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ABSTRACT
Introduction: Diffuse glioma is a challenging neurosurgical entity. Although surgery does not provide
a cure, it may greatly influence survival, brain function, and quality of life. Surgical treatment is by
nature highly personalized and outcome prediction is very complex. To engage and succeed in this
balancing act it is important to make best use of the information available to the neurosurgeon.
Areas covered: This narrative review provides an update on advancements in predicting outcomes in
patients with glioma that are relevant to neurosurgeons.
Expert opinion: The classical ‘gut feeling’ is notoriously unreliable and better prediction strategies for
patients with glioma are warranted. There are numerous tools readily available for the neurosurgeon in
predicting tumor biology and survival. Predicting extent of resection, functional outcome, and quality of
life remains difficult. Although machine-learning approaches are currently not readily available in daily
clinical practice, there are several ongoing efforts with the use of big data sets that are likely to create
new prediction models and refine the existing models.

ARTICLE HISTORY
Received 11 November 2019
Accepted 24 February 2020

KEYWORDS
Glioma; brain neoplasm;
neurosurgery; prediction;
personalised medicine

1. Introduction

Personalized treatment in oncology, where certain treatment
options are better reserved for a selected group of patients, is
highly dependent on classification and prediction. The goal is
to reduce ineffective treatment, thereby removing unneces-
sary side-effects and costs, while maximizing the benefit for
selected patients most likely to respond to the treatment. At
present, biomarkers are important in neuro-oncology, but
there is room for improvement in both predictive and prog-
nostic capabilities [1–4]. In the WHO 2016 classification mole-
cular markers were integrated to establish diagnoses, but they
are also important prognostic markers [5]. For instance, most
patients with lower-grade gliomas that are diagnosed with
isocitrate dehydrogenase (IDH) wild-type tumors have
a glioblastoma like prognosis [2–4]. The search for more pre-
cise molecular markers has been a popular approach in recent
years, especially the prediction of treatment responses (e.g.
one target, one treatment), but this task may be more com-
plex than perhaps first perceived [6]. Intratumoral heteroge-
neity complicates this approach as tumor cells and tumor
classes are neither homogenous throughout the entire lesion
volume nor stable over time, and treatment related changes in
molecular profiles might occur [7–12].

It is accepted that surgical decisions, including the surgical
indication and planned extent of tumor removal, will affect risk
and benefit in patients with glioma [13,14]. Surgical treatment is,
by nature, highly personalized, and the complexity is clearly

demonstrated in daily clinical practice by case selection for any
given surgical strategy. The prediction techniques or models
used should extend beyond pure surgical intuition whenever
possible, as this is notoriously unreliable [15]. Still, many remain
overly confident in their predictive capabilities. A pure biomarker
approach in the absence of reliable and widely available liquid
biopsies is of limited value in neurosurgical gliomamanagement.
Relevant outcomes for a neurosurgeon in patients with glioma
may not be predicted by a traditional biomarker, and other
means of foreseeing events are seemingly more appropriate.
Here, we provide a narrative review on advancements in predict-
ing outcomes in patients with glioma that are relevant to
neurosurgeons.

1.1. Prediction of tumor subtype and grade based upon
neuroimaging

Upon neurosurgical evaluation of a patient with glioma,
a neuroradiological examination has beenmade. The foundation
of brain tumor imaging is MRI, where T1w images with and
without contrast agent, T2w images, and diffusion-weighted
images are widely available. These images can provide useful
predictions concerning tumor type and grade with evaluation of
classic morphological features such as contrast enhancement,
calcifications, and location within the brain [16]. To further
increase diagnostic information the use of modern, metabolic
and physiological techniques are increasingly employed. These
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images are nowadays often used in researchwhere data are used
beyond the qualitative evaluations [17]. Radiomics refer to the
use of quantitative features extracted from images and
a milestone proof-of-concept publication was published in
2014 in other types of cancer [18]. These handcrafted features
are selected for either traditional statistical methods or deep-
learning algorithms. Finally, a ‘black box’ strategy using deep
learning for image analyses are also explored. MRI of a tumor
(and its surroundings) captures more of the disease compared to
focal tissue samples. Given the heterogenous nature of gliomas,
it is likely that imaging may both correlate well with, and even
supplement, a biomarker approach. For instance, a 1 cm super-
ficial IDH mutated WHO grade II astrocytoma probably holds
a different prognosis than a molecular apparently similar 7 cm
lesion not amendable to gross total removal. Also, anaplastic
astrocytoma (by definition lacking histological necrosis) with
radiological necrosis exhibits prognosis similar to glioblastoma
[19]. Finally, we acknowledge that many of the below-mentioned
techniques are available only at a limited number of centers, or
are used mainly in research and not yet validated or readily
available in clinical practice.

In a classical glioblastoma, with ring-like enhancement and
central necrosis there is usually little problem with grading pre-
diction. This is a more difficult task in patients with no or non-
specific contrast enhancement. Oligodendrogliomas may, for
instance, demonstrate faint and patchy uptake, despite being
WHO grade II [16]. To address the problem in non-enhancing
lesions PET evaluations have gained increased interest. The amino-
acid tracer [F-18]Fluoroethyltyrosine (FET) has demonstrated pro-
mising results in non-enhancing gliomas where increased uptake
is strongly associated with high-grade glioma (HGG) as deter-
mined by histopathology [20]. Three patterns were recognized
where no uptake corresponded to WHO grade II gliomas and
homogenous or heterogeneous uptake (i.e. a hot spot) indicated
HGG. This has practical implications since a heterogeneous uptake
may be at risk of sampling bias, and thus FET-PET may be used to
guide biopsy targets in non-enhancing gliomas. Finally, in non-
enhancing gliomas the FET-PET uptake may add independent
prognostic information [21–23]. Nevertheless, one recent systema-
tic review indicates that there is yet no clear-cut role for amino-
acid PET for the neurosurgeon in the management of patients
with glioma due to inconsistencies and heterogeneous data [24].

Other techniques that may be used to detect anaplastic
foci are MR spectroscopy and diffusion kurtosis imaging. MR
spectroscopy has demonstrated pathological ratio of Choline/
N-acetylasperate and Choline/Creatine in non-enhancing glio-
mas, with hot spot using chemical shifts can be utilized to
detect anaplastic foci in order to avoid undergrading and
misclassification [25]. Diffusion kurtosis imaging was able to
discriminate between grade II and III gliomas with area under
the curve (AUC) of 0.82 [26]. The benefit of these techniques
relies on the availability also outside PET centers, lower costs,
and no exposure to radiation for the patient. Newer techni-
ques of MR spectroscopy detecting 2-hydroxyglutarate, the
oncometabolite produced by the IDH mutation, is promising
in terms of detecting IDH mutant gliomas [27–29].

Glioma subtyping is highly relevant to patients with lower-
grade gliomas (i.e. WHOgrade II and III). These patients are divided
further into astrocytomas IDHwild-type or IDHmutated and oligo-
dendrogliomas where both IDH mutation and 1p19q codeletion
are present [2,5]. These are now recognized as different tumor
entities, but the classification also holds prognostic information.
There are no perfect qualitative MRI markers for molecular sub-
classification, but the T2-FLAIRmismatch sign is highly indicative of
IDH mutant astrocytoma [30–32]. The predictive performance of
the mismatch sign can be improved by implementing more
advanced sequences such as regional cerebral blood volume and
diffusion-weighted imaging [33].

A rapidly developing field of research is the use of noninva-
sive radiomics features for brain tumor classification. Radiomics is
based on the extraction of large amounts of quantitative data
from medical images using data-characterization algorithms to
detect features and patterns that are not easily detectable to the
human eye. There are now many papers in the field of glioma
subclassification, demonstrating promising results reaching
beyond the standard (semi)qualitative image analyses [34–40].
The approach with radiomics has proven powerful also for the
task of glioma grading [41]. The newest development is the
introduction of deep-learning in glioma diagnostics where
images have been used directly or with handcrafted radiomic
features [42–47]. Results from these studies are highly encoura-
ging, and it is likely that these quantitative and artificial intelli-
gence-based methods will assist and further refine prediction of
brain tumor diagnoses in the near future.

We have discussed grading and subtyping, but these
approaches may also be used for other prognostic and pre-
dictive radiogenomic information (e.g. MGMT methylation,
predicting response to chemotherapy in patients with glio-
blastoma) [48–53]. Identification of predictive markers (radi-
ological or tissue based) where response to certain therapies
can be foreseen is much needed. However, such refinement
will not represent a substantial progress unless therapeutic
options also increase. Even today with MGMT methylation
status as a useful marker for response to temozolomide, the
absence of treatment alternatives often does not lead to
tailored treatment.

Although not an imaging modality, similar information can
become available from liquid biopsies. In addition to provid-
ing information on tumor diagnosis, liquid biopsies would also

Article highlights

● Accurate predictions and prognoses are needed to inform patients
with glioma and this forms the foundation for shared decision
making.

● ‘Gut feeling’ as a strategy for predicting outcome in patients with
glioma is unreliable.

● Classical radiological markers for tumor biology and overall prognosis
are still very useful but radiomics holds the potential for improved
accuracy.

● Radiomics approaches may include hand-crafted features and classi-
cal statistical methods or deep learning.

● Effective use of big data will revolutionize how we acquire patient
specific and relevant information. Ultimately, this holds the potential
to improve predictions and prognostications in the future.
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be useful for disease monitoring [54,55]. With a molecular
profile that reflects the ‘parent tumor’ the surgical approach
can be adapted. The most radical adaption would be to
bypass the need for biopsies in cases not suitable for any
meaningful resection.

Finally, we acknowledge that many combined techniques,
for instance using several advanced MRI parameters or MRI
and PET parameters can probably be used to further improve
performance of noninvasive diagnostics.

1.2. Prediction of extent of resection

Prior to the routine of early postoperative MRI following sur-
gery for infiltrating gliomas, neurosurgeons were far from
calibrated in their estimation of extent of resection [56,57]. In
the study by Shaw et al., it was demonstrated that 41% of
patients had a residual low-grade glioma >1 cm in diameter
following what was reported as a gross-total resection [56]. In
modern glioma surgery, a myriad of surgical adjuncts can
assist in detection of tumor remnants, with best evidence for
intraoperative MRI and 5-aminolevulinic acid [13,58]. Even
without these tools, it is also likely that neurosurgeons at
present are better calibrated due to the constant feedback of
postoperative imaging, however there are little data on this. In
a single surgeon experience a significant learning curve in
estimation of extent of resection was demonstrated, and insu-
lar lesions were particularly difficult to predict quantitatively
[59]. Another recent series on prediction of extent of resection
demonstrated only moderate reliability of surgeons’ estimates
in patients with glioblastoma [60].

As surgical experience takes time to gather patients taking
part in the learning curve may suffer from inaccurate esti-
mates leading to suboptimal surgical decision-making. Also,
estimations of achievable extent of resection are presumably
even more inaccurate preoperatively compared to the situation
in the final stage of the operation. In glioblastoma, what is
considered resectable varies significantly even between

experienced neurosurgeons (see Figure 1), although the
majority vote correlated well with clinical outcome [61]. In
non-enhancing gliomas Hendriks et al. used neurosurgeons
with different level of experience and there was a slight over-
estimation of tumor removal [62]. Interestingly, cumulative
knowledge from historical data as an unbiased alternative
outperformed the neurosurgical experts. Thus, to help us
select patients for meaningful surgical resections, it may be
wise to use historical data from a broad expert panel or
extensive databases to provide unbiased best estimates. In
line with this, it has been created so-called resection prob-
ability maps [62–64]. Ius et al. demonstrated the ‘minimal
common brain’ with functional guided resection stop due to
conflict with regions that were considered not to be compen-
sated functionally if damaged [64]. Creating such maps may
also be a transparent way of comparing surgical teams and
calibrating inappropriate deviations in surgical practice
[63,65]. Nevertheless, despite effects of treatment variation,
patient-related factors may be more important for outcome
than treatment related factors in patients with glioblastoma
provided the current treatment options [66]. Also, there are
more factors than tumor location that affect the extent of
surgical resection. For example, among many factors, the tis-
sue texture, color and consistence, degree of neovasculariza-
tion and perivascular and subependymal growth, and border
delineation of the lesion could affect surgical extents of resec-
tion in a given location. Perhaps important tissue-related fac-
tors that affect resectability could be predicted by radiomics
approaches in the future.

Another factor that relates to the presumed availability for
extensive surgery is the prediction of function within or in the
near surroundings of the tumor. There are several noninvasive
methods available to provide this information, although it
should be emphasized that these methods are only estimates
and should not be taken as proof of function (or proof of
absence of function). The functions most frequently evaluated
in clinical practice are motor, language or visual function.

Figure 1. Experienced neurosurgeons providing recommended surgical strategy in 20 cases, demonstrating significant variability. The surgeons are ranked left-to-
right with higher ‘aggressiveness’ to the left.
Sonabend AM et al. [61] by permission of Oxford University Press
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Diffusion tensor imaging (DTI) based tractographies have been
found useful by several groups in providing anatomical knowl-
edge of larger fiber tracts and the relation to the tumor as this
may assist in planning of procedure and surgical strategy
[67,68]. Navigated transcranial magnetic stimulation (nTMS)
have been found useful primarily for motor localization, and
may be used as seeding points for DTI [69–71].

Functional MRI (fMRI) is a reasonable noninvasive alterna-
tive to the WADA test for establishing language lateralization
[72–74]. For precise localization of language, fMRI has only
moderate sensitivity and specificity and is by many considered
unreliable [75].

The abovementioned methods of identification of function
may also influence the accuracy of prediction of neurological
deficits, although postoperative functional outcome and quality
of life is presumably also largely influenced by factors beyond
thesemore ‘basic’brain functions (that aremore easilymonitored).

1.3. Prediction of functional status

Surgeons often base their treatment decisions upon glioma
location [76,77]. Karnofsky Performance Status (KPS) or similar
crude scales are often used to assess gross functional status [78].
Such functional scales have repeatedly been reported as prog-
nostic factors in management of patients with glioma [79–81].
For surgeons, it is particularly important to note that a decline in
functional status following surgery is linked to impaired survival
[82–84]. As treatment is not curative, and in the case of high-
grade gliomas not very effective in terms of prolonging life,
functional status is very important. However, surgeons tend to
be overly optimistic if asked to predict their patients’ functional
levels postoperatively [85]. Scoring systems for assessing the risk
of functional deterioration may be a way to advance [77].
However, while the physical functional status in patients with
cancer outside of the brain are associated to the burden of
disease, functional levels in brain cancer may bemore associated
with eloquent tumor locations. If less aggressive treatment is

given in presumed eloquent locations, the reduced survival
associated with functional impairment may also in some cases
be a self-fulfilling prophecy. Also, the conventional functional
scales put much emphasis on the patients’ physical abilities,
while mental or cognitive abilities are often overlooked. Thus,
a one-dimensional focus on eloquent brain regions associated
with risk of physical functional impairment may not always be in
the patients’ interest. Shared decision-making, making patients’
part of the difficult treatment decisions may be feasible in some
patients, especially if considering planned deficits [86–88].
Predicting impact and course of such deficits and the conse-
quences for quality of life is still very difficult.

Another aspect of outcome prediction for neurosurgeons is the
use of the intraoperative acquired information in relation to post-
operative deficit. Several publications highlight thatmany patients
recover substantially during the first 3 months following surgery
[89–91]. Since functional status is highly correlated to motor func-
tion we use this as an example below, although detection and
intraoperative avoidance of other functions are equally relevant.
The prediction of functional status may be improved if using
neurophysiological motor monitoring. For instance, Seidel et al.
demonstrated themotor function recovery in relation to themotor
evoked potential, where an irreversible signal reduction or even
worse, a complete signal loss, holds the most severe prognosis as
demonstrated in Figure 2 [91].

Glioma surgery remains a delicate balancing act between
achieving maximal tumor resection and inducing new deficits,
and the tolerance for adverse events often depends on
expected tumor classification and grade, prognosis, and avail-
able time for convalescence and rehabilitation. Knowledge
about risks is of great interest for patients, but also for pre-
dicting chance of net gain from surgery. In patients with
glioblastoma there is a poor prognosis and limited time for
rehabilitation, hence complications and neurological deficits
should be avoided [82,83,92]. Currently, it is difficult to com-
pare complication rates across studies as there is considerable
variation in patient selection (i.e. external validity),

Figure 2. New postoperative motor deficits in relation to MEP signal alterations. Motor function at first postoperative day (left bar), at discharge (center bar), and at
the 3-month postoperative (right bar). With permission from reference [91].
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classification of outcomes, and follow-up time following sur-
gery. Population-based and standardized registration of all
patients who undergo glioma surgery providing a sampling
less hampered by case selection and publication bias should
therefore be encouraged [93,94].

1.4. Prediction of quality of life

As opposed to functional status with a one-dimensional focus,
quality of life (QoL) is a multidimensional construct including
physical, psychological, emotional and social domains. It is
assessed from the patients’ perspective, and thereby account
for their own subjective evaluation of health. In patients with
cognitive impairment, patient-reported outcomes may not
always be entirely valid or reliable, and this remains a challenge
[95]. Other challenges with QoL data are unfavorable patient
selection and missing data. Still, QoL data is rightly getting
increased attention and accurate predictions of QoL following
treatment would be much appreciated.

However, questions remain about what we actually are able
to predict. Individual changes in generic overall quality of life
after glioma surgery are frequently seen, perhaps reflecting
the potency for both symptom relief and adverse effects
[92,96,97]. However, findings are heterogeneous, and reliable
identification of predictive factors remains difficult. At baseline
it seems like larger tumors have worse QoL [98], however this
has not been found to be a significant factor in longitudinal
studies [96,99]. New or worsened neurological deficits after
surgery seem to have a negative impact on QoL in the short
term [99], but the impact of tumor location on overall QoL is
perhaps lower than frequently believed [100,101]. It is some-
times easier to acknowledge the function of the ‘dominant’
hemisphere since language is readily screened bedside. This
may explain the neurosurgical tradition of respecting this
‘dominant’ function, but when it comes to patients and QoL
such a distinction cannot be made, and in the preoperative
setting a right-sided location has actually been associated with
worse QoL [98]. According to a novel strategy with QoL maps,
using the cumulative knowledge gathered from previous
patients experiences, the central region seems prone to nega-
tive changes in QoL 1 month after surgery [101]. However,
which brain functions that are most important to patients
probably depend upon timing of assessment and the QoL
may change with adaptation to their new situation due to
a ‘response shift’ [102]. In general, knowledge about the
impact of various deficits on long-term quality of life is still
lacking. Thus, a prediction of for instance a worst-case scenario
of QoL based upon procedural risk is still not possible from
a scientific point of view.

At later follow-up after surgery, patients with higher tumor
grades have worse quality of life than patients with lower
tumor grades [96]. In patients with high-grade glioma tumor
progression has been shown to reduce QoL significantly
[92,103,104]. This corresponds to the observation that QoL
have been demonstrated to be better and more stable after
gross-total resection, but the findings are not adjusted for
case-mix and should be interpreted with some caution

[92,96,105]. In patients with low-grade glioma and stable dis-
ease of at least 1 year following surgery, the lack of seizure
control is associated with reduced QoL [106]. In the longer-
term LGG patients with stable disease have compromised QoL
similar to other cancer patients, with the addition of neuro-
cognitive complaints and seizures [107]. These findings corro-
borates literature on seizures in general, where seizure
freedom is associated with improvement in QoL [108]. This
information is important for neurosurgeons treating patients
with LGG, since achieving extensive resections are important
for seizure control [109].

Altogether, the available evidence supports the strategy of
opting for extensive surgical resections whenever safely pos-
sible to achieve tumor and seizure control. These factors have
repeatedly been associated with QoL in patients with high-
and low-grade gliomas, respectively.

1.5. Prediction of survival based upon clinical factors
prior to tissue diagnosis

For patients with low-grade glioma, there are two widely
utilized clinical prognostic scores, the EORTC/Pignatti score
[110] and the UCSF/Chang score [79]. The risk factors accord-
ing to the EORTC score are age ≥40 years, astrocytoma histol-
ogy, largest diameter ≥6 cm, tumor crossing midline and
presence of deficit prior to surgery. Prior to surgery, the his-
topathology is not known, and the morphological criteria does
not fit into the current classification system, making this score
of lesser relevance. Of note, a small series demonstrated that
when IDH mutational status is considered, the EORTC score
provides limited prognostic information [111].

The UCSF score is a true preoperative score where patients
receive a score between zero and four, with one point given
per risk factor. In this scoring system age >50, KPS < 90,
eloquent location and largest tumor diameter >4 cm are
considered risk factors. The UCSF score has also been vali-
dated in an independent large multi-center study [81]. The
prognostic impact of the age cut off of 50 years has also been
reported to be better than 40 years in a population based
study, likely reflecting the chance of having IDH wild-type
astrocytoma increases with age [112,113].

In patients with glioblastoma the recursive partitioning
analysis (RPA) score including age, functional status, mental
status, tumor location and surgical procedure (biopsy versus
resection) as key variables have proven useful in prognostica-
tion [114–116]. Interestingly, an adapted version of the influ-
ential clinical RPA from 1993 still proved robust in the
temozolomide era including age, WHO performance status,
cognitive status and surgical procedure [117]. A recent inte-
grated molecular and clinical prognostic model confirmed the
important role of MGMT, and age was the only clinical variable
of importance beyond MGMT [118]. This new model was
particularly strong in separating groups when treated with
radio- and chemotherapy.

Radiological features harbor significant potential in survival
prediction and radiomics will likely play an increasing role. For
low-grade glioma, the growth velocity is strongly linked to
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prognosis [119,120]. Speed of growth may also be a prognostic
factor in glioblastoma [121]. Similarly, nodular enhancing focus
despite not being anaplastic by histology, and progressive con-
trast enhancement are negative prognostic factors in LGG [122].
However, one recent study in the molecular era has indicated
that prognostic capabilities of contrast enhancement is most
important in IDH mutant astrocytomas [123]. Slower growth as
determined by volumetric measurement has also been linked to
long-term survival in patients with glioblastoma [121]. Despite
being a powerful and seemingly robust prognostic factor, volu-
metric measurements are still not routine in clinical practice
[124–126]. Automatic segmentation based upon artificial neural
networks is likely the way to proceed, and this method has
recently demonstrated to be better than the classical bidimen-
sional criteria in determination of tumor burden/progression in
patients with glioma [127].

2. Expert opinion

Predicting the course of disease and outcomes with different
treatments is key for the patient and for creating a foundation
for shared decision-making. As demonstrated in this review,
there are many aspects of outcome that can be considered for
a neurosurgeon caring for patients with glioma. We have
summarized some of the useful tools in Table 1.

For a neurosurgeon, the use of reliable noninvasive tools
would be helpful. Although traditional neuroimaging features
can be useful, the field of radiomics is much more promising. In
terms of classification and prognostication, radiomics will likely
outperform traditional neuroimaging features. More validation
studies within the field of radiomics and the development of
a streamlined work-flow suitable for clinical use should allow us
to inform patients more accurately [18,36,37,51].

Today shared decision-making concerning the risk and
benefit ratio of the surgical strategy is often a division of
unknowns. The benefits in terms of survival is largely depen-
dent on the diagnosis and the obtained resection [128–130].
The prediction of functional status postoperatively has proven
difficult to obtain, and there does not exist a widely accepted
tool for this purpose. We are then left with a ‘gut feeling’ in
many instances, although this is known to be notoriously
unreliable even for simpler tasks.

For predicting quality of life and for complex brain func-
tions like mental health, memory, personality, and executive
function the knowledge about the impact of various treatment
decisions is even more limited. A radiomics approach could
predict both the molecular diagnosis and other tissue-related
factors affecting resectability. Also, the use of a probability

map for functional status or QoL may improve decision-
making and help educate patients. For both approaches,
large amounts of neuroimaging data need to be linked to
other data sources (i.e. molecular and clinical/patient reported
outcomes).

Finally, certain prognostic factors have been consistent
across time periods and study designs (e.g. age and functional
status). Nevertheless, we think the time for development of
new simple clinical prognostic scores has passed. In the near
future, true-integrated solutions with imaging, clinical factors,
and biomarkers will either refine current models or create
completely new ones, with the result of improved prediction
and prognostication. The amount of data integrated in such
models indicate that data needs to be handled automatically.

In general, we firmly believe that integrated big-data
approaches outlined above could facilitate evidence-based
personal medicine in neuro-oncological surgery. If clinicians
were able to easily search a database of a large set of patients
treated for the same type of tumor with the same tumor
location, the same radiological appearance, and same clinical
prognostic factors, statistical profiles of the risk and benefits
associated with various treatment decisions could be made to
guide decision-making in future patients.

Although big data creates new opportunities and machine
learning holds potential for improved accuracy in prediction and
prognostication, especially with the use of medical imaging,
there are some problems [131]. Ensuring effective de-
identification and privacy with increasing amount and complex-
ity of data is a challenge when data sharing for sufficient amount
of cases is needed in many instances [132–134]. Since data
routinely is heterogeneous one barrier is related to standardiza-
tion of data into a common format, and united efforts are needed
since data sharing across institutions and countries frequently
are needed [134]. Finally, there are issues related to ethical and
legal aspects that needs to be handled before implementation,
e.g. who should be held responsible in cases with erroneous
prediction by the model.

3. Five-year view

A barrier in choosing the best approach is the overwhelming
amount of data available, so many choose in-house tradition
and yesterday’s solutions. The potential is huge for tailored
treatment based upon improved prediction in patients with
glioma and we believe that, in particular, big-data and
machine learning will play a crucial role. However, there is
currently a huge technology gap in what is possible in
a research setting and what is actually done in regular clinical

Table 1. Summary of tools for outcome prediction that may be of value to neurosurgeons in patients with glioma.

LGG HGG Usefulness Example references

‘Gut feeling’ - - Notorious unreliable [15,59–61,85]
FET PET + - Anaplasia, prognosis in non-enhancing tumors [20–24]
MR spectroscopy + - Anaplasia, IDH mutation [25,27–29]
Radiomics + + Noninvasive detection of biomarkers, prognosis [30–41,49–53]
Milan complexity score (+) (+) To predict functional status following surgery [77]
Motor evoked potential + + Primarily to avoid motor deficit, but also to predict prognosis of postop motor deficit [91]
Clinical factors and survival +UCSF score +RPA Simple models with good prognostic performance [79,81,114–118]
Machine learning ++ ++ Not available in clinic. Radiomics, prediction and prognostication [42–47]

172 A. S. JAKOLA ET AL.



practice. The implementation of even simpler novel methods
that significantly alter work flows are seemingly impossible to
implement at times. For instance, volumetric measurements of
gliomas are consistently reported to be superior to traditional
measurements, however very few centers have this as
a clinical routine [126,127,135,136].

To bridge the gap in medicine and in neurosurgical prac-
tice we believe that new members of our teams are needed
[137]. For instance, technicians, programmers, engineers, and
computer scientists are needed for data curation/standardiza-
tion, algorithm development, data visualization and by this
achieve safe and streamlined integration suitable for clinical
use. The frequent reductionism and single factor focus seen in
much prognostic research is problematic. Sole focus on key
clinical factors, a few imaging features, or a few molecular
factors is unlikely to provide true progress. To fully capture
the disease and to move the field forward we need to inte-
grate different sources with rich information.
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