: None} 0.495 {p.size: 100, s.target: 20}

Table 5.3: Example results. From batch 1.1 in Table 5.2

they appear and the performance of the combinations in which they appear.
Table 5.3 provides example results, where the 12 combinations are compared.

The top three combinations of batch parameters are displayed for each combination
of method and dataset. In this case, the population size 100 is part of 9 of the
12 combinations in batch 1.1, implying it generally performs better than 400.
The value 100 scores well and is part of all four top combinations of methods
and datasets. The area surrounding 100 is therefore further tested in the batch’s
next iteration, batch 1.2. However, if there were no significant fitness differences
between the combinations containing 100 and 400, one of them would be selected.
The described process is conducted for each parameter in each batch iteration.
The search is complete when a single value is selected for each hyperparameter.
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5.1.3 Results

Results presented within tables are from the final populations, after reaching
the stopping criteria. Values are gathered from the individual with the highest
validation fitness within a population. The presented mean values are averages of
all repeated runs. Graphs also present mean values for all runs. The number of
times an experiment is repeated is presented in the table defining the experiment.
The standard deviations (SD) within the samples are presented alongside the
mean values.

Where a p-value determining significance is presented, p < 0.05 is regarded
as significant. The p-value is the result of a Welch’s t-tests when the means of
two samples are compared, and Two-Factor ANOVA with replication where the
effect of a change is measured over more than one variable [Devore and Berk,
2007]. Thus, to see if model A performs significantly better then model B on a
single dataset, the t-test is used. However, if the models are compared in multiple
datasets simultaneously, the Two-Factor ANOVA test is used.

5.2 Preliminary Testing

This section describes the preliminary tests conducted to find good hyperparame-
ters. The goal is not to optimize the parameters to a specific method or problem.
It is instead to find a single set of parameters that achieve good results across
all the following methods: NEAT, CPPN, HyperNEAT and ES-HyperNEAT.
Such parameters are thought to be a good baseline for comparing the three
implementations of DES-HyperNEAT.

All three implementations of DES-HyperNEAT use the same set of parameters.
They are so similar that a parameter set optimal for one of them is likely also the
optimal set for the others. However, a deliberate choice is made not to include
any of the three proposed implementations in this search. As the goal of the
two first phases of experiments is to investigate how the unique properties of
each one impact the framework, a single set of parameters is used. If each one
were individually optimized, it would be difficult to distinguish the difference
in implementation from the difference in parameters. If a set of parameters
were optimized to work well with all three, it would be difficult not to bias the
value choices towards favoring some of them. Therefore, to give them all a fair
evaluation, the parameters used are the ones that work well for the methods
they are built upon. It will not result in them performing their absolute best,
but will enable analysis of their properties. After evaluating the properties of
DES-HyperNEAT, a new parameter search will be performed to optimize the
chosen implementation and configurations of it.

The NEAT algorithm and algorithms building on NEAT are affected by a large
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number of hyperparameters. These can be divided into two categories: general
and method-specific parameters. The general parameters affect the population,
its division into species, and how the species interact and reproduce. These are
not limited to a single algorithm, but general to the evolution of any population
divided into species. The method-specific parameters regard a specific method,
such as NEAT and ES-HyperNEAT.

DES-HyperNEAT uses aspects of ES-HyperNEAT, which in turn uses CPPNs,
using the NEAT algorithm. To find the hyperparameter set for DES-HyperNEAT,
the parameters will be determined from the bottom up. Meaning the general
parameters will be decided first, then the ones introduced by NEAT, CPPN, and
ES-HyperNEAT. In each of the four phases of the parameter search, the methods
used for evaluation will be the ones using the currently optimized parameters.
When determining the general and NEAT parameters, they will be evaluated
using all three methods. When the CPPN parameters are determined, only CPPN
and ES-HyperNEAT will be used. Finally, only ES-HyperNEAT will be evaluated
when determining the parameters introduced by ES-HyperNEAT. The parameters
selected in each of the four parameter search phases are presented in Table 5.4.
DES-HyperNEAT uses all these parameters, though they are categorized by the
methods that introduce them.

It is decided to use time as stopping criteria, instead of the number of gen-
erations, because the different methods differ a lot in time per generation. The
parameter searches are run for 30 seconds. This duration is chosen because
many combinations of methods and datasets increase fitness the most during this
time. How they converge after longer training is not regarded when comparing
parameters in the preliminary testing. Because they mostly do not overfit during
this training time, they are scored based on training fitness for the entire dataset.
The preliminary testing is the only experiment performed without a validation
set for determining fitness.

Three datasets are chosen: Iris, Wine, and Retina. Iris and Wine [Dua
and Graff, 2017] are two class prediction datasets with 4 and 13 attributes,
respectively. Both data sets contain three classes. They are chosen because they
are commonly used in machine learning, and they differ in difficulty and their
number of attributes. Additionally, the Iris dataset has inputs of similar types,
while the input types differ in Wine. The inputs are all length measurements
in Iris, and unique attributes with different units of measurement in Wine. The
Retina experiment [Kashtan and Alon, 2005] used by Risi and Stanley [2012] is also
chosen because it has been used in previous work and has distinct relationships
between inputs.

The parameter search is performed as described in subsection 5.1.2. Selected
values are the result of iteratively testing various parameter grids. All the
tested combinations throughout the parameter search are presented in Table A2
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General

population size 100

species target 8

survival ratio 0.2

initial mutations 100

asexual reprod. prob. 0.25

NEAT

add node prob. 0.03

add link prob. 0.2

remove node prob. 0.006

remove link prob. 0.08

initial link size 0.5

link mutation size 0.5

link mutation prob. 0.9

CPPN

mutate bias prob. 0.8

mutate bias size 0.03

mutate activation prob. 0.1

activations [Tanh OffsetGauss Gaussian Sine Sigmoid]

ES-HyperNEAT

division threshold 0.03

variance threshold 0.03

band threshold 0.3

Table 5.4: Resulting hyperparamaters from preliminary testing. All parame-
ters are used by DES-HyperNEAT, although they are categorized by the methods
that introduce them.

- A5. Table 5.4 presents the resulting set of values. These parameters are
chosen for analyzing the DES-HyperNEAT framework, by comparing the three
implementations. After one of them is selected and properties of the framework
configured, a new parameter search will be performed to optimize it, based on
the parameters selected in this search.

5.3 Experimental Plan

The conducted experiments are divided into four phases. A description of each
phase, and its purpose, is presented in Table 5.5. Hypotheses are formed in
each phase to define their purpose further and contribute to the discussion of
results. These hypotheses are presented in their respective sections and numbered
separately in each phase. Experiments are globally numbed.
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Phase 1: DES-HyperNEAT implementations

Experiment 1: Compare and analyze the three model implementations

Gain knowledge about the simultaneous evolution of substrate topologies and
networks within each substrate. Specifically, which of the three implementations
best evolves CPPNs and layouts, and why.

Phase 2: Identity mapping

Experiment 2: Evaluate the three node search modifications

Experiment 3: Determine if an identity mapping is required

Determine whether any of the modifications to the node search are beneficial,
and if an identity function is required to successfully evolve a network across
multiple substrates.

Phase 3: DES-HyperNEAT tuning

Experiment 4: Determine depths in I/O substrates

Experiment 5: Determine depths in hidden substrates

Experiment 6: Evaluate I/O configurations

Experiment 7: DES-HyperNEAT parameter search

Investigate the impact of different substrate depths, both in I/O substrates and
hidden substrates. Additionally, determine how to create well-performing I/O
configurations. Finally, perform a parameter search to optimize parameters to
the implementation selected in phase 1 and the findings of phase 3.

Phase 4: Related methods comparison

Experiment 8: Compare NEAT and HyperNEAT related methods

Compare DES-HyperNEAT to NEAT, HyperNEAT, and ES-HyperNEAT, to
evaluate DES-HyperNEAT in the context of similar methods within the field.
Determine whether the incremental method complexity in HyperNEAT,
ES-HyperNEAT, and DES-HyperNEAT is beneficial compared to the simpler
methods they build upon.

Table 5.5: Experimental plan.



CHAPTER 5. EXPERIMENTS AND RESULTS 62

Datasets Based on Activation Fitness function

Retina Mean square error Tanh 1− 1

n

∑n

i=1

1

m

∑m

j=1
(yij − ŷij)

2

Iris and Wine Cross-entropy loss Softmax e

1

n

∑n
i=1

∑m
j=1

yij ·ln(ŷij)

Table 5.6: Fitness functions.

The experiments will be executed with the same datasets as in the preliminary
testing: Iris, Wine, and Retina. Validation fitness and accuracy, network complex-
ity, and execution speed will be collected in each experiment. This data is analyzed
to gain insight into how different combinations of methods and configurations
work, beyond what can be concluded from the fitness alone. Each experiment is
repeated at least 50 times to gain reliable results and standard deviations.

5.4 Experimental Setup

All experiments are performed on a single Intel Xeon E5-2630 v2 core. The
default hyperparameters used in all experiments are presented in Table A1. If
any hyperparameters are defined within an experiment, these are used instead of
the default values.

The fitness functions used for different datasets, and the output activation
functions of the networks, are presented in Table 5.6. The functions are based on
mean square error and cross-entropy loss. n is the number of examples within the
dataset and m the number of values in each target. y is the correct target, and ŷ

is the network prediction. Iris and Wine are one-hot encoded so that each of the
three prediction classes has a separate output node.

The datasets are divided into training and validation sets, with a validation
fraction of 0.2. They are randomly shuffled before doing so, and the random
selection is the same for all experiments. The training set is used to train the
methods, while they are continuously evaluated with the validation set. Test
sets are not used because the validation set never affect the training. Instead of
stopping when the validation performance decreases, a separate stopping criterion
is used, limiting either time or number of generations.

All 256 combinations of the Retina dataset [Kashtan and Alon, 2005], shown
in Figure 5.1, are used. It is a classification experiment, where the left and right
part of the retina are independently classified. For each side, the pattern is either
part of the objects listed or not. The prediction is thus two booleans for each
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Figure 5.1: Retina experiment. The patterns within the left and right part of
the retina are classified as either part of the shown objects or not. Image from
Risi and Stanley [2012].

Method \ Dataset Iris Wine Retina

HyperNEAT

ES-HyperNEAT

DES-HyperNEAT

Output Input Hidden

Table 5.7: Default node configurations. HyperNEAT and ES-HyperNEAT
use a single substrate. ES-HyperNEAT uses two substrates, one for inputs and
another for output.

input of eight booleans. These booleans are encoded as −1 and 1 in the dataset.
The left and right objects shown in Figure 5.1 will be used.

The default configurations of input, hidden, and output nodes is presented
in Table 5.7. Inputs and outputs are in the order they appear in the Iris and
Wine datasets. In Retina, the left and right inputs are placed in the left and right
half of the substrate, with the respective outputs in the top left and right corner.
Inputs and outputs are configured in different substrates in DES-HyperNEAT.
Networks in HyperNEAT are densely connected between the four layers.
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Exper iment 1

method [LaDES, SiDES, CoDES]
dataset [Iris, Wine, Retina]
stop criterion [1200 seconds, 600 generations]
repeats 50

Table 5.8: Experiment 1: DES-HyperNEAT implementations.

5.5 Phase 1: DES-HyperNEAT Implementations

DES-HyperNEAT was developed as a framework to enable comparisons of mul-
tiple implementations. By constructing multiple implementations, where some
properties are shared and other unique, the impacts of properties can be analyzed.
The three implementations, Layered DES-HyperNEAT (LaDES), Single CPPN
DES-HyperNEAT (SiDES), and Coevolutional DES-HyperNEAT (CoDES), are
compared in subsection 4.3.4, with a summary of their properties presented in
Table 4.1. They are the subject of the first experiment.

5.5.1 Experiment 1: DES-HyperNEAT Implementations

An experiment is conducted to analyze how the unique properties of different
implementations affect the DES-HyperNEAT framework, and the neural networks
evolved with it. Details about the experiment are presented in Table 5.8. The
hyperparameters from preliminary testing, presented in Table 5.4, are used for
all three implementations. Using equal parameters for all three implementations
enables a better comparison of their properties. If different parameters were
used, optimized for each implementation, it would be difficult to distinguish the
difference in implementation from the difference in parameters.

The datasets Iris, Wine, and Retina are used to compare the implementa-
tions, with both 1200 seconds and 600 generations defined as stopping criteria.
Generations are used to analyze the absolute impact of different implementation
properties, such as how CPPN initialization affect network complexities. Time is
used to compare properties relative to their execution speed. One implementation
might create more complex networks than an other in the same number of gener-
ations. However, if it is slower, they might create an equally complex network
when run for the same amount of time.

CoDES uses two separate populations, one containing layouts and another
containing CPPNs. When a substrate or path in a layout is assembled, a random
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CPPN individual within the referenced species is selected. Such random selection
is, in itself, not seen as an issue. However, since a random CPPN is selected from
each species every time the layout is assembled, the combination of CPPNs varies
between generations. It will likely make the algorithm more unstable than when
the same combination of CPPNs is used each time.

LaDES and SiDES have a layout and its required CPPNs within a single
individual. The fitness of an individual is the fitness of the network assembled
with its layout and CPPNs. CoDES however use multiple CPPN individuals
when assembling a single network. The fitnesses of the CPPN individuals are the
average fitness of networks they assemble. Therefore, a CPPN’s fitness depends
on the random selection of CPPNs it is grouped with when assembling a network,
causing its fitness assignment to be less accurate. The exact contribution of each
CPPN individual is unknown.

Hypothesis 1 CoDES will perform worst of the three proposed methods because
of the varying selection of CPPN individuals developing the network within
a layout and less accurate fitness assignment. The two properties are not
present in LaDES and SiDES, because they use individuals with both a
layout and the required CPPNs.

Hypothesis 2 SiDES will use more time per generation than LaDES, because
of the time used in the additional step needed to extract individual CPPNs
from the single large CPPN. LaDES use a separate individual for each layout
element, so they are already separated.

Hypothesis 3 SiDES will produce the most complex networks because it uses
a single CPPN. The CPPN output nodes share hidden nodes, which may
cause more complex weight patterns than the individual CPPNs. LaDES
and CoDES will produce equally complex networks because they both use
individual CPPNs, and the average pattern complexity should therefore be
similar.

Hypothesis 4 SiDES will perform worse than LaDES when comparing fitness to
generations because the correlation between CPPN outputs will negatively
affect their optimization.

The performance of the three implementations is presented in Table 5.9. It
contains both validation fitness and validation accuracy, measured with both
time and generations as stopping criteria. Fitness is a more stable and reliable
performance measure than accuracy, as fitness is derived from loss functions.
The fitness functions are shown in Table 5.6. They measure how correct each
prediction is, by accumulating the distance between the predictions and each
correct answer. It thus measures how correct each prediction is. In contrast,
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Fitness Accuracy

Generations Time Generations Time

Dataset Method Mean SD Mean SD Mean SD Mean SD

Iris

LaDES 0.829 0.089 0.882 0.035 0.911 0.099 0.940 0.020

SiDES 0.663 0.243 0.823 0.162 0.691 0.287 0.875 0.205

CoDES 0.819 0.170 0.819 0.136 0.889 0.164 0.886 0.159

Wine

LaDES 0.501 0.092 0.563 0.097 0.627 0.136 0.698 0.112

SiDES 0.472 0.150 0.540 0.127 0.546 0.233 0.686 0.181

CoDES 0.482 0.145 0.552 0.136 0.567 0.194 0.697 0.176

Retina

LaDES 0.368 0.027 0.369 0.026 0.702 0.038 0.701 0.034

SiDES 0.315 0.090 0.326 0.062 0.675 0.060 0.696 0.036

CoDES 0.325 0.037 0.304 0.051 0.696 0.037 0.694 0.033

Table 5.9: Experiment 1: Performance results.

accuracy does not measure how correct a classification is, only that the class with
the highest predicted probability is the correct class. Therefore, fitness will be
used for all comparisons.

Table 5.9 show that CoDES does not generally perform worse than the other
two methods. Its fitness is often better than or similar to SiDES. There is no
significant (p > 0.5) difference between the two in Wine, and with time as stopping
criteria in Iris. Additionally, CoDES perform significantly (p < 0.05) better than
SiDES when comparing generations in Iris, with fitness 0.819 compared to 0.663.
It indicates that hypothesis 1 is incorrect. The graphs in Figure 5.2 confirm that
CoDES and SiDES perform similarly throughout evolution as well, and not only
the end result is similar. Their lines even intersect in Figure 5.2b and Figure 5.2d.

CoDES and LaDES both use a unique CPPN for each layout element, opposed
to the combined CPPN in SiDES. Comparing the results of these two methods
can therefore give insight into whether a separate population of reusable CPPNs
or unique CPPNs should be used. A major difference between CoDES and LaDES
is that the entire CPPN population is initialized at the beginning in CoDES, and
new individuals are never created. However, in LaDES, a new individual is created
each time a new substrate or path element emerges. This difference might enable
LaDES to improve continuously by creating and optimizing new CPPNs. Unlike
CoDES, which may only utilize the CPPNs it has already evolved and is unable
to adapt these further. If this were true, they should have comparable fitness
improvement in early generations, but LaDES pull ahead while CoDES converges
earlier. This is in fact the case in Figure 5.2c, 5.2d, and 5.2f. They initially
improve at a comparable rate, but CoDES then converges earlier. It is not able to
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Figure 5.2: Experiment 1: Performance results charts.

reach the performance of LaDES, evident by the significant (p < 0.01) difference
between their respective final fitnesses in these three cases. It is reasonable to
believe that LaDES is better able to improve continuously due to the newly
instantiated CPPNs throughout evolution. Although, it might also be because it
is difficult to fine-tune networks when the combination of CPPNs differs between
generations in CoDES. Each species will internally have some variation. It will
cause some variation between networks assembled in two subsequent generations
even though the layout is unchanged. Regardless, it is concluded that a separate
population, enabling reuse of CPPNs and the ability to use existing CPPNs in
new elements, is not beneficial compared to uniquely allocated CPPNs in each
layout element.

Figure 5.2 show that SiDES performs worse than LaDES, as hypothesis 2
suggests. Its fitness is below LaDES in all six cases. It is however comparably
worse over 600 generations (a) than 1200 seconds (d) at the Iris dataset. It suggests
that its runtime is not entirely the issue, as it can compete when limiting runtime.
Hypothesis 2’s conclusion is seemingly correct, although its argument is incorrect.
The number of generations each algorithm can perform per second, presented in
Table 5.10, further disproves hypothesis 2. These results do show that the SiDES
algorithm is slower than LaDES on all three datasets. The difference is significant
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Generations

per second

Datset Method Mean SD

Iris

LaDES 1.538 0.681

SiDES 1.437 1.828

CoDES 0.692 0.371

Wine

LaDES 2.454 1.461

SiDES 1.949 2.041

CoDES 0.916 0.478

Retina

LaDES 0.713 0.318

SiDES 0.325 0.134

CoDES 0.335 0.130

MEAN

LaDES 1.568 0.820

SiDES 1.237 1.334

CoDES 0.648 0.326

Table 5.10: Experiment 1: Execution speed results. Measured over 1200 sec-
onds.

(p < 0.05) in both Wine and Retina, although not Iris (p = 0.606). However, the
high standard deviation for SiDES on Iris and Wine suggests that the CPPN
extraction is not the issue. The CPPN extraction operation uses a similar amount
of time each time, so it should not cause such high deviations. It might rather be
the node search within patterns that causes SiDES to be slower than LaDES. If
the CPPN weight outputs in SiDES were to produce more complex patterns, these
would require more time to be searched. Additionally, more complex patterns
lead to more complex networks, which are more computational heavy to execute.

The complexities of the assembled networks are presented in Table 5.11.
Derived from the table, the average number of nodes per hidden substrate is 21.48
in LaDES, 33.12 in SiDES, and 22.75 in CoDES. These results somewhat correlate
with hypothesis 3, but not entirely. The number of nodes in each hidden substrate
is similar between LaDES and CoDES, indicating that the complexity of patterns
produced in both methods is similar. Although this similarity correlates with
hypothesis 3, the two methods differ in the number of substrates. LaDES has
an average of 2.23 hidden substrate, while CoDES has 4.98. Even though the
networks within each substrate are similar in complexity, the increased number of
substrates in CoDES results in its network as a whole being more complex than
in LaDES’. As hypothesis 3 states, the CPPNs in CoDES and LaDES produce
patterns of equal complexity, and of lower complexity than the combined CPPN
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Hidden

Nodes Edges Substrates

Dataset Method Mean SD Mean SD Mean SD

Iris

LaDES 53.40 54.70 234.1 410.6 2.280 1.096

SiDES 38.18 52.47 116.1 181.5 1.320 1.287

CoDES 112.4 75.74 687.2 626.9 5.100 2.476

Wine

LaDES 51.00 43.03 196.0 235.1 2.040 1.019

SiDES 47.54 73.72 186.1 425.6 1.400 1.442

CoDES 67.22 72.31 397.0 735.9 3.180 2.463

Retina

LaDES 39.50 47.64 150.4 383.5 2.380 1.294

SiDES 92.46 117.7 322.0 489.4 2.660 1.728

CoDES 160.2 114.9 1235 1404 6.660 3.011

MEAN

LaDES 47.97 48.46 193.5 343.1 2.233 1.137

SiDES 59.39 81.29 208.0 365.5 1.793 1.486

CoDES 113.3 87.65 773.1 922.3 4.980 2.650

Table 5.11: Experiment 1: Network complexity results. Measured after 600
generations.

in SiDES. However, because CoDES use more substrates, the network complexity
is higher, and hypothesis 3 therefore incorrect.

CoDES might use more hidden substrates because the CPPNs can be reused.
When a substrate is assigned CPPN a, and the path connecting it to another
substrate assigned substrate b, these CPPNs can be reused. CPPN b might be
used in multiple outgoing paths from the same substrate, causing many identical
connections. The same CPPN, a, might also be used to assemble networks in
some of these target substrates. It can potentially cause chains with multiple
substrates and paths, where substrates are developed by the same CPPN a and
paths by the same CPPN b. It is unknown whether many identical outgoing paths
cause the increased number of substrates or if these chains emerge. It might also
be caused by something else entirely. What is certain is that CoDES produce
more complex networks than the other two methods, shown by the number of
edges in Table 5.11. CoDES produce significantly (p < 0.05) more edges than the
other two on all three datasets. The networks produced by CoDES are therefore
more computationally expensive to execute.

When comparing the performance during 600 generations in Figure 5.2, SiDES
performs worse than the other two. Its fitness lies below the other two in all
generations with the Iris (a) and Retina (c) dataset, and most of the generations in
Wine (b). SiDES also reach a final fitness below the other two in all three datasets.
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The difference is significant (p < 0.01) on Iris, though not on Wine (p = 0.632)
and Retina (p = 0.306). This comparison is with equally many generations and
not dependent on time, meaning the number of generations performed per second
does not matter in this comparison. It seems that the single CPPN limits its
performance, as proposed in hypothesis 4. Figure 5.2a and Figure 5.2c show that
SiDES improves slower and converges at a lower fitness than the other two. The
difference between it and LaDES is that SiDES uses a combined CPPN, they are
otherwise identical. It is therefore concluded that hypothesis 4 is correct, and
that individual CPPNs are better than one large combined CPPN.

Conclusion

It is concluded that a separate population with CPPNs is not beneficial, layouts
and CPPNs should instead be part of the same individual. The evolved networks
are then less complex, and the fitness converges to a higher value. Additionally,
multiple CPPNs are superior to a single one, so a unique CPPN should be created
for each layout element. The fitness achieved with a single CPPN increases slower
than with multiple CPPNs, and it also converges to a lower fitness result. Based
on these conclusions, Layered DES-HyperNEAT is selected as the implementation
moving forward. The other two implementations, SiDES and CoDES, are not
considered further.

5.6 Phase 2: Identity Mapping

In the NEAT algorithm, described in section 2.5, an identity function is created
whenever a node is inserted into a network. Nodes are inserted into existing links,
in-between two existing nodes. The link it is inserted into is disabled, and two
new are created. The weight of one of the new links is set to the weight value
of the one that was disabled, while the other is set to 1. The link with weight 1
functions as an identity mapping, sending out the same value it receives when the
network is executed. Thus, the functionality of the network is not changed even
though a new node is inserted. Likewise, an identity mapping is created between
substrates in DES-HyperNEAT, where nodes in one substrate is connected to
nodes at the same position in another. This is described in section 4.2. Three
modifications to the node search from ES-HyperNEAT were made to make the
identity mapping between substrates possible. These three modifications are
evaluated in this phase.
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Exper iment 2

method [ES-HyperNEAT, DES-HyperNEAT]
dataset [Iris, Wine, Retina]
stop criterion 300 generations
repeats 50

variance threshold [0.03, 0.15, 0.3]
division threshold [0.03, 0.15, 0.3]
max difference [false, true]
normalized search [false, true]
all nodes [false, true]

Table 5.12: Experiment 2: Node search modifications.

5.6.1 Experiment 2: Node Search Modifications

The modifications are tested for both ES-HyperNEAT and the selected DES-
HyperNEAT implementation. Details for the experiment is presented in Table 5.12.
In addition to the threshold value 0.03, used in ES-HyperNEAT [Risi and Stanley,
2012], larger division and variance threshold values are tested. It is because the
different modifications might benefit other threshold values.

Three modifications are proposed in section 4.2: Normalizing the searched
pattern, using the max weight difference instead of variation, and calculating
variation between all nodes and not only leaf nodes. They are named norm.,
max difference and all nodes within this experiment. When all are enabled, the
addition of a new substrate no longer disrupts the existing network output. It
allows for an identity function to be inserted when increasing depth.

Hypothesis 1 The modification that normalizes the searched pattern will im-
prove the performance of ES-HyperNEAT. It is because the CPPN outputs
are normalized when searching the pattern. Emphasis is therefore put on
the patter variation itself rather than how substantial the variations are.

Hypothesis 2 The three modifications to the node search will improve DES-
HyperNEAT, as they together enable the identity mapping between sub-
strates.

Table 5.13 presents the validation fitness for ES-HyperNEAT, with each
combination of the three modifications. The line above indicates that a feature
is disabled. The original method uses the combination [norm., max difference,
all nodes]. Each combination of the modifications has been evaluated with all nine
combinations of threshold values. In the table, only the best fitness is displayed.
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max difference max difference

all nodes all nodes all nodes all nodes

Fitness Fitness Fitness Fitness

Dataset Mean SD Mean SD Mean SD Mean SD

norm.

Iris 0.854 0.049 0.840 0.049 0.842 0.049 0.834 0.047

Wine 0.450 0.032 0.463 0.047 0.468 0.051 0.460 0.044

Retina 0.308 0.068 0.304 0.043 0.308 0.056 0.307 0.053

MEAN 0.537 0.045 0.536 0.039 0.539 0.042 0.533 0.040

norm.

Iris 0.850 0.056 0.837 0.050 0.821 0.060 0.830 0.054

Wine 0.462 0.047 0.468 0.053 0.467 0.036 0.462 0.039

Retina 0.290 0.045 0.292 0.057 0.301 0.054 0.301 0.052

MEAN 0.534 0.046 0.532 0.046 0.530 0.049 0.531 0.042

Table 5.13: Experiment 2: ES-HyperNEAT performance results.

The fitness of each combination of the modification is thus presented with its
optimal threshold values. The results within each cell in Table 5.13 thus share
division and variance thresholds, but the threshold values may differ between
cells.

The results in Table 5.13 indicate that some of the modifications can be
beneficial. The combination of norm. and all nodes scores well, with mean fitness
of 0.537 and 0.539 (with and without max difference). The combination where all
modifications are enabled (top left in the table) has the highest fitness on both
Iris and Retina, 0.854 and 0.308. It is significantly (p < 0.01) better than with no
modifications (bottom right) on Iris, but also significantly (p < 0.05) worse on
Wine. The combination [norm., max fitness, all nodes] achieves the highest fitness
on both Wine and Retina, and has the best mean fitness on all datasets, 0.539. The
difference between mean fitness in the best and worst combination is though only
0.009. There is seemingly no combination that is significantly better in all three
datasets. It might be that the CPPNs adapt their output to the search method
and produce patterns that work well for all the modifications. However slightly,
hypothesis 1 seems to be correct. The mean fitnesses of the four combinations
with normalized search enabled are respectively higher than the corresponding
combinations without the normalized search. The standard deviation is though
high compared to the mean difference, so there is some uncertainty.

Table 5.14 presents the same information as Table 5.13, for the method DES-
HyperNEAT. The combination that enables the identity mapping, where all
are enabled, has a mean validation fitness of 0.581 across the three datasets.
It is not the best, but also not the worst. The original search method, with
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max difference max difference

all nodes all nodes all nodes all nodes

Fitness Fitness Fitness Fitness

Dataset Mean SD Mean SD Mean SD Mean SD

norm.

Iris 0.897 0.026 0.893 0.032 0.896 0.025 0.897 0.023

Wine 0.497 0.060 0.471 0.059 0.491 0.028 0.493 0.027

Retina 0.350 0.029 0.367 0.034 0.356 0.028 0.347 0.025

MEAN 0.581 0.039 0.577 0.031 0.581 0.029 0.579 0.025

norm.

Iris 0.889 0.028 0.896 0.024 0.897 0.025 0.902 0.024

Wine 0.491 0.067 0.490 0.021 0.493 0.049 0.491 0.052

Retina 0.355 0.033 0.354 0.032 0.347 0.032 0.356 0.036

MEAN 0.578 0.034 0.580 0.026 0.579 0.035 0.583 0.034

Table 5.14: Experiment 2: DES-HyperNEAT performance results.

none of the modifications enabled, yields the highest mean fitness, 0.583. The
difference between with and without the three modifications is however insignificant
(p = 0.670) across all three datasets. Hypothesis 2 is therefore likely incorrect.
The modifications made to enable an identity mapping does not improve the
DES-HyperNEAT method.

Conclusion

The results indicate that the modifications made to enable an identity mapping
do not improve the performance. DES-HyperNEAT can evolve the substrate
topology equally well without them. It does so even though the addition of a new
substrate may disrupt the network output. It might be that speciation within
the NEAT algorithm protects the new innovations. When a substrate is inserted
into an existing layout, it might no longer be part of the same species. If so, the
identity mapping would not be as essential. Regardless, none of the modifications
to the node search outlined in section 4.2 are used in DES-HyperNEAT.

5.6.2 Experiment 3: Identity Mapping

Since the modifications made so that an identity function can be inserted are
disabled, the manually constructed CPPN output Gaussian(7.5 ·(7.5x1−7.5x2)

2+
7.5 · (7.5y1 − 7.5y2)

2) does not create an identity function. This CPPN output
was originally manually constructed and assigned to the path of a newly inserted
substrate. Together with the modifications tested in the previous experiments, the
function produces an identity mapping between substrates. Since the modifications
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Exper iment 3

method DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 800 seconds
repeats 100

identity function [True, False]

Table 5.15: Experiment 3: Identity mapping.

identity function no initialization

Fitness Fitness

Dataset Mean SD Mean SD

Iris 0.906 0.021 0.912 0.014

Wine 0.549 0.087 0.574 0.105

Retina 0.361 0.027 0.358 0.022

MEAN 0.605 0.045 0.615 0.048

Table 5.16: Experiment 3: Performance results.

are disabled, the Gaussian function should no longer be needed as the network
output is disrupted anyway. It is tested to initialize the CPPN output without a
pre-determined structure instead. The experiment outlined in Table 5.15.

The results of the experiment are presented in Table 5.16. When the CPPN
assigned to the link that is supposed to be an identity mapping is uninitialized,
DES-HyperNEATs performance is improved on both Iris and Wine. The increase
from 0.906 to 0.912 on Iris is significant (p = 0.019), though the increase from
0.549 to 0.574 on Wine (p = 0.068) is not. The decrease from 0.361 to 0.358
in Retina is also insignificant (p = 0.390). In fact, the performance with no
initialization is significantly (p < 0.05) higher when comparing the two on all
three datasets. When inserting a substrate into the layout, the CPPN associated
with the identity link should therefore not be initialized in any way. As with
any other new CPPN, no connections should be manually created. This is likely
because evolution has more freedom when it is not restricted by pre-determined
nodes and connections in the CPPN.
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Conclusion

Results show that DES-HyperNEAT does not need the identity pattern produced
by the manually constructed CPPN, when all the modifications to the node search
are disabled. DES-HyperNEAT is modified based on the results within this phase.
Special measures are no longer taken to ensure an identity mapping is created
when inserting new substrates. An uninitialized CPPN, without any connections,
is created for both the new inbound and outgoing path when a substrate is
inserted.

5.7 Phase 3: Layered DES-HyperNEAT Tuning

The following section presents experiments conducted to tune the DES-HyperNEAT
framework. Specifically how substrate depth should be controlled in I/O and
hidden substrates, and how to determine I/O configurations. The entire phase is
essentially a parameter search, as the configurations in a way are parameters to
the framework. They are though more impactful to the execution of the framework
than other hyperparameters. Hyperparameters found in the preliminary testing,
in section 5.2, are used until they are updated in a new parameter search at the
end of the phase.

Exper iment 4

method DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 300 seconds
repeats 100

input substrate depth [0, evolved]
output substrate depth [0, evolved]
max input substrate depth 5
max output substrate depth 5

Table 5.17: Experiment 4: I/O substrate depth.

5.7.1 Experiment 4: I/O Substrate Depth

As described in subsection 4.1.1, I/O substrates are those manually defined in the
I/O configuration, while hidden substrates are added by evolution. Experiment 4
tests whether the depth in I/O substrates should be forced to zero or if the depth
should evolve as in hidden substrates. As a single connection has depth one, while
two connections in a chain has depth two. Therefore, no connections may be
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input substr. depth

0 evolved

Fitness Fitness

Dataset Mean SD Mean SD
o
u
tp

u
t

su
b
st

r.
d
ep

th

0

Iris 0.819 0.106 0.765 0.109

Wine 0.484 0.079 0.457 0.089

Retina 0.350 0.044 0.341 0.051

MEAN 0.551 0.076 0.521 0.083

evolved

Iris 0.785 0.108 0.748 0.106

Wine 0.481 0.078 0.475 0.076

Retina 0.357 0.041 0.340 0.050

MEAN 0.541 0.076 0.521 0.077

Table 5.18: Experiment 4: Performance results.

created when the depth is zero. Thus, when a substrate has zero depth, the nodes
within it may only be connected to nodes in other substrates. No connections are
assembled between nodes within it.

When the depth in I/O substrates are nonzero, networks may be assembled in
them. The network within an input substrate may then perform pre-processing
of the input data before it is distributed to hidden substrates. The same logic
applies for output substrates and post-processing of the values from the hidden
substrates. Details about experiment 4 are presented in Table 5.17. The default
I/O configurations for DES-HyperNEAT are used in this experiment, illustrated
in Table 5.7. These configurations have available space within the input and
output substrates, for potential networks to be assembled within them. They also
only use a single input substrate, meaning a potential pre-processing can involve
all inputs and greater affect the evolved network.

Hypothesis 1 It is beneficial to force the depth to be zero in input substrates,
so that the potentially bad pre-processing within input substrates is avoided.
Instead, the input values are directly passed on to hidden substrates.

The results of experiment 4 are presented in Table 5.18. The fitness achieved
by all four combinations of zero and evolved depth are presented for each dataset.
The best mean performance across all datastes is 0.551, with zero depth in both
input and output substrates. In the Iris dataset, the same configuration performs
the best, yielding a fitness of 0.819. In Iris, it is significantly (p < 0.05) higher
than any of the three other combinations, with fitness 0.765, 0.785, and 0.748.
The configuration also yields the best results in Wine, with fitness 0.484. Though,
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it is not significantly (p = 0.787) higher than the next best configuration. The
next best is with zero input depth and evolved output depth, achieving fitness
0.481. The Retina dataset favors use of evolved output substrate depth, instead of
setting it to zero. The validation fitness is then 0.357. It is though not significantly
(p = 0.246) higher than the combination where both input and output substrates
have zero depth.

Conclusion

The configuration with depth zero in both input and output substrates performs
the best in two of the three datasets, Iris and Wine. It is significantly better than
the other depth combinations in Iris and not significantly worse in Retina. It
is therefore concluded that hypothesis 1 is correct, and the depth in both input
and output substrates should be zero. It enables hidden substrates to receive the
input directly, without it being pre-processed in input substrates.

5.7.2 Experiment 5: Hidden Substrate Depth

The weight patterns produced by the CPPNs determine the depth of the network
assembled in a substrate. The iterative algorithm that assembles networks extend
the network’s depth until no more nodes are discovered when searching the
pattern. However, to avoid overly complex networks, a depth limit is used. It
limits the maximum number of iterations performed when assembling networks.
ES-HyperNEAT uses a static depth limit. Since DES-HyperNEAT use multiple
substrates it is proposed to evolve such a depth-limit value in each substrate,
limiting them separately. Experiment 5.1 is conducted to investigate if the depth
limit in substrates should be evolved, of it it should be pre-determined and static.
Details about the experiment are presented in Table 5.19. In addition to evolving
the depths separately in each substrate, it tests a static depth in all of them.

Exper iment 5.1

method DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion [300 seconds, 200 generations]
repeats 100

depth [evolved, 0, 1, 2, 3, 4, 5]
max substrate depth 5

Table 5.19: Experiment 5.1: Hidden substrate depth.
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When the depth-limit is evolved in each substrate, it is evolved in the range 0-5.
Therefore, static depths in the range 0-5 are tested.

Hypothesis 2 The difference in performance will be minor between nonzero
static depth and evolved substrate depth. The evolved depth is however
though to be beneficial when using time as stopping criteria. It allows the
algorithm to adapt the of networks within the substrates dynamically.

Hypothesis 3 When the depth is zero, the number of generation performed per
second will be significantly higher, as it alleviates network assembling within
substrates. However, depth zero will not perform better when using time as
stopping criteria, as networks are no longer assembled in substrates.

Nonzero depth

Table 5.20 presents the results of experiment 5.1. Evolved and nonzero static
depths will first be compared. Zero depth will then be elaborated upon. As seen
in Table 5.20a, when using number of generations as stopping criteria, the depth 4
in Iris and Retina, and 5 in Wine yield the highest validation fitness. These fitness
values are 0.772 in Iris, 0.434 in Wine, and 0.363 in Retina. Since a high depth
value produce the highest fitness in all three datasets, there could be a correlation
between the depth and fitness. The difference between the depth one and four
in Iris is significant (p < 0.05). Although, there is no significant difference in
Wine and Retina (p = 0.870, p = 0.468, respectively), when comparing the best
depth in the generation column to depth one. In the generations column, there
is also no significant (p = 0.124, p = 0.371, p = 0.108, respectively) difference
between the best performing static depths and the evolved depth in the three
datasets. Therefore, when using number of generations as stopping criteria, it
cannot certainly be determined whether deeper networks are beneficial or that
evolved or static depths are best. Hypothesis 2 is correct in that the difference
between nonzero static and dynamic depth is minor.

When the depth is evolved, both fitness in the generation column in Table 5.20a
and execution speed in Table 5.20b are similar those with static depth either
1 or 2. It indicates that the evolved depths might often be in the lower part
of the 1 to 5 range. However, the results in the time column in indicate that
evolved depth might be better that a nonzero static depth. In the time column,
the evolved depth yield the highest fitness of the nonzero depths in both Wine
and Retina. However, there is no significant difference between evolved and the
best nonzero static depths in any of the three datasets (p = 483, p = 0.449,
= 0.225, respectively). The difference is minor between static nonzero and evolved
depth, as hypothesis 2 suggests. However, no significant difference can support its
statement that evolved depth is beneficial when using time as stopping criteria.
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Fitness
Generations Time

D.set Depth Mean SD Mean SD

Ir
is

evolved 0.742 0.154 0.805 0.115
0 0.727 0.185 0.876 0.060
1 0.767 0.139 0.816 0.106
2 0.758 0.151 0.793 0.112
3 0.746 0.166 0.772 0.129
4 0.772 0.118 0.763 0.136
5 0.738 0.156 0.781 0.133

W
in

e

evolved 0.423 0.092 0.500 0.104
0 0.432 0.091 0.513 0.089
1 0.431 0.091 0.490 0.081
2 0.425 0.078 0.476 0.094
3 0.424 0.084 0.464 0.088
4 0.417 0.079 0.483 0.093
5 0.434 0.081 0.447 0.077

R
et

in
a

evolved 0.355 0.037 0.348 0.047
0 0.359 0.044 0.362 0.034
1 0.356 0.034 0.339 0.057
2 0.353 0.044 0.330 0.063
3 0.357 0.038 0.337 0.061
4 0.363 0.033 0.343 0.058
5 0.356 0.035 0.328 0.057

(a) Performance

Generations
per second

Mean SD

1.601 1.834
2.354 1.502
1.984 2.155
1.227 0.995
1.072 1.366
0.970 0.896
1.070 0.984

2.838 2.602
3.805 3.016
2.195 1.896
2.131 2.221
2.074 2.325
2.031 2.460
1.881 2.519

0.678 0.561
1.111 0.607
0.657 0.392
0.429 0.260
0.492 0.323
0.439 0.358
0.471 0.326

(b) Execution speed

Table 5.20: Experiment 5.1: Performance and execution speed results. Exe-
cution speed (b) measured over 1200 seconds.

When comparing the execution speed achieved with static depths in the range
1 - 5 in Table 5.20b, the number of generations per second is generally higher for
lower depths. There seems to be an inverse relationship between the two. Iris runs
1.984 generations per second with depth 1, compared to 1.070 with depth 5. It is
a significant difference (p < 0.01) between them. The difference between depth 1
and 5 is also significant (p < 0.01) in Retina, although not in Wine (p = 0.321).
In addition to the difference between the endpoints, most of the results with
depths 1-5 are strictly decreasing in Table 5.20b. When the depth in substrates is
increased, more time is used to assemble them, resulting in fewer generations per
second. The relationship between the two are therefore logical.

There also seems to be an inverse relationship between depth and fitness in
the time column in Table 5.20a. The results indicate that higher depths run
fewer generations per second and achieves lower fitness. When comparing depth 1
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to 5 across all datasets, there is a significant (p < 0.05) difference between the
fitnesses. Even though higher depths achieve higher fitness in the generation
column, the extra time used when the depth is higher results in them performing
worse when compared to the time they use. Lower depths are thus more efficient,
which supports hypothesis 2. It should be beneficial to evolve the depth so that
they limit unnecessary complexity dynamically.

Zero depth

The zero-depth configuration is unique. All nonzero depth values results in
assembling networks within substrates. However, when the depth is zero, no
networks are created within substrates. The substrates are therefore not assembled,
and connections may only form between substrates. Zero depth greatly highlights
the trade-off between complexity and run-time in Table 5.20. It saves much time
par generation, evident by the higher execution speed in Table 5.20b.

The results clearly show that the algorithm is able to run faster when substrates
are not assembled. It runs 2.354 generations per second in Iris, 3.805 in Wine, and
1.111 in Retina. When comparing depth zero to one, on all three datasets, depth
zero results in significantly (p < 0.05) more generations per second. The question
is then if it is worth it to run more generations when it results in only creating
connections between substrates and not assembling networks within them. When
comparing against the same number of generations in Table 5.20b, higher depths
were advantageous. However, depth zero performs the best when using time as
stopping criteria. The time column shows zero depth achieves fitness 0.876 in
Iris, 0.513 in Wine, and 0.362 in Retina. All datasets combined, the depth zero
is significantly (p < 0.05) better than any other depth configuration in the time
column. Hypothesis 3 is therefore incorrect. Although networks are no longer
created inside each substrate, zero depth is superior to both other static depths
and evolved depth.

The experiment comparing the depth values was only run for 200 generations
and 300 seconds, separately. Zero depth was superior to any other when using 200
seconds as stopping criteria. However, it might converge to a lower fitness than
the others, as connections are only created between and not within substrates. A
second experiment is designed to investigate the convergence of zero and nonzero
depth. It is described in Table 5.21. Evolved and zero depth is compared over 800
seconds, to see if the fitness achieved with the two depth configurations converge
differently.
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Exper iment 5.2

method DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 800 seconds
repeats 100

depth [evolved, 0]

Table 5.21: Experiment 5.2: Hidden substrate depth - Part 2.

Figure 5.3 presents the fitness achieved with zero and nonzero depth. Although
zero is higher, the two converge somewhat similarly in Iris (a) and Retina (c).
However in Wine (b), zero depth maintains a stable fitness increase longer than
nonzero depth. On Wine, the resulting fitness is 0.624 compared to 0.560, presented
in Table 5.22a. The difference between final finesses values is significant (p < 0.01)
in all three datasets. It is therefore concluded that zero depth is superior to
nonzero depth when comparing time.

As networks are not assembled in substrates, the total complexity of networks
is also lower with zero depth. In Table 5.22b, the number of nodes and edges
is significantly (p < 0.05) lower with zero depth in Iris. Zero depth results in
an average of 63.47 nodes and 435.9 edges, while nonzero depth results in 90.36
nodes and 902.9 edges. The mean values show the number of nodes and edges are
also lower with zero depth in Wine and Retina. However, the difference in those
datasets are not as significant (nodes: p = 0.747 and p = 0.313, edges: p = 0.826
and p = 0.971, respectively). Thus, compared to nonzero depth, the fitness is
generally higher and the network complexity lower or equal with zero depth.
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Figure 5.3: Experiment 5.2: Performance results charts.
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Fitness

Dataset Depth Mean SD

Iris
Nonzero 0.887 0.043

Zero 0.905 0.035

Wine
Nonzero 0.560 0.100

Zero 0.624 0.122

Retina
Nonzero 0.364 0.023

Zero 0.374 0.021

(a) Performance

Nodes Edges

Mean SD Mean SD

90.36 109.6 902.9 2046

63.47 68.62 435.9 776.8

70.09 70.22 437.6 621.1

66.91 69.21 458.6 724.5

42.39 37.26 182.2 206.7

36.23 48.23 184.2 512.4

(b) Network complexity

Table 5.22: Experiment 5.2: Performance and network complexity results.

Conclusion

Results show that substrates in DES-HyperNEAT should have zero depth, and
thus not be assembled. Compared to nonzero depth, zero depth results in
more generations per second. Additionally, the fitness improvement per time
unit is greater with zero depth, and it also converges to a higher fitness than
evolved depth. Therefore, it is suggested to be the default depth configuration
in DES-HyperNEAT, and will be used in the next experiments. By setting the
depth to zero, DES-HyperNEAT is no longer a collection of ES-HyperNEAT
instances. Nodes are created in substrates when assembling paths, but the nodes
do not connect to other nodes in the same substrate. As networks are no longer
assembled in substrates, substrates do not need an assigned CPPN. It makes
DES-HyperNEAT similar to Deep HyperNEAT [Sosa and Stanley, 2018], with
the main difference being that nodes in hidden substrates have static positions in
Deep HyperNEAT while they are dynamically positioned using the node search
in DES-HyperNEAT. Additionally, Deep HyperNEAT uses a single CPPN with
multiple outputs, like Single CPPN DES-HyperNEAT, while the selected DES-
HyperNEAT implementation, Layered, uses a separate CPPN for each path in
the layout.

5.7.3 Experiment 6: I/O Configuration

Experiment 6 is conducted to determine how inputs and outputs should be
configured into one or more substrates. As there are two to three outputs in all
datasets, output configurations are not tested. The three datasets vary in their
number of inputs and the relationship between them. Inputs thus allow for more
extensive evaluation. The knowledge learned from inputs can likely be applied to
outputs as well.



CHAPTER 5. EXPERIMENTS AND RESULTS 83

Tested I/O configurations are presented in Table 5.23. The same configuration
scheme is tested in multiple datasets. Line is the most basic, with all nodes
positioned at in a line at y = 0, in a single substrate. Lines, grids and rotated
grids distribute the inputs among multiple substrates. Rotated versions of the
grids are included to see if the relationships between positions are important.
When rotated, the nodes no not share x or y position, and are additionally not in
the same diagonal. All datasets are also tested with inputs distributed among
unique substrates, in the individual configuration.

In an I/O configuration, all inputs can potentially be crammed into a single
substrate, or separated so that each input is in a unique substrate. If related
inputs are placed together, these will likely be connected to the same parts of
the assembled network. The network can thus learn the relationship between
related inputs. Inputs that are not related can be placed in different substrates,
as they then can be connected to the appropriate parts of the assembled network.
Too many inputs in a single substrate is likely not be beneficial because of the
increased CPPN complexity required to distinguish them. Contrary, too many
substrates may also make the layout unnecessarily complex.

Hypothesis 4 Related inputs should be placed together in a substrate, while
independent inputs should be placed in different substrates.

The Iris dataset has four inputs: sepal length, sepal width, petal length, and
petal width. All are measured in centimeters. The sepal and petal are two distinct
parts of a flower. The Iris dataset contains three iris species, which need to be
distinguished based on their sepal and petal measurements. The first three input
configurations in Table 5.23 position these four measurements in a single substrate,
in a line, grid or rotated grid. The configuration split separates the sepal and
petal measurements in two substrates, and the individual configuration places
each measurement in a unique substrate.

Table 5.24 contains the validation fitnesses achieved with the different input
configurations. In Iris, the grid configuration yields the best validation fitness,
0.903. The other two configurations with a single substrate are close behind, rotated
grid with 0.900, and line with 0.893. Configurations with multiple substrates, split
and individual, perform the worst, both with fitness 0.851. There is a significant
(p < 0.01) difference between the worst performing single substrate configuration,
line, and either of the configurations with multiple substrates, split and individual.
Thus, the inputs should be placed in a single substrate. These results correlate
with hypothesis 4. All measurements in the Iris dataset are of equal type, they
are distances in centimeters. Even though the sepal and petal measurements
are from different parts of the flower, two of them are widths of two are lengths.
Therefore, they are all in a way related, and should according to the results be
placed together.
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Exper iment 6

method DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 300 seconds
repeats 100

substrate depth 0

Iris line

grid

input config rotated grid

split

individual

Wine line

single

input config grids

rotated grids

individual ...

Retina line

single

input config grids

lines

individual ...

Table 5.23: Experiment 6: I/O configuration.
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In contrast to the Iris dataset, the attributes in Wine are not related. It
contains attributes such as alcohol, acid, ach, magnisium, color intensity, and hue.
The inputs differ in what they represent and in their units of measurement. The
results in Table 5.24 show that the more substrates these inputs are separated in,
the higher the fitness. It seemingly does not matter how the nodes are placed,
only the number of substrates used. The difference between line at 0.532 and
single at 0.543 is insignificant (p = 0.476). Likewise, the difference between grids
and rotated grids, at 0.687 and 0.694, is also insignificant (p = 0.552).

The number of substrates are what differentiates the configurations in Wine.
There is a significant difference (p < 0.01) between the best performing configura-
tion with a single substrate and the worst performing configuration with multiple
substrates. Multiple substrates are thus beneficial. The individual configuration
separate inputs in unique substrates, resulting in the best fitness, 0.697. However,
it is not significantly (p = 0.782) higher then with rotated grids at 0.694. The
conclusion is thus that the number of substrates significantly impact the perfor-
mance when the inputs are unrelated. Also, inputs’ positions within substrates
does not significantly impact performance in Wine.

In Iris and Wine, the relationship between fitness and number of substrates is
opposite. Inputs grouped in a single substrate performs better than separated

Fitness

Dataset Input conf. Mean SD

Iris

line 0.893 0.043

grid 0.903 0.062

rotated grid 0.900 0.048

split 0.851 0.085

individual 0.851 0.048

Wine

line 0.532 0.112

single 0.543 0.106

grids 0.687 0.087

rotated grids 0.694 0.079

individual 0.697 0.074

Retina

line 0.366 0.028

single 0.360 0.032

grids 0.377 0.015

lines 0.365 0.024

individual 0.329 0.051

Table 5.24: Experiment 6: Performance results.
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inputs in Iris. However, the fitness on the Wine dataset increases as the inputs
are further separated. Hypothesis 4 matches with the results in both datasets.
Inputs in Iris should be placed together because the inputs are related, and apart
in Wine because they are unrelated. The two datasets however share that there
is no significant difference between different node placements when the number
of substrates are equal. The performance is similar when nodes share x and y

values compared to being placed rotated.
The Retina dataset is unique in its relationship between inputs, there are

two unrelated inputs groups. As seen in Figure 5.1, the retina is split into a
left and right part. The left and right pattern is classified separately, making
them totally independent. The tested input configuration in Table 5.23 utilize the
spatial relationship between inputs, where single places the inputs as shown in
the retina figure, grids splits the left and right part in two substrates, and lines
additionally flattens them in a line. The individual configuration additional test
total separation of inputs, where the network itself has to learn to distinguish the
two input groups.

The results in Table 5.24 show that the grids configuration yields the best
fitness in Retina, with 0.377 as the mean validation fitness. This is significantly
higher (p < 0.01) than each of the other configurations for the Retina dataset.
The individual configuration has a mean validation fitness of 0.329 for the Retina
dataset, which is significantly (p < 0.01) lower than any other configuration. There
is thus an advantage to grouping inputs, they should not be entirely separated.
Comparing single to grids, there is a significant (p < 0.01) benefit to separating
the left and right part of the retina in two different substrate. However, there is no
significant difference (p = 0.864) between line and lines, so not all configuration
benefit the separation.

Conclusion

The results from Iris and Wine, and some of the results in Retina, support
hypothesis 4. The inputs should be placed in the same substrate in Iris, as the
inputs are all related. In Wine, the inputs all have different types, and should
therefore be separated in multiple substrates. The best results are achieved when
each input is placed in a unique substrate. The results from the Retina dataset
are not as conclusive. Even though the highest fitness is achieved when the
left and right part is separated, the separation does not increase fitness for all
configurations. The conclusion is therefore that hypothesis 4 is correct, but it
is possible to configure I/O such that grouping related inputs do not improve
fitness.
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5.7.4 Experiment 7: LayeredDES-HyperNEATParameter Search

The experiments conducted up to this point have selected one of the three
implementations of the DES-HyperNEAT framework, evaluated the proposed
identity mapping between substrates, and determined the best substrate depths
and I/O configurations. Layered DES-Hyperneat is selected as the superior
implementation, no identity mapping is used and it has been determined to only
evolve connections between substrates and not within them. Now that these
choices have been made, the hyperparameters will be optimized.

Parameters are optimized as described in subsection 5.1.2. Multiple iterations
will optimize the parameters thought to impact performance the most. The best
I/O configuration from experiment 6 is used. All the iterations are presented in
Table A6, and the resulting values in Table 5.25. These parameters will be used
in the next phase.

Exper iment 7

method Layered DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 60 seconds
repeats 50

Final values
variance threshold 0.5
division threshold 0.05
band pruning threshold 0.0
add substrate prob. 0.025
remove substrate prob. 0.001
add path prob. 0.4
remove path prob. 0.05
add CPPN node prob. 0.025
add CPPN link prob. 0.4
CPPN activation functions [None, Linear, Step, ReLU, Sigmoid, Exp, Sigmoid,

Tanh, Gaussian, OffsetGaussian, Sine, Square, Abs]

Table 5.25: Experiment 7: Layered DES-HyperNEAT parameter search.
Presents the Layered DES-HyperNEAT parameter search and its final parameter
values.

5.8 Phase 4: Related Methods Comparison

Multiple neuroevolutionary methods have been created based on the NEAT al-
gorithm. HyperNEAT use a CPPN evolved with NEAT to assign weights to a
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separate manually constructed network. ES-HyperNEAT further extends Hyper-
NEAT with evolvable substrates, where the nodes’ positions and the connections
between them are determined based on the CPPN weight pattern. Additionally,
MSS have extended HyperNEAT with multiple substrates, and Deep HyperNEAT
further evolves the topology of substrates.

The extensions are often more complex than the methods they build upon.
ES-HyperNEAT adds an additional node search step to HyperNEAT. DES-
HyperNEAT use the same node search, and additionally evolves a topology
of substrates. Experiment 8 investigates whether these more complex methods
increase performance, of the simpler methods work just as well.

5.8.1 Experiment 8: Related Methods Comparison

The methods tested in experiment 8, and the datasets they are tested on, are pre-
sented in Table 5.26. NEAT, HyperNEAT, ES-HyperNEAT, and DES-HyperNEAT
are compared. Both 1200 seconds and 600 iterations will be used as stopping cri-
teria. The results of these tests will thus provide information about the method’s
performance compared to their execution speed, something that is lacking in the
work that introduced HyperNEAT [Stanley et al., 2009] and ES-HyperNEAT [Risi
et al., 2010]. Stanley et al. [2009] found that HyperNEAT performs better than
NEAT, and Risi and Stanley [2012] that ES-HyperNEAT better than HyperNEAT.
The presented results are however only based on specific number of generations,
not runtime.

Hypothesis 1 Each method will perform better than the one it is extending,
when comparing performance to generations. The order should thus be
NEAT, HyperNEAT, ES-HyperNEAT, and DES-HyperNEAT, with increas-
ing performance.

Hypothesis 2 The node search in ES-HyperNEAT and DES-HyperNEAT make
then so complex that they, compared to NEAT and HyperNEAT, will use
too much time in simple problems where solutions can be easily found.
When using time as stopping criteria, they will therefore perform worse than
NEAT and HyperNEAT in the Iris dataset, but better than them in Wine.

Hypothesis 3 DES-HyperNEAT will perform better than HyperNEAT and ES-
HyperNEAT, as it is a similar method, but able to use multiple substrates
and separate CPPNs.
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Exper iment 8

method [NEAT, HyperNEAT, ES-HyperNEAT, DES-
HyperNEAT]

dataset [Iris, Wine, Retina]
stop criterion [1200 seconds, 600 iterations]
repeats 100

Table 5.26: Experiment 8: Related methods comparison.

Retina

The validation fitnesses achieved in Retina are presented in Figure 5.4. Com-
paring the four methods, it is clear that HyperNEAT, ES-HyperNEAT, and
DES-HyperNEAT converge to specific limits, and struggle to learn the domain.
NEAT, however, is able to completely distinguish the retina objects, and con-
sistently reaches maximal fitness when given about 300 seconds. Therefore,
hypothesis 1 is not correct for all problems. Methods do not perform better than
the ones they extend in Retina. It might be that it is difficult for CPPNs to
assign the appropriate weights in Retina, as all the methods using CPPNs for
weight assignment struggle. Even though the fitness is low, the accuracy in Ta-
ble 5.27 show that the Hyper-methods reach an accuracy of about 0.7. Clune et al.
[2010] got similar results with their standard retina setup. HyperNEAT ended
up with accuracy between 0.7 and 0.75. Risi and Stanley [2012] also found that
ES-HyperNEAT variants struggle in Retina. They found that ES-HyperNEAT
successfully learned the dataset in 30% of cases when run for 2000 generations.

Iris and Wine

Figure 5.5a show performance on the Iris dataset, along with 600 generations
as the stopping criteria. Between generation 0 and generation 100, the graphs
show the fitness increase per generation is lowest in NEAT. HyperNEAT and
ES-HyperNEAT increase fitness similarly, though ES-HyperNEAT somewhat
slower than HyperNEAT. DES-HyperNEAT increases fitness the fastest of all
four, reaching 0.9 in under 50 generations. Although it is not certain how NEAT
will continue, they seemingly converge in the same order. In this case, hypothesis
1 is partially correct. Except for HyperNEAT and ES-HyperNEAT being in the
opposite order, the methods perform better than the ones they are based upon.
The fitness in Table 5.27 confirm the same order, where there is a significant
(p < 0.01) difference between each pair in the increasing fitness order: NEAT,
ES-HyperNEAT, HyperNEAT, and DES-HyperNEAT.
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Figure 5.4: Experiment 8: Performance results - Retina charts.

In Figure 5.5c, generation is also used as stopping criteria, but with the Wine
dataset. Wine is a more difficult dataset to classify than Iris, evident by the
methods lower performance. As in Iris, HyperNEAT and ES-HyperNEAT perform
similarly, although ES-HyperNEAT is marginally better than HyperNEAT after
100 generations on the Wine dataset. The fitesses in Table 5.27 show that ES-
HyperNEAT ends with a significant (p < 0.05) higher fitness at 600 generations.
Also, DES-HyperNEAT performs significantly (p < 0.01) better than the others,
with an even greater margin than in Iris. The most noticeable difference between
Iris (a) and Wine (c) when comparing generations is that HyperNEAT and ES-
HyperNEAT have dropped so low that they performe worse than NEAT in Wine.
It might be caused by HyperNEAT and ES-HyperNEAT being designed to exploit
spatial relations between inputs, which there are none of in Wine. However, so
is DES-HyperNEAT, and it is able to learn the Wine dataset. HyperNEAT and
DES-HyperNEAT are seemingly limited by their single substrate, compared to
the multiple substrates used by DES-HyperNEAT.

When using time as stopping criteria, the methods performance is measured
against its runtime. The results in Figure 5.5b and Figure 5.5d are similar to
the corresponding with 600 generations, though there are some differences. DES-
HyperNEAT starts overfitting in Figure 5.5b, evident by the validation accuracy
decreasing after the initial peak. Unlike HyperNEAT, with a static network,
DES-HyperNEAT continues to increase the network complexity and marginally
reduces its ability to generalize. It is able to learn to distinguish the classes within
seconds and would normally be stopped when the fitness starts to decrease.

Compared to ES-HyperNAT and DES-HyperNEAT, NEAT and HyperNEAT
increase fitness faster in Figure 5.5b than Figure 5.5a. Therefore, HyperNEAT and
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Fitness Accuracy

Generations Time Generations Time

Dataset Method Mean SD Mean SD Mean SD Mean SD

Iris

NEAT 0.833 0.014 0.888 0.017 0.940 0.013 0.954 0.016

HyperN. 0.905 0.023 0.928 0.010 0.948 0.017 0.950 0.017

ES-HN 0.861 0.073 0.903 0.023 0.930 0.052 0.943 0.016

DES-HN 0.929 0.006 0.926 0.007 0.958 0.015 0.960 0.013

Wine

NEAT 0.659 0.013 0.875 0.018 0.876 0.047 0.931 0.028

HyperN. 0.481 0.039 0.594 0.102 0.638 0.051 0.742 0.111

ES-HN 0.498 0.068 0.593 0.094 0.693 0.110 0.780 0.121

DES-HN 0.890 0.032 0.911 0.026 0.952 0.024 0.963 0.023

Retina

NEAT 0.436 0.054 1.000 0.000 0.761 0.046 1.000 0.000

HyperN. 0.304 0.047 0.355 0.035 0.727 0.041 0.718 0.052

ES-HN 0.296 0.063 0.333 0.042 0.691 0.043 0.687 0.039

DES-HN 0.373 0.021 0.366 0.021 0.702 0.032 0.701 0.032

Table 5.27: Experiment 8: Performance results. Presents validation fitness
after reaching the stopping criteria. Therefore not representative when methods
overfit.

NEAT is running more generations per second than the other two It results in Hy-
perNEAT being comparable to DES-HyperNEAT and NEAT to ES-HyperNEAT.
Even though NEAT runs more generations per second, it is not better than
HyperNEAT and DES-HyperNEAT, so hypothesis 2 is incorrect. The methods
using node searches do not perform worse when using time as stopping criteria on
Iris. Also, DES-HyperNEAT is able to outperform the others when comparing
both time and generations, further disproving hypothesis 2 for the Iris dataset.
Figure 5.5d also show that hypothesis 2 is incorrect in its prediction for the Wine
dataset. It is correct that DES-HyperNEAT performs better than NEAT and
HyperNEAT, but ES-HyperNEAT does not. Thus, methods using node searches
are not necessarily better at solving Wine.

DES-HyperNEAT

Results show that DES-HyperNEAT is unable to learn the Retina dataset. It is
likely because it built upon principles from HyperNEAT and ES-HyperNEAT.
These methods do not succeed on that specific task, and it is therefore unlikely
that DES-HyperNEAT will. Even though DES-HyperNEAT is unable to compete
with NEAT in the Retina dataset, it performs better than NEAT in both Iris and



CHAPTER 5. EXPERIMENTS AND RESULTS 92

Wine, when comparing both generations and time. Even though DES-HyperNEAT
is overfitting in Iris, the time column in Table 5.27 show that DES-HyperNEAT
achieved a significant (p < 0.01) higher fitness than NEAT: 0.926 compared to
0.888. Likewise there is a significant (p < 0.01) difference between it and NEAT
in Wine, where DES-Hyperneat achieves a fitness of 0.911 and NEAT 0.875.
DES-HyperNEAT is thus better than NEAT in some problems, but NEAT show
to be more versatile in these three experiments. Although NEAT is unable to
compete with DES-HyperNEAT in Iris and Wine, it has the advantage that it
can provide reasonable solutions in all three datasets. It would be beneficial to
investigate why DES-HyperNEAT is unable to solve Retina. As mentioned, it
might be that is has the properties of HyperNEAT and ES-HyperNEAT, and that
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Figure 5.5: Experiment 8: Performance results - Iris and Wine charts.
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these properties are not suited for that dataset.
In both Figure 5.4 and Figure 5.5, DES-HyperNEAT reaches a higher fitness,

and does it faster than HyperNEAT and ES-HyperNEAT. Although it starts to
overfit in Figure 5.2d, it could be stopped earlier and been better or equal to
HyperNEAT. In Wine, when the problem is more complex and the inputs not as
related, DES-HyperNEAT reaches significantly higher fitness than HyperNEAT
and ES-HyperNEAT. Table 5.27 show that DES-HyperNEAT achieves a fitness
of 0.911 when using time as topping criteria in Wine. HyperNEAT and ES-
HyperNEAT only achieve 0.594 and 0.593, which is significantly (p < 0.01) lower.

Conclusion

The conclusion is that DES-HyperNEAT performs better than HyperNEAT
and ES-HyperNEAT in all the three datasets used in this experiment. DES-
HyperNEAT also performs better than NEAT in some datasets, though it is
not able to learn the Retina dataset. However, it remains to be seen how
DES-HyperNEAT performs compared to HyperNEAT and ES-HyperNEAT in
reinforcement learning domains where these methods are commonly employed. It
is believed that DES-HyperNEAT will perform well there as well, as it is built
upon the same principles as ES-HyperNEAT and Multi-Spatial Substrates. The
fact that it reaches a similar fitness to HyperNEAT and ES-HyperNEAT in Retina
indicates that it is in many ways equal to them. Since it has the same properties as
them and is able to outperform them in Iris and Wine, it should also be promising
in the domains where HyperNEAT related methods perform well.
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CHAPTER6
Conclusion

The research goal, research questions, and results are evaluated and discussed in
section 6.1. The proposed framework is then compared to state of the art methods
in section 6.2. The contributions of the thesis are revisited in section 6.3. Finally,
future work is proposed in section 6.4.

6.1 Results and Discussion

This work’s goal, and the research questions explored to accomplish the goal, are
evaluated in this section. The goal will be evaluated after the following research
questions:

Research question 1 How can the topology in a multi-substrate layout be evolved
in parallel with each of its individual substrates?

The DES-HyperNEAT framework was created to evaluate multiple answers
to research question 1. DES-HyperNEAT uses the NEAT algorithm to evolve
a substrate topology, termed a layout. It also evolves CPPNs that are used to
assemble a network in each substrate. Additional CPPNs are evolved and used
to connect nodes in different substrates, to form one combined deep network.
Pahts are elements in the layout that determine how the substrates should be
connected. Each substrate and path is assigned a CPPN. The assigned CPPNs
produces patterns that are used to assemble networks within and connections
between substrates. Thus, the question becomes how to simultaneously evolve
a layout’s topology and the CPPNs that are used to assemble a network in the
layout.

95



CHAPTER 6. CONCLUSION 96

Three proposals have been designed, implemented, and evaluated to answer the
question. They are called Layered DES-HyperNEAT (LaDES), Single-CPPN DES-
HyperNEAT (SiDES), and Coevolutional DES-HyperNEAT (CoDES), described
in section 4.3. They are designed to answer two aspects of the questions. The first
is whether multiple separate CPPNs, or a single combined CPPN with multiple
output nodes, should be used to assemble the different parts of the layout. The
second is whether a single genome should contain both a layout and the CPPNs
required to assemble it, or if layouts and CPPNs should be separate individuals,
in two co-evolved populations.

LaDES uses separate CPPNs for each layout element, while SiDES combines
them into a single one, with a separate output per layout element. Evaluation of
the results from phase 1 of experiments found that separate CPPNs are superior
to a single combined. SiDES produced networks with higher complexity and lower
fitness than LaDES, and could not perform as many generations per second. The
difference between them was likely caused by the CPPN outputs in SiDES sharing
hidden nodes, and they were therefore unable to optimize individually.

LaDES and CoDES both use a separate CPPN for each layout element.
However, a layout individual contains its CPPNs in LaDES, while the CPPNs
are a separate population in CoDES. Phase 1 of experiments concluded that a
combined individual, containing both the layout and all CPPNs, is superior to
coevolution. Although the two implementations performed comparably in early
generations, CoDES converged earlier and could not reach the fitness of LaDES. It
could be caused by new CPPNs not being initialized during evolution in CoDES,
or the CPPNs not being able to optimize to an individual layout when used to
assemble multiple of them.

The most promising answer to the question is thus to evolve a layout containing
a separate CPPN in each of its elements, and using the CPPNs to assemble the
element they are within. When crossover is performed between two substrates in
the layout, it is also performed on the CPPNs within them. Therefore, both the
layout’s topology and every substrate within it is evolved in parallel.

Research question 2 How can nodes in different substrates be connected in a
way that allows the layout’s topology to be evolved?

In DES-HyperNEAT, nodes are connected across different substrates similarly
to how networks are constructed within substrates. Paths in the layout determine
which substrates are connected, and each path is assigned a CPPN. The hidden
substrates in the layout do not possess any nodes. However, when a path between
two substrates in the layout is assembled, nodes are created in the path’s target
substrate. The process is almost identical to when networks are assembled within
substrates. All nodes in the source substrate are searched for outgoing connections,
though the newly connected nodes are placed in the target substrate instead of
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the source substrate. It thus allows for the connections between two substrates to
evolve, rather than being static.

In addition to the connections between substrates evolving, the whole layout
is evolving. New substrates are inserted in-between existing substrates. When a
substrate is inserted, the network output may only remain the same if an identity
function is created with it. The feature was investigated in DES-HyperNEAT, as
it could be beneficial to avoid disrupting the output when inserting substrates.
Three modifications were created so that it was possible to manually construct a
CPPN that produced an identity mapping pattern. By assigning such a CPPN to
a path, the nodes in the path’s target substrate would be placed at the exact same
locations as in the path’s source substrate. As the weights of the connections
between them were 1, nodes in the two substrates would have the same value
when the network was executed.

The conducted experiments in phase 2 found that the identity mapping is not
needed. DES-HyperNEAT is able to evolve networks even though the insertion of a
new substrate may initially disrupt the assembled network’s output. Therefore, an
answer to the research question is that connecting substrates with the same method
that crate networks within substrates work well. No further modifications are
required. By utilizing the node search from ES-HyperNEAT to create connections
between substrates, the node’s positions are evolved. As the variance-based node
search is used, connections between substrates will also not have uniform weights.

In fact, the results from phase 3 strongly indicate that by utilizing the technique
to create connections between substrates, there is no need to create a network
in each one. Connections should instead only be between substrates, not within
them. The conclusion is therefore that the node search from ES-HyperNEAT is
well suited to connect nodes in different substrates. It even alleviates the need to
assemble networks within each one.

Research question 3 How should the inputs and outputs of the problem be
organized in substrates so that the method can produce the best results?

Since DES-HyperNEAT utilizes multiple substrates, inputs and outputs can
be configured in multiple substrates. Related inputs can be placed together, and
inputs that are not can be separated. Results from experiments show that it is
a beneficial feature. DES-HyperNEAT is even able to evolve networks to solve
problems where the inputs are not related. If each input is placed in a unique
substrate, DES-HyperNEAT will evolve a layout that connects them appropriately.
However, if one has some prior information about the inputs, it is beneficial to
group those related in the same substrate and separate those that are not.



CHAPTER 6. CONCLUSION 98

Goal Investigate how ES-HyperNEAT can be extended with multiple substrates
in an evolving topology, to reduce the required complexity encapsulated by a
single CPPN, and increase adaptation to problems through gradual complex-
ification.

The overall goal has been accomplished. Multiple solutions to research question
1 have been evaluated, and one is selected. Layered DES-HyperNEAT is an
extension of ES-HyperNEAT, where an evolving substrate topology is utilized.
It does reduce the required complexity encapsulated by each CPPN, as separate
CPPN are used to assemble different parts of the network. As the layout and
CPPNs are evolved with NEAT, it enables gradual complexification by both
adding new substrates and increasing the complexity in each one.

In addition to achieving the goal, it is also found that the natural interpretation
of the goal is not the optimal use of properties from ES-HyperNEAT. Results
show that the new method should not be a direct extension of ES-HyperNEAT,
with multiple instances of ES-HyperNEAT evolved substrates. It should rather be
an application of ES-HyperNEAT’s node search in a topologically evolved version
of Multi-Spacial Substrates. The DES-HyperNEAT framework becomes such a
method when limiting the depth in all substrates to zero.

6.2 Comparison with state of the art

HyperNEAT, ES-HyperNEAT, MSS, Deep HyperNEAT, and DES-HyperNEAT
are presented in Table 6.1, along with some of their properties. HyperNEAT
and MSS have predefined static topologies, while the others evolve both network
topologies and weights. HyperNEAT and ES-HyperNEAT use a single substrate,
while others use multiple. As HyperNEAT and ES-HyperNEAT only have a single
substrate, the network connections are within the substrate. In contrast, MSS and
Deep HyperNEAT use multiple substrates. Therefore, they create connections
between substrates, instead of within them. DES-HyperNEAT differs from the
others, as it enables connections to be created both within and between substrates.
DES-HyperNEAT also differs in its use of multiple CPPN, where the others use a
single one.

As seen in Table 6.1, DES-HyperNEAT has many properties found in other
methods. It borrows from ES-HyperNEAT and MSS to enable connections both
within and between substrates. It also evolves both the network topology and
weights. As in ES-HyperNEAT, node positions within substrates are evolving
instead of static. Multiple substrates are also used, as in MSS. Similar to Deep
HyperNEAT, DES-HyperNEAT additionally increases the number of substrates
during evolution. However, it does so by using NEAT to evolve the substrate
topology and not the layered approach in Deep HyperNEAT.
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HyperNEAT ES-HN MSS Deep HN DES-HN

Connections
Within

substrate
Within

substrate
Between

substrates
Between

substrates
Within and

between

Network topology Static Evolving Static Evolving Evolving

Node positions in

substrate
Static Evolving Static Static Evolving

No. substrates 1 1 Multiple Evolving Evolving

No. CPPNs 1 1 1 1 Evolving

No. weight

outputs per CPPN
1 1 Multiple Evolving 1

Table 6.1: HyperNEAT related methods comparisons. A comparison of prop-
erties among methods related to HyperNEAT. The presented DES-HyperNEAT
(DES-HN) implmentation is Layered DES-HyperNEAT. HyperNEAT is abbrevi-
ated HN in ES-HyperNEAT and Deep HyperNEAT as well.

DES-HyperNEAT thus utilizes the properties thought to be most beneficial
in the other four methods. Many of which have been shown to be advantageous.
Being build upon the same properties as the others, it should succeed in the
same environments as them. It should also be more versatile than the others,
as it is a combination of beneficial properties. It possesses MSS’s ability to
separate the complexity over multiple CPPNs while also having ES-HyperNEAT’s
advantage of evolving node positions. Additionally, like Deep HyperNEAT, it
is also able to evolve deeper networks dynamically. It is the combination of all
these beneficial properties that make DES-HyperNEAT unique. These properties
are what enabled it to outperform HyperNEAT and ES-HyperNEAT in all the
conducted experiments.

6.3 Contributions

The most significant contribution within this work is the framework Deep
Evolvable Substrate HyperNEAT (DES-HyperNEAT). The novelty is the extension
of ES-HyperNEAT, from network construction within a single substrate, to
network construction across an evolving substrate topology. In addition to the
framework, the implementation Layered DES-HyperNEAT is also a contribution.
It was selected as the best implementation based on analysis of it and to two
other implementations, Single-CPPN DES-HyperNEAT and Coevolutional DES-
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HyperNEAT. Multiple configurations of it were then analyzed to make Layered
DES-HyperNEAT perform optimally. It outperformed both HyperNEAT and
ES-HyperNEAT in the conducted comparisons.

A contribution is also made to the node search algorithm proposed by Risi
and Stanley [2012], within CPPN patterns. Three modifications were proposed
and evaluated, specifically to allow for an identity function between substrates.
However, these are not pursued, as the framework did not benefit an identity
mapping.

The final contribution is an open-source implementation of the DES-HyperNEAT
framework and the three framework implementations: Layered DES-HyperNEAT,
Single-CPPN DES-HyperNEAT, and Coevolutional DES-HyperNEAT. It is avail-
able in a public Git repository at https://github.com/tenstad/des-hyperneat.

6.4 Future Work

Three datasets are used for evaluation and comparison in this work. Retina was
chosen because it has been used to evaluate methods related to HyperNEAT
previously. Iris and Wine datasets were selected as they are commonly used
in the field of machine learning. However, Iris and Wine are not commonly
used to evaluate HyperNEAT related methods. Therefore, it would be beneficial
to investigate DES-HyperNEAT’s performance in other environments as well.
As DES-HyperNEAT enables the use of multiple input substrates and output
substrates, the maze experiment used by Pugh and Stanley [2013], to evaluate
MSS, would be fitting. Likewise, the dual task and maze navigation Risi and
Stanley [2012] used to evaluate ES-HyperNEAT would enable a more extensive
evaluation. As DES-HyperNEAT is built upon the same principles as MSS and
ES-HyperNEAT, discussed in section 6.2, it likely also performs well in the two
proposed environments.

DES-HyperNEAT did not succeed in the Retina experiment. HyperNEAT
and ES-HyperNEAT struggled as well. It is not known why they reach a fitness
limit and are seeming not able to continue learning. An investigation into why
DES-HyperNEAT cannot learn the Retina dataset could potentially lead to such
limitations being removed, making DES-HyperNEAT a more versatile method.

Bias within network nodes and Link Expression Output [Verbancsics and
Stanley, 2011] are two features that each use an additional CPPN output node.
Thus, the CPPN can provide each node in the network with a bias, which is
commonly used in neural networks. LEO is used to separate a connection’s weight
from its presence in the network. The pattern determining weights is separate from
the one that determines whether to include a connection in the assembled network.
Both the use of bias and LEO are thought to be beneficial in DES-HyperNEAT,
and should thus be investigated.

https://github.com/tenstad/des-hyperneat
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General

population size 100

species target 8

speciation threshold 0.8

speciation threshold delta 0.05

asexual reprod. prob. 0.25

interspecies reprod. prob. 0.001

tournament size 2

dropoff age 20

young species multipleier 1.01

young age limit 20

stagnent species multipleier 0.2

survival ratio 0.2

initial mutations 100

elites 1

NEAT

add node prob. 0.03

add link prob. 0.2

remove node prob. 0.006

remove link prob. 0.08

link mutation prob. 0.9

initial weight size 0.5

weight mutation size 0.5

CPPN

mutate bias prob. 0.8

mutate bias size 0.03

mutate activation prob. 0.1

activations [None, Linear, Step, ReLU, Sigmoid, Exp, Sigmoid, Tanh,
Gaussian, OffsetGaussian, Sine, Square, Abs]

HyperNEAT

weight threshold 0.1

hidden activation None

ES-HyperNEAT

variance threshold 0.03

division threshold 0.03

band threshold 0.3

initial resolution 4

max resolution 5

iteration level 3

DES-HyperNEAT

min substrate depth 0

max substrate depth 5

max input substrate depth 0

max output substrate depth 0

mutate depth prob 0.1

Table A1: Default hyperparameters. Where methods extend others, they use
the parameters listed in the methods they extend.
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method [NEAT, CPPN, HyperNEAT, ES-HyperNEAT]
dataset [Iris, Wine, Retina]
stop criterion 30 seconds
repeats 50

population size [100, 400]
species target [None, 10, 20]
survival ratio [0.2, 0.5]
initial mutations [100, 250]
asexual reprod. prob. [0.15, 0.5]

population size [75, 200]
species target [8, 12]
survival ratio [0.15, 0.3]
initial mutations [80, 150]

population size [50, 75, 125, 150]
species target [4, 6, 8, 10]

Table A2: General parameter search grids.

method [NEAT, CPPN, HyperNEAT, ES-HyperNEAT]
dataset [Iris, Wine, Retina]
stop criterion 30 seconds
repeats 50

add node prob. [0.03, 0.05]
add link prob. [0.05, 0.1]
remove node prob. [0.006, 0.01]
remove link prob. [0.01, 0.02]

add link prob. [0.1, 0.15, 0.2]
remove link prob. [0.01, 0.05, 0.08]

initial link size [0.2, 0.8, 2.0]
link mutation size [0.2, 0.8, 2.0]
link mutation prob. [0.5, 0.9]

initial link size [0.5, 0.8]
link mutation size [0.5, 0.8]
link mutation prob. [0.7, 0.8, 0.9]

Table A3: NEAT parameter search grids.
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method [CPPN, HyperNEAT, ES-HyperNEAT]
dataset [Iris, Wine, Retina]
stop criterion 30 seconds
repeats 50

mutate bias prob. [0.7, 0.8, 0.9]
mutate bias size [0.1, 0.5, 1.0]

mutate bias size [0.01, 0.03, 0.05, 0.08, 0.1, 0.15]

mutate activation prob. [0.01, 0.05, 0.1, 0.15]
activation functions. [[None Linear Tanh OffsetGauss Sin],

[None Linear Tanh Gauss Sin],

[None Linear Step Sigmoid Tanh OffsetGauss Sin],

[None Linear Step Sigmoid Tanh Gauss Sin],

[None Linear Step ReLU Sigmoid Tanh Gauss OffsetGauss
Sin],

[None Linear Step ReLU Sigmoid Tanh Gauss OffsetGauss Sin
Cos Square Abs Exp]]

activation functions [[None],

[Tanh Sigmoid],

[None Linear Tanh OffsetGauss Gauss Sin],

[None Tanh OffsetGauss Gauss Sin],

[Linear Tanh OffsetGauss Gauss Sin],

[Linear OffsetGauss Gauss Sin],

[Tanh OffsetGauss Gauss Sin],

[Tanh OffsetGauss Gauss Sin Sigmoid],

[Tanh OffsetGauss Gauss Sin Step],

[Tanh OffsetGauss Gauss Sin ReLU]]

Table A4: CPPN parameter search grids.

method ES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 30 seconds
repeats 50

division threshold [0.01, 0.03, 0.1]
variance threshold [0.01, 0.03, 0.1]

band threshold [0.15, 0.3, 0.5]

Table A5: ES-HyperNEAT parameter search grids.
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method Layered DES-HyperNEAT
dataset [Iris, Wine, Retina]
stop criterion 60 seconds
repeats 50

actiavtion functions [[Tanh, OffsetGaussian, Gaussian, Sine, Sigmoid],
[None, Linear, Step, ReLU, Sigmoid, Sigmoid, Tanh,
Gaussian, OffsetGaussian, Sine, Square], [None, Lin-
ear, Step, ReLU, Sigmoid, Exp, Sigmoid, Tanh, Gaus-
sian, OffsetGaussian, Sine, Square, Abs]]

variance threshold [0.03, 0.15, 0.5]
division threshold [0.03, 0.15, 0.5]

variance threshold [0.4, 0.5, 0.6]
division threshold [0.01, 0.03, 0.05]

add substrate prob. [0.02, 0.04]
add path prob. [0.1, 0.2]
add CPPN node prob. [0.02, 0.04]
add CPPN link prob. [0.1, 0.2]

add substrate prob. [0.02, 0.04]
add path prob. [0.25, 0.35]
add CPPN node prob. [0.02, 0.04]
add CPPN link prob. [0.25, 0.35]

add substrate prob. [0.015, 0.025]
add path prob. [0.35, 0.4]
add CPPN node prob. [0.015, 0.025]
add CPPN link prob. [0.35, 0.4]

add substrate prob. [0.025, 0.03]
add path prob. [0.4, 0.45]
add CPPN node prob. [0.025, 0.03]
add CPPN link prob. [0.4, 0.45]

remove substrate prob. [0.0025, 0.005]
remove path prob. [0.05, 0.1]

remove substrate prob. [0.001, 0.0025]
remove path prob. [0.02, 0.05]

band pruning threshold [0.0, 0.1, 0.2, 0.3]

Table A6: Layered DES-HyperNEAT search grids.
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