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achieved with a relaxation method. The simulations of nonlinear long wave
propagations and transformations over nonconstant bathymetries are presented.
The results are compared with benchmark wave propagation cases. A large-scale
wave propagation simulation over realistic irregular topography is shown to

demonstrate the model's capability of solving operational large-scale problems.
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1 | INTRODUCTION

Phase-resolved wave modeling is required for many applications in coastal engineering. It enables a time-domain analysis
and presents more details for complex free-surface phenomena. Many efforts have been made to solve the Navier-Stokes
equations for water waves with the fast development of computational infrastructures and the application of parallel com-
putation techniques. Various methods have been used to capture the free-surface, such as the volume-of-fluid method,'*
the level set method,*> and the smooth particle hydrodynamics method.®® Navier-Stokes solvers in combination with
one of the aforementioned free-surface treatment methods are able to provide high-resolution results for complicated
marine free-surface flows and near-field wave hydrodynamics. One example, that is, closely related to the current work
is the open-source hydrodynamics model REEF3D. In Kamath et al,’ the solver was used to analyze nonbreaking wave
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forces on various configurations of multiple vertical circular cylinders. Furthermore, simulations of marine fluid-structure
interaction were performed for semisubmerged horizontal circular cylinders in tandem,'? and nonlinear marine hydrody-
namics were investigated in detail Reference 11. Broader applications of the model are also seen on the sediment transport
analysis!? and the coastal infrastructure design.!3 Typically, these simulations require relatively fine three-dimensional
(3D) grids and are, therefore, more computationally demanding.

Phase-resolved modeling of the far-field wave field is important for delivering a realistic wave generation bound-
ary condition for higher resolution near-field wave modeling. However, the far-field wave propagation toward the coast
is a large-scale phenomenon, which puts a limitation on the application of the Navier-Stokes approach in spite of
the increasing computational capacities. Less computationally demanding models are required to model the far-field
large-scale phase-resolved wave propagation efficiently. As most coastal areas share relatively shallower water conditions,
depth-averaged shallow water models have been favored for the coastal wave modeling. These models are essentially
two-dimensional (2D) and, thus, require less cells. The advances of such models have been focused on developing numer-
ical methods to accurately capture the frequency dispersion relation and the nonlinearity when the water depth increases
or a rapidly varying bathymetry is involved. A common representative of shallow water models is the Boussinesq-type
wave model.'*1> Herein, the lack of vertical flow information is compensated through the Boussinesq terms, which help
to calculate the correct frequency dispersion of the waves. This approach is valid from shallow to deep water, depending
on the order of the Boussinesq terms.'® However, higher order mixed time-space derivatives in the Boussinesq equations
tend to cause numerical instabilities. More recently, the possibility of using nonhydrostatic shallow equations with a sin-
gle layer or multiple layers in the vertical direction has been explored by Zijlema and Stelling.}”-?* With an increasing
number of vertical layers, the flow information in the vertical direction is better resolved. However, it has been shown pre-
viously that the increase of vertical layers leads to a significant increase in computational costs. For example, Monteban?!
observed that the simulation time using two layers is nearly 10 times compared with that using a single layer. Cui et al??
improved the two-layer approach such that it has similar computational efficiency as a one-layer counterpart and, yet,
maintaining a high linear dispersion accuracy. Although the commonly used vertical pressure profile is linear, a quadratic
pressure approach has been presented by Jeschke et al.?® It is stated that, with an approximation of a proposed quadratic
vertical pressure profile, the model can achieve at least a good equivalence to existing fully nonlinear weakly dispersive
Boussinesq models.?* This method presents itself as an attractive alternative for modeling shallow water waves, while
potentially avoiding the numerical instabilities due to higher order terms in a Boussinesq-type model and the increased
computational costs from a larger number of vertical layers in a multilayer nonhydrostatic model. However, only sim-
ple scenarios such as one-dimensional (1D) standing waves and progressive solitary waves over a flat bottom have been
investigated previously.?3 Herein, several terms of the derived equations are neglected, which leaves the final question
of reliability open. It is reported by Jeschke?* that it is challenging to incorporate the vital term involving the varying
bathymetry into her numerical model. As a result, the model's accuracy is seen to be less ideal than the theoretical expec-
tations when changing bottom is present. Therefore, this article includes a numerical procedure to discretize this term
appropriately. This enables the authors to emphasize the accuracy gain from the quadratic pressure approximation for
nonconstant bathymetries.

The accuracy of shallow water models has been improved over the last years. High-order numerical schemes
are employed in the development of Boussinesq-types models. Wei and Kirby* applied a fourth-order accurate
Adams-Bashforth-Moulton scheme for the time discretization and a mixed fourth-order and second-order scheme for the
spatial discretization. Shi et al?® employed a mixed finite volume and finite difference method (FDM) using a fourth-order
accurate monotone upstream-centered schemes for conservation laws reconstruction technique for the advection term
and a third-order Runge-Kutta scheme for temporal discretization. However, few high-order implementations are pre-
sented for nonhydrostatic models. Zijlema et al®*® present their model using a second-order discretization scheme in
space and a second-order leapfrog algorithm in time. Jeschke et al?* implement the quadratic pressure model with the
second-order P;N¢ — P finite element method?”?® for the advection terms and a Leapfrog method for the time stepping.
In a recent development, Jeschke?* also implemented a second-order discontinuous Galerkin scheme in the model. Thus,
high-order numerical implementations are left to be fulfilled in order to advance the development of nonhydrostatic
models.

In addition, parallel computations are incorporated in many shallow water models in case of computationally demand-
ing simulations. Shi et al?® presents a parallelized Boussinesq model following the domain decomposition strategy with
a message passing interface (MPI). Good scaling characteristic is observed up to 48 cores. Zijlema et al®® also uses the
same parallelization technique and achieve linear scalability up to eight cores. However, the newly proposed quadratic
pressure approximation?? has not been incorporated into any parallel code. A good scalability up to hundreds of processors
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is also not presented in the literature regarding shallow water models in general. For large-scale operational engineering
applications, such scalability is in great demand.

Ensuring high-quality input waves is another important aspect in the development of a shallow water model. The
typical practice is to impose the surface elevation and the depth-averaged velocities to the boundary.!4120:26.29:30 perjodic
boundary conditions are also widely used, for example, a spatial periodic boundary condition is applied by Madsen et al,!
and a double periodic boundary condition is implemented in Reference 23. Another popular wave generation method is
the relaxation method,!*? which has high flexibility and tends to result in less reflected waves.>* This method has been
widely implemented in Navier-Stokes solvers,3 but remains absent in the development of shallow water models. The
feasibility of using a relaxation method for the wave generation and absorption in a nonhydrostatic shallow water model
remains to be explored.

In the presented article, REEF3D::SFLOW is introduced as a novel nonhydrostatic shallow water model following
the quadratic pressure approximation.?® Developed as a part of the REEF3D framework, the proposed model has direct
access to all the existing numerical schemes and parallelization algorithms in REEF3D. Thus, the model presents itself as
the first nonhydrostatic shallow water model with high-order discretization schemes, for example, a fifth-order weighted
essentially nonoscillatory (WENO) scheme in spatial discretization and a third- to fourth-order Runge-Kutta scheme for
the temporal discretization. The model also innovatively employs the relaxation method! for the wave generation and
absorption. With a model equipped with high-order numerical methods, this article presents for the first time the sim-
ulations of nonlinear long wave propagations over varying bathymetries using the quadratic pressure approximation.
In these simulations, the equations with the depth-related terms are solved and the overall performance gain from the
quadratic pressure approximation is investigated comprehensively. Computational scalability up to multihundred cores is
demonstrated with the proposed model. An expanded validation process is then presented, including several well-known
benchmark cases incorporating wave propagation over changing topographies and wave-structure interactions. In addi-
tion, a large-scale coastal wave propagation over a natural topography is presented to demonstrate the model's capability
for engineering applications.

2 | NUMERICAL THEORY

The mass and momentum conservation for an incompressible inviscid flow leads to the continuity and Euler equations
in three dimensions:

oU oV oW
t—+—=

— 4+ —+—=0, 1
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where U, V, and W are velocities in x, y, and z directions, p is the constant density, Pr represents the total pressure, and g
is the gravitational acceleration. Additional source terms such as bottom friction and turbulent stresses are omitted here,
but are straightforward to include if needed.

The water depth h = d + ¢ consists of two parts: the still water depth d and the free-surface elevation ¢, as displayed
in Figure 1. Defining the horizontal velocity vector as U = (U, V), the kinematic boundary conditions at the free-surface
and the bottom are:

¢

W|g=a+ Ul - V¢, (3
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z ¢ FIGURE 1 Basic definitions in the shallow water model: the water depth h,
Xy o _

Still water /eveT

— == the still water depth d, the free-surface elevation ¢, the coordinates system, and the
schematics of the assumed linear pressure profile and quadratic pressure
approximation

Bottom
Linear Quadratic

Wl_q=-U|_4-Vd. (6)

The shallow water assumption, that is, the horizontal acceleration is much greater than the vertical acceleration,
implies a hydrostatic pressure. In order to get a hydrodynamic pressure correction, the total pressure Py is assumed to
consist of a hydrostatic part P and a hydrodynamic part Q. The pressure and its boundary condition at the free-surface is
given by:

Pr=P+Q=pg( -2 +0Q, 7

PT|¢=P|§=Q|§=O- (8)
The velocities and the dynamic pressure are depth-averaged by integrating over the water depth:

1 /¢ 1 /¢ 1 [
u:(u,v):z/ U dz; W:ﬁ/ W dz; q:E/ Qdz. 9)
-d —d -d

By contrast to previous models,?® where the pressure is solved at the bottom, the proposed model consists of only
depth-averaged quantities. A relation between the depth-averaged pressure q and the pressure at the bottom Q|_,; needs
to be defined in order to close the system. If the linear pressure profile!”-? is assumed, the pressure at the bottom is simply
twice the depth-averaged pressure, or:

Ql-a =2q. (10)
Consequently, the governing equations with only depth-averaged variables are:

0
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Jeschke et al?3 replaces the linear assumption with a quadratic vertical pressure profile as shown in Equation (15).
3 1
a=-=-q9+ - h®’ 15
Ql_g4 Ja+ 77 (15)

O=-Vd-Ou+w-Viu)y—u-V(Vd) - u. (16)
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Following the quadratic assumption, the governing equations with depth-averaged variables become:
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The governing equations with the boundary conditions are solved on a structured staggered grid using a FDM. Chorin's
projection method® is applied for the solution of the velocities. The fifth-order conservative finite difference WENO
scheme proposed by Jiang and Shu3® is used for the discretization of convective terms for the velocities u, v, and w. The
total variation diminishing third-order Runge-Kutta explicit time scheme developed by Shu and Osher®’ is employed for
time discretization. It involves the calculation of the spatial derivatives and the dynamics pressure three times per time
step. The information containing pressure is solved using the Poisson equation:

hy (0°q 9°q\  2¢ 1 ou  ov od od
“(=+=)+F=—|(-n(=+=)-2w-—u—-—v=). 21
p <6x2 0y? ) ph,  0xot < P < ox ay) YRR TY dy) 1)

Herein, the parameter h, denotes the water level in the center of the cell. In a staggered grid arrangement, this is where
the dynamic pressure g, the vertical velocities w, and the free-surface location ¢ are solved. The horizontal velocities are
solved at the faces of the cells. The high-performance solver library HYPRE?® is employed to solve the Poisson pressure
equation using the PFMG-preconditioned BiCGStab algorithm.3 The dynamic pressure g is then used to correct the
velocities in a correction step. Hence, the corrections of the velocities with the quadratic pressure approximation are

w1 s 3" od  1_ad
=u*+At|= —+=0— ), 22
! . <2 php, ox 4 ox 22)
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v =y oar (24— 9d + ldDa—d , (23)
2 phy, dy 4 oy
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2 ph, 4

where u*, v*, w* are intermediate-step velocities with only hydrostatic pressure.

The term ® on the right-hand side of Equations (18) to (20) is treated with a procedure following the principles
of the fractional step method of Le and Moin.*® Assuming the dynamic pressure does not change significantly within
one Runge-Kutta substep, the intermediate velocities u*, v*, w* are corrected with the dynamic pressure gradients of the
previous substep:

0 n,rk
w =y — 4 , (25)
0x
J n,rk
p =yt = A , (26)
ay
9 n,rk
w = w* — , 27
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where g™ is the dynamic pressure from the previous Runge-Kutta substep. The spatial derivatives of ® are updated with
the corrected velocities u**,v** and w** in Equation (16), which is then inserted into Equations (22) to (24) to obtain the
velocities at the new time step. The time derivative term inside @ is then calculated with simple finite differences:

we _un,rk
o= ———, 28
; oy, (28)

P _vn,rk
oy=——, 29
i CAL (29)

W _Wn,rk
ow= ———| 30
¢ -y (30)

where « is the increment factor of the corresponding Runge-Kutta substep and u>, v»"* w"'* are the velocities from the
previous Runge-Kutta substep.

Parallel computation is enabled by decomposing the simulation domain into smaller subdomains. The communica-
tion between these domains is achieved through a ghost cell approach. The MPI is then used for the communication at
the subdomain boundaries.

The location of the free-surface ¢ is determined based on the divergence of the depth-integrated horizontal veloc-
ities as given in Equation (17). The free-surface is reconstructed using the fifth-order WENO scheme.*® The solutions
of the stencils are weighted, that is, a coefficient or weight is assigned to the solution of each stencil. The scheme
assigns the largest weight to the smoothest solution and can therefore handle large-gradient free-surface changes
caused by the varying bathymetry. As an example, the discretized form of Equation (17) in x-direction is presented in
Equation (31).

A n+1/2

n+1 n hn ntl/2 _ pn
SN S YN Ay g (P iy

At * Ax

=0, (31)

where fzm /2 is the water level at the cell face i + 1/2. fzm /2 is reconstructed with the WENO procedure:

ot +r1+
hz; Th=

_ +pot+
=01 ) h

+ i3t
toyhil, toyhii . (32)

The =+ sign indicates the upwind direction. The nonlinear weights co;,—" are calculated for each ENO stencil based on
the smoothness indicators.3® For the upwind direction in the positive i-direction, the three possible ENO stencils h', h?,
and h3 are:

1 7 11

Sl
hin, = Ehi—z - ghi—1 + Ehia (33)
Ao 1 5 1
hl-zﬂ/z = _ghi—l + ghi + ghi+1, (34)
A3 1 5 1

hl-3+1/2 = ghi + ghi+1 - ghi+2~ (35)

Wetting and drying are handled by setting the velocities in cells below a certain user-defined threshold of the water
level to zero:

{ u=0, ifh, < threshold, (36)

v=0, if fly < threshold.

The default threshold is set to be 0.00005 m, which is used throughout the presented work. The approach tracks the
variation of the shoreline accurately and avoids numerical instabilities by ensuring nonnegative water depth.!%#!
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Wave generation and absorption are carried out with the relaxation method as described in Bihs et al.* The relaxation
function formulated by Jacobsen! is used in the proposed model:

5&3.5

) _
r@=1- ee_—ll for % € [0;1], (37)

where X is scaled to the length of the relaxation zone. The velocities u, v, the surface elevation ¢, and the pressure p are
increased to the analytical values in the wave generation zone and reduced to zero or initial still wave values in the wave
energy dissipation zone:

UX)relaxed = I'(X)Uanalytical + (1 — I'(X))Ucomputational s (38)
V(X)relaxed = I'(X)Vanatytical + (1 — I'(X))Veomputational (39)
{®)relaxed = I'(X)Canaytical + (1 — I'(%))computational (40)
DP@relaxed = I'(¥)Panatytical + (1 — T'(X))Pcomputational - (41)

All types of wave theories, type of wavemakers and wave signal input available in the existing code are applicable to
the proposed shallow water model as well.

A breaking wave criterion is introduced Reference 42 to represent the wave breaking process. The wave breaking is
initialized when the vertical velocity of the free-surface exceeds a fraction of the shallow water celerity:

% > a\/gh. (42)

At the same time, the dynamic pressure is neglected and remains so at the front of the breaker. For the persistence
of the wave breaking, the coefficient f (0 < f < @) is introduced in Equation (42) instead of « to stop the wave breaking
process. The computations become nonhydrostatic again when the vertical velocity of the free-surface falls out of the
range of the criterium. a = 0.6 and § = 0.3 are recommended as they work well with most of the waves.*? By introducing
the wave-breaking criterion and removing the dynamic pressure during breaking, the momentum is well conserved, the
energy dissipation is well represented, and the asymmetry and skewness of nonlinearity are respected.*?

3 | VERIFICATION

The proposed numerical model REEF3D::SFLOW is first verified for the wave propagation in a 28 m long 1D flume as
shown in Figure 2. The wave generation zone of one wavelength is at the inlet of the flume, and a wave energy dissipation
zone of two wavelengths is located at the outlet. Four different wave cases are simulated with the proposed model.

3.1 | Linear progressive wave propagation over constant bathymetry

First, a linear wave*®? of wave height H = 0.02 m and wavelength L = 4 m is simulated for 60 seconds. The water depth
is constant at 0.5 m, correspondingly kd = 0.25z. A grid convergence study is initially performed with the cell sizes
of 0.01, 0.02, 0.04, and 0.08 m. Only one cell exits in the y-direction and its size equals to that in the x-direction. The
Courant-Friedrichs-Lewy (CFL) number is kept constant at 0.2 for all cases. The wave profiles obtained using different
cell sizes at t = 90 seconds are compared in Figure 3A. As can be seen, dx = 0.04 m and dx = 0.08 m underpredict the
wave height and show minor phase differences. The cell size of dx = 0.02 m represents the wave propagation sufficiently
well, with a similar result as dx = 0.01 m. The average wave heights of the last ten wave periods in the time series at
the wave gauge at x = 14.5 m from the inlet boundary are used to quantify the grid convergence property. The relative
error between the averaged wave height and the theoretical value together with the L2 norm of the absolute errors are
summarized in Table 1. A monotonic reduction of the error can be observed with the refinement of the grids.
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wave generation zone of one wavelength, the
_____ e e ] I 1_0;]_ I right-hand side is the wave energy dissipation zone of
2 0.5m two wavelengths. The water depth is constant at 0.5 m
X
| | | :
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— dx=0.01 m CFL=0.1 FIGURE 3 The convergence study of the linear
0.01 0.01 . . .. . .
— dx=0.02m — CFL=0.2 N progressive wave simulation in a one-dimensional wave
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dx=008 m CFL=04 \ flume with REEF3D::SFLOW: (A) grid convergence
---- Theoretical ---- Theoretical \ study (CFL number is kept constant 0.2) and (B) time

n(m)
(=)

step convergence study. CFL, Courant-Friedrichs-Lewy
[Colour figure can be viewed at wileyonlinelibrary.com]

-0.01 -0.01
10 11 12 13 14 12 13 14 15 16
X (m) x (m)
(A) Grid convergence study (B) Time step convergence study
= TABLE 1 TheCFL lysis f ive li
CFL H (m) Relative Error (%) 1.2 Exrror [ : e CFL error analysis for progressive linear wave
simulation
0.4 0.0192 —4.00 0.0024
0.3 0.0194 —3.00 0.0019
0.2 0.0196 -2.00 0.0014
0.1 0.0197 -1.50 0.0009

Abbreviation: CFL, Courant-Friedrichs-Lewy.

Furthermore, a series of simulations are performed with different CFL numbers of 0.1, 0.2, 0.3, and 0.4 to investigate
the impact of the time step. For this purpose, a constant cell size of 0.02 m is utilized. The different wave profiles at
t = 90 seconds are compared in Figure 3B. All tested CFL numbers represent the phase information well in comparison
to the theoretical wave. For CFL = 0.3 and 0.4, the wave height seems to reduce. The wave height information is better
represented for CFL = 0.1 and 0.2, while an overestimation of wave crest is noticed with CFL = 0.1 in the chosen time
frame. The relative errors and the L2 norms of errors are summarized in Table 2. CFL number of 0.2 matches both the
trough and crest well and errors approach to the ones with CFL number 0.1. As a result, CFL = 0.2 will be used in all the
following simulations of this article. Figure 4A shows that the linear progressive wave is well represented by the solver
at an intermediate water depth. Both, the wave height and phase are matching satisfactorily. It is also noticeable that
the relaxation method dissipates the wave energy well at the wave energy dissipation zone where the surface elevation
remains constant at the still water level and no artificial reflection is observed.

The advantage of the quadratic pressure approximation is demonstrated by comparing the surface elevation with
quadratic pressure approximation with the linear pressure profile in References 17,20 (see Figure 4B). It is observed that,
with a linear pressure assumption, the wave phase starts to shift shortly after the waves propagate outside the generation
zone. By contrast, the quadratic pressure approximation improves the phase accuracy significantly and approximates the
theoretical value more precisely due to a better representation of dispersion.

3.2 | Second-order Stokes wave propagation over constant bathymetry

Next, a second-order Stokes wave** of H = 0.1 m and L = 4 m is simulated in the same 1D numerical flume. The grid
convergences study is shown in Figure 5A. Similar to the previous study, the cell size dx = 0.02 m is found to be suitable for
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TABLE 2 The spatial discretization error analysis for the

o - dx(m)  H(m)
progressive linear wave simulation

0.08 0.0186

0.04 0.0193

0.02 0.0196

0.01 0.0197

--- Theoretical — Numerical — Linear pressure

0.01

n(m)
(=)

Relative Error (%) L2 Error
—7.00 0.0046
—3.50 0.0023
—-2.00 0.0014
—1.50 0.0010

— Quadratic pressure --- Theoretical

0””5””1'0'”'15””2IO”"25""30

X (m)

FIGURE 4 The wave surface elevation profiles at ¢t = 90 seconds with a linear wave of wave height H = 0.02 m, wavelength L = 4 m,
cell size dx = 0.02 m, and CFL = 0.2 : (A) quadratic pressure approximation in the vertical direction and (B) comparison between quadratic
pressure approximation and linear pressure profile in the vertical direction. CFL, Courant-Friedrichs-Lewy [Colour figure can be viewed at

wileyonlinelibrary.com|

0.05 - =.dx=0.01.m
1— dx=002m
1— dx=0.04 m
1— dx=0.08 m

— Linear Pressure

— Quadratic Pressure '-- Theoretical

" (m)

o4 Theoretical

-0.05 T T T 1 —0.05
8 9 10 11 12

(A) X (m) (B)

0.05

E

= 04
L L SR
5 10

X (m)

FIGURE 5 (A)Grid convergence study for the second-order Stokes progressive wave with the wave height H = 0.1 m, the wavelength
L =4 m, and CFL = 0.2. (B) The wave surface elevation profile at t = 90 seconds with the cell size dx = 0.02 m. The two horizontal solid black
lines represent the theoretical wave envelope. CFL, Courant-Friedrichs-Lewy [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 The spatial discretization error analysis for reiisl)
progressive second-order Stokes wave simulation
0.08
0.04
0.02

0.01

H (m)
0.0957
0.0991
0.1003
0.1011

Relative Error (%) L2 Error
—4.30 0.0136
—0.90 0.0030
0.30 0.0010
1.10 0.0035

this case. The average wave height of the last ten periods are again used for the convergence study. The relative errors and
L2 norms of the absolute error for different grids are summarized in Table 3. With the quadratic pressure approximation,
the asymmetry due to the high-order approximation is well presented, and both, the wave height and phase match well
with the theory. It shows that the model provides a good representation of the nonlinearity of progressive waves. In
comparison, the simulation with linear pressure profile shows an increasing difference in phase overtime compared with

the theoretical result.
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— dx=0.01m
— dx=0.02 m
0.1 4==-dx=0:04m . . . . — Linear — Quadratic :=- Theoretical
B dx=0.08 m
T 0d=-=Theoretical / e
-0.1 e s s
; ' \ ' f ' ' ' ! ' ! ' ! _Ol ] T T T T T T T 1
8 9 10 11 13 14 6 8 10 12 14 16 18 20
(A) x (m) (B) X (m)

FIGURE 6 (A)The grid convergence study for the fifth-order cnoidal progressive wave with the wave height H = 0.21 m, the wavelength
L =4 m, and CFL = 0.2. (B) The wave surface elevation profile at t = 90 seconds with the cell size dx = 0.02 m. The two horizontal solid black
lines represent the theoretical wave envelope. CFL, Courant-Friedrichs-Lewy [Colour figure can be viewed at wileyonlinelibrary.com |

TABLE 4 The spatial discretization error analysis for

dx (m) H (m) Relative Error (%) L2 Error . . . )
progressive cnoidal wave simulation
0.08 0.1719 —18.14 0.0978
0.04 0.1958 —6.76 0.0449
0.02 0.2047 —2.52 0.0168
0.01 0.2110 0.48 0.0031
3.3 | Cnoidal wave propagation over constant bathymetry

A fifth-order cnoidal wave*>** of H = 0.21 m and L = 4 m is investigated in the 1D numerical flume to test steep periodic
wave propagation in shallow water. The steepness of the wave is H/L = 0.0525, the wavelength to depth ratio is H/d =
0.42, which is about 65% of the breaking limit suggested by Laitone.*> As shown in Figure 6A, dx = 0.02 m is still a
suitable cell size to capture the wave surface elevation accurately despite the increased wave steepness. Following the
same methodology as in Section 3.1, the relative error and L2 norms are computed and shown in Table 4. The wave profiles
obtained with the quadratic pressure approximation and the linear pressure assumption are also compared in Figure 6B.
The wave troughs start to show slight deformation, while the crests are still well preserved with the wave height to depth
ratio closer to the breaking limit. The geometry of the steep cnoidal wave is kept constant during the propagation. It is also
observed that the phase misalignment from the linear pressure assumption amplifies with the increase of wave steepness
because the linear pressure profile assumption deviates further from the physical pressure distribution.

3.4 | Solitary wave propagation over constant bathymetry
A solitary wave*>#6 propagation over a constant bathymetry is simulated for 60 seconds in a 1D flume of 100 m length.
The input wave height is is H = 0.05 m, and the constant water depth is d = 0.5 m. A wave generation zone of 4 m and
a wave energy dissipation zone of 8 m are allocated at the inlet and the outlet of the flume. The comparison of the wave
profiles at t = 90 seconds simulated with different grids is shown in Figure 7A. The relative errors and L2 norms are also
computed and shown in Table 5.

Furthermore, simulations with the quadratic pressure approximation and the linear pressure assumption are sim-
ulated with dx = 0.02 m. The numerical computations are compared with the analytical values at propagation time
10, 20, 30, and 40 seconds, shown in Figure 7B. It is seen that the numerical results with the quadratic pressure remain
in good agreement during the entire wave propagation process. Small amplitude waves propagate in opposite direc-
tion and trailing waves start to form during the simulation with the linear pressure. Simultaneously, the wave height
increases during the process due to weaker dispersion from the linear assumption. These findings are in agreement with
the investigations of Jeschke et al.?®

The model's scaling capacity is investigated by conducting a series of simulations for 500 time step iterations with the
number of processors being 16, 32, 64, 128, 256, and 512 on the supercomputer Vilje. The dimension of the computa-
tional domain is (10000 m x 1000 m x 10 m). The input wave is a second-order Stokes wave of wave height H = 5 m and
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FIGURE 7 (A)The grid convergence study for the solitary wave propagation with the wave height H = 0.05 m, the wavelength

L =100 m, and CFL = 0.2. (B) Comparison of the analytical surface elevation of the solitary wave with the simulation results of the quadratic
and linear vertical pressure profile after a propagation time of 10, 20, 30, and 40 seconds (from left to right). CFL, Courant-Friedrichs-Lewy
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 The spatial discretization error analysis for

. . . . dx (m) H (m) Relative Error (%) L2 Error
progressive solitary wave simulation
0.08 0.0473 —-5.40 0.0027
0.04 0.0483 —3.40 0.0017
0.02 0.0487 —2.60 0.0013
0.01 0.0490 —2.00 0.0010

FIGURE 8 The performance of the parallel computation, shown as a relation
between the speed-up factor in reference to the single-processor simulation for 500 500
iterations vs the number of processors and the number of cells per processor
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wavelength L = 100 m. A cell size of dx = 1 m is used, resulting in 10 million cells in total. It is empirically assumed that
the scaling is linear within 16 processors, that is, one physical node on the cluster. Therefore, the computation time with
one processor is linearly extrapolated from the 16-processor simulation. The computational speed of the one-processor
simulation is considered as the base reference. The simulation time on one processor divided by the simulation time on
multiple processors is defined as a speed-up factor. The relation between the speed-up factor and the number of proces-
sors as well as the number of cells per processor are plotted in Figure 8. It shows that the performance increases almost
linearly with the number of processors within the chosen range.

4 | VALIDATIONS AND APPLICATIONS

The evolution of waves over a nonconstant bathymetry is complicated, and the performance gain from the quadratic
pressure approximation in a general setting was recommended as future work by Jeschke et al.?3 To fill the research gap,
wave propagations over nonconstant bathymetries of various configurations are simulated and validated with the available
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experimental data. A wave-structure interaction study is also validated against the benchmark. Jeschke et al?* suggest the
quadratic pressure approximation has the best performance when the water depth to wavelength ratio is below 0.25. The
selected benchmark cases all share the water depth condition within the suggested range. In addition, a large-scale wave
propagation over a natural topography is presented based on an engineering scenario.

41 | Wave propagation over a submerged bar

First, the well-known benchmark case of wave propagation over a submerged bar*’ is tested. The configuration of the
numerical setup based on the experiment is shown in Figure 9. A 2D wave tank of 38 m is equipped with a wave generation
zone of 5 m to the left end and a wave energy dissipation zone of 9.5 m to the right end. The beginning of the submerged bar
is located 6 m downstream from the wave generation zone. Eight wave gauges are located above the submerged bar with
the x-coordinates being 11, 16, 17, 18, 19, 20, 21, and 22 m, as shown in Figure 9. The incident wave height is H = 0.021 m,
and the wave period is T = 2.525 seconds. A grid convergence study is performed at gauge 2 and 6, before and after the
crest of the submerged bar, as shown in Figure 10I,J. A cell size of dx = 0.02 m is found to sufficiently represent the
phenomena and shows good agreement with the experimental data. A simulation time of 60 seconds is used.

The numerically predicted time series of the surface elevations at gauge 1 to 8 are compared with the experimental data
in Figure 10. The results match well with the experimental measurements before the waves reach the submerged bar and
during the shoaling process, for example, at gauges 1 and 2. It demonstrates that the model can represent the dispersion
relations well with changing bathymetry. At the crest of the bar, no wave breaking happens, but the wave decomposition
takes place and results in higher harmonic wave components. The wave decomposition phenomenon is observed at wave
gauges 3 to 5, where the numerical results show accurate agreement with the experimental measurements as well. On
top of the relatively steep downslope, the waves undergo a deshoaling process as the water depth increases. During this
process, it is observed that the numerical results start to show differences in phase from the experimental data. The
discrepancies accumulate from wave gauge 6 to 7. When the waves reach wave gauge 8, a significant difference is observed.
This shows a less discussed limitation of existing shallow water approximations for deshoaling processes. Furthermore,
the results are also compared between the quadratic and the linear pressure profile assumptions. As an example, the
comparisons of the surface elevations at gauge 3 and 5 are shown in Figure 11. At both gauges, the quadratic assumption
shows good alignment in phase with the experiment, while the linear assumption tends to predict a faster moving wave
front. The observation is consistent with the investigation in Section 3.

4.2 | Solitary wave interaction with a rectangular abutment

In this benchmark study, the solitary wave interaction with a surface-piercing rectangular abutment is investigated. Based
on the experiments,*®*° the numerical wave tank is defined as shown in Figure 12. The tank is 23.86 m long, 0.58 m wide,
and 0.9 m deep. The still water level is constant at 0.45 m. A wave generation zone of 3.93 m is placed at the left end of
the numerical wave tank to cover the effective wavelength of the solitary wave,** and a fully reflective wall is placed at
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FIGURE 9 The numerical wave tank setup of the wave propagation over a submerged bar, view from the side. The water depth is
constant at 0.4 m. The locations of the wave elevation gauges are marked with short vertical line segments from 1 to 8. The gray-shaded object
is the submerged bar. A wave generation zone of 5 m and a wave energy dissipation zone of 9.5 m are located at the left end and right end of
the tank, respectively
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FIGURE 10 The surface
elevations of the wave
transformation over a
submerged bar. (A) to (H) show
the surface elevations at
different wave gauges at

t = 60 seconds, black lines are
from laboratory experiments,
red lines are results of
REEF3D::SFLOW. The cell size
dx =0.02m and CFL =0.2. (I)
and (J) are grid convergence
study at wave gauge 4 and 6.
CFL, Courant-Friedrichs-Lewy
[Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 11 The comparison of the surface elevation between the quadratic and linear pressure profile assumptions at gauge 3 (A) and

gauge 5 (B) in the simulation of wave propagation over a submerged bar [Colour figure can be viewed at wileyonlinelibrary.com]


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

816 WANG ET AL.

WILEY
| 14.76m 0.24m
! |
2 se 9@ ¢0'Im
[ 03m
4@ (Y
0.58m
0.28m
Y 1e 3@ 1 7@
X 0.18m 0.1m
1.0m 0.1m0.1m 0.Im  0.3m 0.8m
393m 19.93m !

FIGURE 12 The numerical wave tank setup of the solitary wave interaction with a rectangular abutment in a view from above. The
gray-shaded object is the abutment. The following three groups of wave gauges share the same y-coordinate: wave gauges 1, 3, 7; wave gauges
4, 6, and the wave gauges 2, 8, 9. A wave generation zone of 3.93 m is located on the left-hand side, the solid wall is located on the right-hand
side to allow full reflection of the waves

the right end. A third-order solitary wave>® with a wave height of 0.1 m is generated in the wave generation zone. The
front face of the abutment is located 14.86 m from the beginning of the tank. Nine wave gauges are located upstream,
sideways, and downstream of the abutment, as shown in Figure 12. For the grid convergence study, three different cell
sizes dx = 0.05, 0.1, and 0.2 m are used. All cases are simulated for 30 seconds to allow enough time for the reflected wave
to interact with the abutment and propagate back to the generation zone.

The simulated time series at all wave gauges are compared with those from the experiments as shown in Figure 13.
The first peak in the distributions is the result of the incoming solitary wave impact on the abutment. After the incident
solitary wave passes the abutment, it is reflected from the wall at the end of the tank and interact with the abutment
again, resulting in the second peak. The grid convergence study shown in Figure 13J is performed at gauge 7, which is
located at the downstream side of the abutment. At this location, both, the interaction between the structure and the
incoming waves and the properties of the reflected waves can be well observed. It indicates that the cell size dx = 0.05 m
sufficiently captures the details of the wave pattern and gives good results compared with the experiments. At gauge 1
and 2, the first peaks show the solitary wave propagates without much interruption and, therefore, preserves its wave
height. A second minor peak is noticed right after the peak, which is due to the partially reflected waves from the
abutment. Gauge 3 shows an increase of the wave height due to the narrowing of the channel, while gauge 4 presents
a further increase of the peak because of the interaction with the abutment. The peaks increase to about 0.11 and
0.13 m at gauge 3 and 4, respectively. Since gauge 5 is located in the constricted part of the channel, the flow veloc-
ity increases, and the pressure decreases. As a consequence, the wave surface drops. At gauge 6, the first peak occurs
right after the wave crest passes the abutment, while the depth-averaged solution tends to smooth out the results in
the sheltered region behind the abutment. At gauge 8 and 9, two peaks of equal heights are observed, indicating that
the reflected wave shares the same wave height as the incoming wave. This shows that there is no damping of the soli-
ton and the model provides an accurate representation of the solitary wave propagation. Similarly, the two peaks also
share similar height at gauge 7, where no wave transformations occur before and after the wave reflects from the ver-
tical wall. When the reflected wave reaches the abutment, a second peak occurs at gauge 6. After the reflected wave
passes the abutment, gauge 4 also witnesses the second peak. In general, the wave patterns from gauge 6 to 4 mirror
each other.

Finally, the second peak at wave gauge 5 and the first peak at wave gauge 7 are compared with the quadratic and the
linear pressure approximation in Figure 14. Similar to the previous observations, the linear approximation predicts an
increased phase velocity, while the quadratic approximation matches the experiment well in phase.

The details of the free-surface during this process is also visualized in Figure 15. Figure 15A shows the free-surface
at simulation time ¢ = 7 seconds, right before the solitary wave reaches the abutment. The solitary wave preserves its
waveform. After the wave passes the abutment, a vortex is observed at the downstream behind the abutment, as can be
seen in Figure 15B. When the reflected wave reaches back toward the abutment from the right-hand side, the wave crest
meets the vortex from the last interaction before a second interaction, as seen in Figure 15C. After the reflected wave
passes the abutment, two vortices are observed on both sides of the abutment. Figure 13 reveals that the resolution of the
vortex is smoothed out at gauge 4 and 6, while the other wave gauges are well represented.

It might be interesting to notice that the 2D shallow water model is as accurate as the computational fluid dynam-
ics study in Reference 4 except for the vortices representation in the wakes of the abutment. Herein, the results of
simulations based on the 3D Navier-Stokes equations show a slightly better match with the experiments. The cost of
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FIGURE 13 Wave surface elevation at the wave gauges are shown in (A) to (I). The input solitary wave has a wave height of H = 0.1 m.
The black dashed lines are from laboratory experiments, red solid lines are results from REEF3D::SFLOW. The cell size is dx = 0.05 m and CFL
= 0.2 is used. (J) shows the grid convergence study. CFL, Courant-Friedrichs-Lewy [Colour figure can be viewed at wileyonlinelibrary.com]|
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FIGURE 15 Surface elevation of the input and reflected wave interaction with the rectangular abutment, (A) right before the input
solitary wave reaches the abutment, (B) right after the input solitary wave passes the abutment, (C) right before the reflected wave reaches
the abutment from the right-hand side, and (D) right after the reflected wave passes the abutment [Colour figure can be viewed at
wileyonlinelibrary.com]
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the computational resource, however, is significantly lower using the proposed shallow water model. This benchmark
case is simulated with 16 processors on the Vilje supercomputer about 56 times faster than the 3D simulation with the
same configuration.

4.3 | Plunging breaking waves over a sloping bed

In Section 4.1, nonbreaking waves over a submerged bar are modeled. In a more extreme situation, where the shoaling is
so strong that the wave steepness increases over a certain threshold, the wavefront becomes unstable and breaking takes
place. The numerical wave tank is initialized based on the experiments in References 51,52 to model a breaking wave
scenario. The wave tank has a total length of 40 m and a height of 1 m. A wave generation zone of 9.8 m is located at
the inlet of the tank; a wave energy dissipation zone of the same length is arranged at the outlet. An inclined bed with
a slope of 1:35 is located 4 m away from the wave generation zone. The obstacle increases to 0.748 m at the right end of
the tank. The water depth is constant at 0.4 m. Wave gauges 1 to 4 are located on the slope, 10, 11, 12, and 12.3 m away
from the wave generation zone, respectively. A fifth-order cnoidal wave with wave height H = 0.128 m and wave period
T = 5 seconds is propagated in this simulation, which is supposed to result in a plunging breaker on the slope according
to the experiment. A simulation time of 40 seconds is used Figure 16.

The sensitivity to the grid resolution is investigated with different cell sizes of dx = 0.0025, 0.005, 0.01, 0.02, and 0.05 m.
The wave surface elevation at wave gauge 4 is chosen for comparing the results from different cell sizes. As can be seen
in Figure 17E, the simulations capture very steep wavefronts as well as instabilities at the wave crest with all cell sizes.
It is not possible to observe the overturning process because the shallow water model represents the free-surface with
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FIGURE 17 Wave surface elevations of wave breaking over a sloping bed. The input wave is a fifth-order cnoidal wave with a wave
height of H = 0.128 m and a wave period of T = 5 seconds. The cell size is dx = 0.005 m and CFL = 0.2 is used. Black dashed lines are from
laboratory experiments, red solid lines are results from REEF3D::SFLOW. CFL, Courant-Friedrichs-Lewy [Colour figure can be viewed at
wileyonlinelibrary.com]

a single-valued function. Although, a vertical wavefront and instability at the wave crest indicates the breaking process.
The view on the wave crest is shown in more detail in Figure 17F, where it is visible that dx = 0.005 m captures the peak
values most accurately. The simulated wave elevations at different wave gauges with dx = 0.00 5m are compared with the
experimental data in Figure 17 in order to assess the model's capacity to resolve the surf-zone wave transformations. The
wave crests increase significantly when the waves propagate from gauge 1 to 2, showing an increasing shoaling process. As
the waves evolve on the slope, an unstable wave crest is seen at gauge 3 and the wave height decreases slightly compared
with that at gauge 2. The instability at the crest remains as the waves approach gauge 4 and a further decrease of the wave
crest is noticed. These time series suggest that the breaking happens between gauge 2 and 3. To identify the breaking
point, the wave elevation profile at different time are compared in the same plot (Figure 18). It is seen that at x = 21.580 m,
the wave crest is the highest while the wavefront becomes vertical for the first time indicating the location of the breaking
point. Correspondingly, a breaking height of h, = 0.208 m is measured at x = 21.580 m. In the experiment, the breaking
point is detected at x = 21.595 m and a breaking height of &, = 0.196 m is measured. Both, the predicted breaking point
and are very close to that in the experiment. The wave surface elevation profile is shown in Figure 19. As can be seen in
Figure 19A, the wave height increases significantly, the wave shape becomes narrower, the crest becomes unstable, and
the wavefront becomes vertical, indicating a breaking process. At a later time, the wave energy dissipates and the wave
height decreases dramatically. An attempt to simulate the breaking wave using the linear pressure approximation leads
to a numerical failure. It indicates that the quadratic pressure approximation is superior for the simulation of breaking
waves.
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FIGURE 18 The wavefront evolution near the wave breaking
point, from the numerical simulation with dx = 0.005 m. When the
wavefront turns vertical for the first time, shown as a red curve, the
breaking, and overturning process starts [Colour figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 19 The wave surface elevation profiles along the x-direction. (A) The breaking wave at t = 34.75 seconds, as highlighted by a
box of a dashed frame. (B) After the wave breaking, at t = 37.50 seconds, the wave height reduces and the wave keeps running up the sloping
bed, as highlighted by a box of dashed lines [Colour figure can be viewed at wileyonlinelibrary.com]
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4.4 | Large scaling numerical modeling of coastal waves near Mehamn harbor

The previous benchmark studies have quantitatively examined the capacities of the proposed model. In this section,
the wave propagation in a large domain with real topography is simulated to show the model's computational effi-
ciency and its capacity for operational engineering applications. The chosen scenario is Mehamn harbor in northern
Norway, highlighted by a black box in Figure 20. The harbor is the north-most Hutigruten harbor and it is connected
to the open sea to the north and relatively well protected from the west and the east. The bathymetry outside the har-
bor has a mostly intermediate water depth condition with moderate changes of topography. The computational domain
is 10.5 km in the east-west direction and 14 km in the north-south direction, with the deepest water depth being
147.5 m. The site is exposed to swell from the open sea. An estimated regular wave of height H = 4.5 m and period
T = 15 seconds is generated at the northern boundary. The wetting and drying scheme over the complex bathymetry is
included. A cell size of 5 m is used in the simulation, resulting in 5.88 million cells. In the case of a 3D simulation with
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FIGURE 21 The wave propagation toward the Mehamn harbor in the numerical simulation with a second-order Stokes wave of wave
height H = 4.5 m and wave period T = 15 seconds. The cell size is dx = 5.0 m and CFL = 0.2 is used. (A) The topography in the simulation
and (B) the surface elevation at simulation time ¢ = 650 seconds. CFL, Courant-Friedrichs-Lewy [Colour figure can be viewed at
wileyonlinelibrary.com]|

FIGURE 22 The performance of the parallel computation, shown as a relation
between the speed-up factor in reference to the single-processor simulation for 500 500
iterations vs the number of processors and the number of cells per processor
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Navier-Stokes solver, such a configuration will result in 246.96 million cells assuming a uniform grid. This simulation
of wave propagation in Mehamn harbor takes about 4.2 hours for 1000 seconds simulation time with 256 cores on the
Vilje supercomputer.

The wave surface elevation at simulation time ¢t = 650 seconds is shown in Figure 21B. Strongly reflected waves can be
seen at the tips of the peninsulas that reach out northward into the ocean. Stripes of submerged reefs in the north-south
directions create strong shoaling, as higher waves are shown to be following the same pattern of the submerged reefs.
When the waves propagate southward, refraction occurs and bend the wave rays toward the shore. When the waves start
to reach the harbor, the narrowing entry causes diffraction. A fraction of the diffracted waves manages to bypass the
curve-shaped peninsulas and enter the inner harbor. The complicated wave transformations and their interactions are
well demonstrated in the simulation results.

Finally, the model's computational performance including a complicated bathymetry with wetting and drying and the
breaking algorithm is determined in a similar manner as described in Section 2. The simulations are conducted for 500
iterations with the number of processors fixed to 16, 32, 64, 128, 256, and 512 on the supercomputer Vilje. The computa-
tional time with one processor is linearly extrapolated from the 16-processor simulation and is used as a base reference
for the speed-up factor. The relation between the speed-up factor and the number of processors as well as the number
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of cells per processor are then plotted in Figure 22. It shows that with the presence of a complex topography and the
wetting-drying scheme, the model is as computationally efficient as with a constant bottom within 200 processors, while
it slows down compared with the ideal scaling characteristics afterward.

5 | CONCLUSION

The shallow water model REEF3D::SFLOW has been presented in this article. The model solves the depth-averaged
shallow water equations with nonhydrostatic extensions and a quadratic vertical pressure profile approximation.? In
comparison to well-known Boussinesq-type models, the proposed model treats the pressure terms differently. A typical
Boussinesq model adds higher order terms to express the hydrodynamic pressure. The proposed model adds nonhy-
drostatic extensions to the shallow water equations and solves for the hydrodynamic pressure explicitly from a Poisson
equation. This equation is solved iteratively using an implicit scheme. Thus, the proposed model offers simpler numerics
and indicates higher numerical stability by avoiding the high-order pressure terms of a Boussinesq model. The cur-
rent model assumes a quadratic pressure approximation for a better representation of dispersion and always solves the
depth-averaged pressure. This is in contrast to the multilayer approach that uses vertical layers to represent dispersion
and solves the pressure at the lower layer interface. Thereby, the presented approach saves the additional computational
costs from the increasing number of layers.

High-order numerical methods are incorporated into the new model. Consequently, it is the first model with the
quadratic pressure approximation that combines high-order schemes and fully parallelized computation. The wave gen-
eration and absorption are achieved using a relaxation method, which is absent in the current literature. The approach
proves to generate various wave types with correct amplitude and dispersion, and no artificial reflections are observed
in the numerical wave tank. The accuracy of the high-order scheme is confirmed for 1D and 2D wave propagation cases
with a constant bathymetry. The 2D large-scale simulation of a wave propagation over constant bathymetry presents a
near-linear scaling of the computational speed with an increasing number of processors up to 512. Furthermore, the
model shows an almost linear scaling up to 128 processors if a natural topography is included in the numerical wave tank.
The speed-up is reduced with a further increase of computational units due to the complex boundary treatment from the
topography.

Overall, the study confirms the advantage of the quadratic pressure approximation over the linear pressure assumption
for multiple validation cases. The linear pressure assumption leads to an overshooting phase velocity for all the reg-
ular wave tests in the articles. It also causes a secondary wave during the solitary wave propagation. The quadratic
pressure approximation improves the phase information for progressive waves significantly and removes the unrealistic
free-surface disturbances.

A key advancement presented in the current work is the inclusion of the varying bathymetry and structures in a non-
hydrostatic shallow water model with the quadratic pressure approximation. A fractional step method is applied in the
proposed numerical model in order to meet the challenge of incorporating the term @ that appears in the bottom pressure
calculation. Thus, the simulations of the nonlinear long wave propagation over varying topographies using a nonhy-
drostatic model with the quadratic pressure assumption are possible for the first time. The wave transformations over
varying topography are well represented and in good agreement with the experimental data. The model can represent
the complex free-surface during wave-structure interactions and predicts the breaking wave height and locations accu-
rately. The quadratic pressure approximation again provides a better representation of the free-surface than the linear
pressure assumption for the wave propagation over varying bathymetries. The challenges of representing the deshoaling
process using a nonhydrostatic shallow water model is also discussed, and the study confirms the findings from previous
research.>?

It can be concluded that, within the applicable range of the quadratic assumption,?® the quadratic pressure approx-
imation presents better results both with a constant and a varying bathymetry. The large-scale engineering application
shows a good computational scaling character with the wetting and drying of complex topography included. In general,
the model presents itself as a good alternative to shallow water modeling with robust and efficient numerical methods.
The model also serves as an additional option within the hydrodynamics code REEF3D. As a consequence, an integrated
wave-modeling cascade is more easily adaptable because different submodels are developed on a single platform and the
information exchange can be made more convenient.
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