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Abstract
We shed light on computational challenges when fitting the Nelson-Siegel, Bliss and

Svensson parsimonious yield curve models to observed US Treasury securities with

maturities up to 30 years. As model parameters have a specific financial meaning,

the stability of their estimated values over time becomes relevant when their

dynamic behavior is interpreted in risk-return models. Our study is the first in the

literature that compares the stability of estimated model parameters among different

parsimonious models and for different approaches for predefining initial parameter

values. We find that the Nelson-Siegel parameter estimates are more stable and

conserve their intrinsic economical interpretation. Results reveal in addition the

patterns of confounding effects in the Svensson model. To obtain the most

stable and intuitive parameter estimates over time, we recommend the use of the

Nelson-Siegel model by taking initial parameter values derived from the observed

yields. The implications of excluding Treasury bills, constraining parameters and

reducing clusters across time to maturity are also investigated.
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1 Introduction

The term structure of interest rates describes the relationship between yields and

time to maturity of fixed-income instruments. Another name, which is often

connected with the graphical representation of this relation, is yield curve. The

discount function, which is considered the most basic building block of finance, can

be inferred directly from it (Gürkaynak et al., 2007). Both financial market

participants, policymakers and academics are concerned with modeling the yield

curve (Duffee, 2013). From the perspective of a central bank, the yield curve can be

used for drawing correct inferences regarding the appropriateness of its monetary

policy stance (BIS, 2005; Cœuré, 2017). Many central banks use parsimonious data-

driven models for this purpose.

In this paper, we empirically investigate implications of relevant modelling

choices for central banks when using such models. We investigate the implications

on both the goodness of fit and the stability of estimated model parameter values

over time. The latter becomes relevant as parameters of parsimonious models used

by (central) banks have a specific financial meaning, e.g., when their dynamic

behavior is interpreted in bond risk-return models (Gimeno & Nave, 2009). We

perform our analysis using data of US Treasury bills, notes and bonds for all 4996

trading days between 2000 and 2019.

Some previous studies estimate model parameters in monthly steps using

synthetic zero bond yields for constant maturities up to 10 years. These must be

derived in a preliminary step from prices of coupon-bearing bonds by other

approaches. In this case, after fixing certain parameters the model under

consideration can be estimated simply by ordinary least squares (OLS) regression.

By further assuming stochastic processes for the non-fixed parameters, some authors

then derive dynamic versions of parsimonious models. We instead follow the

common practice of central banks of estimating all parameters of the original static

models directly to the daily observed market prices of the above mentioned

Treasury instruments with maturities up to 30 years. As no parameters are fixed, the

full set of model parameters must be obtained by solving a non-convex optimization

problem by means of a non-linear least squares method, which requires the

specification of a set of initial values. As Gimeno & Nave (2009) point out, the latter

is crucial for the stability of estimated parameters. Using daily data gives us more

observations to fit the models, lowers the influence of any month-end effects and is

consistent with the practice of central banks (BIS, 2005; Gürkaynak et al., 2007;

Nymand-Andersen, 2018). Our study complements the existing literature on the

following points: We offer a comprehensive picture of the robustness of

parsimonious models with respect to different approaches for selecting initial

values for the fitting procedure, constraints on certain parameters in relation to

confounding effects, as well as filter criteria for the selection of instruments

considered in the estimation.

Our results support previous evidence suggesting that the magnitudes of the first

two factors of the parsimonious models represent the level of the yield curve.

However, we show that one of the two curvature factors of the parsimonious
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Svensson model is superfluous due to confounding effects. Furthermore, our tests of

yield curve models as well as different approaches for the selection of initial

parameter values for the non-linear fitting procedure imply that central banks, when

using the yield curve for monetary policy decisions, should prefer the less flexible

Nelson-Siegel model, as well as initial values that are derived from observed yields.

These suggestions lead to the most stable and intuitive parameter estimates over time,

which makes it easier to give them a financial interpretation, without compromising

the goodness of fit. Finally, we test the implications on our findings when preimposing

restrictions on the distance between the locations of humps or troughs in the yield

curve (like in De Pooter, 2007; Ferstl & Hayden, 2010), excluding Treasury bills (like

in Gürkaynak et al., 2007) and controlling for clustering of instruments across time to

maturity. Overall, we observe persisting confounding effects in the curvature factors

of the Svensson model and an insignificant effect on the goodness of fit. In the cases

of controlling for clustering of instruments across time to maturity or preimposing

restrictions on the distance between the locations of the humps or troughs in the yield

curve, we observe a significant increase in the variation in parameter values. In

particular, we observe more variation in the level factor of the yield curve when

instruments with more than 10 years are excluded, meaning that the inclusion of

longer maturities leads to a better approximation for the long end of the yield curve.

The rest of this paper is organized as follows. Section 2 introduces formally the

relevant parsimonious yield curve models that are investigated in this study, and

reviews earlier related empirical work. Section 3 explains the data and the fitting

procedure applied here, including the different approaches for selecting initial values.

Results are presented and interpreted in Sect. 4. Finally, conclusions are given in Sect.

5.

2 Theoretical Background

Let us first introduce important definitions related to the construction of discount

factors, spot rates and yields to maturity. Suppose that C ¼ fcði;jÞgi¼1;...;N;j¼1;...;L is a

matrix of cash flows from all coupon payments and the repayment of the face value

from government securities i at times j, and that p ¼ fpigi¼1;...;N is the correspond-

ing price vector. Then it is possible to find a vector d ¼ fdjgj¼1;...;L of discount

factors from the following equation (James and Webber 2000):

p ¼ Cdþ � ð1Þ

where � ¼ f�igi¼1;...;N is a vector of errors. Finding d directly by solving (1) using

OLS regression does not work very well, because C has too many columns com-

pared to the length of p, and too many zeros since the cash flows of government

instruments rarely occur on the same date (James & Webber 2000). A better way is

to define the discount factor as a function dðmÞ of time to maturity m 2 ½0;1Þ, and
then let d ¼ ðdðm1Þ; . . .; dðmLÞÞ0 be the vector of discount factors for all cash flow

dates fmjgj¼1;...;L. dðmÞ is an example of a term structure, which links time to

maturity and discount factors.
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The term structure may also be represented by the spot rate s(m) (Müller, 2002;

BIS, 2005), which is the annualized percentage return for an instrument which pays

no coupons.1 It relates to the discount factor by

sðmÞ ¼ � 1

m
logðdðmÞÞ: ð2Þ

The yield to maturity yi is the internal rate of return that sets the present value of a

instrument’s cash flows (coupon payments and repayment of face value) equal to its

market price pi:

pi ¼
XL

j¼1

cij e�yi�mj ð3Þ

2.1 Models for Estimating the Term Structure

There exist many types of models for estimating the term structure. Some models

are concerned with using the spread between long- and short-term interest rates to

forecast inflation and real activity of a country or region (Fama & Bliss, 1987;

Mishkin, 1990b, a; Shiller & Campbell, 1991; Estrella et al., 2003; Bernanke et al.,

2005; Ang et al., 2006; Estrella & Trubin, 2006; Rudebusch & Williams, 2009).

Such models require as input yields of specific maturities. However, since usually

we do not observe the yields of arbitrary maturities directly, other models are

needed that derive them from the prices of traded instruments. Often these models

describe the term structure by a continuous function, whose parameters are found by

fitting the resulting yield curve to observed market data. Furthermore, there are

dynamic models which focus mainly on pricing fixed-income derivatives, and less

on forecasting or interpolating the yield curve. Such models include equilibrium

models (Vasicek, 1977; Cox et al., 1985; Duffie & Kan, 1996; Bianchi & Cleur,

1996; De Rossi, 2010), no-arbitrage models (Ho & Lee, 1986; Hull & White, 1990;

Heath et al., 1992; Eydeland, 1996) and models stating that the interest rates depend

on macroeconomic variables (Ang & Piazzesi, 2003; Moench, 2008; Rudebusch &

Wu, 2008; Audrino, 2012). Other models rely on machine learning techniques that

are capable of incorporating non-linear relationships between economic variables to

predict interest rates. These techniques include support vector machines (Gogas

et al., 2015), fuzzy logic and genetic algorithms (Ju et al., 1997), neural networks

(Kim & Noh, 1997; Oh & Han, 2000; Hong & Han, 2002; Bianchi et al. 2020b, a)

and case-based reasoning (Kim & Noh 1997). However, the financial literature has

been slow to adapt such methods (Bianchi et al. 2020b), possibly because it is not

necessary straightforward to understand their abundant non-linear patterns (Diaz

et al., 2016) and it is claimed that they are not suitable for parameter inference (see

Mullainathan & Spiess, 2017). Finally, data-driven yield curve models fit

1 From the spot rate, which is based on the price of a transaction that takes place immediately, one may

also derive forward rates which is the settlement price of a transaction at a predetermined date in the

future. See BIS (2005) for details.
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mathematical functions, including spline-based and parsimonious functions, to

discount factors, spot rates, forward rates or par yields (Müller, 2002; BIS, 2005).

Many central banks use parsimonious data-driven models for the interpolation of

yield curves and the assessment of monetary policy measures (BIS, 2005). Indeed,

such models have an economic interpretation and provide a good fit of the resulting

term structures to observed yields or prices, respectively, of fixed income

instruments. This also makes them ideal as basis for measuring risk in fixed

income portfolios (Caldeira et al., 2015). The parsimonious Nelson-Siegel model of

Nelson & Siegel (1987) and its extensions by Svensson (1994, 1995) and Bliss

(1997) use a single exponential function over the entire maturity range. The

popularity of these models stems from the fact that – unlike for example spline

models – they provide a parsimonious approximation of the yield curve and use only

a small number of parameters, yet are flexible enough to capture a range of

monotonic, humped and S-type shapes observed in yield data (De Pooter, 2007).

2.2 Specification of Parsimonious Yield Curve Models

The Nelson-Siegel model was proposed by Nelson & Siegel (1987) to interpolate

the yield curve (in terms of spot rates) by the following function:

sðmÞ ¼ b0 þ b1
1� e

�m
s1

m
s1

þ b2
1� e

�m
s1

m
s1

� e
�m
s1

 !
ð4Þ

where s(m) is the spot rate at any given time to maturity m, and b0, b1, b2 and s1 are
parameters whose specific values result from the fitting procedure. The first, second

and third factors of Equation (4) may be interpreted as the level, slope and curvature

factors, respectively, as they control the long, short and medium segments of the

yield curve (Nelson & Siegel, 1987; Diebold & Li, 2006). This is due to the

characteristics of the factor loadings for different times to maturity, which we

illustrate in Fig. 1.

Fig. 1 Illustration of the factor
loadings over time to maturity in
months of the Nelson-Siegel
model as given in Eq. (4)
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The level factor b0 represents the limit value of the spot rate when the maturity m
goes to infinity and must be strictly positive. The assumption that its loading is

constantly one reflects a market where participants have no information to

distinguish expectations for different times to maturity far into the future (Dahlquist

& Svensson, 1996). The loading of the slope factor b1 starts at one when m ¼ 0 and

monotonically decreases towards zero as time to maturity increases. The loading of

the curvature factor b2 starts at zero, its absolute value attains a certain maximum as

time to maturity increases, and then decays to zero with further increasing time to

maturity. Its sign controls if a hump-shape (b2 [ 0) or a trough-shape (b2\0) is

generated. The decay parameter s1 [ 0 determines the exponential decay rate (in

years to maturity) of the slope and curvature factors. In addition, its value controls

the location of the hump or trough, respectively, associated with the curvature

factor. The sum b0 þ b1 determines the level of the short end, i.e., the starting value

of the yield curve for m ¼ 0.

Diebold et al., (2005) propsed a reduced Nelson–Siegel model without the

curvature factor. They argued the level and slope factors explain almost all

variation, but acknowledged that for shaping the entire yield curve two factors are

most likely not enough. This was confirmed by De Pooter (2007), who found that

this reduced two-factor Nelson-Siegel model performed poorly in yield curve fitting

because of the lack of the curvature factor.

As the slope and curvature factors of the Nelson–Siegel model rapidly approach

zero (see Diebold & Li, 2006), only the level factor is left to fit the yield curve at

longer maturities (Diebold & Rudebusch, 2013). To address this, Svensson

(1994, 1995) extended the Nelson-Siegel model to a four-factor model by adding

a second curvature factor, which allows to reflect a second hump or trough in the

yield curve and increases the flexibility to fit it to observed market data:

sðmÞ ¼ b0 þ b1
1� e

�m
s1

m
s1

þ b2
1� e

�m
s1

m
s1

� e
�m
s1

 !
þ b3

1� e
�m
s2

m
s2

� e
�m
s2

 !
ð5Þ

where b3 determines the magnitude of the second curvature factor, while s2
determines the location of the second hump (if b3 [ 0) or trough (if b3\0).

Gürkaynak et al. (2007) argue that the Svensson model should be preferred to the

Nelson-Siegel model since the yield curve slopes down at the very long end, and

thus the second curvature factor of the Svensson model is needed to model a second

hump at longer maturities. Using government bonds from the Euro zone, Nymand-

Andersen (2018) also found that the Svensson model performs slightly better than

the Nelson-Siegel model with respect to flexibility and goodness of fit. He also

compared both models with spline-based approaches and concluded that the latter

are sensitive to the applied optimization algorithm, the fixing of smoothing

parameters, the selection of penalty functions and the location of knot points.

Björk & Christensen (1999) extended the original Nelson–Siegel model to a four-

factor model by adding a second slope factor, as opposed to the Svensson model

which adds a second curvature factor. Furthermore, they constructed a five factor

model by extending the latter by a fifth factor, which increases linearly with time to

maturity. Diebold et al. (2006) found that these two extensions provide only
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negligible improvement in the model fit, suggesting that fewer factors are sufficient.

De Pooter (2007) argued that the fifth factor is problematic since it implies a linear

increase in yields with maturity.

While in (4) the loadings of the slope and the curvature factor are governed by

the same decay parameter s1, Nelson & Siegel (1987) discussed already in their

original paper a generalization where this restriction is relaxed by introduction of an

individual decay parameter s2 [ 0 in the last term:

sðmÞ ¼ b0 þ b1
1� e

�m
s1

m
s1

þ b2
1� e

�m
s2

m
s2

� e
�m
s2

 !
: ð6Þ

Here, s1 determines again the exponential decay rate of the slope factor, while s2
controls the decay rate of the curvature factor as well as the location of the hump or

trough. Nelson & Siegel (1987) found in tests that the model variant in equation (6)

with individual decay parameters was overparameterized. Therefore they proposed

the more parsimonious formulation in equation (4). However, Bliss (1997) remarked

that their finding of overparameterization resulted from using a sample of instru-

ments with maturity of up to one year only, and that overparameterization should

not pose any problem when also longer maturities were considered. Thus, we will

also consider the generalized version in equation (6) in the sequel and refer to it as

Bliss model. By comparison of (5) and (6), it is obvious that the Bliss model may

also be seen as a special case of the Svensson model with its b2 ¼ 0.

Any model that is an extension of the Nelson-Siegel model can be used to obtain

a fit that is at least as good as the one obtained with the Nelson–Siegel model, since

it includes the latter as a special case. However, a lower number of factors in the

yield curve model is typically adequate (Diebold & Rudebusch, 2013). Dahlquist &

Svensson (1996) compared the Nelson-Siegel model with the dynamic Longstaff &

Schwartz (1992) term structure model and found that the former is well above what

is needed for monetary policy analysis. Söderlind & Svensson (1997) stated that the

original Nelson-Siegel model gives a satisfactory fit in many cases, but in some

cases, when the term structure is very complex, the Svensson model improves the fit

considerably. Both studies used data for Swedish government bonds denoted in

Swedish Krona. Similarly, De Pooter (2007) found that the parsimonious Nelson-

Siegel model offers a satisfactory fit, while the more elaborate models with multiple

decay parameters (the Bliss model) or additional factors (the Svensson model) lead

to an improvement for specific time points when the yield curve exhibits more

complex shapes.

2.3 Challenges with the Estimation of Parsimonious Yield Curve Models

Since the parameters b0; b1 and b2 of the Nelson–Siegel model can be associated

with the level, slope and curvature of the yield curve, Diebold & Li (2006)

recognized that they must vary over time along with the curve’s changing shape.

However, the authors assumed that the fourth parameter s1 can be fixed at a specific

value such that the loading of the curvature factor in (4) achieves its maximum for a

maturity of 2.5 years, which is commonly seen as ‘‘medium-term’’. By fixing the
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value of s1 and fitting the model in (4) directly to spot rates, the remaining

parameters on each observation date can be estimated simply by OLS regression as

then the factor loadings only depend on the maturity. In a subsequent step, Diebold

& Li (2006) fit autoregressive models to the obtained series of b0;b1 and b2, which
leads to a dynamic version of the Nelson-Siegel model. This approach has been

extended by Koopman et al. (2010), who treated also s1 in (4) as a fourth latent

factor and modeled its dynamics jointly with the other parameters by a vector

autoregressive process. The corresponding non-linear model was estimated with an

extended Kalman filter.

Not fixing the value of s1 (and s2) leads generally to a better fit of the yield curve

since it allows the location of humps or troughs in the curve to vary over time

(Koopman et al., 2010; Diebold & Rudebusch, 2013). If the non-dynamic yield

curve models in (4), (5) and (6) were fitted to spot rates, one could also perform a

grid search over different values of s1 (and s2), estimate for each grid point the

remaining parameters by OLS and select the solution with the best goodness of fit.

However, as spot rates are usually not directly observable, this requires to derive

them first from prices of traded instruments with another term structure estimation

method like, e.g., unsmoothed Fama-Bliss rates (Fama & Bliss, 1987) or

bootstrapping (Hagan & West, 2006). Yet, such approaches suffer from a lack of

available instruments with very long maturities. Therefore, the above-mentioned

papers consider only spot rates up to 10 years.

As central banks usually estimate the yield curve up to maturities of 30 years,

their common practice is to fit parsimonious models directly to observed market

prices of the relevant instruments (BIS, 2005; Gürkaynak et al., 2007; Nymand-

Andersen, 2018). Estimating the full parameter set b0; b1; b2; s1 (and b3; s2) then
leads to a non-linear optimization problem due to the specific form of equations (4),

(5) and (6), where the non-linearity is introduced by s1 (and s2, respectively). In
practice, the estimation task is further complicated by the fact that the corresponding

non-linear problem is also non-convex and has many local minima, and small

changes in instrument prices as well as different initial values for the optimization

algorithm may lead to different solutions (Gimeno & Nave, 2009; Manousopoulos

& Michalopoulos, 2009; Gilli et al., 2010). As a result, the empirically observed

model parameter values become instable and occasionally jump discretely from one

day to the next. Gürkaynak et al. (2007) pointed out that although the jumps in

parameters can be large, the changes in fitted yields over most of the considered

maturity range are quite muted. Indeed, the estimation may arrive at similar yield

curve shapes for very different combinations of parameters.

However, parameter instability poses difficulties when giving them an economic

interpretation. Lengwiler & Lenz (2010) highlighted that the three factors in the

Nelson-Siegel model are not mutually orthogonal, which means that each of them

has innovations that are dependent on the other two factors. The authors argued that

this results in difficulties in forming expectations about each factor. To address this

issue, the authors demonstrated how to construct mutually orthogonal factors.

Furthermore, they constructed their own three factors, which can be identified as the

long, short and curvature factors. To our knowledge, this approach has not become
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widely accepted among academics and practitioners, and therefore we do not

consider it in this paper.

Due to the similar factor loading structure for the third and fourth factors of the

Svensson model, a specific potential problem arises when the decay parameters s1
and s2 assume similar values. In this case, the Svensson model reduces to the three-

factor Nelson-Siegel model with a magnitude of the curvature factor equal to the

sum of b2 and b3, and the parameters cannot be identified individually but only by

their sum (De Pooter, 2007). This effect can be observed in Gürkaynak et al.

(2007), where the estimates of b2 and b3 take large absolute values up to 105, but

with opposite signs when the values of s1 and s2 coincide.2 To make sure that the

second curvature factor of the Svensson model increases the flexibility at other

times to maturity than the first curvature factor, i.e., in order to prevent confounding

effects, previous studies have suggested to preimpose restrictions on the distance

between the values of s1 and s2. De Pooter (2007), who used instruments with

maturities up to 10 years, preimposed the restriction of s1 � s2 þ 6:69 to ensure that

the maximum loading of the second curvature factor is at least twelve months

shorter than the maximum loading of the first curvature factor. This effectively adds

the extra flexibility gained from the fourth factor of the Svensson model at

maturities shorter than that of the third factor, which is counterintuitive if the

motivation for the second curvature factor is a better fit for the long end of the yield

curve. On the other hand, Sasongko et al. (2019) preimposed the restriction s2 [ s1,
which implies that the maximum loading of the second curvature factor is at longer

maturities than the maximum loading of the first curvature factor. This is in

accordance with Ferstl & Hayden (2010) who introduced the R package termstrc for

fitting yield curves. The authors proposed the restriction of s2 [ s1 þ Ds, where Ds
is predefined and has the default value of 0.5 in their package.3 Furthermore, the

authors also use Ds ¼ 0:5 in one of their examples of using the package.

2.4 Data Choices when Estimating Parsimonious Yield Curve Models

Bolder & Stréliski (1999) emphasized that besides the optimization problem, a

second key issue in the application of yield curve models is the data problem, i.e.,

the selection of instruments to be considered. This aspect is particularly important

for parsimonious models where a single instrument can have a large impact on the

shape of the whole curve and not only near its maturity (Manousopoulos &

Michalopoulos, 2009).

The earlier cited papers by Diebold et al. (2006), De Pooter (2007) and Koopman

et al. (2010) use Kalman filter-based estimation methods to identify the evolution of

the latent factors in the context of a dynamic Nelson-Siegel model or one of its

extensions. This requires the use of spot rates with constant maturities to model the

measurement equation, which links observations with latent factors over time. With

the exception of Treasury bills, which are essentially zero bonds with maturities up

2 See data posted on www.federalreserve.gov/econres/feds/2006.htm, accessed 6th of January 2021.
3 This default value was found in the R package termstrc downloaded from github.com/datarob/termstrc

at 9th of March 2020.
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to one year at the time of issue, spot rates are not directly observable. Therefore, the

authors use monthly updated unsmoothed Fama-Bliss (Fama & Bliss, 1987) rates of

synthetic instruments with constant maturities that are derived from prices of

coupon-bearing Treasury notes and bonds by an iterative procedure. Due to the

unavailability of long-term bonds, the above-mentioned papers restrict themselves

to set of constant maturities up to 10 years. Only Christensen et al. (2007, 2009)

considered maturities up to 30 years, taking into account a specific sample period in

which Treasury bonds with the corresponding maturities were actually issued, and

found clear evidence that models with more than three factors provide a better fit to

the long end of the yield curve. Details on the derivation of unsmoothed Fama-Bliss

rates are described in Bliss (1997), where the method is tested against other

approaches, among them the Nelson-Siegel curve. However, the practice of central

banks is to fit the models directly to observed prices of government securities

instead of spot rates of synthetic instruments (BIS, 2005; Gürkaynak et al., 2007;

Nymand-Andersen, 2018).

When selecting instruments for fitting the models, securities with special features

such as being callable, variable coupon or perpetual bonds should be excluded

(Nymand-Andersen, 2018). There are also reasons for excluding standard ‘‘plain-

vanilla’’ instruments. For example, the trading volume of bonds often decreases

considerably close to the maturity date, and thus the quoted prices may not

accurately reflect the theoretically correct ones (BIS, 2005). Gürkaynak et al.,

(2007) excluded all Treasury bills and consider only notes and bonds for the purpose

of yield curve fitting. This was motivated by the observation that bills are priced

differently from notes and bonds with less than one year to maturity due to liquidity,

taxes, and other effects. The authors also referred to Duffee (1996), who found that

movements in bill yields are often disconnected from yields of notes and bonds.

They also excluded the two most recently issued securities of each original term to

maturity because these instruments often trade at a premium due to demand from

the repurchase agreement (Repo) market and higher liquidity.

The overview in BIS (2005) showed that most central banks, which either use the

Nelson-Siegel or the Svensson models to derive yield curves, follow different

approaches in excluding securities, often because of country-specific reasons. The

Bank of Canada excludes instruments that trade at a premium or discount of more

than 500 basis points from their coupon because the price of these instruments may

be distorted by tax effects (BIS, 2005). Several central banks exclude securities

close to their maturity, among them the Federal Reserve (maturities below 30 days),

the European Central Bank (ECB, maturities below three months), the Bank of

Japan (below six months with the exception of some short-term instruments), the

Bank of France (depending on the type of instrument) as well as the Swiss National

Bank (below one year).

The Bundesbank found for their data set that excluding treasuries with maturities

between three and twelve months implies imprecise estimates for the one-year rate,

which is of particular interest for policy makers. Therefore, they exclude only

instruments with less than three months time to maturity. Other central banks reflect

the short end of the term structure by replacing bonds with other, more liquid

instruments such as repo rates (England, Spain) or money market rates (Norway,
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Switzerland). In order to consider only instruments with sufficient liquidity, the

European Central Bank requires a minimum daily trading volume of EUR 1 million

and a maximum bid-ask spread of 3 basis points, while Canada applies a minimum

outstanding amount as filter. For an extended overview of the various approaches

applied by different central banks, we refer to the report by the BIS (2005).

2.5 Parsimonious Models for Forecasting

Some authors investigate also the use of parsimonious models for forecasting future

interest rates. Diebold & Li (2006) reported a good forecasting performance of their

dynamic extension of the Nelson-Siegel model for US Treasury yields between

January 1985 and December 2000. Carriero (2011) found that the out-of-sample

performance deteriorates if the sample period is extended to 2009. Duffee (2011)

reported that the model is inferior to random walk forecasts when the data sample is

expanded with more recent observations. Moench (2008) concluded on the basis of

a subsample analysis that the strong forecasting performance documented by

Diebold & Li (2006) might be due to their specific choice of the forecasting period.

De Pooter (2007) found that only the four-factor model by Björk & Christensen

(1999) could compete with Moench’s favorite model, which uses several

macroeconomic variables and parameter restrictions implied by no-arbitrage

constraints. Doshi et al. (2020) proposed to use horizon-specific forecasting loss

functions when estimating term structure models, instead of traditional loss

functions like mean-squared error, and found that this improves out-of-sample

forecasting performance. However, a further assessment of forecasting capabilities

of yield curve models is beyond the scope of this paper. We refer to Duffee (2013)

for a profound examination of yield curve models used for forecasting and to

Carriero et al. (2012) for an extensive comparison of different modelling

approaches that are estimated with Bayesian vector autoregression. It should be

emphasized that parsimonious yield curve models were originally not intended for

forecasting since they do not contain information on the dynamics of the yield curve

(Lengwiler & Lenz, 2010; Diaz et al., 2016), unless further assumptions are made

on the evolution of the factors as, e.g., in the extension by Diebold & Li (2006).

3 Data and Methodology

We fit the Nelson–Siegel, the Svensson and the Bliss models to mid prices of US

Treasury securities for each of the 4996 trading days between 1st January 2000 and

31st December 2019, calculated as average of the closing bid and ask price for non-

callable US bills, notes and bonds retrieved from the database of the Center for

Research in Security Prices (CRSP). Following the procedures applied by several

central banks, we exclude instruments with a remaining time to maturity of less than

three months, as suggested by Gürkaynak et al. (2007). As mentioned earlier, they

also proposed to exclude Treasury bills motivated by the findings in Duffee (1996).

We test the effect of excluding vs. including the T-bills in Section 4.4.
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Figure 2 shows the evolution of daily spot rates for fixed maturities of 3, 6, 9, 12,

15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120, 180, 240, 300 and 360 months.

Based on the distances between the spot rates of shorter and longer maturities, we

observe that the period of investigation covers times with normal, flat and inverted

yield curves. Further, the investigation period covers the shocks on the global

markets after the 9/11 terror attacks in 2001, the Financial Crisis of 2007–2008, as

well as rising and falling interest rates. Note that the spot rates shown are yields of

synthetic instruments derived from the market prices of Treasury bills, notes and

bonds by bootstrapping. They are displayed here to illustrate the different yield

curve regimes during the investigation period, while the parsimonious yield curve

models considered in this paper are directly fitted to prices of traded instruments.

3.1 Optimization Problem

As outlined previously, fitting a yield curve model to market data requires the

minimization of an error measure v, which is based on the differences between

observed and fitted (i.e., obtained from the model) yields or prices. The choice

between yield or price error minimization is not definite and depends on the

intended use of the yield curve. When the purpose is deriving interest rates for

monetary policy decisions, it suggests itself to minimize yield errors. By contrast, if

the purpose is pricing of bonds, minimizing price errors appears more suitable. In

both cases, a discount function is calculated from the yield curve obtained for the

current choice of parameters and used to calculate the bond prices implied by the

model. In the case of price error minimization, observed prices can be compared

directly with estimated prices. A beneficial feature from a computational point of

view is that analytical gradients for the error measure v can be derived (Ferstl &

Hayden, 2010), which facilitates the numerical solution of the fitting procedure. In

the case of yield error minimization, in addition Eq. (3) must be solved for each

instrument i to obtain its estimated yield to maturity from the corresponding model-

implied price. Since this requires an iterative procedure for all coupon-bearing

bonds in each step of the optimization algorithm, minimizing yield errors is

Fig. 2 Evolution of daily spot rates for fixed maturities from 3 to 360 months (30 years). The lines have
unique colors from blue shades for the shortest maturities to red shades for the longest maturities. The
spot rates shown are yields of synthetic instruments and are derived from market prices of Treasury
instruments by bootstrapping
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computationally more demanding than price error minimization. Furthermore,

gradients of the error measure must be estimated numerically.

Svensson (1994) pointed out that bond prices are rather insensitive to changes in

yields for short maturities and, thus, a minimization of price errors may lead to large

yield errors for short-term securities. Since a change in the yield results in a small

(large) change in the price of a bond with a short (long) maturity, minimizing price

errors would lead to an over-fitting of the long end of the term structure at the

expense of the short end (BIS, 2005). This may be corrected by weighting the price

errors of each individual bond by the inverse of its (modified) duration. In this way,

yields for short maturities may be captured more accurately with less computational

effort. Among the nine central banks in the overview of the BIS (2005) that adopted

the Nelson-Siegel or the Svensson model, five apply a minimization of duration-

weighted prices, while four use yield error minimization.

Formally, let yi be the yield to maturity and pi the price of security i observed on

a specific trading day. For ease of notation, the time indices will be dropped in the

sequel. The corresponding values derived from one of the parsimonious yield curve

models (4), (5) or (6) are denoted by ŷiðcÞ and p̂iðcÞ, respectively, where c is the

vector of parameters. The error for instrument i is the difference between observed

and fitted value, i.e., �iðcÞ ¼ yi � ŷiðcÞ if yield errors are minimized or �iðcÞ ¼
ðpi � p̂iðcÞÞ=duri for minimization of duration-weighted price errors, where duri is

the modified duration of security i. Thus, with N securities (after filtering)

considered in the estimation, the error measure to be minimized is

vðcÞ ¼
XN

i¼1

�iðcÞ½ �2: ð7Þ

The resulting optimization problem

min
l� c�u

vðcÞ ð8Þ

is a (bound-constrained) non-linear least squares problem with lower and upper

bounds l and u on the values of the parameters. If additional restrictions on the

distance between the parameters s1 and s2 for the Svensson model are taken into

account, problem (8) becomes a constrained non-linear optimization problem.

Depending on the setting, we apply different solution algorithms. Details are

described in Appendix A.

3.2 Bounds, Restrictions and Initial Values

The lower and upper bounds l and u defined above help to avoid that the fitting

procedure results in a local minimum where the yield curve model parameters have

(too) extreme values without any intuitive financial interpretation. As mentioned

earlier, such extreme values can be observed, for example, from the data of

Gürkaynak et al. (2007), where no bounds were defined and the estimated

parameters assume extreme magnitudes up to absolute values above 105. We apply

the same values for the bounds as in section 2 of Gilli et al. (2010), which are listed
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in Table 1. s1 and s2 must be strictly positive since they control the location of the

first and, in case of the Svensson model, second hump (trough). We allow for values

up to 30 which permits the model to take into account potential humps (troughs) at

the very long end of the yield curve.

For the time being, we choose not to preimpose any restrictions on the distance

between s1 and s2, but rather aim at understanding the behavior of the original

model specification. However, in Sect. 4.3 we present the implications of our

findings when preimposing constraints on the distance between s1 and s2, and
conclude that such restrictions are disadvantageous when using the yield curve for

monetary policy decisions.

Any non-linear fitting procedure requires the specification of an initial choice of

the parameters and then tries to improve the fit by updating c iteratively until it

converges to a (local) minimum. Due to the existence of many local minima, the

resulting goodness of fit depends largely on the choice of the starting values

(Gimeno & Nave, 2009; Manousopoulos & Michalopoulos, 2009). For fitting the

Svensson model, we consider six different approaches to determine these initial

values.4

Approach #1 uses the initial values listed in Table 1, which are directly derived

from observed yields and consistent with the financial interpretation of the

parameters as in Manousopoulos & Michalopoulos (2009). The initial values of the

magnitudes of the long-term (level) factor b0 and the short-term (slope) factor b1 are
approximated for each trading day by

initial b0 ¼
y1 þ y2 þ y3

3
ð9Þ

initial b1 ¼ys � initial b0 ð10Þ

where y1, y2 and y3 are the observed yield to maturity in percent of the three

instruments with the longest time to maturity and ys is the observed yield to maturity

in percent of the instrument with the shortest time to maturity observed on that day.5

In approach #2 we fit first the less flexible Nelson-Siegel model to the data,

where the initial values for the corresponding parameters are set as in the first

Table 1 Initial values derived

from observed yields in

accordance with the financial

interpretation of parameters

(Manousopoulos &

Michalopoulos, 2009) as well as

lower and upper bounds (Gilli

et al., 2010) used when fitting

model parameters

Parameter Initial value Lower bound Upper bound

b0 See Equation (9) 0 15

b1 See Equation (10) �15 30

b2 0.0 �30 30

b3 0.0 �30 30

s1 1.0 0 30

s2 1.0 0 30

4 Whenever fitting the Nelson-Siegel & Bliss models, we use approach #1 for initial values.
5 y1, y2, y3 and ys are retrieved after any filtering of the data set, including the exclusion of instruments

with a remaining time to maturity of less than three months as discussed above.
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approach. In a second step, the obtained values of b0, b1, b2 and s1 for the Nelson-
Siegel model are used as initial values for fitting the Svensson model, together with

the values for b3 and s2 from Table 1. According to BIS (2005), a similar approach

is applied by the Bank of France. Approach #3 works analogously to approach #2,

but uses the Bliss model to find values for b0, b1, b2, s1 and s2, which are then used

as initial values for fitting the Svensson model.

Approach #4 is inspired by the Swiss National Bank (Müller, 2002). It uses the

Nelder-Mead or downhill simplex algorithm (Nelder & Mead, 1965; Box, 1965)

with initial values from Table 1 to obtain a full set of all six parameters of the

Svensson model by solving problem (8). In order to further improve the goodness of

fit, the obtained six parameters are used again as initial values for the non-linear

optimization described before.

The assumption that the yield curve should usually not change much from one

day to the next is the motivation for approach #5, which uses as initial values for

any trading day the parameters found from the non-linear optimization on the

previous trading day.6 However, we observed in preliminary tests that using only

this approach might lead to extreme parameter values that tend to persist over longer

time periods as the optimization algorithm gets trapped in a far from optimal local

minimum. A remedy for this problem is to choose randomly alternative initial

values that are uniformly distributed between the specified bounds (Gilli &

Schumann, 2010).

This leads to the last approach #6, in which we compare for each trading day the

goodness of fit obtained from solving the non-convex optimization problem for 105

different sets of initial values for the six parameters. These include 100 randomly

selected sets drawn from intervals defined by the bounds in Table 1, the four sets of

starting values used also by approaches #1 to #4, as well as the set of parameter

estimates identified by approach #6 for the previous trading day. By selecting the

parameter set with the best goodness of fit among all alternatives, approach #6

always results in the best fit according to the chosen error measure. The

consideration of many sets of randomly chosen starting values in addition to those

of the other approaches reduces significantly the risk that the algorithm gets trapped

in a ‘‘bad’’ local minimum.

4 Results

In this section, we present and discuss the results obtained through the methodology

described in the previous section. Section 4.1 shows comparatively the implications

of approaches for selecting initial parameter values. Section 4.2 presents a

comparative examination of parsimonious yield curve models and sheds light on

confounding effects in the Svensson model. Section 4.3 shows the implications

when preimposing restrictions on the distance between s1 and s2, while Section 4.4

presents robustness checks performed by considering different subsets of the data.

6 We use approach #1 for initial values for the very first trading day in our data set, as data for the

previous trading day in this case is not given.
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4.1 Implications of Approaches for Selecting Initial Parameter Values

Tables 2a and 2b show the proportion of all trading days (between 2000 and 2019)

on which the various approaches for initial values lead to the best goodness of fit in

terms of the lowest sum of squared errors when the Svensson model is fitted. The

tables have two columns for the proportions when minimizing yield errors vs.

duration-weighted price errors, i.e., price errors are divided by the modified duration

of the corresponding bonds to avoid an overweighting of instruments with high

duration. Table 2a shows how often approach #6 selects a solution in which one of

the 100 combinations of random numbers was chosen to initialize the fitting

procedure, compared to a parameter set obtained from one of the other approaches.

We observe that in most cases one of the randomly selected sets of initial values

leads to the best goodness of fit, followed by using the parameter values found with

approach #6 on the previous day. Table 2b shows how often approaches #1 to #5

lead to the best goodness of fit. In this case, the proportions of the different

approaches among the best solutions are more balanced as none of them are based

on the comparison of several sets of initial values. Overall, without consideration of

approach #6, using the initial values from the fitted Nelson-Siegel model (approach

#2) or always using the values identified on the previous day (approach #5) result in

the best goodness of fit.

Table 2 Proportion of all trading days between 2000 and 2019 when different approaches for initial

values lead to the best goodness of fit

Proportions when

minimizing yield errors

Proportions when minimizing

duration-weighted price errors

(a) Proportions when approach #6 selects as initial values any of the four sets of starting values used also

by approaches #1 to #4, the set of parameter estimates identified by approach #6 for the previous trading

day, or one of the 100 randomly selected sets drawn from intervals defined by the bounds in Table 1

Approach #1 2.1 % 2.7 %

Approach #2 4.7 % 4.0 %

Approach #3 1.7 % 2.3 %

Approach #4 1.9 % 2.3 %

Parameters found with approach #6

on the previous day

37.7 % 35.2 %

One of the 100 randomly selected

sets

52.0 % 53.5 %

Proportions when approaches #1 to #5 lead to the best goodness of fit

Approach #1 12.0 % 14.0 %

Approach #2 25.7 % 25.7 %

Approach #3 16.2 % 14.5 %

Approach #4 18.7 % 20.5 %

Approach #5 27.3 % 25.3 %

Results are obtained when using the Svensson model fitted by minimizing yield errors and duration-

weighted price errors, respectively. The approaches #1 to #6 are defined in Section 3.2

123

R. R. Wahlstrøm et al.



Figure 3 summarizes the goodness of fit when the yield curve is fitted with the

Svensson model by minimizing yield errors using the different approaches for initial

values. To assess the magnitude of the mispricing of individual instruments in terms

of yield to maturity, we report here the average absolute yield error 1
N

PN
i¼1 jyi �

ŷiðcÞj in basis points (bps) of the N instruments taken into account on each trading

day between 2000 and 2019. We observe a maximum and minimum value of 23.72

bps and 0.90 bps, respectively, as well as a mean of 3.67 bps regardless of which

approach for initial values is chosen. Further, we observe a worse goodness of fit

from late 2007 to mid 2009, which corresponds to the Financial Crisis of

2007–2008. However, this is the same for all approaches for initial values. No

significant deterioration in the goodness of fit can be found during the shocks on the

global markets after the 9/11 terror attacks in 2001. Further, we observe that the

times of normal, flat and inverted yield curves, as well as rising and falling interest

rates, are not indicators for the choice of a specific approach for initial values.

Overall, we observe rather small differences (of a few basis points) in the goodness

of fit between the various approaches for the selection of initial values.7

Yet, the choice of the initial values has significant implications on the stability of

the resulting Svensson model parameter estimates and their interpretability.

Figures 4 and 5 display the evolution of b0 and b1 across all trading days between

2000 and 2019 when yield errors are minimized. Obviously, the estimated

parameters exhibit a more stable and intuitive pattern when initial values are derived

from observed yields, as illustrated in the top and middle panels of Fig. 4 for

approach #1 and #2, respectively. Also, for approach #5 we observe in the middle

panels of Figure 5 a more stable pattern, but there is tendency of getting trapped in

local minima with extreme parameter values. The top and bottom panels of Fig. 5

imply that the variation increases significantly when approaches #4 and #6 for initial

values are applied. In particular, parameters can take very different values over

consecutive trading days. This is counterintuitive, since market conditions under

normal circumstances persist. Thus, the financial interpretation of parameters drops

Fig. 3 Evolution of average absolute yield errors 1
N

PN
i¼1 jyi � ŷiðcÞÞj in basis points (bps) of the

N instruments taken into account on each trading day between 2000 and 2019, when the yield curve is
fitted with the Svensson model by minimizing yield errors and using different approaches for initial
values. The approaches #1 to #6 are defined in Sect. 3.2

7 Similarly, insignificant changes in the goodness of fit across different approaches result when duration-

weighted price errors are minimized instead of yield errors.
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for both approaches. The optimization with the downhill simplex algorithm in

approach #4 and the random sampling in approach #6 lead to larger deviations

compared to the use of initial values derived directly from data. Based on these

insights, approaches #4 and #6 are not recommended if the goal is to interpret

parameter values for monetary policy decisions.

Fig. 4 Values of b0 and b1 across trading days derived from the Svensson model fitted by minimizing
yield errors and using different approaches for initial values. Top panels show values when using
approach #1 for initial values. Middle panels display values when using approach #2 for initial values.
Bottom panels present values when using approach #3 for initial values. The approaches are defined in
Sect. 3.2
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For reasons of space we have limited ourselves to the presentation of evolution of

the first two parameters b0 and b1 since we focus on these in subsequent discussions.
However, our findings concerning the stability of parameter values applies also to

b2, b3, s1 and s2. This becomes evident in Table 3, which exhibits the standard

Fig. 5 Values of b0 and b1 across trading days derived from the Svensson model fitted by minimizing
yield errors and using different approaches for initial values. Top panels show values when using
approach #4 for initial values. Middle panels display values when using approach #5 for initial values.
Bottom panels present values when using approach #6 for initial values. The approaches are defined in
Sect. 3.2
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deviations of all estimated parameters of the Svensson model over the entire sample

period.

In conclusion, we suggest using initial values derived from observed yields

(approaches #1 and #2) since this leads to the most stable and intuitive parameter

estimates. However, we achieve a slightly better goodness of fit by using many

combinations of initial values (approach #6), but at the expense of large variations

in the estimated values of model parameters. Thus, this approach should rather be

avoided when the interpretability of the estimated parameter values is important. In

addition, simultaneously testing many initial values is computationally expensive.

Using the parameter values obtained from fitting the model on the previous trading

day as initial values (approach #5) provides a compromise between parameter

stability and goodness of fit. However, this approach gets too often trapped in a local

minimum with extreme parameter values and, thus, alternative initial values should

be considered as well.

4.2 Comparative Examination of Parsimonious Yield Curve Models
and Confounding Effects in the Svensson Model

This section presents a comparative examination of the Nelson-Siegel, Bliss and

Svensson models. First, we compare the evolution of the level and the slope factors

with a short- and a long-term spot rate. Second, we investigate the curvature factors,

and find confounding effects in the two curvature factors of the Svensson model,

which suggests that one of them is superfluous. Finally, we compare the models

with respect to their goodness of fit and the behavior of the estimated parameter

values.

The two top panels of Fig. 6 show the values of the magnitudes of the level and

slope factors over time, derived from the Nelson–Siegel model fitted by minimizing

yield errors and using approach #1 for initial values. The left panel shows the

evolution of b0 together with the 30 year spot rate, while the right panel illustrates

the evolution of the sum b0 þ b1 together with the 3 month spot rate. Both market

rates are given in percent and were derived from the bond price data set by

bootstrapping. We observe that b0 matches the spot rates for longer times to

Table 3 Standard deviation across all trading days between 2000 and 2019 of estimated parameter values

derived from the Svensson model fitted by minimizing yield errors and using different approaches for

initial values, which are defined in Section 3.2

Approach for initial values b0 b1 b2 b3 s1 s2

Approach #1 1.76 2.48 8.09 9.33 3.57 4.38

Approach #2 1.34 1.98 13.73 11.61 3.13 1.17

Approach #3 2.18 7.01 15.12 15.00 4.72 4.26

Approach #4 1.75 2.61 13.94 14.50 3.98 3.80

Approach #5 1.97 2.53 12.52 12.28 5.72 2.72

Approach #6 2.19 4.30 8.54 8.73 6.55 7.32
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maturity (360 months), with a correlation of 0.95 during 2000–2019. Further, we

observe that b0 þ b1 matches the spot rates for shorter times to maturity (3 months),

with a correlation of 1.00 during 2000–2019. This is an empirical evidence that the

magnitudes of the first two factors of the Nelson–Siegel model represent the level of

the yield curve, as discussed in Sect. 2.2. We find the same evidence when using the

Bliss and Svensson models and other approaches for initial values.8 Further, we

observe an almost perfect negative correlation between b0 and b1 over consecutive
trading days. This is illustrated in the bottom panel of Fig. 6, which shows the joint

evolution of b0 and b1 for all trading days derived from the Nelson–Siegel model

Fig. 6 Top left panel shows daily values of b0 and spot rates for 360 months in percent derived from
bootstrapping. The correlation between b0 and the spot rates is 0.95 for the whole period of 2000–2019.
Top right panel displays daily values of b0 þ b1 and spot rates for 3 months in percent derived from
bootstrapping. The correlation between b0 þ b1 and the spot rates is 1.00 for the complete investigation
period. Bottom panel presents joint evolution of b0 and b1 values for all trading days between 2000 and
2019. Each plot in the bottom panel has an unique color representing the trading day, which goes from
blue for 1st of January 2000 to red for 31st of December 2019. All values of b0 and b1 in the three panels
are derived from the Nelson-Siegel model fitted by minimizing yield errors and using approach #1 for
initial values

8 The empirical evidence is not necessary as obvious as in Figure 6. This because the fluctuation of

parameter values is changing with different models and approaches for initial values, as discussed below

and above, respectively. Results are available upon request.
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fitted by minimizing yield errors and using approach #1 for initial values. To

illustrate different patterns across different trading day intervals, each plot in the

panel has a unique color representing the trading day, which goes from blue for 1st

of January 2000 to red for 31st of December 2019, as shown in the color bar on the

right. The same colors are also used in subsequent figures. The observed high

negative correlation means that the starting value of the yield curve at zero maturity

b0 þ b1ð Þ remains almost constant in the corresponding trading day intervals. That

is, investors’ expectations for the near future remain practically constant over

consecutive trading days, even if their expectations far into the future (represented

by b0) vary. We find the same evidence when using the Bliss and Svensson models

and other approaches for initial values.9 To sum up, the level and slope factors have

a high degree of financial interpretation, which make them well suited for monetary

policy decisions.

For the curvature factors, however, we observe confounding effects. Figure 7

shows exemplary the joint evolution of daily parameter values derived from the

Svensson model fitted by minimizing yield errors and using approach #2 (fit first the

Nelson–Siegel model). We observe positive correlations between s1 and s2, as well
as negative correlations between b2 and b3. These observations are regardless of

which approach for initial values is applied, however most obvious when using

approach #1, #2, #3 and #4.10 This is in line with De Pooter (2007) who reported a

correlation of -0.47 between the values of b2 and b3 derived from the fitted

Svensson model over the period 1984-2003.11 The correlations observed here are

even stronger. For example, for all trading days from February 2012 to May 2013

there is a correlation of 0.99 between s1 and s2. Furthermore, the correlation

between b2 and b3 is -1.00 for all trading days between 2012 and 2013, as well as

Fig. 7 Joint evolution of parameter values for all trading days between 2000 and 2019, derived from the
Svensson model fitted by minimizing yield errors and using approach #2 for initial values. Each plot in
the figure has an unique color representing the trading day, which goes from blue for 1st of January 2000

to red for 31st of December 2019

9 Results are available upon request.
10 Results are available upon request.
11 See table 5 in De Pooter (2007). The author did not report correlation values involving s1 and s2.
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- 0.96 throughout all trading days between 2000 and 2019. In summary, these

findings indicate difficulties in forming expectations about each curvature factor of

the Svensson model, since they have innovations that are dependent on the other, as

suggested by Lengwiler & Lenz (2010). Furthermore, this interconnection indicates

confounding effects between the two curvature factors, implying that one of them is

superfluous.

Figures 8a and b show parameter values for all trading days between 2000 and

2019 in ascending order derived from different models. Figure 8a shows that the

values of s1 and s2, derived from the fitted Svensson model, are very similar and

often the difference is zero. This means that the locations of the hump or trough of

the curvature factors coincide, and the loadings of the third and fourth term in

equation (5) become equal. As a consequence, the parameters b2 and b3 cannot be

identified separately, and only their sum can be interpreted. Thus, the extra

flexibility by introducing the additional curvature term in the Svensson model is

most of the time not exploited. This is confirmed by Figure 8b, which shows the

difference between the magnitude of the single curvature factor of the Nelson-Siegel

model (b2) and the sum of the two magnitudes of the curvature factors of the

Svensson model (b2 and b3). Most of the time, differences are close to zero, and the

Svensson model does not provide a better fit than the less flexible Nelson-Siegel

model. In summary, these findings are another evidence of the confounding effects

in the curvature factors of the Svensson model.

To assess if and when the additional curvature factor of the Svensson model is

beneficial compared to the Nelson-Siegel and Bliss models, we evaluate the

goodness of fit for each individual yield curve over the whole sample period. Let

Kmod
j be the average of the absolute values of all the yield errors �mod

i ðcÞ ¼

Fig. 8 Parameter values for all trading days between 2000 and 2019 in ascending order, when yield curve
models are fitted by minimizing yield errors. Each plot in the figure has an unique color representing the
trading day, which goes from blue for 1st of January 2000 to red for 31st of December 2019
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yi � ŷmod
i ðcÞ of all the instruments i ¼ f1; . . .;Ng given in bps for trading day j,

defined as

Kmod
j ¼ 1

N

XN

i¼1

j�mod
i ðcÞj

where mod has the value NS, B or S indicating if the yield curve is fitted with the

Nelson-Siegel, Bliss or Svensson model, respectively. Figure 9a shows KNS
j , KB

j and

KS
j obtained when the yield curve models are fitted by minimizing yield errors and

using approach #1 for initial values. As before, we observe a worse goodness of fit

from late 2007 to mid 2009 for all models, which corresponds to the Financial Crisis

of 2007–2008. Again, no significant change in goodness of fit can be found during

the shocks on the global markets after the 9/11 terror attacks in 2001. Furthermore,

from the comparison with Fig. 2 we observe that times of normal, flat and inverted

yield curves, as well as rising and falling interest rates, are not indicators for the

Fig. 9 Evolution of the averages of absolute yield errors in basis points (bps) on each trading day j

between 2000 and 2019, when yield curves are fitted with the Nelson-Siegel (KNS
j ), Bliss (KB

j ) and

Svensson (KS
j ) models by minimizing yield errors and using approach #1 for initial values
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choice of a specific model. We observe a better goodness of fit when using the

Svensson model compared to the Nelson-Siegel model, as illustrated by the dif-

ference KNS
j � KS

j in Fig. 9b. In addition, we observe a better goodness of fit when

using the Bliss model compared to the Nelson-Siegel model, as illustrated by the

difference KNS
j � KB

j in Fig. 9c. This better goodness of fit when using the Svensson

and Bliss models, compared to the Nelson–Siegel model, can be attributed to their

extra flexibility. We also observe a better goodness of fit when using the Bliss model

compared to using the Svensson model, even if the latter is more flexible, as

illustrated by the difference KB
j � KS

j in Fig. 9d. This stems from the fact that the

optimization algorithm gets often trapped in a sub-optimal local minimum. Due to

the higher dimensionality of the parameter space, the Svensson model is more

sensitive to the choice of initial values when the non-convex data fitting problem is

solved. Nevertheless, these differences in goodness of fit in Fig. 9b, c and d are so

small that we do not consider them relevant when using the yield curve for mon-

etary policy analysis. The difference is often close to zero, and the averages of the

data shown in Fig. 9b,c and d are 0.57 bps, 0.76 bps and - 0.19 bps, respectively. In

summary, we find that the extra flexibility of the Svensson model does not bring a

significant contribution to the goodness of fit. It may even lead to a poorer goodness

of fit compared to the less flexible Bliss model due to the challenge of identifying a

‘‘good’’ local optimum for the non-convex data fitting problem.12

To sum up, our findings confirm the statement of Söderlind & Svensson (1997)

that the less flexible Nelson-Siegel model gives a satisfactory fit in many cases, as

well as the conclusion of Dahlquist & Svensson (1996) that it is well above what is

needed for monetary policy analysis. In particular, our findings are consistent with

those of Diebold et al. (2006) and De Pooter (2007) that the Nelson-Siegel model

gives a satisfactory fit compared to more flexible models, and illustrate that a lower

number of factors in the yield curve model is typically adequate (Diebold &

Rudebusch, 2013).

Furthermore, we observe that the model choice has an impact on the variation of

parameter values, as also found by De Pooter (2007). This becomes evident in

Fig. 10, which displays the evolution of the estimated values of b0 and b1 when

yield curves are fitted by minimizing yield errors with approach #1 for initial values.

In particular, we observe most variation in parameter values for the Svensson

model, as shown in the top panels of Fig. 10. However, this variation is reduced

with the Bliss model (middle panels of Fig. 10). The parameter values variate least

when fitting the Nelson–Siegel model (bottom panels). Moreover, we observe that

the variation of parameter values is not dependent on financial crises, times of

different yield curve shapes or regimes of rising or falling interest rates. A similar

pattern of variation in parameter values does also apply for the other parameters, but

we have omitted their presentation for reasons of space.13 Table 4 summarizes for

12 These findings persist when models were fitted by minimizing duration-weighted price errors instead

of yield errors. Results are available upon request.
13 Results are available upon request.
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all three models the standard deviations of the complete set of estimated

parameters.14

Fig. 10 Estimated values of b0 and b1 across trading days when yield curves are fitted by minimizing
yield errors and using approach #1 for initial values. Top panels show values when using the Svensson
model. Middle panels display values when using the Bliss model. Bottom panels present values when
using the Nelson-Siegel model

14 Similar results were obtained for the minimization of duration-weighted price errors and are available

upon request.
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Overall, if the focus is on employing the estimated parameters for monetary

policy decisions, we conclude that the Nelson-Siegel model is a better choice than

the Bliss and Svensson models.

4.3 Preimposing Restrictions on the Distance Between s1 and s2

If the motivation for the second curvature factor in the Svensson model is a better fit

for the long end of the yield curve, we would expect s2 [ s1. However, in our

results above, where we preimpose no restrictions on the distance between s1 and s2
like in Gürkaynak et al. (2007), this is most often not the case, as illustrated in

Fig. 8a. Furthermore, using approach #5 for initial values results in solutions with

s2\s1 for all trading days. In addition, regardless of the approach for initial values,

we observe less outliers and more stability in all estimated parameter values for

trading days when s2\s1, compared to trading days when s2 [ s1.
15

These counter-intuitive insights, and the observation that confounding effects are

partly due to correlations between s1 and s2, are the motivation for testing the

implications on our findings when preimposing restrictions on the distance between

s1 and s2. First, we regenerate results when making sure that s2 is larger than s1, like
in Ferstl & Hayden (2010) and Sasongko et al. (2019). Second, we regenerate

results when making sure that s1 is larger than s2, like in De Pooter (2007). In

particular, we investigate the implications on our findings by refitting the yield

curve with the Svensson model by minimizing yield errors, using approach #1 for

initial values and adding the constraints s2 � s1 þ 0:5 and s1 � s2 þ 0:5,
respectively.16

Figure 11 shows yield errors when preimposing no restriction, when preimposing

s2 � s1 þ 0:5 and preimposing s1 � s2 þ 0:5, respectively. We observe that in most

cases the restrictions have an insignificant effect on the goodness of fit.

Furthermore, we still observe positive correlations between s1 and s2 and negative

correlations between b2 and b3, which indicates that confounding effects in the

curvature factors of the Svensson model persist.17 However, we observe that

preimposing restrictions on the distance between s1 and s2 has a significant effect on
the variation in parameter values across trading days. Indeed, the variation of

Table 4 Standard deviation across all trading days between 2000 and 2019 of estimated parameter values

derived from the Svensson, Bliss and Nelson–Siegel models, respectively, fitted by minimizing yield

errors and using approach #1 for initial values

Model b0 b1 b2 b3 s1 s2

Svensson 1.76 2.48 8.09 9.33 3.57 4.38

Bliss 1.78 2.37 4.62 5.95 4.31

Nelson-Siegel 1.18 1.80 2.40 1.80

15 Results are available upon request.
16 The initial values in Table 1 were adjusted correspondingly.
17 Results are available upon request.

123

A Comparative Analysis of Parsimonious Yield Curve Models...



estimated values increases for all parameters. This is displayed in Fig. 12, in which

we again restrict ourselves to the presentation of b0 and b1. The increasing variation

can also be seen in Table 5, which exhibits the standard deviations of the complete

parameter set for the entire sample period. Based on these results, we recommend

not to preimpose restrictions on the distance between s1 and s2 when using the yield

curve for monetary policy decisions.

4.4 Robustness Checks

In this section, we present case studies where we use subsets of the total data set to

regenerate results for checking the robustness of our findings. Our focus is on

confounding effects in the curvature factors of the Svensson model, parameter

stability and goodness of fit. Initial values for the fitting procedure are derived from

approaches #1 and #2, respectively. For reasons of space we show only results for

the former.18 The various case studies are (i) excluding certain instruments that

behave differently than others, namely Treasury bills, and (ii) controlling for the

observed clustering of instruments across time to maturity by restricting the

maturity segments with different concentration of available instruments. The effects

on goodness of fit in both cases are presented in Figure 13, which compares yield

errors when using the different subsets of data.

In the first case study, we investigate the effects of excluding Treasury bills from

the data. This was suggested by Gürkaynak et al. (2007), who motivated it with the

observation that bills are priced measurably differently from notes and bonds with

less than one year to maturity due to liquidity, taxes and other effects. They referred

here to Duffee (1996), who found that movements in bill yields are often

disconnected from yields of notes and bonds. However, we find that excluding

Treasury bills from the data has an insignificant effect on the goodness of fit, as

shown in Fig. 13. In addition, the effect on the evolution of parameters is marginal,

which can be seen in the middle panels of Fig. 14 for the example of b0 and b1, but
the findings prevail for the other parameters as well. This can be seen also in

Fig. 11 Evolution of average absolute yield errors 1
N

PN
i¼1 jyi � ŷiðcÞÞj in basis points (bps) of the N

instruments taken into account on each trading day between 2000 and 2019, when the yield curve is fitted
with the Svensson model by minimizing yield errors, using approach #1 for initial values and preimposing
different restrictions on the distance between s1 and s2

18 Results for approach #2 are available upon request.
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Table 6, which shows again the standard deviations of estimated parameters across

all trading days between 2000 and 2019 when different subsets of data are used.

Insignificant effects on the goodness of fit and parameter stability are also observed

when fitting the Nelson–Siegel model. We still observe positive correlations

Fig. 12 Estimated values of b0 and b1 across trading days when yield curves are fitted to the Svensson
model by minimizing yield errors and using approach #1 for initial values. Top panels show values when
preimposing no restrictions on the distance between s1 and s2. Middle panels display values when
preimposing s2 � s1 þ 0:5. Bottom panels present values when preimposing s1 � s2 þ 0:5
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between s1 and s2 and negative correlations between b2 and b3, which indicate

confounding effects in the curvature factors of the Svensson model.19

As a consequence of the Treasury’s issuing policy, certain maturity segments

contain a larger number of instruments than others. This clustering is illustrated in

Fig. 15a, which shows the number of instruments in the original data set per trading

day within different intervals of years to maturity. Since parts of the yield curve

with higher concentration of data points have a higher contribution to the error

measure, the goodness of fit in maturity segments with less observations may

degrade. Therefore, we investigate in a second case study whether a clustering of

instruments has any impact on our findings. First, we exclude instruments separated

by less than 45 days to maturity. In particular, if any two instruments at any specific

trading day are separated by less than 45 days to maturity, the instrument with the

smallest outstanding amount is excluded. The number of instruments per trading day

within different intervals of years to maturity after this exclusion is shown in

Fig. 15b. Second, since various authors restrict their data sets to instruments with

maturities up to 10 years only, we investigate if excluding the very long end of the

yield curve affects our findings. We observe that confounding effects in the

curvature factors of the Svensson model persist. The smaller number of instruments

in the data leads to a higher variation in parameter values for both procedures. This

Table 5 Standard deviation across all trading days between 2000 and 2019 of estimated parameter values

derived from the Svensson model fitted by minimizing yield errors, using approach #1 for initial values

and preimposing different restrictions on the distance between s1 and s2

Model b0 b1 b2 b3 s1 s2

Preimposing no restrictions 1.76 2.48 8.09 9.33 3.57 4.38

Preimposing s2 � s1 þ 0:5 4.95 6.09 8.10 17.48 3.17 9.88

Preimposing s1 � s2 þ 0:5 2.75 3.66 14.16 11.73 7.07 3.88

Fig. 13 Evolution of average absolute yield errors 1
N

PN
i¼1 jyi � ŷiðcÞÞj in basis points (bps) of the

N instruments taken into account on each trading day between 2000 and 2019, when the yield curve is
fitted with the Svensson model by minimizing yield errors, using approach # 1 for initial values and for
different subsets of data

19 Results are available upon request.
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is evident in the standard deviations across all trading days between 2000 and 2019

shown in Table 6, as well as in the bottom panels of Fig. 14 that show the evolution

of b0 and b1 when including only instruments up to 10 years to maturity. Findings

prevail when considering the evolution of parameters after excluding instruments

Fig. 14 Estimated values of b0 and b1 across trading days when yield curves are fitted to the Svensson
model by minimizing yield errors and using approach #1 for initial values. Top panels show values when
including all instruments in the data. Middle panels display values when excluding Treasury bills. Bottom
panels present values when including only instruments up to 10 years to maturity
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separated by less than 45 days to maturity, also with respect to b2, b3, s1 and s2.
20 In

particular, the higher variation in the values of b0 in the case of including only

instruments up to 10 years to maturity means that including instruments with

maturities up to 30 years leads to a better approximation of the long end of the yield

curve.

In conclusion, we observe that goodness of fit and confounding effects in the

curvature factors hold for all cases. However, for the sake of the parameter stability,

we recommend not to reduce the clustering of instruments across time to maturity.21

Table 6 Standard deviation across all trading days between 2000 and 2019 of estimated parameter values

derived from the Svensson model fitted by minimizing yield errors, using approach #1 for initial values

and using different subsets of data

b0 b1 b2 b3 s1 s2

Including all instruments 1.76 2.48 8.09 9.33 3.57 4.38

Excluding Treasury bills 1.80 2.54 8.15 9.47 4.25 3.90

Excluding instruments separated by less than 45 days to

maturity

1.84 2.60 11.98 12.66 3.98 2.93

Including only instruments up to 10 years to maturity 3.70 4.17 12.99 13.39 3.18 4.24

Fig. 15 Number of instruments in the data per trading day within different intervals of years to maturity

20 Results are available upon request.
21 We also found an insignificant effect on the goodness of fit, a persistence of confounding effects in the

curvature factors and a reduction in parameter stability when excluding instruments separated by less than

other than 45 days to maturity, as well as when fitting yield curve models only to instruments up to 3 and

5 years to maturity, respectively.
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5 Conclusions

We assess and make recommendations concerning modelling and estimation

choices relevant for central banks when using parsimonious yield curve models for

monetary policy decisions. In this context, we illustrate that winning the objective

function race is not a relevant criterion since different choices result in negligible

differences in the goodness of fit, rather the stability of model parameters becomes

relevant as they have a specific financial interpretation. For every trading day

between 2000 and 2019, we fit the Nelson–Siegel, Svensson and Bliss models to

observed US Treasury securities with maturities up to 30 years. Following the

practice of central banks, we do not fix any model parameters. Consequently,

parameters are estimated by solving a non-linear optimization problem, which

requires a predefinition of initial parameter values. Our study is the first in the

literature that compares the stability of estimated model parameters (i) among

different parsimonious models and (ii) for different approaches for predefining

initial parameter values. Furthermore, it investigates the impact of (iii) constraints
on the parameters that define the location of humps and troughs as well as (iv) filter
criteria for the selection of instruments considered in the estimation on parameter

stability, confounding effects and goodness of fit.

To obtain the most stable and intuitive parameter estimates over time, we

recommend that central banks employ the Nelson-Siegel model by taking initial

parameter values derived from the observed yields. Our findings are consistent with

previous studies (Diebold & Rudebusch, 2013) and confirm that the Nelson–Siegel

model gives a satisfactory fit compared to more flexible models (Diebold et al.,

2006; De Pooter, 2007) and is also well above what is needed for monetary policy

analysis (Söderlind & Svensson, 1997; Dahlquist & Svensson, 1996). The

recommendation of using the Nelson-Siegel model is further supported by the

concluding result that the Svensson model is often superfluous due to confounding

effects between the curvature factors. In general, our findings hold regardless of

whether parameters are estimated by minimizing yield errors or duration-weighted

price errors. We observe that neither regimes of normal, flat or inverted yield curve

shapes, financial crises, rising/falling interest rates are indicators for the choice of a

specific model.

The observed confounding effects in the Svensson model are partly due to

correlations between the parameters controlling the location of the humps or troughs

of the yield curve. Consequently, we study the implications of constraining them as

suggested by De Pooter (2007), Ferstl & Hayden (2010) and Sasongko et al. (2019).

Indeed, to our knowledge, we are the first to investigate the implications of such

constraints on the stability of estimated parameters and the goodness of fit. Our

findings suggest not to use such constraints as they result in reduced parameter

stability, while the impacts on confounding effects and goodness of fit are

insignificant.

Since there is evidence that yields of Treasury bills are often disconnected from

yields of notes and bonds (Duffee, 1996; Gürkaynak et al., 2007), we investigate the

impact of excluding them from the data. Our finding is that an exclusion of bills has
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insignificant impact on the goodness of fit, parameter stability and confounding

effects in the Svensson model. Furthermore, as the maturity dates of observed bonds

are not uniformly distributed along the curve, we assess the impact of a

concentration of instruments in certain maturity segments on our results. An

elimination of instruments in segments with higher concentration neither improves

the goodness of fit nor eliminates confounding effects. In particular, we observe that

the exclusion of instruments with maturities above ten years, which is often done in

empirical studies, leads to higher parameter instability. Therefore, including also the

available long-term instruments provides a better approximation for the long end of

the yield curve.
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Appendix A. Numerical Solution

The fitting procedures of all parsimonious models are implemented in Matlab. The

spot rates shown in Fig. 2 were derived from prices of Treasury instruments with the

function ‘‘bootstrap’’ from the Financial Instrument Toolbox. While the latter

contains also standard functions to fit the Nelson–Siegel and the Svensson model,

we have implemented our own estimation routines for all three models that allow

also to take into account constraints like on the distance between parameters. We

use the interior point solver ‘‘fmincon’’ from the Optimization Toolbox to solve the

non-linear optimization problem (8) with optional constraints and analytical

gradients when appropriate. For the minimization of yield errors without additional

constraints, we used the solver ‘‘lsqnonlin’’, which implements a trust-region

reflective least-squares algorithm (Moré & Sorensen, 1983; Sorensen, 1997), with

numerical gradients. The parameter for the termination tolerance on the first-order

optimality was set to 10�12. The implementation of the Nelder-Mead method used

for approach #4 is taken from the NLopt library (Johnson, 2017).

For the computationally more demanding yield curve error minimization, the

solution of the most complex approach #6 that solves the non-linear optimization

problem 105 times with different starting values takes about 45 minutes on a PC

with Intel i7 processor at 1.9 GHz. This is numerically feasible in the daily practice

of a financial institution. However, we used the NTNU IDUN computing cluster

(Själander et al., 2019) to carry out the various case studies for each of the 4996

trading days. Each study was performed twice: For the minimization of errors in

yields and errors in duration-weighted prices. The cluster has more than 70 nodes
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and 90 GPGPUs. Each node contains two Intel Xeon cores, at least 128 GB of main

memory, and is connected to an Infiniband network. Half of the nodes are equipped

with two or more Nvidia Tesla P100 or V100 GPGPUs. Idun’s storage is provided

by two storage arrays and a Lustre parallel distributed file system.
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