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A detailed investigation of the flow in a steady lid-driven cavity of depth to width ratio 1:2
containing a circular cylinder is provided. Three different Reynolds numbers (based on
the lid velocity and cavity depth) of 100, 500 and 1000 as well as four different cylinder
radius to cavity depth ratios (0.1, 0.2, 0.3 and 0.4) located at three different positions along
the horizontal centerline of the cavity, are considered. It appears that these flows can be
classified into seven different flow patterns. These flow patterns are given for different
cylinder radii and positions as well as Reynolds numbers. There is a tendency that for a
given cylinder radius, there are more transitions between different flow patterns for a small
radius than for a large radius while for a given Reynolds number, the number of transitions
is larger for high Reynolds numbers than for low Reynolds numbers. Overall, a larger
number of flow patterns tend to emerge as the Reynolds number increases for small radii.
The largest variety of flow patterns occur for the left-sided cylinder due to the interaction
with the large anti-clockwise circulation flow formed at the bottom left corner.
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NOMENCLATURE

Γ Immersed boundary

λx, λy Directional weighting factors

ν Fluid kinematic viscosity

Φ Pressure correction

ρ Fluid density

Cp Pressure coefficient

D Cylinder diameter

H Cavity height

p Pressure

p0 Pressure at the bottom left corner

r Cylinder radius

Re Reynolds number

t Time

U Lid-driven velocity

U0 Free-stream velocity

ui Fluid velocity

u∗i Tentative velocity

x, y Cartesian coordinates

I. INTRODUCTION

Steady lid-driven flows containing a solid body have gained considerable attention due to its
engineering applications in heat exchangers and electric coolers. The presence of a solid body
within the cavity such as a circular1,2 or square3 cylinder changes the flow patterns substantially,
forming strong vortices which are not present in the absence of the solid body. This might strongly
affect e.g. mixing or cooling properties of the cavity since these vortices might cause large gaps
between isotherms, thus affecting the heat transfer within the cavity. For an incompressible fluid,
the effect of moderate temperature gradients on the flow might be small, i.e. the Richardson
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number is small. In this case the flow is dominated by momentum and the flow structures are
nearly independent of the temperature field.

Oztop et al.1 and Khanafer and Aithal2 investigated mixed convection and heat transfer in a
steady lid-driven square cavity containing a circular cylinder by using a finite volume method and
a finite element formulation, respectively. Oztop et al.1 showed that changing the the cylinder
position and radius leads to deformation of both the streamlines and the isotherms in the cavity,
although the primary and bottom corner vortices were not investigated in detail. The deformation
of the primary vortex caused by the cylinder radius and the temperature field has been investigated
numerically by Khanafer and Aithal2 who found that for a low Richardson number of 0.01 (forced
convection flow), a primary vortex is formed between the moving lid and the centered circular
cylinder, and that an increase in the cylinder radius leads to the primary vortex breaking up into
two vortices. As the Richardson number increases, these vortices shrink gradually and disappear
due to the natural (thermal) convection. Similar results were obtained by Billah et al.4.

Galaktionov et al.5 developed an analytical method to study creeping flow in a steady-lid driven
rectangular cavity with a centered fixed and rotating circular cylinder. As the upper lid moves
towards the right for the fixed cylinder, they found that the flow is symmetric about the vertical
centerline of the cavity with two clockwise vortices attached to the upper left and the upper right
sides of the cylinder.

Khanafer et al.6 used a finite element formulation to investigate the mixed convection in a lid-
driven square cavity with two circular cylinders. These two cylinders are placed symmetrically
about the vertical centerline of the cavity. They found that, for low Richardson numbers, an
elongated clockwise vortex was formed between the lid and the two cylinders. As these two
cylinders move closer to the bottom, this elongated vortex increases in size. As the two cylinders
move closer to the lid, the vortex appears to be split into three clockwise vortices located beneath
the mid of the lid as well as at the upper left and right corners, respectively.

The hydro-magnetic mixed convection in a steady lid-driven square cavity with a heat-
conducting circular cylinder was investigated by Chatterjee and Gupta7 as well as Ray and
Chatterjee8 who also studied the effect of corner heaters with Joule heating. The mixed con-
vection for nanofluids in a steady lid-driven square cavity with embedded circular cylinders was
investigated by Chatterjee et al.9, Bansal and Chatterjee10 as well as Chatterjee and Halder11.

Billah et al.4 and Khanafer and Aithal2 investigated the effect of the cylinder radius on the pri-
mary vortex for flow within a steady lid-driven square cavity with an embedded cylinder. However,
a detailed investigation of the flow structures (including the primary vortex, corner and bottom vor-
tices as well as the pressure around the circular cylinder) has not been previously presented. The
aim of the present work is to present such detailed results for very low Richardson numbers, where
the effect of the temperature field is negligible. Moreover, the effect of increasing the cavity aspect
ratio on this flow has not been investigated previously.

Specifically, a detailed investigation of the flow structures within a lid-driven cavity of height
to length ratio 1:2 containing a circular cylinder are conducted for a range of Reynolds numbers
(based on the lid velocity and the cavity height), cylinder radius to cavity height ratio, for left-,
right- and mid-centered cylinders are provided. Numerical simulations show that this flow can be
classified into seven different flow patterns which are here visualized by streamlines. These flow
patterns are unique functions of the Reynolds number, the ratio between the cylinder radius and
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the cavity height, as well as the position of the cylinder within the cavity.

II. NUMERICAL METHOD

A. Basic numerical scheme

Incompressible flow with a constant density ρ and kinematic viscosity ν is governed by the
two-dimensional Navier-Stokes equations described as follows

∂ui

∂xi
= 0 (1)

∂ui

∂ t
+

∂uiu j

∂x j
=− ∂ p

∂xi
+

1
Re

∂ 2ui

∂x j∂x j
(2)

where the Einstein notation using repeated indices is applied. Here ui = (u,v) and xi = (x, y) for
i = 1 and 2, are the velocity and Cartesian coordinates, respectively, whilst t, p and Re = UH/ν

denote the dimensionless time, dimensionless pressure and Reynolds number, respectively, where
H is the depth of cavity and U is the lid motion velocity. The time, pressure and length are scaled
by H/U , ρU2 and H, respectively.

Equations (1) and (2) are discretized on a staggered mesh arrangement using second-order
central differences. A projection method using a second-order Adams-Bashforth scheme for the
convective terms and a Crank-Nicolson scheme for the diffusive terms is applied. The intermediate
velocity u∗i is obtained as

u∗i = un
i +∆t[

1
2
(3Hn

i −Hn−1
i )+

1
2
(Fn

i +F∗i )−
δ

δxi
(pn−1:2)] (3)

where δ/δxi represents the numerical spatial gradient operator; the convective and diffusive terms
are denoted by Hi = δ (uiu j)/δx j and Fi = νδ 2(ui)/(δx jδx j), respectively; the superscript n de-
notes the time step, and pn−1:2 is the pressure obtained at the previous time-step. The velocity
correction is given as

un+1
i = u∗i −∆t

δ

δx j
(φ n+1) (4)

where φ n+1 = pn+1:2− pn−1:2 is determined such that the resulting velocity field un+1
i satisfies the

continuity condition. Substitution of equation (4) into the continuity equation δui/δxi = 0 yields
a Poisson equation for the pressure correction

δ 2

δx2
j
(φ n+1) =− 1

∆t
δu∗i
δxi

(5)

which is solved using a Jacobi preconditioned bi-conjugate gradient stabilized method.
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FIG. 1. Definition of the inactive velocity points (�), immersed boundary points (©), and active velocity
points (�).

B. Implementation of the immersed boundary method

The immersed boundary technique is based on a direct forcing approach combined with a finite
difference method firstly proposed by Fadlun et al.12. The application of this technique is due to
memory and CPU savings and easy grid generation compared to the unstructured grid method. As
shown in figure 1, the staggered velocity components nearest the immersed boundary are set as
inactive velocity points (�) which are updated by interpolation. Here, a one-dimensional, linear
interpolation scheme is applied in each direction according to the following stencil formulation

ui =
xi− xΓ

xi+1− xΓ

ui+1 +
xi+1− xi

xi+1− xΓ

uΓ, i = 1,2 (6)

where uΓ and xΓ are the velocity and position of the immersed boundary, respectively.
If an inactive velocity point can be interpolated from two directions, each direction is multiplied

by a weighting factor as follows13,14

ui = λxux
i +λyuy

i (7)

where the superscript x and y denotes the interpolation in x and y-directions, respectively, and the
weighting factors λx and λy are given as

λx =
1

1+( lx
ly
)2

and λy =
1

1+(
ly
lx
)2

(8)

where lx and ly is the distance between the inactive velocity point and the immersed boundary in
x and y-directions, respectively, as shown in figure 1. A Neumann condition is applied for the
pressure correction at the inactive velocity points.
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III. RESULTS AND DISCUSSION

A. Uniform flow past a free circular cylinder at Re′ = 40

FIG. 2. Computation domain for flow past a free circular cylinder.

Two-dimensional flow past a circular cylinder has been investigated using the present method
for a Reynolds number (Re′ =U0D/ν , where D is the diameter of cylinder and U0 is free-stream
velocity) equal to 40. The dimensionless free-stream velocity U0 = 1 is specified at the inlet
boundary while a Neumann condition is imposed on the velocity at the outlet and at the top and
bottom of the flow domain. Non-slip conditions are applied on the cylinder. The pressure is set
to be zero at the outlet and a Neumann condition for the pressure correction is used at the other
boundaries. Figure 2 shows the computation domain where the inlet and lateral boundaries are
located 8D upstream of the cylinder and the outlet is located at 20D downstream of the cylinder.
A uniform mesh of size 0.02D is employed for this domain.

FIG. 3. Left image: streamlines for the flow over a cylinder at Re′ = 40 and nomenclature used in Table I;
separation angle θ , wake length Lw, horizontal distance a between the rear stagnation point of the cylinder
and the recirculation center and vertical distance b between the symmetric recirculation centers; right image:
comparison between the present and previous results for the pressure coefficient (Cp) on the bottom half of
the cylinder surface at Re′ = 40. The upstream stagnation point is located at θ = 180◦.

After a spin-up time of t = t∗U0/D = 200 (where t∗ is the physical time), the flow reaches a
steady and symmetric state where two attached recirculating vortices are formed behind the cylin-
der. The streamlines for the flow past the cylinder at Re′ = 40, as well as the separation angle θ ,
wake length Lw, the horizontal distance a between the rear stagnation point of the cylinder and the
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CD θ Lw a b

Tseng and Ferziger15 1.53 2.21
Coutanceau and Bouard16 126.2◦ 2.13 0.76 0.59
Bounchon et al.17 1.50 126.6◦ 2.26 0.71 0.60
Gautier et al.18 1.49 126.4◦ 2.24 0.71 0.59
Fornberg19 1.50 124.4◦ 2.24
Patil and Lakshmisa20 1.56 127.3◦ 2.14
Present study 1.56 126.8◦ 2.27 0.74 0.60

TABLE I. The physical parameters obtained by the present numerical method and previous works for the
flow past a circular cylinder at Re′ = 40.

recirculation center and vertical distance b between the symmetric recirculation centers, are shown
in figure 3. Here the characteristic wake dimensions Lw, a and b are scaled by D. The pressure
coefficient (Cp = p−p∞

0.5ρU2
0

, where p∞ is the pressure at the outlet) along the bottom half boundary

of the cylinder is presented in figure 3, showing a good agreement with both experimental21 and
numerical14,15,22 results. The characteristic wake dimensions Lw, a and b as well as the drag coeffi-
cient (CD) are given in table I. The predicted separation angle θ and wake length Lw compare well
with the experimental results obtained by Coutanceau and Bouard16 while the predicted distance
a is smaller than their measurements, but in good agreement with the numerical results obtained
by Bounchon et al.17 and Gautier et al..18 Moreover, a good agreement for the drag coefficient is
obtained by comparison with previously numerical predictions15,17–20 as shown in table I.

B. Flow in a steady lid-driven square cavity with an embedded cylinder

The vortex structures in a steady lid-driven square cavity with a centered cylinder have been
investigated for Reynolds numbers (Re = UH/ν) equal to 100, 500 and 1000. Moreover, two
cylinders of dimensionless radius r = r′/H = 0.2 and 0.3 are considered.

Figure 4 shows the velocity components u and v along x = 0.5 and y = 0.5, respectively, for the
steady lid-driven cavity containing a centered cylinder of r = 0.2 for Re = 1000. A coarse mesh of
∆x = ∆y = 0.01 and a fine mesh of ∆x = ∆y = 0.005 are used to obtain the present results, which
are in good agreement with those given by Cai et al..23 It appears that the coarse mesh is sufficient
to obtain grid independent results.

Figure 5 shows the streamline contours within a steady lid-driven square cavity with a centered
cylinder of r = 0.2 (left column) and 0.3 (right column). For the smallest cylinder (left column),
the lid-driven flow rolls up at the upper boundary of the cylinder, forming an elongated clockwise
primary vortex while flow separation and reattachment at the bottom corner induce two weak
anti-clockwise bottom corner vortices which are also present in the absence of the cylinder24. As
Re increases from 100 to 1000 (left column), the primary vortex decreases in size and moves
closer towards the cylinder while the bottom corner vortices grow in size and strength. For the
largest cylinder (at Re = 100; right column), it appears that the primary vortex breaks up into two
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FIG. 4. Comparison of the velocity profiles for steady lid-driven square cavity flow containing a centered
cylinder of r = 0.2 for Re = 1000 obtained by the present method and by Cai et al.23: left image, distribution
of the horizontal velocity component u along x = 0.5; right image, distribution of the vertical velocity
component v along y = 0.5.

clockwise vortices. These patterns were previously predicted by Khanafer and Aithal2 for the same
Re, size and position of the cylinder for a low Richardson number Ri = 0.01, implying that the flow
is dominated by momentum instead of temperature gradients and consequently that this prediction
is comparable with the present one where the effect of temperature gradients is neglected. Here Ri

= Gr/Re2, where Gr = gβ (Th−Tc)H3

ν2 ; g is the acceleration due to gravity; β is the thermal expansion
coefficient; Th and Tc are the temperatures of the hot and cold walls, respectively). As Re increases
to 1000 (right column), only one primary vortex is present both for r = 0.2 and 0.3, indicating that
the size of cylinder is a key parameter for the break-up of the primary vortex. Moreover, increasing
the cylinder size leads to a weaker primary vortex core as well as weaker bottom corner vortices.

C. Flow patterns in a steady lid-driven rectangular cavity with an embedded cylinder

A detailed investigation of the flow within the steady lid-driven cavity of height to length ratio
AR = 1:2 containing a circular cylinder has been conducted for Re = 100, 500 and 1000. These
three values are the classic values for the laminar mixed convection flow in a lid-driven cavity flow
with an embedded body.1–3 Three different locations, i.e. (x, y) = (0.5, 0.5), (1, 0.5) and (1.5, 0.5),
as well as four different cylinder radii (r = 0.1, 0.2, 0.3 and 0.4) are considered using a resolution
of 200x100 uniform grid cells which is sufficient for obtaining grid independent results. Flow in a
steady lid-driven cavity of AR = 1:2 without the cylinder is given as a reference in figure 6 for Re
= 100, 500 and 1000. These results are in good agreement with previous results by Cheng et al.24,
showing that the cavity contains a clockwise primary vortex as well as two anti-clockwise bottom
corner vorticies. It is shown that an increase in Re leads to a noticeable growth of the bottom left
corner vortex. Further validations for pure lid-driven cavity flows are given in Zhu et al.25.
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FIG. 5. Streamline contours for the flow in a steady lid-driven square cavity with a centered cylinder of r
= 0.2 (left column) and 0.3 (right column) for Re = 100, 500 and 1000. Solid and dashed lines denote the
positive and negative contour values, respectively; for the streamline contours, the equal difference in value
of 0.005 between the two unmarked adjacent contour lines is used.
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FIG. 6. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 without the cylinder for Re =
100, 500 and 1000.

1. Left-centered cylinder

Figure 7 shows streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing
a cylinder located at (0.5, 0.5) for r = 0.1, 0.2, 0.3 and 0.4 with Re = 100. For r = 0.1, the cavity
contains a clockwise primary vortex to the right of the cylinder and two anti-clockwise bottom
corner vortices. This flow denotes the flow pattern I which remains qualitatively the same for
r = 0.2. As r increases further to 0.3, the blockage effect between the lid and the cylinder top
increases, leading to the flow rolling down at the upper-left boundary of the cylinder, thus forming
a new clockwise vortex; this is also present for r = 0.4. This flow pattern is denoted II. Increasing
r from 0.1 to 0.4 leads to a weakening of the primary vortex to the right of the cylinder while the
bottom corner vortices are only weakly affected. This is due to the decreased space between the
left wall and the cylinder impeding the growth of the primary vortex.

Figure 8 shows streamline contours for the same geometry as in figure 7 for Re = 500. For r =
0.1, there is a large clockwise primary vortex to the right of the cylinder while the flow circulates
anti-clockwisely around the cylinder. This is due to the growth of the bottom left corner vortex (as
Re increases) which also exists in a steady lid-driven cavity of the same AR without the cylinder as
shown in figure 6 (see also Cheng and Hung24, 2006; figure 3). The flow in this circulation region
rolls up at the upper left side of the cylinder and down at the lower right side of the cylinder,
forming two anti-clockwise vortices. This flow is denoted flow pattern III. As r increases to 0.2,
the decreasing gap between the cylinder and the adjacent walls leads to a larger velocity there,
destroying the anti-clockwise flow circulation region shown for r = 0.1. Instead, a bottom vortex
is formed. This flow pattern is denoted IV and remains the same as r increases to 0.3 but with a
smaller bottom vortex than for r = 0.2. For r = 0.4, this bottom vortex vanishes, and the flow here
is thus exhibiting flow pattern II.
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FIG. 7. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a left-centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 100

FIG. 8. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a left-centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 500.

Figure 9 shows streamline contours for the same geometry as figures 7 and 8 for Re = 1000. For
r = 0.1, a larger anti-clockwise circulation region than for Re = 500 (figure 8) is formed around the
cylinder while a large clockwise primary vortex exists to the right of the cylinder. It appears that
within the anti-clockwise circulation region, an anti-clockwise vortex is formed at the upper left
side of the cylinder while the anti-clockwise vortex formed at the lower right side of the cylinder
for Re = 500 (figure 8; r = 0.1) does not exist here due to the increasing size of the circulation
region. This flow pattern is denoted V . As r increases to 0.2, the flow exhibits pattern V but with
a smaller and weaker anti-clockwise vortex attached to the cylinder than for r = 0.1. For r = 0.3,
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FIG. 9. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a left-centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 1000.

the flow exhibits pattern IV but with a larger and stronger bottom vortex than for Re = 500 (figure
8). As r increases further to 0.4, the bottom vortex remains and a clockwise vortex, which also
appears in flow pattern II (figure 7 for r = 0.3 and 0.4), is formed at the upper left side of cylinder.
This flow pattern is denoted V I.

2. Centered cylinder

FIG. 10. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 100.

xii



FIG. 11. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 500.

FIG. 12. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 1000.

Figure 10 shows streamline contours for the centered cylinder located at (1, 0.5) for Re = 100
and r = 0.1, 0.2, 0.3 and 0.4. The flow exhibits pattern II for all values of r but the clockwise
vortex to the left of the cylinder is larger than for the left-centered cylinder (figure 7 for r = 0.3 and
0.4). Young et al.26 investigated creeping flow for a steady lid-driven rectangular cavity containing
a centered rotating and non-rotating cylinder. Two equal clockwise vortices attached to the upper
left and right side of the cylinder were formed for the non-rotating cylinder. In the present case,
however, the non-linearity of the convective term results in asymmetry of these vortices with the
vortex to the right of the cylinder being significantly larger than that to the left of the cylinder. As

xiii



FIG. 13. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a right-centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 100.

r increases, the left clockwise vortex grows gradually in size due to more flow rolling down from
the lid at the upper left side of the cylinder. Moreover, it appears that the maxima of the stream
function for the left and right clockwise vortices decrease as r increases while the bottom corner
vortices are only weakly affected by the cylinder size.

Figures 11 and 12 show streamline contours for the same geometry as shown in figure 10 but
for Re = 500 and 1000, respectively. The flow exhibits pattern II for all values of r and Re but
with an amplification of the bottom corner vortices due to the higher Reynolds number, which also
leads to a weaker clockwise vortex pair attached to the cylinder, as well as the vortex to the left
of the cylinder being larger relative to the vortex to the left of the cylinder. As Re increases the
vortex to the right of the cylinder moves towards the bottom. Moreover, an increase in r leads to a
decay of the bottom left corner vortex while the bottom right vortex is only weakly affected.

3. Right-centered cylinder

Figure 13 shows streamline contours for the cylinder located at (1.5, 0.5) with Re = 100 and r
= 0.1, 0.2, 0.3 and 0.4. For r = 0.1, the cavity contains one clockwise vortex to the upper left side
of the cylinder and two bottom corner vortices; this flow is denoted flow pattern V II. For r = 0.2,
0.3 and 0.4, a clockwise vortex is also formed at the upper right side of the cylinder; here the flow
exhibits pattern II.

Figures 14 and 15 show the streamline contours for Re = 500 and 1000, respectively, for the
same geometry as in figure 13. An increase in Re (for a given r) causes the bottom corner vortices
to grow, while an increase of r (for a given Re) leads to a decay of the bottom corner vortices. For
r = 0.1, the flow exhibits pattern V II both for Re = 500 and 1000 but with a smaller clockwise
vortex to the left of the cylinder than for Re = 100 (figure 13). For r = 0.2, the flow exhibits pattern
II for Re = 500 with smaller clockwise vortices attached to the cylinder than for Re = 100 while
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FIG. 14. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a right-centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 500.

FIG. 15. Streamline contours for flow in a steady lid-driven cavity of AR = 1:2 containing a right-centered
cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re = 1000.

for Re = 1000 the flow exhibits pattern V II. For r = 0.3 and 0.4, the flow exhibits pattern II both
for Re = 500 and 1000.

4. Distribution of flow patterns

Figure 16 shows the distribution of flow patterns within the steady lid-driven cavity of AR = 1:2
containing a left-centered (top image) and right-centered (bottom image) cylinder. For the centered
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FIG. 16. Distribution of flow patterns within the steady lid-driven cavity of AR = 1:2 containing a left-
centered (top image) and right-centered (bottom image) cylinder.

cylinder, only flow pattern II exists (and hence this distribution is not plotted here). The cavity
flow with a left-centered cylinder exhibits all the flow patterns, depending on Re and r, except
flow pattern V II. This is due to the large anti-clockwise circulation flow formed at the bottom left
corner (which also exists in the absence of the cylinder), which here is strongly affected by r and
Re. For a given r, there is a tendency that there are more transitions between different flow patterns
for small r than for large r (for Re ranging from 100 to 1000) while for a given Re, the number
of transitions is larger for high Re than for low Re (for r ranging from 0.1 to 0.4). Figure 16 also
shows which transitions are possible. For example, flow pattern V can only have transition to flow
pattern III (by either increasing r or decreasing Re), while flow pattern IV can have transition to
flow pattern I (by either increasing r or decreasing Re), to flow pattern III (by either decreasing r
or increasing Re) and to flow pattern V I (by increasing r). For the right-centered cylinder (bottom
image of figure 16), only one new flow pattern V II is formed for relatively small r. An increase of
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r leads to a clockwise vortex to the right of the cylinder (forming flow pattern II). To compensate
this effect, a higher Re is required to maintain flow pattern V II.

The solid lines in figure 16 denote the transition lines between two different flow patterns.
These lines can be given in the form of functional relationships between r and Re as follows:

Re = 10955× r2−771.36× r+417.96, III ↔ IV

Re = 10000× r2 +500× r+400, III ↔ V

Re =−13333× r2 +10333× r−1550, I ↔ II

Re = 2000× r−250, II ↔ V I

5. Pressure distribution around the cylinder

In the present work, the pressure at the bottom left corner (p0) is taken as a reference point.
The pressure coefficient around the cylinder is given by

Cp =
p− p0
1
2ρU2

(9)

where p is the pressure around the cylinder.

FIG. 17. (a) pressure coefficient Cp around the left-centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for Re =
100; (b) horizontal velocity u(0.5,y) along the gap between the bottom wall and the cylinder bottom for r =
0.1 0.1, 0.2, 0.3 and 0.4 with Re = 100; (c) Cp around the left-centered cylinder with r = 0.2 for Re = 100,
500 and 1000; (d) Cp around the left-centered, centered and right-centered cylinder with r = 0.2 for Re =
100.
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Figure 17 (a) shows the pressure coefficient Cp around left-centered cylinders for four different
radii (r = 0.1, 0.2, 0.3 and 0.4) for Re = 100. As r increases, Cp increases. This might be explained
by that an increase of r leads to an increase of the gap flow velocity between the cylinder and its
adjacent walls (since the gap decreases) as plotted in figure 17 (b), which shows u(0.5,y) along
the gap G between the cylinder bottom and the bottom wall for r = 0.1, 0.2, 0.3 and 0.4 with Re =
100.

Figure 17 (c) shows Cp around the left-centered cylinder with r = 0.2 for Re = 100, 500 and
1000. For Re = 100, the base stagnation pressure (i.e., Cp at the base point) and the front stagnation
pressure (i.e., Cp at the stagnation point) are consistent with the observation elaborated in figure
7. As Re increases to 500, Cp decreases significantly since the flow velocity around the cylinder
decreases as visualized by the streamline contours in figures 7 and 8. For Re = 1000, Cp decreases
further and the front stagnation pressure disappears. This is consistent with the observation that
the fluid moves anti-clockwise around the cylinder as shown in figure 9.

Figure 17 (d) shows Cp around the left-centered, centered and right-centered cylinders with r
= 0.2 for Re = 100. As the cylinder moves towards the right wall, the front and back stagnation
points move clock-wise around the cylinder, and the pressure increases since the pressure is larger
in the right part of the cavity than in the left part.

IV. SUMMARY AND CONCLUSIONS

A detailed investigation of the flow patterns in the steady lid-driven cavity of depth to width ra-
tio 1:2 containing a circular cylinder of different radii and positions is provided. Here the Reynolds
numbers are 100, 500 and 1000 whilst the radii are 0.1, 0.2, 0.3 and 0.4. The positions of the cylin-
der are left-centered, centered and right-centered. It appears that this flow can be classified into
seven different flow patterns visualized by streamline contours. The flow pattern I is composed of
one clockwise vortex to the right side of the cylinder and two bottom corner vortices; flow pattern
II is composed by two clockwise vortices attached to the left and right side of the cylinder as well
as two bottom corner vortices; flow pattern III contains two anti-clockwise vortices attached to
the upper left and bottom right sides of the cylinder, a clockwise vortex at the upper right side of
the cylinder as well as a bottom right corner vortex; flow patterns IV and V I are composed by flow
patterns I and II, respectively, with an additional bottom vortex; flow pattern V is characterized
by the anti-clockwise vortex at the lower right side of the cylinder vanishing from flow pattern
III; flow pattern V II is characterized by the clockwise vortex to the right of the cylinder vanishing
from flow pattern II.

These flow patterns are given for different cylinder radii and positions as well as Reynolds
numbers. There is a tendency that for a given cylinder radius, there are more transitions between
different flow patterns for a small radius than for a large radius (for Reynolds numbers ranging
from 100 to 1000) while for a given Reynolds number, the number of transitions is larger for high
Reynolds numbers than for low Reynolds numbers (for radii ranging from 0.1 to 0.4). Overall, a
larger number of flow patterns tend to emerge as the Reynolds number increases for small cylinder
radii. The largest variety of flow patterns occur for the left-centered cylinder due to the interaction
with the large anti-clockwise circulation flow formed at the bottom left corner.
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