Three－dimensional wake transition behind an elliptic cylinder near a moving wall Jianxun Zhu（朱建勋），${ }^{1, a)}$ Fengjian Jiang（蒋奉兼），${ }^{2}$ and Lars Erik Holmedal ${ }^{1}$
${ }^{1)}$ 1．Department of Marine Technology，Norwegian University of Science and Technology， 7052，Trondheim，Norway
${ }^{2)}$ 2．SINTEF Ocean，7052，Trondheim，Norway
（Dated： 24 March 2021）
Three－dimensional flow past an elliptic cylinder with an aspect ratio of 0.5 near a mov－ ing bottom wall is investigated numerically for gap ratios of $G / D=0.1,0.2,0.3$ and 0.4 （where G denotes the gap between the cylinder bottom and the moving wall and D is the major－axis length of the cylinder）with Reynolds numbers（ $R e$ ）ranging from 100 to 200 （based on a constant inlet velocity and the major－axis length of the cylinder）；the transition between two－and three－dimensional flow regimes is described in detail．For $G / D=0.4$ ， the flow is first two－dimensional with a Kármán vortex street followed by a two－layered wake，then it evolves into a three－dimensional flow regime with near－wake and far－wake elliptic instabilities of vortex pairs；for $R e \geq 180$ ，the near－wake elliptic instability disap－ pears（i．e．，the near wake becomes two－dimensional）while the far－wake elliptic instability persists．For $G / D=0.3$ ，the flow is first two－dimensional without the development of the two－layered wake，then it evolves into a three－dimensional flow regime with stream－ wise vorticity pairs propagating periodically in the spanwise direction；this propagation becomes irregular for $\operatorname{Re} \geq 160$ ．For $G / D=0.2$ the flow is first two－dimensional as for $G / D=0.3$ ，then it becomes three－dimensional，exhibiting a behavior of modified mode C instability；for $R e \geq 140$ ，this flow exhibits a chaotic behavior．For $G / D=0.1$ ，the flow is first three－dimensional and steady without vortex shedding，and then develops into an unsteady flow with a dominating upper shear layer in the near－wake and a chaotic wake structure farther downstream．

[^0]
I．INTRODUCTION

Steady incoming flow past an isolated circular cylinder has been studied extensively due to its fundamental and practical significance ${ }^{1}$ ．The flow exhibits a transition from two－dimensional periodic flow to three－dimensional flow via a mode A instability at the Reynolds number around $190^{2,3}$ ，where the Reynolds number $(R e)$ is based on the free－stream velocity (U) and the cylin－ der diameter (D) ．The mode A is characterized by streamwise vorticity pairs with a spanwise length ranging from $3 D$ to $4 D$ ．The origin of the mode A instability can be attributed to an elliptic instability of the vortex cores in the near wake ${ }^{4,5}$ ，resembling the elliptic instability of a counter－ rotating vortex pair ${ }^{6}$ ．For $R e$ from 240 to 250 ，the mode A exhibits a gradual transition to another three－dimensional instability mode，i．e．，mode B ，which is characterized by streamwise vorticity pairs with a smaller spanwise wavelength ranging from $0.8 D$ to $1 D$ ．When $R e>260$ ，the mode B structure becomes increasingly disordered ${ }^{7,8}$ ．Williamson ${ }^{3}$ suggested that the mode B instability is associated with an instability in the braid shear layer within the near－wake region．Blackburn and Lopez ${ }^{9}$ reported the existence of quasi－periodic modes（using Floquet analysis）with spanwise wavelengths between those of modes A and B ．These quasi－periodic modes can be combined to produce either standing or traveling wave modes within the cylinder wake．Blackburn，Marques， and Lopez ${ }^{10}$ found standing and traveling wave modes with a spanwise wavelength of approxi－ mately $2.4 D$ for flow past a circular cylinder for $R e>377$ ．
The problem of steady incoming flow past an isolated elliptic cylinder has attracted much less attention than that for the circular cylinder although relevant to engineering applications like heat exchangers ${ }^{11}$ and bridge piers ${ }^{12}$ ．This flow depends on both the aspect ratio $(A R)$ of the elliptic cylinder（defined by the ratio of the semi－minor to semi－major axis length）and the incident angle （defined by the angle between the inlet flow direction and the semi－minor axis）in addition to the Reynolds number based on the free－stream velocity and the semi－major axis length．Experimental results obtained by Radi et al．${ }^{13}$ for flow around an elliptic cylinder at zero incident angle，show that three－dimensional instability modes equivalent to mode A and mode B（although with slightly different wavelengths）are present sequentially as $R e$ increases for $A R \in[0.26,0.72]$ ．Here the critical $R e$ for the onset of mode A decreases as $A R$ decreases．Interestingly，for $A R=0.39$ and 0.26 ，the flow exhibits a transition from a three－dimensional wake to a two－dimensional wake for $R e \in[200,250]$ and for $R e \in[150,190]$ ，respectively．Radi et al．${ }^{13}$ and Thompson et al．${ }^{14}$ suggested that the upstream movement of the two－layered wake caused by increasing Re suppresses the mode A instability．Moreover，Thompson et al．${ }^{14}$（using Floquet analysis）found that the mode A instability does not occur for $A R=0.1$ and 0 （flat plate）where the near－wake mode structure is modified by the two－layered wake．

Steady incoming flow past a circular cylinder near a moving bottom wall has been investigated by，e．g．，Stewart et al．${ }^{15}$ and Rao et al．${ }^{16}$ ，who found that at $G / D=0.005$（where G denotes the gap between cylinder bottom and the moving bottom wall）and $R e=90$ ，this flow exhibits a three－dimensional steady flow regime prior to the onset of unsteady flow，which is not present for the isolated cylinder．Rao et al．${ }^{17}$ found that the critical Re for the onset of the unsteady flow regime increases as G / D increases up to 0.25 ，while for $G / D \geq 0.3$ ，three－dimensional wake transition（i．e．，mode A instability）occurs after the two－dimensional unsteady flow is formed． Here the critical $R e$ for the onset of mode A was found to first decrease and then increase as G / D
increases. Qualitatively similar behaviors are observed by Jiang et al. ${ }^{18,19}$. They also reported that at $G / D=0.2$, the three-dimensional steady and unsteady flow is triggered by a subharmonic mode, i.e., mode C, which is characterized by the streamwise vorticity pairs changing sign after each vortex shedding period. The formation of this mode is due to the moving wall breaking the wake symmetry (i.e., the wake pattern being reflected about the horizontal center-line of the cylinder after half of the vortex shedding period).

In a previous work of Zhu et al. ${ }^{20}$, the two-dimensional wake pattern behind an elliptic cylinder near a moving wall has been investigated for $G / D \in[0.1,5]$ and $R e \leq 150$. At small gap ratios, a significant near-wall effect was found on the wake structures (including the Kármán vortex street and the two-layered wake). However, the near-wall effect on the three-dimensional wake transition behind an elliptic cylinder near a moving wall has not been investigated before. In the present work, a detailed three-dimensional numerical investigations for this flow has been conducted with $A R=0.5$ for $G / D \in[0.1,0.4]$ and $R e \in[100,200]$. Overall, the results show that the flow exhibits different wake transition scenarios with increasing Re for each G / D. The transition between twoand three-dimensional flow regimes via the onset of three-dimensional instability modes such as, e.g., mode A, mode C and traveling wave mode, is described in detail. This flow configuration is important for understanding the basic mechanisms for biological flows ${ }^{21,22}$ as well as for engineering applications such as an AUV (Autonomous Underwater Vehicle) moving near seabed. The latter is of great importance for mapping the ocean bathymetry as well as for monitoring subsea structures and collecting both physical data (e.g., wave-induced velocities, current velocities and sediment concentration) and biological data (e.g., fish larvae, plankton and contamination).

II. GOVERNING EQUATIONS

The current paper addresses on the three-dimensional wake transition behind an elliptic cylinder near a moving wall. The incompressible flow with a constant density ρ is governed by the threedimensional Navier-Stokes equations given as

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{i}}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}+\frac{\partial u_{i} u_{j}}{\partial x_{j}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+v \frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{j}} \tag{2}
\end{equation*}
$$

where the Einstein notation using repeated indices is applied. Here $u_{i}=(u, v, w)$ and $x_{i}=(x$, y, z) for $i=1,2$ and 3 , indicate the velocity and Cartesian coordinates, respectively, whilst v, t and p denote the kinematic viscosity of the fluid, time and pressure, respectively. Numerical simulations have been carried out using OpenFOAM (www.openfoam.org). A second-order finite volume method (FVM) is applied in conjunction with the PISO algorithm ${ }^{23}$ for solving equations (1) and (2), similar to the numerical approach used in Jiang et al. ${ }^{8}$.

A. Computational domain and mesh

Figure 1 shows a sketch of the computational domain and the mesh around the elliptic cylinder. The same computational domain was used by Jiang et al. ${ }^{18}$ for flow around a circular cylinder
near a moving wall. The aspect ratio $(A R)$ of the elliptic cylinder is defined by the minor (a) to major (D) axis length ratio, i.e., $A R=a / D$. In the present work, the aspect ratio is set to be 0.5 . The gap ratio is given by G / D, where G is the gap between the moving wall and the cylinder. The Reynolds number is based on the major axis length of the cylinder, i.e., $R e=U D / v$. The inlet and outlet boundaries are located at upstream 20 D and downstream 30 D of the cylinder center, respectively. The top and bottom boundaries are located at $20 D$ and $(G+0.5 D)$ away from the cylinder center, respectively. Different spanwise lengths of the computational domain are applied for different G / D, which will be further discussed below.

FIG. 1. Sketch of the computational domain and the mesh around the elliptic cylinder.

FIG. 2. Variation of the spanwise wavelength $\left(\lambda_{z}\right)$ of the three-dimensional mode against the spanwise length $\left(L_{z}\right)$ of the computational domain.

As for the boundary conditions, a constant velocity U is set at the inlet while a Neumann condition for the velocity is imposed at the top and outlet boundaries. A no-slip condition is applied at the cylinder surface and the bottom wall, which moves toward the right with a constant velocity U. The pressure is set to be zero at the outlet, and a Neumann condition is imposed at the other boundaries. Periodic boundary conditions are employed in the spanwise ($z-$) direction.

The radial size Δr and vertical size Δy of the first layer of mesh next to the cylinder and the bottom wall, respectively, are set to be the same. A C-type structured mesh ${ }^{24}$ is applied around
the cylinder. The grid expansion ratio in the whole domain is kept below 1.1, whilst the mesh size (Δz) along the spanwise $(z-)$ direction is kept to a constant value. A constant mesh size (Δx) along the x-direction is applied for $x \geq 10 D$.

Figure 2 shows simulations for flow around an elliptic cylinder near a moving wall for $G / D \in$ [0.1, 0.4], with different spanwise lengths L_{z} of the computational domain. It is shown that for $L_{z} \geq 12 D$ (for $G / D=0.4$), $L_{z} \geq 30 D$ (for $G / D=0.3$), and $L_{z} \geq 36 D$ (for $G / D=0.2$ and 0.1) the spanwise wavelength λ_{z} converges to the values $4 D, 5 D, 12 D$ and $9 D$, respectively. Thus, in the present work, $L_{z}=12 D$ and $30 D$ is applied for $G / D=0.4$ and 0.3 , respectively, and $L_{z}=36 D$ is applied both for $G / D=0.2$ and 0.1 .

B. Grid independence study

To test grid independence, numerical simulations for flow around an elliptic cylinder of $A R=$ 0.5 near a moving wall have been conducted using three different grid resolutions with $L_{z}=12 D$ as given in table I for $G / D=0.2$ and $R e=200$, which represents the most unstable flow regime investigated in the present work. Table I shows the Strouhal number ($S t=D f / v$, where f is the vortex shedding frequency), time-averaged drag (\bar{C}_{D}) and lift $\left(\bar{C}_{L}\right)$ coefficients obtained by three different grid resolutions. The drag and lift coefficients are defined by $C_{D}=2 F_{D} /\left(\rho U^{2} L_{z} D\right)$ and $C_{L}=2 F_{L} /\left(\rho U^{2} L_{z} D\right)$, respectively, where F_{D} and F_{L} are the drag and lift force on the cylinder, respectively. Here the value of $S t$ is almost the same (1000 time units for C_{L} are included for fast Fourier transform) while \bar{C}_{D} and \bar{C}_{L} obtained in case 1 deviate less than 1% from those obtained in case 2 and case 3 .

Case	G / D	$R e$	$\Delta y / \Delta r$	Δz	$S t$	\bar{C}_{D}	\bar{C}_{L}
N (million)							
Case 1	0.2	200	0.004	0.2	$0.134(\pm 0.001)$	1.4966	0.246
Case 2	0.2	200	0.002	0.2	$0.134(\pm 0.001)$	1.4832	0.2452
Case 3	0.2	200	0.004	0.1	$0.134(\pm 0.001)$	1.4796	0.2443

TABLE I. Values of the Strouhal number (St), time-averaged drag $\left(\bar{C}_{D}\right)$ and lift $\left(\bar{C}_{L}\right)$ coefficients for flow around an elliptic cylinder near a moving wall obtained by three different grid resolutions; N denotes the total cell number.

Figure 3 shows almost identical streamwise and spanwise velocity profiles between the cylinder bottom and the bottom wall obtained by three different grid resolutions. Based on the small differences seen in table I and figure 3, we chose to apply the same grid resolution as Case 1 for all numerical simulations in the present work.

C. Validation of the numerical model

A numerical simulation with $L_{z}=12 D$ for flow around a circular cylinder near a moving wall has been conducted for $G / D=0.4$ and $R e=200$ using the grid resolution for case 1 to validate the present numerical model. Table II shows the present results and the numerical results previously

FIG. 3. The streamwise and spanwise velocity profiles between the cylinder bottom and the bottom wall obtained by three different grid resolutions.
reported in Jiang et al. ${ }^{19}$ for $S t, \bar{C}_{D}$ and the root-mean-square of the lift coefficient $\left(C_{L}^{\prime}\right)$. Table II shows that $S t$ remains almost the same while the deviations of \bar{C}_{D} and C_{L}^{\prime} from the results obtained by Jiang et al. ${ }^{19}$ are equal to -0.05% and 1.22%, respectively.

Case	G / D	$R e$	$S t$	\bar{C}_{D}	C_{L}^{\prime}
Jiang et al. ${ }^{19}$	0.4	200	$0.19(\pm 0.001)$	1.4742	0.4236
present work	0.4	200	$0.19(\pm 0.001)$	1.4749	0.4288
Relative difference	-	-	0	-0.05%	1.22%

TABLE II. Values of the Strouhal number ($S t$), time-averaged drag coefficient $\left(\bar{C}_{D}\right)$ and root-mean-square of the lift coefficient $\left(C_{L}^{\prime}\right)$ for flow around a circular cylinder near a moving wall for $R e=200$ with $G / D=$ 0.4 using the grid resolution for case 1 .

Figure 4 shows the evolution of the wake vortices identified by isosurfaces of λ_{2} (left column) and isosurfaces of the streamwise vorticity $\omega_{x}^{*}\left(=\omega_{x} D / U\right)$ (right column) for flow around an isolated elliptic cylinder with $A R=0.5$ for $R e=115$. Here $L_{z}=12 D$ and λ_{2} refers to the method proposed by Jeong and Hussain ${ }^{25}$. The red color of the isosurfaces of λ_{2} corresponds to the spanwise vorticity $\omega_{z}^{*}=0.1\left(=\omega_{z} D / U\right)$ whilst the blue color corresponds to $\omega_{z}^{*}=-0.1$ due to the vortices shed from the cylinder bottom and top, respectively. At $t^{*}=300(=t U / D)$ (figure $4 a$), the wake exhibits a weakly three-dimensional transition as visualized by the isosurfaces of ω_{x}^{*} (figure $4 c$) where the black and yellow colors denote the negative and positive values of ω_{x}^{*}, respectively. Three streamwise vorticity pairs are formed in the spanwise direction, showing the onset of mode A with a spanwise wavelength λ_{z} of $4 D$. This wavelength agrees well with the experimental results by Radi et al. ${ }^{13}$, who found λ_{z} in the range of $4 D$ to $6 D$ for $A R \in[0.39,0.64]$. As the flow develops ($t^{*}=1000$), a vortex dislocation occurs (figure $4 b$ and $4 d$), which is qualitatively similar to that observed for flow around an isolated circular cylinder ${ }^{3,26}$.

A three-dimensional numerical simulation is conducted for flow around an isolated elliptic cylinder with $R e=110$ (not presented here), showing that the wake here remains two-dimensional; the wake becomes three-dimensional at $R e=115$ (figure 4). Hence the critical Reynolds number $\left(R e_{A}\right)$ for the onset of the mode A instability lies between 110 and 115 , which is in good agreement
with $R e_{A}=112.2$ obtained by Thompson et al．${ }^{14}$ for $A R=0.5$ using Floquet analysis．

FIG．4．Instantaneous isosurfaces of $\lambda_{2}=-0.05$（left column，colored by $\omega_{z}^{*}= \pm 0.1$ ）and $\omega_{x}^{*}= \pm 0.005$ for flow around an isolated elliptic cylinder of $A R=0.5$ for $R e=115$ at $t^{*}=300(a-b)$ and $t^{*}=1000(c-d)$ ．

III．RESULTS AND DISCUSSION

A．Wake transition for configuration with $G / D=0.4$

1．Two－dimensional wake pattern B

Figure 5 shows a cross－section（in the $x y$－plane）of the ω_{z}^{*} contours for $R e=125$ ．Here the wake remains two－dimensional，and the Kármán vortex street exists in the near－wake region；the two－layered wake is developed downstream．The vortices shed from the cylinder bottom disappear earlier than those shed from the cylinder top due to wall suppression effect．This flow is denoted as the two－dimensional wake pattern B ，as previously classified by Zhu et al．${ }^{20}$ ．

2．Modified ordered mode A flow regime

Figure 6 （Multimedia view）shows the isosurfaces of λ_{2}（figures $6 a$ and $6 c$ ）and the correspond－ ing isosurfaces of ω_{x}^{*}（figures $6 b$ and $6 d$ ）．The near－wake flow remains nearly two－dimensional

FIG. 5. Contours of ω_{z}^{*} at cross-section $(x, y, 6 D)$ for flow around an elliptic cylinder near a moving wall for $R e=125$ with $G / D=0.4$.

As the wake develops with time (see figure $6 c$ and $6 d$ for $t^{*}=500$), the onset location of the wavy deformation of the upper vortices moves upstream towards the cylinder whilst the mode A instability is now present in the near-wake region. This near-wake mode A instability, which is also observed for the isolated elliptic cylinder (figure $4 b$), can be attributed to the elliptic instability of the counter-rotating vortices shed from the cylinder top and bottom ${ }^{4,5}$, respectively. It is worth to note that the vortex dislocation observed for the isolated elliptic cylinder (figure $4 b$) is not present here since this dislocation is now suppressed by the moving wall. This behavior is qualitatively similar to the observation by Jiang et al. ${ }^{18}$ for flow around a circular cylinder near a moving wall for $\operatorname{Re} \leq 325$ with $G / D<1$. The flow here is denoted as the modified ordered mode A flow regime, which is different from the ordered mode A flow regime identified by Jiang et al. ${ }^{18}$ for flow around a circular cylinder near a moving wall where the elliptic instability caused by the co-rotating vortex pairs does not occur in the far-wake region.

Figures $6(e)$ and $6(f)$ show ω_{x}^{*}-contours in the $x z$-plane at $y=-0.5 D$, corresponding to the ω_{x}^{*}-isosurfaces in figure $6(b)$ and $6(d)$, respectively. At $t^{*}=200$, the strong vorticity pairs lined in the spanwise direction are observed in the far-wake region while these vorticity pairs become stronger in the near-wake region as the wake develops $\left(t^{*}=500\right)$. This behavior coincides with the observations from the isosurfaces of λ_{2} and ω_{x}^{*} shown in figure $6(a)-6(d)$.

FIG. 6. Isosurfaces (Multimedia view) of $\lambda_{2}=-0.05$ (colored by $\omega_{z}^{*} ; a$ and $\left.c\right)$ and $\omega_{x}^{*}= \pm 0.02(b$ and $d)$ as well as contours of $\omega_{x}^{*}(e$ and $f)$ at cross-section $(x,-0.5 D, z)$ for flow around an elliptic cylinder of $A R=$ 0.5 for $R e=170$ with $G / D=0.4$.

3. Near-wake two-dimensional flow regime

As $R e$ increases to 180 (figure $8 a-8 b$; Multimedia view), the far-wake elliptic instability caused by the upper co-rotating vortex pairs persists while the near-wake flow becomes two-dimensional. This flow is denoted the 'near-wake two-dimensional' flow regime. It is worth to mention that Radi et al. ${ }^{13}$ reported similar observations for flow around an isolated elliptic cylinder with $A R=0.26$ for $R e \in[150,190]$ and with $A R=0.39$ for $R e \in[200,250]$. It was suggested by Radi et al. ${ }^{13}$ and Thompson et al. ${ }^{14}$ that this might be due to the two-layered wake moving upstream as $R e$ increases

FIG. 7. Time history of the amplitude for one vortex centerline oscillation for flow around an elliptic cylinder near a moving wall for $\operatorname{Re}=170$ with $G / D=0.4$.
(for a given $A R$) or as $A R$ decreases (for a given $R e$), thus suppressing the mode A instability in the near-wake region. In the present work, the near-wall effect leads to the two-layered wake moving upstream, thus suppressing the near-wake instability. This upstream movement of the two-layered wake caused by the near-wall effect was previously demonstrated by Zhu et al. ${ }^{20}$ for two-dimensional flow past an elliptic cylinder near a moving wall.

As a comparison, a simulation of flow around a circular cylinder near a moving wall is conducted for $R e=180$ and $G / D=0.4$. The resulting isosurfaces of λ_{2} and ω_{x}^{*} are shown in figures $8(c)-8(d)$, respectively. Here the two-layered wake is absent and the flow exhibits the mode A instability in the near-wake region. This gives further support to the hypothesis of the near-wake being suppressed by the two-layered wake moving upstream towards the cylinder due to the effect of the bottom wall.

B. Wake transition for configuration with $G / D=0.3$

Numerical simulations show that the critical $R e$ for the onset of the three-dimensional wake instability lies between 145 and 150 , which is larger than the corresponding critical Re (125-135) for $G / D=0.4$. This trend was also observed by Jiang et al. ${ }^{18}$ for flow around a circular cylinder near a moving wall as G / D was decreased from 0.4 to 0.3 .

1. Two-dimensional wake pattern C

Figure 9 shows a cross-section (in the $x y$-plane) of the ω_{z}^{*} contours for $R e=145$. The flow here is two-dimensional, exhibiting the wake pattern C, which is characterized by pair-wise vortex shedding without the development of the two-layered wake ${ }^{20}$.

FIG. 8. Isosurfaces (Multimedia view) of $\lambda_{2}=-0.05$ (left column, colored by ω_{z}^{*}) and $\omega_{x}^{*}= \pm 0.02$ (right column) for flow around an elliptic cylinder of $A R=0.5(a-b)$ and circular $(c-d)$ cylinder for $R e=180$ with $G / D=0.4$.

2. Traveling wave mode flow regime

As $R e$ increases to 150 , a quasiperiodic three-dimensional mode, i.e., the traveling wave mode ${ }^{9,10}$, occurs. This mode is characterized by a spanwise propagation of the wavy deformation of the vortices (as visualized by λ_{2}-isosurfaces in figure $10 a$ and $10 c$), coinciding with the streamwise vorticity pairs with oblique alternating streamwise vorticies (as visualized by ω_{x}^{*} isosurfaces in figure $10 b, 10 d, 10 e$ and $10 f$) for $R e=150$ and $G / D=0.3$. Here T denotes the vortex shedding period. At $t^{*}=t_{0}(=2403)$ the six crests of the wavy deformation (figure 10a), corresponding to the six streamwise vorticity pairs (figure 10b), show each streamwise vortex pair (marked as $T W$ mode) exhibits a length of $\lambda_{z}=5 D$. These streamwise vortex pairs propagate in the positive z-direction (see figure $10 d-10 e$; from $t^{*}=t_{0}+T$ to $t^{*}=t_{0}+2 T$). After eight vortex shedding periods (figure 10f), the pattern starts to repeat itself. This process can be further illustrated by ω_{x} sampled along the z-direction at the location $x=0.4 D$ and $y=0.6 D$ (figure $11 a$), showing that the streamwise vorticity pairs move in the positive z-direction with a nearly constant distance for each vortex shedding period. After eight vortex shedding periods, the streamwise vorticity pairs are identical to those at $t^{*}=t_{0}$ in terms of both position and amplitude.

As $R e$ increases to 155 (figure 11b), the streamwise vorticity pairs propagate in the positive z-direction with different distances per cycle, but still nearly repeat themselves after eight vortex
.

FIG. 9. Contours of ω_{z}^{*} at cross-section $(x, y, 15 D)$ for flow around an elliptic cylinder near a moving wall for $R e=145$ with $G / D=0.3$.
shedding cycles with a slightly smaller amplitude. It should be noted that the crests (indicating the positive values of ω_{x}^{*}) are wider while the troughs (indicating the negative values of ω_{x}^{*}) are sharper. It appears that the wake becomes more unsteady such that the streamwise vortex pair become imbalanced in strength. The flow here which is $8 T$-periodic is denoted as the 'traveling wave (TW) mode' flow regime.

3. Squiggly wave traveling mode flow regime

Figure $11(c)$ shows ω_{x}^{*} sampled along a line in the spanwise direction for $x=0.4 D$ and $y=$ $0.6 D$ for $R e=160$. Here the streamwise vorticity pairs propagate in the positive z-direction but with different propagation distances for each vortex shedding period (see, e.g., the propagation distances from $t^{*}=t_{0}(=3401)$ to $t_{0}+T$ and from $t^{*}=t_{0}+T$ to $\left.t_{0}+2 T\right)$. Here ω_{x}^{*} exhibits a more 'nonlinear' behavior (relative to the more sinusoidal behavior observed in figure $11 a$ and 11b) and does not repeat itself after $8 T$. The flow here is slightly more irregular than the 'traveling wave mode' flow regime, thus denoted as the squiggly wave traveling mode' flow regime.

Overall, as $R e$ increases from 100 to 200, the flow exhibits a transition scenario of 'twodimensional wake pattern $C^{\prime} \rightarrow$ 'traveling wave (TW) mode flow regime' \rightarrow 'squiggly traveling wave (TW) mode flow regime'.

C. Wake transition for configuration with $G / D=0.2$

Numerical simulations conducted by the authors (not presented here) show that for $R e \leq 120$, the flow is two-dimensional without vortex shedding. As $R e$ increases to 121, a transition to the two-dimensional wake pattern C occurs while the three-dimensional instability occurs at $R e=122$.

FIG. 10. Isosurfaces (Multimedia view) of $\lambda_{2}=-0.05\left(a\right.$ and c, colored by $\left.\omega_{z}^{*}\right)$ and $\omega_{x}^{*}= \pm 0.02(b, d, e$ and f) for flow around an elliptic cylinder near a moving wall for $R e=150$ at $G / D=0.3$. T denotes the vortex shedding period.

1. Modified mode C flow regime

The presence of the moving wall close to the elliptic cylinder leads to the wake symmetry being broken, resulting in the mode C instability ${ }^{29,30}$, as described in detail in the introduction. Jiang et al. ${ }^{18}$ found that the mode C structure is strongly affected by the shear layer developed on the moving wall. In order to investigate the pure mode C structure, a numerical simulation with a slip condition imposed on the bottom wall (implying no shear layer developed on the bottom wall) has been conducted for $R e=125$ and $G / D=0.2$. As visualized by isosurfaces of ω_{x}^{*} shown in figure

FIG. 11. Values of ω_{x}^{*} sampled at $(0.4 D, 0.6 D$, z) for flow around an elliptic cylinder near the moving wall for $\operatorname{Re}=(a) 150,(b) 155$ and (c) 160 at $G / D=0.3$.

12 , the features of the mode C structure is present; the streamwise vorticity with $\lambda_{z}=2.6 D$ (figure $12 a ; t_{0}=1000$) changes sign after one vortex shedding period (figure 12b) and repeat itself after two shedding periods (figure 12 c). This is consistent with the results obtained by Jiang et al. ${ }^{18}$ for flow around a circular cylinder near a slip wall at $G / D=0.2$ for $R e=140$. Mode C also triggers the three-dimensional instability for flow around an elliptic cylinder near a moving wall as visualized by the isosurfaces of λ_{2} and ω_{x}^{*} in figure 13 for $R e=125$ and $G / D=0.2$ at $t^{*}=100$. The spanwise wavelength of the mode C is approximately equal to $1.5 D$, which is smaller than that $\left(\lambda_{z}=2.6 D\right)$ obtained for the slip wall condition as shown in figure 12 .

Figure 14 (Multimedia view) shows the isosurfaces of λ_{2} from $t^{*}=t_{0}(=2650)$ to $t_{0}+5 T$. Here the wavy deformation of the vortices $\left(t^{*}=t_{0}\right)$ shows the mode C structures evolving into streamwise vortices with a wavelength of $\lambda_{z}=12 D$. This behavior can be further visualized by the corresponding ω_{x}^{*} sampled along a line in the spanwise direction for $x=2 D$ and $y=0.55 D$ shown in figure 15. The wavy deformation of the vortices persists for the next vortex shedding period (in figure 14b) but with a small decrease around the peak value of ω_{x}^{*} (figure 15 for t^{*}

FIG. 12. Isosurfaces of $\omega_{x}^{*}= \pm 0.01$ for flow around an elliptic cylinder near a slip wall for $R e=125$ with $G / D=0.2$ at $t^{*}=(a) t_{0},(b) t_{0}+T$ and $(c) t_{0}+2 T$.

FIG. 13. Isosurfaces of $(a) \lambda_{2}=-0.05$ (colored by $\left.\omega_{z}^{*}\right)$ and (b) $\omega_{x}^{*}= \pm 0.01$ for flow around an elliptic cylinder of $A R=0.5$ for $R e=125$ at $G / D=0.2$.
$297=t_{0}+T$). In the next vortex shedding period (figure $15 c$), the wavy deformation of the shedding 298 vortex nearly disappears, indicating a decay of the three-dimensional instability within this period, 299 coinciding with the small value of ω_{x}^{*} observed in figure 15 at the same time instant $\left(t^{*}=t_{0}+2 T\right)$. 300 Interestingly, the three-dimensional instability re-occurs for the next vortex shedding period (figure

behavior observed for $\left[t_{0}, t_{0}+2 T\right]$ is repeated for $\left[t_{0}+3 T, t_{0}+5 T\right]$ as shown in figures 14 and 15. After one further vortex shedding period $\left(t^{*}=t_{0}+6 T\right)$, the streamwise voriticity pairs repeat themselves, i.e., the ω_{x}^{*} profiles at $t^{*}=t_{0}$ and $t^{*}=t_{0}+6 T$ coincide as shown in figure 15 . This flow is denoted as the modified mode C flow regime. It appears that the interruption of mode C here is due to the bottom-wall shear layer since a pure mode C structure persists when a slip wall condition is applied (figure 12).

FIG. 15. Values of ω_{x}^{*} sampled at ($2.0 \mathrm{D}, 0.55 \mathrm{D}, \mathrm{z}$) for flow around an elliptic cylinder near the moving wall for $R e=125$ with $G / D=0.2$.

FIG. 16. Isosurfaces of $(a) \lambda_{2}=-0.05$ (colored by $\left.\omega_{z}^{*}\right)$ and $(b) \omega_{x}^{*}= \pm 0.01$ for flow around an elliptic cylinder for $R e=150$ with $G / D=0.2$.

2. Chaotic flow regime

Figure 16 shows isosurfaces of λ_{2} and ω_{x}^{*} for $R e=150$. Here the wake becomes chaotic with an irregular wavy deformation of the shedding vortex (figure $16 a$), corresponding to streamwise vorticities with a range of different spanwise wavelengths λ_{z} (figure $16 b$). This flow is denoted as the chaotic flow regime.

D. Wake transition for configuration with $G / D=0.1$

1. Three-dimensional steady flow regime

Figure 17 shows time-history of the spanwise velocity sampled at $(x, y, z)=(0.5 D, 0.5 D, 18 D)$ (i.e., in the wake) and isosurfaces of ω_{x}^{*} for $R e=100$ and $G / D=0.1$. The spanwise velocity

(b) $\epsilon^{*}=2800, \omega_{x}^{*}$

FIG. 17. (a) the time history of the spanwise velocity w sampled at $(0.5 D, 0.5 D, 18 D)$ and (b) isosurfaces of $\omega_{x}^{*}= \pm 0.17$ for flow around an elliptic cylinder near a moving wall for $R e=100$ with $G / D=0.1$.

FIG. 18. Isosurfaces (Multimedia view) of $(a) \lambda_{2}=-0.05$ (colored by $\left.\omega_{z}^{*}\right)$ and $(b) \omega_{x}^{*}= \pm 0.01$ for flow around an elliptic cylinder near a moving wall for $R e=200$ with $G / D=0.1$.

2. Three-dimensional wake pattern D

Figure 18 (Multimedia view) shows the isosurfaces of λ_{2} and ω_{x}^{*} for $R e=200$. Here the flow exhibits a dominating upper shear layer behind the cylinder (shown by the blue contours in figure $18 a$) and a chaotic streamwise vorticity pattern farther downstream (figure $18 b$). Figure 19 shows that C_{D} and C_{L} are nearly constant in time. This behavior is qualitatively similar to that observed
for wake pattern D identified by Zhu et al. ${ }^{20}$ for two-dimensional flow. Thus, this flow, depicted in figure 18 , is denoted as the three-dimensional wake pattern D.

FIG. 19. Time history of drag and lift coefficients for flow around an elliptic cylinder near a moving wall for $R e=200$ with $G / D=0.1$.

IV. SUMMARY AND CONCLUSIONS

In this paper, numerical simulations have been conducted for flow around an elliptic cylinder with an aspect ratio $A R$ of 0.5 near a moving wall for $G / D \in[0.1,0.4]$ and $R e \in[100,200]$. Here four configurations with $G / D=0.1,0.2,0.3$ and 0.4 are investigated. Different wake transition scenarios have been observed for each configuration. Table III summarizes how the wake patterns change with $R e$ for each G / D configuration.

$G / D=0.4$	$G / D=0.3$
Wake pattern $B(R e \leq 125)$	Wake pattern $C(R e \leq 145)$
Modified mode $A(R e \in[135,170])$	$T W$ mode $(R e \in[150,155])$
Near-wake two-dimensional $(R e \geq 180)$	Squiggly $T W$ mode $(R e \geq 160)$
$G / D=0.2$	$G / D=0.1$
Two-dimensional steady $(R e \leq 120)$	Three-dimensional steady $(R e=100)$
Wake pattern $C(R e=121)$	Wake pattern $D^{\prime}(R e \geq 125)$
Modified mode $C(R e \in[122,130])$	-
Chaotic $(R e \geq 140)$	-

TABLE III. Different flow regimes for flow around a circular cylinder near a moving wall for $R e \in$ $[100,200]$ and $G / D \in[0.1,0.4]$. TW mode denotes the traveling wave mode ${ }^{10}$. Wake patterns B, C and D^{\prime} denote two-dimensional wake pattern B and C identified by Zhu et al. ${ }^{20}$, and three-dimensional wake pattern, qualitatively similar to two-dimensional wake pattern D^{20}, respectively.

The wake transition scenario for $G / D=0.4$ can be summarized as follows: For $R e \leq 120$,
the flow is two-dimensional, exhibiting wake pattern B, which is characterized by a Kármán vortex street in the near-wake region and a two-layered wake developed farther downstream. For $R e \in[135,170]$, the flow becomes three-dimensional, exhibiting the modified ordered mode A flow regime where an elliptic instability (mode A instability) of counter-rotating vortex pairs (i.e., vortices shed from the cylinder top and bottom, respectively) occurs in the near-wake region whilst an elliptic instability of co-rotating upper vortex pairs is present farther downstream due to the development of the two-layered wake with the upper vortices moving in a separated layer. For $R e \in[180,200]$, the flow becomes two-dimensional in the near-wake region while the elliptic instability caused by the co-rotating upper vortices persists in the far-wake region. The reason for the two-dimensional near-wake flow appears to be that the two-layered wake moves upstream towards the cylinder as $R e$ increases, suppressing the near-wake mode A instability which is present for $R e \in[135,170]$.

For $G / D=0.3$, the following wake transitions take place: For $R e \leq 145$, the flow is twodimensional, exhibiting wake pattern C, which is characterized by pair-wise vortex shedding without the development of the two-layered wake. For $\operatorname{Re} \in[150,155]$, a three-dimensional instability occurs, forming the traveling wave mode flow regime characterized by a spanwise propagation of the streamwise vorticity pairs with oblique alternating streamwise vorticies. This flow repeat itself after 8 vortex shedding periods. For $R e \in[160,200]$, the flow becomes more irregular, exhibiting the squiggly traveling wave mode flow regime where the spanwise progation of the streamwise vorticity pairs persists but with different propagation distances for each vortex shedding period.

For $G / D=0.2$, the following wake transitions are found: For $R e \leq 120$, the flow is twodimensional and steady without vortex shedding. For $R e=121$, the flow exhibits the twodimensional wake pattern C, as described in the paragraph above. For $R e \in[122,130]$, the flow becomes three-dimensional, exhibiting the modified mode C flow regime where the wavy deformation of the shedding vortices is kept for two vortex shedding periods, and then disappears in the next shedding period. This behavior is repeated for the next three vortex shedding periods but with an opposite wavy deformation direction; the flow repeats itself after six vortex shedding periods. For $R e \geq 140$, the wake becomes chaotic with an irregular wavy deformation of the shedding vortices.

For $G / D=0.1$, one wake transition takes place as follows: For $R e=100$, the flow is threedimensional and steady without vortex shedding, containing a constant spanwise velocity within the wake; for $R e \in[125,200]$, the flow becomes unsteady, exhibiting the three-dimensional wake pattern D, which is characterized by a dominating upper shear layer behind the cylinder, followed by a chaotic wake structure farther downstream. Here the drag $\left(C_{D}\right)$ and lift $\left(C_{L}\right)$ coefficients are nearly time-independent.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support for this research from the Department of Marine Technology, Norwegian University of Science and Technology.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

${ }^{1}$ B. Sumer and J. Fredsøe, Hydrodynamics around cylindrical strucures, Vol. 26 (World Scientific, 2006).
${ }^{2}$ D. Barkley and R. Henderson, "Three-dimensional floquet stability analysis of the wake of a circular cylinder," Journal of Fluid Mechanics 322, 215-241 (1996).
${ }^{3}$ C. Williamson, "Three-dimensional wake transition," Journal of Fluid Mechanics 328, 345-407 (1996).
${ }^{4}$ T. Leweke and C. Williamson, "Three-dimensional instabilities in wake transition," European Journal of Mechanics-B/Fluids 17, 571-586 (1998).
${ }^{5}$ M. Thompson, T. Leweke, and C. Williamson, "The physical mechanism of transition in bluff body wakes," Journal of Fluids and Structures 15, 607-616 (2001).
${ }^{6} \mathrm{~T}$. Leweke and C. Williamson, "Cooperative elliptic instability of a vortex pair," Journal of Fluid Mechanics 360, 85-119 (1998).
${ }^{7}$ C. Williamson, "Vortex dynamics in the cylinder wake," Annual Review of Fluid Mechanics 28, 477-539 (1996).
${ }^{8}$ H. Jiang, L. Cheng, S. Draper, H. An, and F. Tong, "Three-dimensional direct numerical simulation of wake transitions of a circular cylinder," Journal of Fluid Mechanics 801, 353 (2016).
${ }^{9}$ H. Blackburn and J. Lopez, "On three-dimensional quasiperiodic Floquet instabilities of twodimensional bluff body wakes," Physics of Fluids 15, L57-L60 (2003).
${ }^{10}$ H. Blackburn, F. Marques, and J. Lopez, "Symmetry breaking of two-dimensional time-periodic wakes," Journal of Fluid Mechanics 522, 395-411 (2005).
${ }^{11}$ W. Khan, J. Culham, and M. Yovanovich, "Fluid flow around and heat transfer from elliptical cylinders: analytical approach," Journal of Thermophysics and Heat Transfer 19, 178-185 (2005).
${ }^{12}$ B. Jensen, S. Carstensen, and E. Christensen, "Mixing of stratified flow around bridge piers in steady current," Journal of Hydraulic Engineering 144, 04018041 (2018).
${ }^{13}$ A. Radi, M. Thompson, J. Sheridan, and K. Hourigan, "From the circular cylinder to the flat plate wake: the variation of Strouhal number with Reynolds number for elliptical cylinders," Physics of Fluids 25, 101706 (2013).
${ }^{14}$ M. Thompson, A. Radi, A. Rao, J. Sheridan, and K. Hourigan, "Low-Reynolds-number wakes of elliptical cylinders: from the circular cylinder to the normal flat plate," Journal of Fluid Mechanics 751, 570-600 (2014).
${ }^{15}$ B. Stewart, M. Thompson, T. Leweke, and K. Hourigan, "The wake behind a cylinder rolling on a wall at varying rotation rates," Journal of Fluid Mechanics 648, 225 (2010).
${ }^{16}$ A. Rao, B. Stewart, M. Thompson, T. Leweke, and K. Hourigan, "Flows past rotating cylinders next to a wall," Journal of Fluids and Structures 27, 668-679 (2011).
${ }^{17}$ A. Rao, M. Thompson, T. Leweke, and K. Hourigan, "The flow past a circular cylinder translating at different heights above a wall," Journal of Fluids and Structures 41, 9-21 (2013).
${ }^{18}$ H. Jiang, L. Cheng, S. Draper, and H. An, "Two-and three-dimensional instabilities in the wake of a circular cylinder near a moving wall," Journal of Fluid Mechanics 812, 435-462 (2017).
${ }^{19}$ H. Jiang, L. Cheng, S. Draper, and H. An, "Three-dimensional wake transition for a circular cylinder near a moving wall," Journal of Fluid Mechanics 818, 260-287 (2017).
${ }^{20}$ J. Zhu, L. Holmedal, D. Myrhaug, and H. Wang, "Near-wall effect on flow around an elliptic cylinder translating above a plane wall," Physics of Fluids 32, 093607 (2020).
${ }^{21}$ B. Heather, "Seal whiskers inspire marine technology," Oceanus Magazine 51, 82-85 (2016).
${ }^{22}$ H. Beem and M. Triantafyllou, "Wake-induced 'slaloming' response explains exquisite sensitivity of seal whisker-like sensors," Journal of Fluid Mechanics 783, 306-322 (2015).
${ }^{23}$ R. Issa, "Solution of the implicitly discretised fluid flow equations by operator-splitting," Journal of Computational Physics 62, 40-65 (1986).
${ }^{24}$ J. Thompson, B. Soni, and N. Weatherill, Handbook of Grid Generation (CRC Press, 1998).
${ }^{25}$ J. Jeong and F. Hussain, "On the identification of a vortex," Journal of Fluid Mechanics 285, 69-94 (1995).
${ }^{26}$ H. Jiang, L. Cheng, F. Tong, S. Draper, and H. An, "Stable state of mode a for flow past a circular cylinder," Physics of Fluids 28, 104103 (2016).
${ }^{27}$ P. Meunier and T. Leweke, "Three-dimensional instability during vortex merging," Physics of Fluids 13, 2747-2750 (2001).
${ }^{28}$ T. Leweke, S. Le Dizès, and C. Williamson, "Dynamics and instabilities of vortex pairs," Annual Review of Fluid Mechanics 48, 507-541 (2016).
${ }^{29}$ G. Sheard, M. Thompson, and K. Hourigan, "Subharmonic mechanism of the mode c instability," Physics of Fluids 17, 111702 (2005).
${ }^{30} \mathrm{H}$. Blackburn and G. Sheard, "On quasiperiodic and subharmonic floquet wake instabilities," Physics of Fluids 22, 031701 (2010).

[^0]: ${ }^{\text {a）}}$ Corresponding author：jianxun．zhu＠ntnu．no

