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ABSTRACT. Recent work by Baum, Guentner, and Willett, and
further developed by Buss, Echterhoff, and Willett introduced a
crossed-product functor that involves tensoring an action with a
fixed action (C, ), then forming the image inside the crossed prod-
uct of the maximal-tensor-product action. For discrete groups, we
give an analogue, for coaction functors. We prove that composing
our tensor-product coaction functor with the full crossed product
of an action reproduces their tensor-crossed-product functor. We
prove that every such tensor-product coaction functor is exact and
if (C,~) is the action by translation on £*°(G), we prove that the
associated tensor-product coaction functor is minimal; thereby re-
covering the analogous result by the above authors. Finally, we
discuss the connection with the F-ization functor we defined ear-
lier, where F is a large ideal of B(G).

1. INTRODUCTION

For a fixed locally compact group G, the full and the reduced crossed-
product functors each take an action of G on a C*-algebra and produce
a C*-algebra. Baum, Guentner, and Willett [BGW16] studied ezotic
crossed-product functors that are intermediate between the full and re-
duced crossed products, as part of an investigation of the Baum-Connes
conjecture. In Section 5 of that paper, the authors introduced a natu-
ral class of crossed products arising from tensoring with a fixed action.
Their general construction starts with an arbitrary crossed-product
functor, but we only need the version for the full crossed product.
They prove that their tensor-crossed-product functor is exact. Buss,
Echterhoff, and Willett [BEW18] further the study of these tensor-
crossed-product functors, and in Section 9 of that paper they prove
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that the case with ¢>°(G) produces the smallest of all tensor-crossed-
product functors. This leads them to ask whether tensoring with (> (G)
in fact produces the minimal exact correspondence crossed product.

Thus the ¢>°(G)-tensor-crossed-product functor takes on substan-
tial importance. We have initiated in [KLQ16, KLQ18] a new ap-
proach to exotic crossed products, applying a coaction functor to the
full crossed product. We have shown that this procedure reproduces
many (perhaps all of the important?) crossed-product functors, and
we believe that fully utilizing the coactions makes for a more robust
theory. In [KLQ16, KLQ18] we have shown that the theory of coaction
functors is in numerous aspects parallel to that of the crossed-product
functors of [BGW16, BEW18]. In this paper, using the techniques of
[BGW16, BEW18] as a guide, we initiate an investigation into an ana-
logue for coaction functors of the tensor-crossed-product functors for
actions (see Section 3 for details). Our development must of course have
many differences from that of crossed products by actions, since coac-
tions are different from actions, and also, according to our paradigm for
crossed-product functors, our coaction functors form the second part
of such a crossed product.

To give a more precise overview of our tensor-coaction functors,
we first outline (with slightly modified notation), the construction of
tensor-crossed-products from [BGW16, BEW18]. For technical rea-
sons, our techniques currently only apply to discrete groups, so from
now on we suppose that the group G is discrete.! Fix an action (C, )
of G. Both papers [BGW16] and [BEW18] require C' to be unital. For
every action (B, «) of G, first form the diagonal action a®+ of G on the
maximal tensor product B ®,.xC. The embedding b — b®1 from B to
B ®pax C is G-equivariant, and its crossed product is a homomorphism
from B X, G t0 (B ®pmax C) ®agy G. The C-crossed product B X, ¢ G is
the image of B X, G in (B @max C) Xagy G under this crossed-product
homomorphism. We want an analogue of this construction for coaction
functors. Our previous work indicates that there should be a coaction
on B X, cG that is the result of applying a coaction functor to the dual
coaction (B X, G, @), and presumably this should involve the fixed dual
coaction (C' x, G,7). Abstractly, we are led to search for a coaction
functor formed by somehow combining a coaction (A,d) with a fixed
coaction (D, (), with D unital, to form a coaction (AP, ) in such a
manner that if the two coactions are (B x, G, @) and (C %, G,7) then

Tt is certainly a draw-back of our techniques in this paper that we only handle
discrete groups. It is imperative to find some way to extend all this to arbitrary
locally compact G, and we will investigate this in future research.
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(B x G)¢"Y is the natural image of B X, G in (B ®@max C) Xagy G, and
(@)°7C is the restriction of the dual coaction a ® 5. Since we require
C to be unital, the crossed product C' x, G is unital too, so we incur
no penalty by supposing that D is unital as well.

We accomplish our goal via a “G-balanced Fell bundle” A ®¢ D,
whose cross-sectional C*-algebra embeds faithfully in the maximal ten-
sor product A ®pax D.

In Section 2 we record our notation and terminology for coactions,
Fell bundles, and coaction functors.

Sections 3-5 contain our main results, and begin, as we mentioned
above, by proving in Theorem 3.2 the existence of the tensor D coaction
functor, for a fixed dual coaction (D, (). For a maximal coaction (A, d),
we define an equivariant homomorphism from A to the G-balanced ten-
sor product A®q D, and then for an arbitrary coaction we first compose
with maximalization. In Theorem 3.6 we prove that when we compose
with the full crossed product we recover the tensor-crossed-product
functors of [BGW16, BEW18]. We prove in Theorem 5.2 that the case
D = (~(G) x G, with ¢ the dual of the translation action, gives the
smallest of these coaction functors. We point out that our methods are
in many cases drawn from those of [BGW16, BEW18], but we mod-
ified the proof of minimality — [BEW18] chooses an arbitrary state
and temporarily uses completely positive maps as opposed to homo-
morphisms, and we managed to avoid the need for these techniques.
Before that, we prove a general lemma involving embeddings into ex-
act functors, from which in Theorem 4.2 we deduce that all tensor D
coaction functors are exact.

We close in Section 6 with a few concluding remarks. First of all,
we acknowledge that our standing assumption that the group G is
discrete was heavily used, and we hope to generalize in future work to
arbitrary locally compact groups. We also mention that it is certainly
necessary to use a mixture of Fell bundles and coactions — Fell bundles
by themselves are insufficient for our purposes. We then describe a
tantalizing connection with the coaction functors determined by large
ideals F of the Fourier-Stieltjes algebra.

We added a very short appendix containing a Fell-bundle version of
Lemma 4.1, which could be proved using the lemma and which would
lead to a quick proof of Theorem 4.2. However, we felt that it would
interrupt the flow too much to actually use Proposition A.1 in the
main development of Section 4, and it would in fact have lengthened
the exposition.
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2. PRELIMINARIES

Throughout, G will be a discrete group, with identity element de-
noted by e.

We refer to [EKQRO06, Appendix A] and [EKQ04] for background
material on coactions, and to [KLQ16, KLQ18] for coaction functors.

For an action (A, «) of G we use the following notation:

e (i9,1%) is the universal representation of (A, ) in M (A %, G);
this is abbreviated to (i4,i¢) when the action « is clear from
context.

e « is the dual coaction of G on A x, G.

Fell bundles. We work as much as possible in the context of Fell bun-
dles over GG, and the primary references are [FD88, Exel7, Qui96]. The
canonical Fell bundle over G is the line bundle C x G, whose C*-algebra
is naturally isomorphic to C*(G). If A = {As}seq and B = {Bs}sea
are Fell bundles over GG, we say a map ¢: A — B is a homomorphism
if it preserves all the structure (in particular, multiplication and invo-
lution).

We call an operation-preserving map m from a Fell bundle A into a
C*-algebra B a representation of A in B. We call a representation ¢
nondegenerate if ¢(A.)B = B. We write C*(A) for the cross-sectional
C*-algebra of a Fell bundle A, and i4: A — C*(A) for the universal
representation, so that for every nondegenerate representation 7: A —
B there is a unique (nondegenerate) homomorphism 7: C*(A) — B,
which we call the integrated form of m, making the diagram

A—" B

2
~
’L_Al //~
T

c(A)

commute. If ¢: A — B is a Fell-bundle homomorphism, then iz o ¢ is
a nondegenerate representation, so by the universal property there is a
unique C*-homomorphism C*(¢) making the diagram

A—2 8

i |-

commute. Thus, the assignment A — C*(A) is functorial from Fell
bundles to the nondegenerate category of C*-algebras, in which a mor-
phism from A to B is a nondegenerate homomorphism 7: A — M (B).
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We frequently suppress the universal representation 7 4, and regard the
fibres A of the Fell bundle A as sitting inside C*(A), so that the pas-
sage from a representation to its integrated form can be regarded as
extending from A to C*(A), and in fact we will frequently use the same
notation for both the representation and its integrated form.

Recall from [Ng96, Qui96] that for every Fell bundle A over G there
is a coaction d4: C*(A) — C*(A)®C*(G) (where unadorned ® denotes
the minimal C*-tensor product) given by

dalas) =as®s forse G as € As,
and conversely for every coaction (A, d) of G the spectral subspaces
As={ac€ A:(a) =a® s}

give a Fell bundle A = {A}seq. Moreover, if (B, €) is another coaction,
with associated Fell bundle B, then a homomorphism ¢: A — B is
0 — € equivariant if and only if it restricts to a homomorphism A — B.
By [EKQO04, Proposition 4.2], the coaction § is maximal if and only
if the integrated form of the inclusion representation A, < A is an
isomorphism C*(A) ~ A. Thus, for maximal coactions (A, J) we can
define a homomorphism from A to another C*-algebra B simply by
giving a representation of the Fell bundle A in B.

Remark 2.1. We will need the following result [AEK13, Corollary 6.3]:
if A = {A,}seq is a Fell bundle over G and H is a subgroup of G,
then the canonical map C*(Ap) — C*(A) is injective (where Ay =
{Ap}hen is the restriction to a Fell bundle over H).

3. TENSOR D FUNCTORS

We will be particularly interested in the case of a homomorphism
from the canonical bundle C x G to another Fell bundle D = {D}eq,
and we will just say that we have a homomorphism V': G — D. Note
that this will require the unit fibre C*-algebra D, to be unital, and the
elements V; for s € G will have to be unitary.

Given Fell bundles A, D over G, with cross-sectional algebras A =
C*(A) and D = C*(D), we form a new Fell bundle A ®¢ D over G as
follows: the fibre over s € G is the closure in A ®,. D of the algebraic
tensor product A; ® Dy, and we write this fibre as Ay @pax Ds. We
write

A®q D =C*"(A®qD).
We then define a Fell-bundle homomorphism

ou: A—> ARg D
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by

dalas) =as;@Vy for as € As.
Then the image ¢.4(A) is a Fell subbundle

AD = {As X VS}SEG

of A®qg D. Applying the C*-functor gives a homomorphism

Qa=C"(pa): A= A®g D,
and we write

AP = Q4 (A).

Occasionally, if A is understood we will just write @ for Q4. On the
other hand, if D, and so D, is ambiguous, we write Q4. There is a
subtlety: although the fibres A, ®nax Ds give a linearly independent
family of Banach subspaces of A®,. D with dense linear span, making
A @max D a graded C*-algebra over G in the sense of Exel [Exel?,
Definition 6.2], it is not a priori obvious that the the inclusion map
ARcD — A Quax D gives a faithful embedding of the Fell-bundle

C*-algebra A ®g D in A ®uax D. The following theorem establishes
this fact.

Theorem 3.1. If 7: AR®c D — A Quax D s the representation given
by inclusions of the subspaces Ay Qumax Ds, the integrated form

T: ARc D — A Quax D
18 1njective.
Proof. First, consider the Fell bundle
A Omax D = {As @max Di}syecxa

where, similarly to the definition of A ®¢ D, we define Ay Qmumax Dy as
the closure of the algebraic tensor product Ay, ® D; in A ®@pax D. By
[AV, Proposition 4.6] the integrated form of the representation of the
Fell bundle A ®@pax D in A @pmax D given by the inclusions

As ®max Dt — A ®max D
is an injective homomorphism
C*(A ®max D) = A @max D.

In view of this, we identify C*(A @max D) = A Qmax D.
Now, the diagonal subgroup

A={(ss):s€G}
of G x (G is isomorphic to G in the obvious way, and thus the restriction
(A Pmax D)A - {As O max DS}SGG
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of the Fell bundle A ®.x D to A is canonically isomorphic to our
Fell bundle A ®¢ D over G. By [AEK13, Corollary 6.3] (which we
mentioned in Remark 2.1) the canonical map

C* ((A ®max D)A) — C*(A ®max D)

is injective, and it follows by the above isomorphism that 7 is injective
also. U

In view of Theorem 3.1 we can identify A®qD with the C*-subalgebra
of A®uax D given by the closed span of the subspaces { As @max Ds }seq-

Note that the homomorphism Q4: A — A ®ua D is nondegenerate.

For any Fell bundle A, let § = d4 be the canonical coaction of G on
A = C*(A). By functoriality, Q4 is 0 4 — 6 ae,p equivariant, and hence
is equivariant for § and a unique coaction 6” on the image AP.

Theorem 3.2. There is a functor o from the category of mazimal
coactions to the category of all coactions, defined as follows:
(i) On objects: (A,d) — (AP, 6P).
(ii) On morphisms: given maximal coactions (A,0) and (B, ¢e) and
a & — e equivariant homomorphism ¢: A — B, let A and B
be Fell bundles such that A = C*(A) and B = C*(B), let
v: A — B be the unique Fell-bundle homomorphism such that
¢ = C*(v), and define ¢* by the commutative diagram

A ¢ B
QAl lQB
D o D
A7 - — - ——— - +B

where it is clear that C*(1 ®¢ id) maps AP into BP.
Moreover, for any mazimal coaction (A, ) we have

ker Q4 C ker A,
where A1 A — A" is the normalization.

Proof. We obviously have a functor A — A Q. D on the category of
C*-algebras. As discussed above, if § is a maximal coaction on A, then
we have a homomorphism Q4: A — A Quax D taking ag to a, ® V. If
¢: A — B is equivariant for maximal coactions § and €, then obviously
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we get a commutative diagram

A B
QAl lQB
A®maxD—.>B®maXD7
PQ@maxid

SO
(¢ Omax id)(A”) € B,

and hence the restriction gives a homomorphism ¢” making the dia-

gram

ALB

o o

AP — BP
¢D

commute. Moreover, by considering elements of spectral subspaces
it is obvious that ¢” is §°¥ — P equivariant. Since A — A ®pax D is
functorial, it follows that we now have a functor A — AP from maximal
coactions to coactions.

We turn to the inclusion ker Q4 C ker A. The composition 6 o Q4
maps A into (A ®max D) ® C*(G). Composing with the homomorphism

TR (AQuax D) @ C*(G) > A® D ® CXG),
where T is the canonical surjection
AQmax D = A® D,

we get a homomorphism

(3.1) (TN od’0Qu: A= A® D® CHG)
which takes any element a, € A, to
(3.2) as @V, @ \s.

Representing faithfully on Hilbert space, we can apply Fell’s absorption
trick to the representation V' ® A\ to construct an endomorphism 7 of
A® D ® C!(G) that takes any element of the form (3.2) to

CLS®1D®>\S.

Then
7o(T®ANod?0Qs: A= AR 1p® CHG)

takes any element a, € A, to

as Q1 .
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Then composing with the obvious isomorphism
0: A2 1p® CHG) — A CHG),
we get a homomorphism
foro(T®AN)odPoQa: A= A®CHG)

taking any element a, € A, to a; ® A,.

On the other hand, A = (id ® A\) 0§, and for any element a; € A, we
have

(id®@ X) od(as) = as ® As.
Thus foTo (T ®AN)odPoQs=A, so
ker Q4 C ker A,

completing the proof. O

The second part of Theorem 3.2 justifies the following:

D

Definition 3.3. We define a coaction functor 77 on the category of

coactions by

7P = P o (maximalization).
Proposition 3.4. Let (B, «) and (C,7) be two actions of G. Then the
map
¢: (BXG)Rg(CXG)—= (B®umaxC) X G
defined by

¢((b,s) ® (c,5)) = (b®c,s)
15 a Fell-bundle homomorphism, and consequently
C*(¢> (B ><]04 G) ®G (C ><I’Y G) — (B ®max O) Na@’y G
is a C*-isomorphism.

Proof. The first statement is easily verified, and for the second we pro-
duce an inverse: define

T: B ®@max C = (B %o G) ®¢ (C %, G)
as the unique homomorphism associated to the commuting homomor-
phisms 75 ®pax 1 and 1 .y i, and define a unitary homomorphism
U: G— M((Bx,G) @ (C %, G))
by
Us = i¢:(5) @max i5(5).
Routine computations show that (7, U) is a covariant representation of

the action (B ®max C, @ ®max Y), S0 its integrated form gives a homo-
morphism

D=7 XU: (B ®max C) Xagy G = (B %, G) ¢ (C %, Q).
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One checks without pain, using the identity
(b®ec,s)=((bs)®(c,s)) forallbe B,ceC,seQq,

that IT o C*(¢) is the identity on the Fell bundle (B x G) ®¢ (C x G),
and that C*(¢) o Il is the identity on generators (b ® ¢, s) of the Fell
bundle (B ®@pax C') X G, and hence on the entire Fell bundle. Thus the
associated C*-homomorphisms give inverse isomorphisms, finishing the
proof. O

Remark 3.5. Although we will not need it here, we point out that
the technique used in the above proof can also be used to show that
for actions (B, G, «) and (C, K,7),

(B X Q) Quax (C X K) ~ (B ®nax C) X (G x K),
which in turn implies
(B %o Q) @max (C Xy K) 2 (B @max C) Xagy (G X K).

Theorem 3.6. Let (C,7) be an action of G, with C' unital, and let
D be the associated semidirect-product Fell bundle, with D = C*(D) =
C %, G. Then

7P o (crossed product)

1s naturally isomorphic to the C-crossed product functor
(B,a) — B Xa,C G.

Proof. Let (B, «) be an action, and define ¢): B — B ®pax C by b —
b®1. In the notation of Proposition 3.4, we will show that the diagram

~

C*((B x G)®¢q (C x @)) o C*((B ®max C) X Q)

commutes at the perimeter and that the bottom isomorphism takes
(B x4 G)P onto B x,.¢ G, giving the desired isomorphism @p. For the
first, it suffices to compute on the Fell bundle B x G-

C*(¢) © Q(bv 3) = C*(¢)((b7 S) ® (17 3))
=0b®1,s)
= (¢ x G)(b, s).
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This computation also makes it clear that C*(¢) maps (B x,G)P onto
B Xa,C G.

We still need to verify naturality: let 7: (B,«) — (E, ) be a mor-
phism of actions. We must show that the diagram

(B xa Q)P — " (B xyG)P

| |1

B NQ’CGTCG)E >4/37CG

commutes. Again, it suffices to compute on the Fell bundle (B x G)?:
(m %0 G)obp((b,s)®(1,5) = (mxcG)(b®1,s)
=(r(b)®1,s)
=0 ((n(b),s) @ (1,s))
=0po(mxG)’((b,s)®(1,5). O

4. EXACTNESS

We now want to show that the tensor D functor is exact. We separate
out the following abstract lemma because we feel that it might be useful
in other similar situations. Actually, we suspect that it is folklore, and
we include the proof only for completeness.

Lemma 4.1. Let

be a commutative diagram of C*-algebras and homomorphisms. Sup-
pose that the bottom row is exact, ¢(I) is an ideal of A, 1 is surjective,
and the vertical maps are nondegenerate injections. Then the top row
18 exact.

Proof. The top row is exact at B. Also, ¢ is injective because 7 o 7 is,
so the top row is exact at I; we must show that it is exact at A. Since
wopop = pomon =0 and w is injective we have ¢y o¢ = 0. It remains
to show that kery) C ¢(I). Let a € kert. Then by commutativity
((a) € kerp, so by exactness there is ¢ € J such that ((a) = 7(c).
Choose an approximate identity (e;) for I. Then by nondegeneracy
(n(e;)) is an approximate identity for J. We have

((a) = m(c)
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= li%rn m(n(e;)c)

= lilm7r on(e;)m(c)
— lim ¢ (9(c)a)
€ ((a(N),

because ¢(I) is an ideal of A. Since ( is an injective homomorphism
between C*-algebras, we get a € ¢([), as desired. O

D

Theorem 4.2. FEvery tensor D functor 77 is exact.

Proof. Since maximalization is an exact functor, it suffices to show that
if

¢ Y

0 I A B 0

is a short exact sequence of C*-algebras carrying compatible maximal
coactions of G, then the image under 77 is also exact (we don’t need
notation for the coactions, since they will take care of themselves in
this proof). We apply Lemma 4.1 to the diagram

0 P i AD Ll BP

| | |

O—>[®maxD—.>A®maxD—.>B®maxD—>O'
¢®max1d '¢'®max1d

Properties of the maximal tensor product guarantee that the bottom
row is exact, and we have noted that the vertical inclusion maps are

nondegenerate.
We have a commutative diagram
@
I—— A

ol o

P — AP,
¢D

Since Q7 and Q4 are surjective, ¢P(IP) = Qa(¢(I)) is an ideal of AP.
On the other hand, if v»: A — B is a surjection that is equivariant
for maximal coactions, then the commutative diagram

ALB

o o

AP — BP
,[pD
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shows that ¢? is surjective since Qp o v is.
Thus the hypotheses (i)—(iv) of Lemma 4.1 are satisfied, so the con-
clusion follows. 4

Remark 4.3. In [KLQ16, Theorem 4.12] we gave necessary and suf-
ficient conditions for a coaction functor to be exact, expressing it as a
quotient of the functor maximalization, which is exact. However, for
the functor 77 it turned out to be easier to use Lemma 4.1, which was
inspired by [BGW16, proof of Lemma 5.4].

5. MINIMAL TENSOR D FUNCTOR

Recall from [KLQ16, Definition 4.7, Lemma 4.8] that if ¢ and 7 are
coaction functors then 7 < ¢ means that for every coaction (A, §) there
is a homomorphism I' making the diagram

Am

commute. If S is a family of coaction functors, and 7 is an element of
S, we say that 7 is the smallest element of S if 7 < o for all o € S.

The above partial ordering of coaction functors is compatible with
the partial ordering of crossed-product functors (see [BGW16, p. §])
in the sense that if p and p are crossed-product functors associated to
coaction functors 7 and o, respectively, then 7 < ¢ implies p < pu.

[BEW18, Lemma 9.1] shows that the smallest of the C-crossed-
product functors is for (C,7) = (¢*°(G),1t) (when G is discrete). For
our purposes it will be more convenient to use right translation, so
we replace It by rt, which obviously causes no harm. The tensor D
functor with (D, ¢, V) = (>(G) Xy G,1t,i¢) reproduces the °(G)-
crossed product upon composing with full crossed product, so clearly
we should expect that the tensor (>°(G) x4 G coaction functor is the
smallest among all tensor D functors. We verify this in Theorem 5.2
below.

Lemma 5.1. Let (C,v) be an action of G. Define a homomorphism
: C = C Quax (°(G) = (G, C) by

P(e)(s) = 7s(c).
Then ¢ is v — (id ®rt) equivariant, and the crossed-product homomor-
phism

U: O %y G — (C Bmax £°(G)) Xyant G = C @max ((2(G) 1t G)
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satisfies
U(ih(s) =1@ig(s) forseq.

Proof. Folklore. O

Theorem 5.2. Let R be the semidirect-product Fell bundle of the ac-
tion ({>*(G),rt), and let R = C*(R) = (*(G) % G, with unitary
homomorphism W = i%: G — R. Then T is the smallest among all
tensor D functors.

Proof. Let V: G — D be a homomorphism to a Fell bundle, and let
D = C*(D). Since by definition the coaction functors 72 and 7% are
formed by first maximalizing and then applying the surjections QP and
Q" by [KLQ16, Lemma 4.8] it suffices to show that for every maximal
coaction (A, d) there is a homomorphism I" making the diagram

(5.1) A
QV YR
AP - - L AR

commute. By Landstad duality, we can assume that D is a semidirect-
product Fell bundle associated to an action (C, ), and V' = i, so that
D = C x,G. By Lemma 5.1 we have a homomorphism

U: D — C Quax R

such that

This gives a homomorphism
id @max Vi A Omax D = A Omax C Omax 1
taking a; ® V; to a;, ® 1 ® W,. Thus the composition
P = (id Dmax V) 0 QP : A = A Rpax C Omax R

has image in A ®max 1 @max K, and 50 id @max ¥ maps AP into A @pax
1 ®max R. Using the obvious isomorphism

0: A Omax | Omax B — A @uax R,
we see for s € G and ag € A;,
0 0 (id @max ¥) 0 QP (as) = 0 0 (id Dmax V) (as @ V)
=0(a; ®1® W)
= as ® W
= QR(QS)>
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so we can take

' =6 0 (id @max )| 40. O

The last part of the above proof is very similar to an argument in
the proof of Theorem 3.2.

6. CONCLUDING REMARKS

Throughout, we have taken advantage of our standing assumption
that the group G is discrete. In particular, this allowed us to do almost
everything with Fell bundles. In future research we will investigate the
case of arbitrary locally compact G.

Remark 6.1. It would not be useful to try to do everything in the
context of functors from Fell bundles to Fell bundles, because in our
most important construction

AHA@maxD

the image Fell bundle A” is isomorphic to A. We must ultimately take
the target of the functor to be a C*-algebra to get anything of interest.

For an equivariant maximal coaction (D,(,V’), we will now show
how the tensor D coaction functor 77 is tantalizingly close to a functor
coming from a large ideal F of the Fourier-Stieltjes algebra B(G) (see
[KLQ16]).

Recall that a large ideal F is the annihilator of an ideal I of C*(G)
that is dg-invariant and contained in the kernel of the regular repre-
sentation, where invariance means that the quotient map

e C*(G) = CR(G) = C7(G)/1

takes dg to a coaction on C,(G). For any maximal coaction (A, ) we
let A¥ be the quotient of A by the kernel of the composition (id®qg)od.
Then the quotient map QF = Q%: A — A¥ is equivariant for § and
a coaction 6¥, and moreover the assignments (A,d) — (AP, §F) give a
functor from maximal coactions to all coactions. Composing with the
maximalization functor gives a coaction functor that we call E-ization.

Apply this to the ideal I = ker V', where we also write V: C*(G) —
D for the integrated form of the unitary homomorphism V: G — D.
The annihilator £ = [+ is a large ideal of B(G) since V is dp — ¢
invariant and nonzero. A cursory glance at the situation might lead one
to ask, “Are the tensor D functor and F-ization naturally isomorphic?”

One obvious obstruction is that (for maximal coactions) the tensor
D functor goes into a maximal tensor product A ®., D, while E-
ization goes into the minimal tensor product A® C5(G). We can make



16 KALISZEWSKI, LANDSTAD, AND QUIGG

a closer connection by modifying the coaction  so that it becomes a
homomorphism 6" that makes the diagram

51%

A A @ CH(O)

\P

A® C*(G)

commute, where v is the canonical surjection of the maximal tensor
product onto the minimal one, and satisfies the other axioms for a
coaction.

Here is a commutative diagram illustrating how the various maps
are related:

5 M

A A @ C*(G)

QDJ JM@V

A Qmax D AT — A Bmax V(C*(G)),
where ¢: V(C*(G)) < D is the inclusion map. Since V(C*(G)) is nat-
urally isomorphic to C5(G), we see that the tensor D functor seems to
be closer to a version of “E-ization” but using the modified 6. How-
ever, there is yet another stumbling block: we do not know whether the
homomorphism id ®,. ¢ is injective, due to the mysteries of maximal
tensor products. A bit more succinctly, we could view the composition

(id ®max V) 0 0M 1 A = A @pax V(C*(Q))

(preceded by maximalization) as a sort of “maximalized version” of

FE-ization, and then we could ask whether it is naturally isomorphic to
D

T,

Here is a particularly important special case:

Question 6.2. Is the minimal tensor D functor (the case D = R =
(> (G) x G) isomorphic to a maximalized version of E-ization as above?

APPENDIX A. EXACTNESS OF FELL BUNDLE FUNCTORS

Although we do not need it, we mention here how the abstract
Lemma 4.1 could be used to deduce a corresponding exactness result
for Fell-bundle functors, quite similarly to how we proved Theorem 4.2.

If o is a functor from Fell bundles over G to C*-algebras, in this
appendix we will write A7 for the image under ¢ of a Fell bundle A,
and ¢? for the image under ¢ of a homomorphism ¢: A — B. Recall
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from [Exel7, Definition 21.10] that a Fell bundle Z that is a subbundle
of a Fell bundle A is called an ideal of A if

]SAt g Ist and At]S g Its for all S,t eG.
The following could be proved similarly to Theorem 4.2.

Proposition A.1. Let o and p be two functors from Fell bundles to
C*-algebras, Assume that:

e for every short exact sequence

0 -2, B 0

of Fell bundles, ¢°(Z7) is an ideal of A? and 7 is surjective;
e there is a natural transformation n from o to p such that for
every Fell bundle A the homomorphism na maps A? injectively
onto a nondegenerate subalgebra of A?;
® p 15 exact.

Y

Then o s exact.

In fact, Theorem 4.2 could be deduced almost immediately from
Proposition A.1, but we decided to avoid this approach.
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