
Cryptographic Tools for Cloud
Security

Thesis for the degree of Philosophiae Doctor

Trondheim, April 2021

Norwegian University of Science and Technology
Faculty of Information Technology
and Electrical Engineering
Department of Mathematical Sciences

Yao Jiang

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology
and Electrical Engineering
Department of Mathematical Sciences

© Yao Jiang

ISBN 978-82-326-6671-3 (printed ver.)
ISBN 978-82-326-6597-6 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

Doctoral theses at NTNU, 2021:126

Printed by Skipnes Kommunikasjon AS

NO - 1598

Acknowledgments

Throughout my PhD study, I have received a great deal of support and
assistance. I would like to express my deepest gratitude to everyone
that has helped me along the way.

Firstly, I would like to thank my supervisor Kristian Gjøsteen for
continuous support of my PhD study and research, encouragement
and patience. He guide me to choose the right direction and become
a mature PhD, without him I would not have been able to complete
this research.

I would like to thank my co-authors: Colin, Gareth, Herman and
Kristian for writing papers, discussing creative ideas and working with
me. I have enjoyed and benefited from this collaborative work, the
discussions improved our work. Many thanks to my co-supervisor
Colin, your insightful feedback pushed me to sharpen my understand-
ing and elevated my knowledge of cryptography. I would also like to
give an extra thanks to the post-doctor, Gareth, for showing me good
research habits and patiently answering all my questions.

Furthermore, many thanks to all members in the NaCl group for
good feedback and interesting discussions.

Finally, I would particularly like to express my greatest appreci-
ation to my husband and research partner Herman for helping my
work and life, discussing and sharing cool ideas, and taking care of
our babies while I need to focus on my research.

Yao Jiang
Trondheim, December 2020

3

4

Introduction

A cloud storage provider, such as Amazon, Facebook, Dropbox, Mi-
crosoft and Google, allows clients to store and maintain a large vol-
ume of data online. It also ensures that clients can easily access the
data anywhere and at any time, and clients can conveniently share
documents to those who have been granted access. These attractive
features makes cloud technology an important part of our daily lives.

However, with the increase of popularity in using cloud services,
there is an increasing probability of losing sensitive data and personal
information, such as medical records and financial records. The stor-
age provider might be attacked by hackers or malware infections. In
addition, employees that maintain the cloud service might manipu-
late or leak a client’s data. All of these motivate the need to securely
store data in the cloud without relying on trusting the cloud provider.
Cloud cryptography uses encryption techniques to protect private data
stored in the cloud and the expected fundamental security goals are
confidentiality and integrity, where Confidentiality means that data is
protected from disclosure to any adversary and Integrity means that
data is protected from modification by any adversary.

On the other hand, efficiency is another important element to
consider for cloud cryptography, as each cloud user might store large
files like videos and images, and the cloud server maintains data for
millions of users. It is crucial that the encryption scheme used by a
cloud service provider is efficient in computation and storage.

The data stored in the cloud might stay there for many years, and
the data is growing rapidly due to millions of clients continuously stor-
ing more and more data. Switching encryption schemes in this setting

5

6

is expensive, the amount of work needed to download, re-encypt, and
re-upload all the data stored in the cloud would be immense. Using
classical schemes (Diffie-Hellman key exchange, RSA, ElGamal, etc.)
would suffice for now, however, an attacker might steal and store a
client’s encrypted data and wait for quantum computers to be avail-
able. It is well-known that a sufficiently powerful quantum computer
running Shor’s algorithm could solve the integer factorization prob-
lem or the discrete logarithm problem, which are problems that the
current popular encryption algorithms relies on. It is therefore better
to use post-quantum secure schemes now.

This thesis discusses two practical problems for using the cloud:
sharing and updating keys. We will analyze the security requirements
and develop new cryptographic tools to solve these two problems.
We will provide constructions aiming to maximize the security and
efficiency. There are two main research topics in this thesis.

• Offline assisted group key exchange with forward secrecy. We
study how to securely share data with some desired cloud secu-
rity properties.

• Updatable encryption. We study how to rotate keys and cipher-
texts. In particular, we will discuss the security expectations for
updatable encryption schemes and, from our findings, construct
UE schemes with these expected properties.

Additionally, we solve the problem of constructing post-quantum se-
cure protocols/schemes. We construct protocols and schemes that
are post-quantum secure and fit with the desired sharing or updating
properties described above.

Organization. In this introduction we first provide general knowl-
edge of homomorphic encryption, then we discuss offline assisted group
key exchange and updatable encryption

In the sections of the latter two topics, we will also analyze how to
create post-quantum secure constructions that solves the correspond-
ing sharing or updating problem. In the end of the introduction, we
combine the techniques discussed in this thesis to show how a client
could both share and update data.

Introduction 7

Homomorphic Encryption

Homomorphic encryption allows anyone to evaluate functions on ci-
phertexts, where the resulting output is a valid ciphertext. This ci-
phertext can be decrypted and its underlying plaintext matches the
output of the same function applied to the underlying plaintexts of
the input ciphertexts. That is,

Dec(c1 ⊕C c2) = Dec(c1)⊕M Dec(c2),

where ⊕C and ⊕M are operations on the ciphertext space and plain-
text space, respectively.

The offline group key exchange protocols and the updatable en-
cryption schemes we construct in this thesis all have some homomor-
phic property. We will show how to build these desired constructions
using schemes with homomorphic properties.

Well-known lattice-based constructions, such as NewHope [1] and
NTRU [5], have homomorphic properties. Lattice-based construc-
tions are also important candidates for providing post-quantum se-
cure schemes and protocols. We will show how to use lattice-based
schemes to construct post-quantum secure cloud schemes.

Offline Assisted Group Key Exchange

A cloud user Alice would like to share files with her collaborators, Bob
and Carol, by using a cloud server. They don’t want any attacker or
the cloud server to see the content of the shared files. Hence, the
shared files will be encrypted under a file encryption key before they
are uploaded to the cloud. In other words, this file-sharing problem
results in a key-sharing problem.

Alice wishes to establish a file encryption key and securely share
this key with Bob and Carol. Forward secrecy is desired in this sharing
scenario. That is, if a user loses her long-term key then any previously
completed session keys will not be compromised. In practice, users
are not online all the time, hence, it is desirable to establish this file
encryption key without any interaction among the sharing parties.
The main benefit of having this non-interactive property is that Alice

8

could share files whenever she wishes to and her collaborators could
immediately get the shared key and the shared data when they come
online. We will discuss how to construct a group key exchange protocol
that has forward secrecy and is non-interactive.

There are many possible solutions for sharing keying materials
with partners. The simplest way is to use a public key encryption
(PKE) scheme: Alice encrypts the shared key material under Bob or
Carol’s public key and sends the encrypted key to Bob and Carol,
respectively. When Bob or Carol comes online, they can decrypt the
received ciphertext to get the file encryption key and use this key
to open the files Alice has shared. However, this solution does not
provide forward secrecy. Whenever a sharing partner loses their long-
term secret key the file encryption key will be revealed as well.

Another way is to use a group key exchange (GKE) protocol, which
can provide forward secrecy. However, GKE requires all sharing part-
ners to be online when they establish the agreed key. This is not
practical in the real world, as no client will be online all the time and
it is not reasonable to ask all partners waiting online until the last
partner arrives to establish a key (the waiting time is non-trivial as
well). As a consequence, no sharing member can look at the shared
files before the key has been agreed.

In the first paper of this thesis, we provide a new protocol, offline
assisted group key exchange (OAGKE) protocol, that allows any user
to use a modified key encapsulation primitive, a blinded key encap-
sulation mechanism (BKEM), to transport a file encryption key to
potentially many sharing partners via the (untrusted) cloud server. A
conceptual overview of our OAGKE construction is given in Fig. 1.
This protocol achieves the two desired properties: forward secrecy and
non-interactivity.

The benefit of this new idealized primitive (BKEM) is that it can
be used to hide file encryption keys by using a blinding algorithm
Blind. Sharing parties can safely obtain the file encryption key by
creating a blinded encapsulation and asking the cloud server to help
decapsulating this blinded encapsulation. The first paper also presents
two instantiations of BKEMs based on well-known hardness assump-
tions, namely the DDH and the RSA problems.

Introduction 9

In this OAGKE protocol, a session is when a user shares a key, and
the shared file encryption key is the session key. Initially, Alice runs
half of the group key exchange protocol by interacting with the cloud
server: she generates a file encryption key and some “key information”,
which is an encapsulation of the file encryption key under the server’s
ephemeral encapsulation key. When her partner Bob comes online,
Bob runs his half part of the group key exchange protocol by blind-
ing the value of the received encapsulation and sending the blinded
encapsulation to the cloud server. The cloud server decapsulates the
blinded encapsulation and returns the output (the blinded key) to
Bob. Using this blinded key Bob can recover the file encryption key.

The cloud server

(ek, dk)← KG k̃ ← Decapdk(C̃)

Alice

(C, k)← Encapek

Bob

(C̃, uk)← Blindek(C)

k ← Unblinduk(k̃)

1. ek

2. {C}pkBob

3. C̃4. k̃

Figure 1: Diagram describing how the OAGKE protocol uses the
BKEM to do key exchange between Alice, the cloud server and a
sharing partner Bob. The file encryption key k is used by Alice to
encrypt one or more files. C is an encapsulation of the file encryption
key, C̃ is a blinded encapsulation of the encapsulation C, uk is the
unblind key which can be used to recover the blinded key k̃ of the file
encryption key k. The numbered arrows indicate the order in which
operations occur.

Notice that, in Figure 1, the encapsulation is encrypted under
Bob’s public key before sending out, so the server cannot obtain the
file encryption key through the encrypted encapsulation. On the other
hand, the server cannot get any information of the file encryption
key from the blinded encapsulation if the BKEM scheme is properly
constructed. Therefore, the file encryption key is unknown to the
cloud server. Furthermore, if the server honestly deletes all ephemeral

10

data (ephemeral encapsulation and decapsulation keys),1 then even
if an adversary later corrupts Bob’s long-term secret key she is not
able to decapsulate the encapsulation to gain the file encryption key.
Hence, our protocol has forward secrecy.2

Paper I Offline Assisted Group Key Exchange The paper designs
a non-interactive group key exchange protocol with forward se-
crecy, which uses a new primitve called BKEM for key exchange.
The paper also provides a security analysis of this group key ex-
change protocol.

It is natural to employ homomorphic encryption schemes to con-
struct BKEMs. When the sharing partner Bob blinds an encapsu-
lated file encryption key, he is applying a function on, what can be
seen as, ciphertexts. When using a homomorphic encryption scheme,
the encapsulation algorithm of BKEM is realized by the encryption
algorithm of the homomorphic scheme, which is used to generate a
ciphertext C1 = Encek(k1) as the encapsulation and the underlying
plaintext k1 as the file encryption key. To blind the encapsulation,
each sharing partner use the scheme’s homomorphic property to add
a random value k2 to the encapsulated file encryption key. This ran-
dom value is encrypted to create the ciphertext C2 = Encek(k2), and
the operation ⊕C is applied to C1 and C2 to blind the encapsulation,
that is C̃ = C1 ⊕C C2. The decapsulation algorithm is realized by
the homomorphic encryption scheme’s decryption algorithm, which
can decrypt the blinded encapsulation since it is a valid ciphertext.
Hence, the blinded key is the sum of the file encryption key and the
random value, that is

k̃ = Decdk(C1 ⊕C C2) = Decdk(C1)⊕M Decdk(C2) = k1 ⊕M k2,

which is known to the corresponding sharing partner. Therefore, af-
ter receiving the decrypted key (the blinded key) from the server, the

1This assumption allows us to have the best possible level of forward secrecy
in our collaboration scenario.

2The OAGKE protocol does not provide forward secrecy if the cloud server is
corrupted before all ephemeral data are deleted.

Introduction 11

sharing partner can recover the file encryption key by adding the in-
verse of the previously generated random value to the blinded key,
that is k1 = k̃ ⊕M (⊕Mk−1

2). Since we only need one operation in
the blinding algorithm: a somewhat group homomorphic encryption
scheme is sufficient.

The second paper of this thesis furthers the understanding of
BKEMs and generically builds BKEMs from homomorphic encryp-
tion schemes. The second paper also provides two instantiations of
BKEM built from primitives with post-quantum security.

Paper II Cloud-assisted Asynchronous Key Transport with Post-
Quantum Security The paper provides a generic homomorphic-
based BKEM construction. Furthermore, the paper constructs
the first post-quantum secure BKEMs with a security proof.

Updatable Encryption

Again, to prevent any attacker or the cloud server seeing the content
of the data, a cloud user encrypts documents locally before sending
them to the cloud. Hence, anyone with this encryption key has access
to the encrypted cloud data.

What constitutes a cloud user varies. A cloud user can be a user
who may want to change her encryption key to a fresh key in the event
she loses a device that has her file encryption keys stored. A cloud
user can be a company who may want to rotate the data access key
to a fresh key in some cases where an employee leaves the company.
A cloud user can be a media-services provider who may want to alter
the data access key to a fresh key in a situation where a customer’s
membership period expires. After an encryption key is updated to a
new one, it is reasonable to expect all old ciphertexts stored in the
cloud will be updated to be ciphertexts encrypted under the new key.
The old key will no longer valid and only the key holder of the new
key can retrieve the underlying information of all updated ciphertexts.
During this ciphertext updating process, it is also reasonable to expect
that no information of the outsourced data is leaked.

Key rotation is the process of generating a new key and altering
ciphertexts from the old key to the new key without changing the

12

underlying message. The main benefit of key rotation is that it can
be used to protect the data and reduce the risk of key compromise
over time.

Cloud clients can do key rotation by downloading, decrypting, re-
encrypting and re-uploading ciphertexts. This, however, is a very
expensive approach. Updatable encryption (UE) provides a solution
such that the cloud assists in updating ciphertexts from an old key to
a new key with the help of a client-provided update token. Further-
more, ciphertext-independent updatable encryption schemes make it
possible for the cloud to update all ciphertexts a client owns using only
a single token, where ciphertext-independent means the token gener-
ation is independent of the old ciphertext, which enables the client to
generate an update token without downloading any ciphertexts from
the cloud. Hence, the major advantage of ciphertext-independent up-
datable encryption schemes is its efficiency in terms of bandwidth. We
stress that in this thesis we focus on ciphertext-independent updatable
encryption schemes.

The use cases of updatable encryption appear promising, and for
these use cases we also want to provide a secure UE scheme. The first
thing to consider is what an attacker can possibly do. Secondly, what
kind of security we wish to achieve.

Users might lose their keys from time to time, and tokens are
very likely to become lost during transmission. It is reasonable to
consider that the adversary has the ability to adaptively corrupt keys
and tokens. Lehmann and Tackmann [4] introduced this corruption
model for UE schemes.

The first security property one would expect from updatable en-
cryption is confidentiality. Consider a motivating example, a journal-
ist who stores a contact list with a cloud storage provider, where each
entry in the list is a ciphertext. At some point, the storage is com-
promised and an adversary recovers the ciphertexts. Apart from the
importance of keeping the underlying plaintexts unreadable, it may
also be important that the cryptography does not reveal which of the
contacts are recent, and which are old. That is, it must be hard to de-
cide if some ciphertext was recently created, or if it has been updated
from a ciphertext stored in an earlier epoch.

Introduction 13

Lehmann and Tackmann [4] have studied confidentiality notions
to achieve the following properties. The first property is the adversary
should not be able to determine anything about the underlying plain-
text of a given ciphertext. The second property is, given a ciphertext
in the current epoch, the adversary should not be able to tell which
ciphertext (that existed in the previous epoch) the current given ci-
phertext was updated from. However, none of the security properties
studied before could capture our motivating example. The third pa-
per of this thesis introduces a new security notion that guarantees
that the adversary is unable to distinguish between a fresh encrypted
ciphertext and an updated ciphertext. Additionally, this new notion
implies earlier notions [4].

Another security property one would expect from updatable en-
cryption is integrity. In the cloud scenario, ciphertexts might become
altered when communicated over an unsecure channel or sent to an
untrusted cloud server. For example, the adversary might be able to
modify the ciphertext to some other valid ciphertext such that the
(shared) data owners will see an invalid value after retrieving the al-
tered data. Integrity can ensure that the data has not been changed by
any unauthorized parties. Klooß et al. [3] formally defined integrity for
updatable encryption schemes, however, a composition result of the
style given by Bellare and Namprempre for symmetric encryption [2] –
the combination of CPA security and integrity of ciphertexts (CTXT)
gives CCA security – has been missing. The third paper provides this
composition result for updatable encryption.

Note that corrupted tokens could help the adversary learn more
information such as keys and ciphertexts of different epochs. The ad-
versary can use the inferred information to decrypt ciphertexts to get
the underlying plaintexts. These corruption powers allow the adver-
sary to trivially win a security game, and we should exclude these
trivial win conditions in the security analysis. A detailed analysis of
trivial win conditions for updatable encryption schemes is provided in
the third paper.

Except for security, we also want efficient UE schemes, especially
for the encryption and update algorithms. A modern database may
contain large numbers of files, hence, efficiency is critical both for

14

users, who will have to encrypt plaintexts initially, and for servers, who
will have to update ciphertexts for all of their users. The third paper
creates a highly efficiently UE scheme, SHINE, which also achieves
CPA, CTXT and CCA security.

Paper III Fast and Secure Updatable Encryption The paper presents
a new confidentiality notion for updatable encryption schemes
that implies prior notions. The paper also constructs a secure
and highly efficient updatable encryption scheme called SHINE.

Recall that revealed tokens can help the adversary gain more in-
formation about ciphertexts and keys. The basic requirement of UE
is that an update token can move ciphertexts from the old key to
the new key. If the update token can only upgrade ciphertexts, it is
uni-directional. If the update token can both upgrade and downgrade
ciphertexts, it is bi-directional. On the other hand, the update token
can potentially be used to derive keys from other keys. Similarly, in
the uni-directional key update setting, an update token can only derive
the new key from the old key. In the bi-directional key update setting,
an update token can additionally derive the old key from the new key.

Intuitively, UE schemes with uni-directional updates are desirable,
such schemes leak less ciphertext/key information to an adversary
compared to schemes with bi-directional updates. In the fourth paper,
we define security notions in terms of different update setting and
analyze the relationship between security notions with uni- and bi-
directional updates. We show that the (confidentiality and integrity)
security of UE schemes are not influenced by uni- or bi-directional
updates. This is a surprising result.

On the other hand, we wish to have a UE scheme that is post-
quantum secure, where we use an LWE-based homomorphic encryp-
tion scheme to construct an LWE-based UE scheme To make sure up-
dated ciphertexts look random, our LWE-based UE scheme uses the
re-randomization idea from the RISE scheme in the work by Lehmann
and Tackmann [4]. The abstract approach of using the update token
to re-randomizing the ciphertext is as follows, the update algorithm

(1) uses the update token to move a ciphertext, Cold = Encpkold(m),
from the old key to the new key, Cmid = Encpknew(m);

Introduction 15

(2) generates a random ciphertext Crand = Encpknew(u) using the
new public key and the plaintext u = 0 if ⊕M is addition and
u = 1 if ⊕M is multiplication;

(3) outputs the sum of the above two ciphertexts Cnew = Cmid ⊕C
Crand as the updated ciphertext.

The first step might be enough for constructing a secure UE scheme
like SHINE. However, for schemes like RISE and our LWE-based UE
scheme, only using the first step is not enough to construct a secure
UE scheme. Such constructed schemes cannot even achieve IND-UPD,
because one entry of the updated ciphertext remains the same as the
old ciphertext. That is why we need the re-randomization procedure
(Step (2) and (3)).

Using the homomorphic property, the output of the update al-
gorithm is a random ciphertext with the same plaintext of the old
ciphertext under the new public key. Using this method, we can pos-
sibly construct a secure updatable encryption scheme. In particular,
the security of these UE schemes follows from the security of the un-
derlying homomorphic encryption schemes. There are fruitful homo-
morphic encryption constructions, specifically, we use a post-quantum
secure lattice-based homomorphic encryption scheme to construct a
UE scheme in the fourth paper, which ensures our UE scheme achieves
post-quantum security.

Note that when the update algorithm performs one re-randomization,
the error terms grows. In the updatable encryption setting, the total
number of epochs will be a comparatively small integer in practice.
We stress that the updatable encryption has an upper bound of how
many times a ciphertext can be updated. By some parameter setting,
the error terms will not grow too big and the updatable encryption
scheme is correct with overwhelming probability.

Paper IV The Direction of Updatable Encryption does not Matter
Much This paper compares security notions based on the uni-
and bi-directional updates, and constructs a UE scheme with
post-quantum security.

16

Key Management Application

To conclude this introduction, we show how we can use the above
discussed sharing and updating techniques to solve a problem: A user
wishes to share files securely with her collaborators, these collabora-
tors can be her own devices. Additionally, she wants to rotate keys
and ciphertexts periodically to reduce the risk of key compromise. In
the meanwhile, she might remove some collaborators to stop them
from accessing the shared documents.

We sketch a method combining OAGKE and UE to solve this
problem. A user Alice uses a UE scheme to generate a shared key and
then applies the OAGKE protocol to share this key with her partners,
Bob and Carol. When Alice wishes to move to the next period, she
will use the UE scheme to generate a new key and an update token.
The update token will be sent to the cloud server and the collaborators
she wishes to keep, e.g. Bob, by running the OAGKE protocol. Note
that now the server is also a collaborator of Alice while she runs the
OAGKE protocol and the update token is the shared value in the
OAGKE protocol. The cloud server will perform an update to move
(encrypted) shared files from the old key to the new key using the
update token provided by Alice, and Bob will update his old shared
key to the new key using the update token provided by Alice. Bob
will now use the new key to access the shared data. Note that the UE
scheme we use here should have at least uni-directional key updates,
since an update token can upgrade keys. Now only Bob has access
to the files shared by Alice. In Fig 2, we show how Alice shares and
updates files to her collaborators by running the OAGKE protocol
and using a UE scheme.

In our key management approach, each session secret of the OAGKE
protocol is either a key or a token. The advantage of using OAGKE
protocol is that we can protect the shared data while it is in transit,
which is either the initial shared key or an update token. The OAGKE
protocol helps UE to reduce the adversary power of corrupting keys
and tokens. Which means the adversary has to corrupt a user (or a
device), to get some key information.

However, if we only use OAGKE, when the adversary corrupts a
user it can see all keys of that user. As a result, everything in the

Introduction 17

The cloud server

Cold
∆−→ Cnew

Delete Cold

Alice

kold
∆−→ knew

Bob

kold
∆−→ knew

Carol
Delete kold

{∆}OAGKE

{∆}OAGKE Expire

Figure 2: Initially, Alice runs the OAGKE protocol to share a key
kold to Bob and Carol. Cold are files encrypted under key kold stored
in the cloud. At some time, Alice wants to update the shared key to
stop Carol having access to the shared files. She shares the update
token ∆ by running the OAGKE protocol to the cloud server and Bob
to help them update ciphertexts and key, respectively. Hence, Bob
still can see the content of the shared documents. In the meanwhile,
she sends “Expire” to Carol, then Carol will delete the shared key and
ephemeral values.

cloud encrypted by these shared session keys will lose. UE ensures
that an adversary corrupting a user will not know the previous and
future keys. By the help of UE in this key management scenario, the
user can rotate keys when her partner is corrupted. As long as the
user notices this corruption in time and everything is updated before
the adversary tries to retrieve information from the cloud, nothing
will be lost.

References

[1] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum key exchange - a new hope. Cryptol-

18

ogy ePrint Archive, Report 2015/1092, 2015. https://eprint.
iacr.org/2015/1092.

[2] Mihir Bellare and Chanathip Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic compo-
sition paradigm. J. Cryptol., 21(4):469–491, 2008.

[3] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA secure
updatable encryption with integrity protection. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 68–99. Springer, 2019.

[4] Anja Lehmann and Björn Tackmann. Updatable Encryption with
Post-Compromise Security. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 -
37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Tel Aviv, Israel, April 29 -
May 3, 2018 Proceedings, Part III, volume 10822 of Lecture Notes
in Computer Science, pages 685–716. Springer, 2018.

[5] Damien Stehlé and Ron Steinfeld. Making NTRU As Secure As
Worst-case Problems over Ideal Lattices. In Kenneth G. Paterson,
editor, EUROCRYPT, Lecture Notes In Computer Science, pages
27–47. Springer-Verlag, 2011.

Paper i

Offline Assisted Group Key Exchange
Colin Boyd, Gareth T. Davies, Kristian Gjøsteen and Yao

Jiang

Published in the 21st Information Security Conference,
ISC2018.

Offline Assisted Group Key Exchange

Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao
Jiang

NTNU – Norwegian University of Science and Technology
{colin.boyd,gareth.davies,kristian.gjosteen,

yao.jiang}@ntnu.no

Abstract

We design a group key exchange protocol with forward se-
crecy where most of the participants remain offline until they
wish to compute the key. This is well suited to a cloud stor-
age environment where users are often offline, but have online
access to the server which can assist in key exchange. We de-
fine and instantiate a new primitive, a blinded KEM, which we
show can be used in a natural way as part of our generic proto-
col construction. Our new protocol has a security proof based
on a well-known model for group key exchange. Our protocol
is efficient, requiring Diffie–Hellman with a handful of standard
public key operations per user in our concrete instantiation.

Keywords: Authenticated Key Exchange, Group Key Exchange,
Forward Secrecy, Cloud Storage, Blinded Key Encapsulation

1 Introduction

We consider the following collaboration scenario. Isabel would like to
use a cloud storage provider to share some files with her collaborators
Robin and Rolf. While Isabel and her collaborators have some level of
trust in the cloud storage provider, they do not want the provider to
be able to see the contents of their files. In other words, Isabel needs

21

to share some secret key material with Robin and Rolf. This paper
addresses the problem of sharing this secret key material.

There are a number of possible solutions. The simplest is for Isabel
to encrypt the key material using public key encryption and send
the ciphertexts to Robin and Rolf, who can then decrypt. However,
this solution does not provide forward secrecy. If either Robin or
Rolf’s decryption keys are compromised at any point in the future,
the confidentiality of the key material is also compromised.

Group key exchange (GKE) can give us forward secrecy. However,
Isabel and her collaborators will not be online all the time, and the
time spent offline is non-trivial. If Isabel and her collaborators want
to use a traditional GKE, then Isabel cannot share her files until every
collaborator has been online. Likewise, the individual collaborators
cannot look at the shared files until every other collaborator has been
online. This is impractical, and no system that has interactions be-
tween the initiator and the responders can be practical in this setting.

In this paper, we propose a GKE protocol that provides forward se-
crecy and is non-interactive with respect to the sharing parties, hence
suitable for our collaboration scenario: Isabel comes online, runs her
part of the GKE protocol, receives the key material and shares the
files. As the individual collaborators come online, they run their part
of the GKE protocol, receive the key material and get access to the
shared files.

1.1 Secure Sharing and Forward Secrecy

The users in our collaboration scenario will be content to trust their
cloud storage provider (CSP) to make their data available. Some
users will be content to trust their CSP to use simple access control
to prevent unauthorized access or modification. However, for many
users such a convenient trust assumption regarding confidentiality or
integrity is either unreasonable, legally impossible or otherwise unde-
sirable. For this reason, many CSPs support (in addition to access
control) the obvious solution of user-side encryption of data, where
the CSP does not know the key material used for encryption and

22 C. Boyd et al.

decryption1.
The use of encryption means that groups of users must establish

shared key material in order to share data. This suggests group key
exchange. However, group key exchange protocols are usually inter-
active, while in our collaboration scenario, Isabel’s collaborators may
not all be online at the same time, so completing the group key ex-
change would take too long, and until the key material was agreed
upon, no work could be done.

We therefore desire non-interactive solutions that allow the initia-
tor to complete their actions before any recipients come online, and
do not require any interaction between the recipients. This rules out
traditional group key exchange protocols [5, 2, 18, 3, 13].

The natural non-interactive solution is to use public key encryption
(or perhaps other similar primitives, such as broadcast encryption).
However, in the outsourced storage scenario, forward secrecy – com-
promise of long-term keys does not compromise previously completed
sessions – is important. Forward secrecy is typically achieved through
the use of interaction with Diffie–Hellman or other ephemeral keys.
Using ephemeral keys for confidentiality and long-term keys only for
authentication ensures that later release of long-term secrets does not
reveal the session key.

Forward secrecy presents an inherent conflict with our require-
ment to have a non-interactive solution. Indeed, a simple generic
argument implies that forward secrecy without interaction is impos-
sible: without interaction the recipient cannot provide an ephemeral
input and therefore the recipient’s long-term key alone must be suf-
ficient to recover the session key. Recent proposals have attempted
to work around this argument in different ways. The first line of
work, including the X3DH [23] and ART [8] protocols, insists that
recipients upload some pre-keys to the CSP at some point before the
initiator begins their activity. These pre-keys are then used as if they
were ephemeral, however if one recipient never comes online then they
could sit on the server indefinitely: this is a re-definition of ephemeral
and long-term keys, as used by standard key exchange security mod-
els. Another approach, taken by Green and Miers [14] and further

1This practice is confusingly often called zero knowledge in commercial circles.

Offline Assisted Group Key Exchange 23

developed by Günther et al. [16] and Derler et al. [12], concerns so-
called zero-round-trip-time (0RTT) key exchange. In this model, the
long-term decryption key is updated (punctured) once the recipient
comes online, in such a way that the crucial ciphertexts can no longer
be decrypted by that (long-term) key. Thus the long-term key is no
longer static but evolves over time. Forward secrecy with puncturable
encryption relies crucially on the assumption that the protocol (sin-
gle) message arrives at the receiver. Until that happens the receiver
private key is not updated and so the encrypted data is vulnerable
to receiver compromise. In addition we note that these works rely
on less efficient cryptographic primitives and require increased stor-
age and secure deletion properties at the receiver. Fig. 1 summarizes
selected existing literature on file-sharing protocols.

Forward Non- Security
Protocol Secrecy Interactive Proof Efficient Parties
X3DH

3a 8d 8 3 2[23]
ART

3a 8d 3 3 N[8]
0RTT KE

3b 3 3 8 2[14, 16, 12]
GKE

3 8 3 3 N[5, 2, 18, 3, 13]
Mona, Tresorit

8 3 3 3 N[22] [20, 21]
Chu et al.

8 3 3 3 N[7]
This work 3c 3 3 3 N

Figure 1: Comparison of secure sharing protocols. aRe-defined
‘ephemeral keys’; bRe-defined ‘long-term keys’; cIf the server honestly
deletes all ephemeral data; dUsers must upload pre-keys.

1.2 Contributions

In this paper, we run into two major obstacles. We need a group key
exchange protocol that is non-interactive with respect to the initia-

24 C. Boyd et al.

tor and the responders, and that at the same time provides forward
secrecy.

We overcome these obstacles by noting that the cloud server is
online at all times, and use ephemeral values provided by the cloud
server to give us forward secrecy. This allows us to achieve the best
possible level of forward secrecy in our collaboration scenario, without
trusting the cloud server. Our protocol is simple and relies only on
standard assumptions.

We regard the following as the main contributions of this paper.

• We propose a novel practical group key exchange protocol suit-
able for use in cloud storage. Our protocol is described in Sec-
tion 5.

• We include a formal security analysis of our protocol in a strong
security model with trust assumptions suited to the cloud sce-
nario. The proof is in a security model which is detailed in
Section 3.

• We introduce definitions and constructions for a new crypto-
graphic primitive, blinded KEMs, which may find other appli-
cations. We describe this primitive and provide two secure con-
structions in Section 4.

2 Preliminaries

For a set S, denote xgetsrS to mean choosing x uniformly at random
from S. We write return b′ ?=b as shorthand for if b′=b then return 1;
else return 0, with an output of 1 indicating successful adversarial
behavior.

2.1 Public-key encryption

A public-key encryption scheme PKE = (KGpke,Enc,Dec) with mes-
sage spaceM is defined as follows. KGpke takes as input some security
parameter(s), if any, and outputs a public encryption key pk and a
secret decryption key sk . Enc takes a message m and produces a ci-
phertext c using pk : c← Encpk (m). Dec decrypts a ciphertext c using

Offline Assisted Group Key Exchange 25

sk to recoverm or in the case of failure a symbol ⊥: m/⊥ ← Decsk (c).
Correctness requires that m← Decsk (Encpk (m)) for all m ∈M.

We denote the usual advantage of an adaptive chosen ciphertext
adversary A against real-or-random security for the public-key en-
cryption scheme by Advror-cca2

PKE (A). In our protocol’s security proof,
it is actually convenient to use a generalization of this notion, which
we discuss in Appendix A.

2.2 Digital signatures

A signature scheme DS = (KGsig,Sign,Verify) with message spaceM
is defined as follows. KGsig takes as input some security parameter(s),
if any, and outputs a signing key sk and a public verification key vk .
Sign creates a signature σ on a message m: σ ← Signsk (m). Verify
verifies that the signature on the message is in fact valid: 0/1 ←
Verifyvk (m,σ), with 1 indicating successful verification. Correctness
requires that Verifyvk (m,Signsk (m)) = 1 for all m ∈M.

Definition 1. Let DS = (KGsig, Sign,Verify) be a signature scheme.
Then the suf-cma advantage of an adversary A against DS is defined
as

Advsuf-cma
DS (A) = Pr[Expsuf-cma

DS (A) = 1].

where the experiment Expsuf-cma
DS (A) is given in Fig. 2.

Expsuf-cma
DS (A) :

SLIST ← ∅
sk , vk ← KGsig

(m,σ)← AO.Sign(vk)
if Verifyvk (m,σ) and (m,σ) /∈

SLIST
return 1

else
return 0

O.Sign(m) :
if m 6∈ M then
return ⊥

σ ← Signsk (m)
SLIST ← SLIST ∪ (m,σ)
return σ

Figure 2: The experiment defining suf-cma security for signature
schemes.

26 C. Boyd et al.

ExpDDH
G (A) :

b
$←− {0, 1}

x, y, z
$←− Zq

if b = 1
c← gxy

else
c← gz

b′ ← A(gx, gy, c)
return b′ ?

= b

Figure 3: DDH experiment.

ExpCR
F (A) :

f
$←− F

x, y ← A(f)
if x 6= y ∧ f(x) = f(y) then
return 1

else
return 0

Figure 4: Collision resistance ex-
periment.

Note that in the existential unforgeability under chosen message
attack (euf-cma) game the list SLIST only keeps track of the messages
queried by the adversary during the Sign queries phase, so A is not
allowed to output (m,σ2) if she sent m to O.Sign and received σ1.

2.3 Hardness assumptions

Definition 2. Fix a cyclic group G of prime order q with generator g.
The advantage of an algorithm A solving the Decision Diffie-Hellman
(DDH) problem for G and g is

AdvDDH
G (A) = 2

∣∣∣Pr[ExpDDH
G (A) = 1]− 1

2

∣∣∣

where the experiment ExpDDH
G (A) is given in Fig. 3.

Definition 3. Let F be a family of functions. The collision resistance
advantage of an adversary A running in time t is

AdvCR
F (A) =

∣∣Pr[ExpCR
F (A) = 1]

∣∣

where the experiment ExpCR
F (A) is given in Fig. 4.

Note that in an abuse of notation, we sometimes write AdvCR
f (A),

with the understanding that the function family F exists and that the
choice of a function f is done at some point.

Offline Assisted Group Key Exchange 27

3 GKE protocol model

The model described in this section is based on previous models for
group key exchange such as those of Katz and Yung [18] and Bresson
and Manulis [4]. This includes game-based security definitions.

3.1 Communication Model

A GKE protocol P is a collection of probabilistic algorithms that de-
termines how oracles of the principals behave in response to signals
(messages) from their environment.

Protocol participants and long-lived keys. Each principal V in
the protocol is either a user U or a server S. In every session, each
user may act as either an initiator I or a responder R. Each principal
V holds long-term secret keys, and corresponding public keys of all
principals are known to all.

Session identifiers and partner identifiers. Protocol principals
maintain multiple instances, or sessions, that may be run simultane-
ously and we denote a session of principal V by the oracle

∏α
V with

α ∈ N.
Each oracle

∏α
V is associated with the variables statusαV, roleαV,

pidαV, sid
α
V, kαV as follows:

• statusαV takes a value from {unused , ready , accepted , rejected}.

• roleαV takes a value from: S, I, R.

• pidαV contains a set of principals.

• sidαV contains a string defined by the protocol.

• kαV the agreed session key (if any).

A session identifier, denoted sid , is a protocol-defined value stored
at a principal intended to provide a link to other sessions in the same
protocol run. A set of partner identifiers, denoted pid , contains the
identities of all intended users in a session.

28 C. Boyd et al.

Each oracle
∏α

V is unused until initialization, by which it is told
to act as a server or a user together with the long term secret keys.
During initialization all oracles begin with statusαV = ready and roleαV,
pidαV, sid

α
V and kαV all equal to ⊥.

Executing the protocol. After the protocol starts, each oracle
∏α

V

learns its partner identifier pidαV and sends, receives and processes
messages.

If the protocol at oracle
∏α

V fails, for example if signature verifi-
cation or key confirmation fails, then the oracle changes its state to
rejected and no longer responds to protocol messages. Otherwise, if V
is a user, after computing kαV oracle

∏α
V changes its state to accepted

and no longer responds to protocol messages, and if V is the server,
oracle

∏α
V accepts after all responder oracles get their messages or

expiration.

3.2 Security Notions

Adversarial model. An efficient adversary A interacts with ses-
sions by using the set of queries defined below. This models the abil-
ity of A to completely control the network, deciding which instances
run and obtaining access to other useful information. The Test query
can only be asked once by A and is only used to measure adversary’s
success; it does not correspond to any actual adversary’s ability.

• Execute(S): Input a set of unused oracles S which execute an
honest run of the protocol. The oracles compute what the pro-
tocol specifies and returns the output messages.

• Send(
∏α

V,m): Sends message m to oracle
∏α

V. The oracle com-
putes what the protocol defines, and sends back the output mes-
sage (if any), together with the status of

∏α
V.

• Corrupt(V): Outputs principal V’s long-term secret key.

• Reveal(
∏α

V): Outputs session key kαV if oracle
∏α

V has accepted
and holds some session key kαV.

Offline Assisted Group Key Exchange 29

• Test(
∏α

V): If oracle
∏α

V has status accepted , holding a session
key kαV, then a bit b is randomly chosen and this query outputs
the session key kαV if b = 1, or a random string from the session
key space if b = 0.

Partnering. A secure GKE protocol should ensure that the session
key established in an oracle

∏α
V is independent of session keys es-

tablished in other sessions, except for the partners of
∏α

V. This is
modeled by allowing the adversary to reveal any session key except
the one in the Test session and its partners. Informally, partnering is
defined in such a way that oracles who are supposed to agree on the
shared session key are partners.

Definition 4. Two oracles
∏α

V and
∏β

W are partners if pidαV = pidβW
and sidαV = sidβW.

Freshness. The notion of freshness models the conditions on the
adversary’s behaviour that are required to prevent trivial wins.

Definition 5. An oracle
∏α

V is fresh if neither this oracle nor any of
its partnered oracles have been asked a Reveal query, and either

• no server player nor any player in pidαV was corrupted before
every partnered oracle reached status accepted ; or

• no player in pidαV is ever corrupted.

Security Game. Bringing together everything we have introduced
so far, we can describe the game that allows us to measure the advan-
tage of an adversary against a GKE protocol.

Definition 6. Let P be a GKE protocol. The game Expake
P (A) con-

sists of the following three phases:

• Initialization. Each principal V runs the key generation algo-
rithm to generate long-term key pairs. The secret keys are only
known to the principal, while public keys are revealed to every
principal and the adversary.

30 C. Boyd et al.

• Queries. The adversary A is allowed to make Execute, Send,
Reveal, Corrupt, and Test queries. During this phase, A is only
allowed to ask only one Test query to a fresh oracle, which should
remain fresh until the end of this phase.

• Guessing. A outputs its guess b′.

The output of the game is 1 if b = b′, otherwise 0.
The advantage of the adversary A against the ake-security of P is

Advake
P (A) = 2

∣∣∣Pr[Expake
P (A) = 1]− 1/2

∣∣∣ .

4 Blinded KEM

The concept of using public-key encryption to transport keys for use
in symmetric encryption is by now well studied [9, 10, 11, 19, 1, 17].
This primitive is known as a key encapsulation mechanism (KEM) and
is used in conjunction with a data encapsulation mechanism (DEM)
that models some symmetric encryption scheme. This KEM-DEM
framework is widely deployed in internet protocols, however – as we
mentioned earlier – it does not provide any forward secrecy. The cloud
scenario allows the initiator to store the encapsulated key and the
DEM ciphertext in some repository for the recipient to later retreive,
but we ask: can the (untrusted) cloud give us some notion of forward
secrecy of the key that the initator wishes to transport?

It is well known how to turn a KEM into a key exchange protocol.
We shall introduce a new primitive, which we call blinded KEM, and
in the next section we will explain how to turn such a primitive into
a group key exchange protocol suitable for our purposes.

Compared to a traditional KEM, a blinded KEM has two addi-
tional algorithms: a blinding algorithm takes some encapsulation2 and
adds a blinding value, and an unblinding algorithm (that requires an
unblinding key created by the blinding algorithm) removes this blind-
ing value from the blinded key. Note that this construction does not

2 We abuse nomenclature throughout the rest of the paper and use ‘encapsu-
lation’ to refer to a key encapsulation that is yet to be blinded.

Offline Assisted Group Key Exchange 31

generalize existing KEMs since our decapsulation procedure works on
blinded encapsulations rather than encapsulations.

The point of this new idealized primitive is to allow parties to
safely outsource decapsulation by creating a blinded encapsulation,
having someone else decapsulate and then unblinding the result. With
careful key management, this idea will give us forward secrecy in our
cloud scenario. We will develop this idea into a group key exchange
protocol in the next section.

The concept of blinding is best known in the context of blind
signatures, but have been used extensively in many areas of cryptog-
raphy. It has also been used in the context of blind decryption [15, 24],
and some of the schemes are quite similar to our constructions, even
though they have very different applications in mind and also different
security requirements.

After providing a definition of this primitive’s algorithms, we give
two natural constructions (based on DH and RSA).

Definition 7. A blinded key encapsulation mechanism (blinded KEM)
BKEM consists of five algorithms

BKEM = (KGBKEM,Encap,Blind,Decap,Unblind).

The key generation algorithm KGBKEM outputs an encapsulation key
ek and a decapsulation key dk . The encapsulation algorithm Encap
takes as input an encapsulation key and outputs an encapsulation C
and a key k ∈ G. The blinding algorithm takes as input an encapsula-
tion key and an encapsulation and outputs a blinded encapsulation C̃
and an unblinding key uk . The decapsulation algorithm Decap takes
a decapsulation key and a (blinded) encapsulation as input and out-
puts a (blinded) key k̃. The unblinding algorithm takes as input an
unblinding key and a blinded key and outputs a key.

The algorithms satisfy the correct decapsulation requirement:
When (ek , dk) ← KGBKEM, (C, k) ← Encapek , (C̃, uk) ← Blindek (C)
and k̃ ← Decapdk (C̃), then

Unblinduk (k̃) = k.

Definition 8. Let BKEM = (KGBKEM,Encap,Blind,Decap,Unblind)
be a blinded KEM. The distinguishing advantage of any adversary A

32 C. Boyd et al.

against BKEM getting r blinded decapsulation samples is

Advind
BKEM(A, r) = 2

∣∣∣Pr[Expind
BKEM(A, r) = 1]− 1/2

∣∣∣,

where the experiment Expind
BKEM(A, r) is given in Fig. 5.

Expind
BKEM(A, r) :

b
$←− {0, 1}

(ek , dk)← KGBKEM
(C, k1)← Encapek

k0
$←− G

for j ∈ {1, . . . , r} do
(C̃j , uk j)← Blindek (C)
k̃j ← Decapdk (C̃j)

b′ ← A(ek , C, kb, {(C̃j , k̃j)}1≤j≤r)
return b′ ?

= b

Figure 5: Indistinguishability experiment Expind
BKEM(A, r) for a

blinded KEM.

Definition 9. Let ek be any public key and let C0 and C1 be two
encapsulations. Define X0 and X1 to be the statistical distribution
of the blinded encapsulation output by Blindek (C0) and Blindek (C1),
respectively. We say that the blinded KEM is ε-blind if the statistical
distance of X0 and X1 is at most ε.

Definition 10. Let ek be any public key and let C be an encap-
sulation of the key k. Let C̃ be a blinded encapsulation of C with
corresponding unblinding key uk . We say that the blinded KEM is
rigid if there is exactly one k̃ such that Unblinduk (k̃) = k.

We now present two instantiations of blinded KEMs based on well-
known hardness assumptions, namely DDH and the RSA problem.

Offline Assisted Group Key Exchange 33

4.1 Construction I: DH-based

We consider the following DH-based blinded KEM (DH-BKEM). Let
G be a group of prime order q with generator g and define DH-BKEM
in Fig. 6.

KGBKEM() :

s
$←− Z∗q

ek ← gs

dk ← s
return ek , dk

Encapek :

i
$←− Z∗q

C ← gi

k ← ek i

return C, k

Blindek (C) :

t
$←− Z∗q

C̃ ← Ct

uk ← t−1 mod q
return C̃, uk

Decapdk (C̃) :

k̃ ← C̃dk

return k̃

Unblinduk (k̃) :

k ← k̃uk

return k

Figure 6: Diffie-Hellman-based blinded KEM (DH-BKEM).

Theorem 1. DH-BKEM is a 0-blind BKEM and is rigid. Further-
more, let A be any adversary against the above construction getting
r blinded decapsulation samples. Then there exists an adversary Br
against DDH such that

Advind
DH-BKEM(A, r) ≤ AdvDDH

G (Br).

The running time of Br is essentially the same as the running time of
A.

Proof. For any encapsulation, since t is a random number, the blinded
encapsulation C̃ output by Blind is uniformly distributed on G. It fol-
lows that the construction is 0-blind. In a similar vein, the unblinding
procedure is a permutation on the keyspace so the construction is
rigid.

34 C. Boyd et al.

Reduction Br .
for j ∈ {1, . . . , r} do
tj

$←− Z∗q ; C̃j ← gtj ; k̃j ← ek tj

b′ ← A(ek , C, k, {(C̃j , k̃j)}1≤j≤r)
return b′

Figure 7: DDH adversary Br playing ExpDDH
G (Br), used in the proof

of Theorem 1.

Next, consider a tuple (ek , C, k). The reduction Br is given in
Fig. 7. In the event that (ek , C, k) is a DDH tuple, then Br perfectly
simulates the input ofA in Expind

DH-BKEM(A, r) when b = 1. Otherwise,
Br perfectly simulates the input of A in Expind

DH-BKEM(A, r) when b =
0. The claim follows.

4.2 Construction II: RSA-based

We consider the following RSA-based blinded KEM (RSA-BKEM).
Unlike the above DH-based blinded KEM, this is less suitable for use
in key exchange, since generating RSA keys is quite expensive. The
scheme needs a hash function HRSA-BKEM, and is detailed in Fig. 8.

Just like for the DH-based construction, this scheme is a blinded
KEM, it is 0-blind and any adversary against indistinguishability in
the random oracle model can be turned into an adversary against the
RSA problem, in a straight-forward way. We omit the proof. Note
that this construction is not rigid since any hash collision provides
two different values that map to the same k. (Dealing with this would
complicate the security proof for little gain.)

5 Offline Assisted Group Key Exchange Pro-
tocol

We now describe a generic protocol for cloud-assisted group key ex-
change using a blinded KEM, and then give a concrete instantiation

Offline Assisted Group Key Exchange 35

KGBKEM() :
p, q, n, e, d← RSA.KG
ek ← (n, e)
dk ← (n, d)
return ek , dk

Encapek :

i
$←− {1, . . . , n− 1}

C ← ie mod n
k ← HRSA-BKEM(i)
return C, k

Blindek (C) :

t
$←− {1, . . . , n− 1}

C̃ ← (teC) mod n
uk ← t−1 mod n
return C̃, uk

Decapdk (C̃) :

k̃ ← C̃d mod n
return k̃

Unblinduk (k̃) :

k′ ← (k̃uk) mod n
k ← HRSA-BKEM(k′)
return k

Figure 8: RSA-based blinded KEM (RSA-BKEM).

using our DH-based blinded KEM from Section 4.1. Our scenario
consists of the following participants:

• The initiator wants to establish a shared key k with a set of
responders. First, the initiator I interacts with the server, then
the initiator generates a key and “invitation messages” for the
responders R1, ...,Rn.

• Each responder wants to allow the initiator to establish a shared
key with him. When responder Ri gets their “invitation message”
from the initiator, they will interact with the server to decrypt
the shared key.

• The server temporarily stores information assisting in the com-
putation of the shared secret key k, until every responder has
gotten the key.

A conceptual overview of our construction is given in Fig. 9: the
numbering indicates the order in which the phases of the protocol

36 C. Boyd et al.

S

(ek , dk)← KGBKEM k̃ ← Decapdk (C̃)

I

(C, k)← Encapek

R

(C̃, uk)← Blindek (C)

k ← Unblinduk (k̃)

1. ek

2. C

3. C̃
4. k̃

Figure 9: Diagram describing how the group key exchange protocol
uses the blinded KEM to do key exchange in the single responder
case. For clarity, identities, nonces, session identifiers, key confirma-
tion, public key encryption and digital signatures are omitted. Fig. 10
contains a more detailed message sequence chart for the single respon-
der case.

are done. A more diagrammatic overview is provided for the single-
responder case in Fig. 10, and the general case is presented in Fig.
11. In these figures and for the rest of this section we will reduce
notational overload by writing SignRj

instead of SignskRj
(and EncRj

instead of EncpkRj
etc.), and allow the reader to infer which type of

key is being used from the algorithm in use.

Definition 11. An Offline Assisted Group Key Exchange Protocol
(OAGK) is defined in Fig. 11 and is parameterized by the following
components. Let

• BKEM = (KGBKEM,Encap,Blind,Decap,Unblind) be a blinded
KEM,

• DS = (KGsig, Sign,Verify) be a signature scheme,

• PKE = (KGpke,Enc,Dec) be a public-key encryption scheme,

• H be a hash function,

Offline Assisted Group Key Exchange 37

I S R

Stage 1:
Choose nonce NI

σ1 ← SignI(NI, pid)
NI, pid , σ1−−−−−−−−−−−−→

Verify σ1
(ek , dk)← KGBKEM

σ2 ← SignS(NI, pid , ek)
sid ← H(I,NI, pid , ek)

Verify σ2
(ek , σ2)←−−−−−−−−−−−−

sid ← H(I,NI, pid , ek)

Stage 2:
(C, k)← Encapek
kI ← KDF(′′1′′, k, sid)
τI ← KDF(′′2′′, k, sid)
c← EncR(C, ek, τI, sid , pid)
σ3 ← SignI(c)

c, σ3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Verify σ3
Accept kI (C, ek, τI, sid , pid)← DecR(c)

Stage 3:
(C̃, uk)← Blindek (C)

σ4 ← SignR(sid , ek , C̃)

Verify σ4
(sid , C̃, σ4)←−−−−−−−−−−−−

Verify R ∈ pid

k̃ ← Decapdk (C̃)

σ5 ← SignS(sid , k̃)

(sid , k̃, σ5)−−−−−−−−−−−−→Verify σ5
k ← Unblinduk (k̃)

kR ← KDF(′′1′′, k, sid)
τR ← KDF(′′2′′, k, sid)

τR
?
= τI

Accept kR

Figure 10: Message sequence chart for the OAGK protocol with a
single responder R. Fig. 11 contains a complete protocol description
for the multi-responder case.

38 C. Boyd et al.

• KDF be a key derivation function.

Note that in our model, we do not have a reveal state query, so
there is no need to explicitly erase state information. In a real imple-
mentation, making sure that ephemeral and medium-term key mate-
rial is erased at appropriate times is vital.

In order to break our protocol an adversary must compromise both
the server and one of the users. The server stores a medium-term key
which is deleted after the protocol run is complete (or after a time-
out) after which compromise of the server is allowed. We note that
it would not be difficult to enhance our protocol with forward secure
encryption [6] if receiver compromise is deemed a likely risk.

5.1 Efficiency

There are different ways to measure the efficiency of group key ex-
change protocols, including the number of protocol messages, the
number of rounds of parallel messages, and the (average) computation
per user. There exist theoretically efficient examples [2, 3] but most
practical protocols employ a generalisation of the Diffie–Hellman pro-
tocol. One such generalisation is the well-known scheme of Burmester
and Desmedt [5] which requires 2 rounds of communication and 3
exponentiations per user in its unauthenticated version.

An example of a modern optimised protocol is that of Gao et
al. [13] which adds signatures to all messages and requires users to
verify the signature on broadcast messages from all other users. In
comparison our requirements are relatively modest. We require 3
rounds but do not use broadcast messages at all. The protocol partic-
ipants perform 5 public key operations each, consisting of signature
generation/verification, public key encryption/decryption and key en-
capsulation/decapsulation. As mentioned, the non-interactive nature
of our scenario means that we wish for the initiator to be able to do
all of their interaction during some initial phase.

5.2 Protocol Security

An adversary against the GKE protocol OAGK plays the game defined
in Section 3.2. We need to give a useful bound for its advantage.

Offline Assisted Group Key Exchange 39

I running oracle
∏α

I as initiator on input pid :

1. Choose random NI.

2. σ1 ← SignI(NI, pid).

3. Send (NI, pid , σ1) to S.

10. Get (ek , σ2) from S.

11. Verify that σ2 is S’s signature on (NI, pid , ek).

12. sid ← H(I,NI, pid , ek).

13. (C, k)← Encapek .

14. Session key kαI ← KDF(′′1′′, k, sid)

15. Key confirmation: ταI ← KDF(′′2′′, k, sid)

16. For every responder Rj in pid , do:

(a) cj ← EncRj
(C, ek, ταI , sid , pid).

(b) σ3,j ← SignI(cj).
(c) Send (cj , σ3,j) to Rj .

17. Output kαI .

Phase I of S running oracle
∏β

S as server on message (NI, pid , σ1) from I:

4. Verify that σ1 is I’s signature on (NI, pid).

5. (ek , dk)← KGBKEM.

6. σ2 ← SignS(NI, pid , ek).

7. sid ← H(I,NI, pid , ek).

8. Store (sid , I, pid , dk , ∅).
9. Send (ek , σ2) to I.

Figure 11: Part 1. The three roles of the group key exchange protocol.
Suppose {Rj}j∈J are the identities of users that I wishes to share
a common session key with (pid = I|{Rj}j∈J). Note that the line
numbering indicates the order in which the lines of the various roles
are reached during a protocol execution.

40 C. Boyd et al.

Rj running oracle
∏ν

Rj
as responder on message (cj , σ3,j) from I:

18. Verify that cj is I’s signature on σ3,j .

19. (C, ek, ταI , sid , pid)← DecRj
(cj).

20. (C̃j , uk j)← Blindek (C).

21. σ4 ← SignRj
(sid , ek , C̃j).

22. Send (sid , C̃j , σ4) to S.

32. Get (sid , k̃j , σ5) from S.

33. Verify that σ5 is S’s signature on (sid , k̃j).

34. kj ← Unblindukj
(k̃j).

35. Session key: kνRj
← KDF(′′1′′, kj , sid)

36. Key confirmation: τνRj
← KDF(′′2′′, kj , sid)

If τνRj
= ταI then

Accept and output kνRj
.

else
Reject.

Phase II of S running oracle
∏β

S as server on message (sid , C̃j , σ4) from
Rj , with stored state (sid , I, pid , dk , T):

23. Lock the state (sid , . . .) until done.

24. Verify that σ4 is Rj ’s signature on (sid , ek , C̃j).

25. Verify that Rj ∈ pid .

26. Verify that Rj 6∈ T .
27. k̃j ← Decapdk (C̃j).

28. σ5 ← SignS(sid , k̃j).

29. Send (sid , k̃j , σ5) to Rj .

30. Let T ′ = T ∪ {Rj}.
31. Update the state (sid , . . . , T) to (sid , . . . , T ′).

Figure 11: Part 2. The three roles of the group key exchange protocol.
Suppose {Rj}j∈J are the identities of users that I wishes to share
a common session key with (pid = I|{Rj}j∈J). Note that the line
numbering indicates the order in which the lines of the various roles
are reached during a protocol execution.

Offline Assisted Group Key Exchange 41

Theorem 2. Consider an adversary A against the GKE protocol
OAGK running with n users, having at most s sessions, each involving
at most r responders. Then adversaries B0, B1, B2, B3 and B4 exist,
running in essentially the same time as A, such that

Advake
OAGK(A) ≤ AdvCR

H (B0) + (n + 1)Advsuf-cma
DS (B1)

+ snrAdvror-cca2
PKE (B2) + sAdvCR

KDF(B3) + srε

+ sAdvind
BKEM(B4, r)

+ negligible terms.

We sketch the ideas used in the proof. We need to guess which
session the adversary is going to issue the Test query for. If we guess
correctly, the game proceeds unchanged. If we guess incorrectly, the
game immediately stops, we flip a coin b′ and pretend that the adver-
sary output b′. It is clear that the adversary’s advantage in this game
is now 1/s times the original advantage.

We must also handle the situation where the adversary issues a
corruption query that would render our chosen session non-fresh. In
this case, the game immediately stops, we flip a coin b′ and pretend
that the adversary output b′. Observe that if we stop for this reason,
the adversary could not issue a test query (and our chosen session is
now the only session a test query could be issued for), so the adver-
sary would have no information about b. The probability that the
adversary guesses b correctly is therefore unchanged.

Depending on when the server is corrupted (if it is corrupted at
all), we need to bound the adversary’s advantage in slightly different
ways. An upper bound on the adversary’s advantage will then be the
sum of the two different bounds.

If we suppose that every partnered oracle in our session reached
status accepted before the server or any player running a partnered or-
acle is corrupted. In this case, thanks to the signatures and the nonces,
the adversary sees at most a blinded KEM public encapsulation key,
an encapsulation of a session key, at most r blinded encapsulations of
the same session key with corresponding blinded decapsulations. By
indistinguishability for the blinded KEM, it follows that the adver-
sary cannot distinguish between the actual encapsulated key and a
randomly chosen key, so the adversary has no information about b.

42 C. Boyd et al.

Next, suppose no responder player is ever corrupted. In this case,
the adversary (in the worst case) chooses the keys for the blinded
KEM, but the public key encryption ensures that the adversary cannot
see the actual encapsulation of the key. In other words, the adversary
only sees blinded encapsulations of an unknown encapsulation, which
reveals little information about the encapsulated key by ε-blindness
of the blinded KEM. Furthermore, the rigidity of the blinded KEM
ensures that every responder can detect an incorrect server response,
unless a collision in the key derivation function occurs.

5.3 Proof of Theorem 2

The proof of the theorem consists of a sequence of games.

Game 0

The first game is the game from Def. 6, defining security for our
protocol. Let E0 be the event that the adversary’s guess b′ equals
b from the Test oracle (and let Ei be the corresponding event for
Game i). Then

Advake
OAGK(A) =

∣∣∣Pr[E0]− 1/2
∣∣∣. (1)

Game 1

We modify the game so that if two server oracles or two initiator
oracles ever arrive at the same sid , the game stops.

For this to happen, either two different sessions at sid computing
algorithm must choose the same input values for hash function, or
we have found a collision in H. The former event is included inside
the event that two server oracles choose the same values for ek and
two initiator oracles choose the same values for NI. Since there are
at most s initiator oracles and server oracles, and s2 must be small
compared to the number of possible nonces and KEM encapsulation
keys, the only possible non-negligible term3 is the possibility of finding

3To be secure, the KEM key generation algorithm must provide sufficient min-
entropy to allow us to ignore the possibility that the KEM encapsulation keys
collide.

Offline Assisted Group Key Exchange 43

a collision in H. We can easily construct a collision-finding algorithm
B0 from A, which shows that

∣∣∣Pr[E1]−Pr[E0]
∣∣∣ ≤ AdvCR

H (B0) + negligible terms. (2)

Game 2

We modify the game so that if any oracle ever verifies a signature from
an uncorrupted principal that was not created by another oracle, the
game stops.

If this happens, our adversary has produced a forgery for DS. We
can trivially produce a forger B1 for the signature scheme using a
standard hybrid argument. Since our n users and the server all have
a signing key, we get that

∣∣∣Pr[E2]−Pr[E1]
∣∣∣ ≤ (n + 1)Advsuf-cma

DS (B1). (3)

By inspection of the protocol, it is now apparent that in Game 2,
the partnering relation on oracles from Def. 4 is an equivalence relation
on accepting oracles for which

• every equivalence class whose pid contains an uncorrupted ini-
tiator contains an initiator oracle; and

• if the server is uncorrupted, every equivalence class contains
exactly one server oracle.

Furthermore, this equivalence relation can be extended to an equiv-
alence relation on all oracles, where oracles are related if and only if
they have the same sid .

Game 3

The next modification we make is to guess which session the adver-
sary will query with the Test query, by choosing a number uniformly at
random from {1, 2, . . . , s}, identifying the corresponding initiator or-
acle and guessing that session. If the adversary sends the Test query
to this session, we proceed as usual. Otherwise, we stop when the

44 C. Boyd et al.

adversary issues the Test query, flip a coin b′ and pretend that the
adversary output b′.

Since we choose the session randomly, the adversary cannot know
anything about which session we choose. It follows that

∣∣∣Pr[E2]− 1/2
∣∣∣ = s

∣∣∣Pr[E3]− 1/2
∣∣∣. (4)

Game 4

The next modification we make is that if the adversary every issues a
Corrupt query such that our chosen session becomes unfresh, we stop
the game, flip a coin b′ and pretend that the adversary output b′.

If we never stop the game, this game proceeds exactly as Game 3.
If the adversary corrupts players so that our chosen session be-

comes unfresh, the adversary cannot ask a Test query of our session.
This means that in Game 3, the eventual Test query would go to some
other session, which would cause the game to stop and a coin b′ to be
flipped.

We get that
Pr[E4] = Pr[E3]. (5)

Let F be the event that the server is corrupted before our chosen
session has completed. Referring to the two clauses in Def. 5, if F is
false, the first clause applies, otherwise the second clause applies.

It is easy to show that

|Pr[E4]− 1/2| ≤ |Pr[E4|F]− 1/2|+ |Pr[E4|¬F]− 1/2|. (6)

We can therefore analyse the two cases separately, which we shall
proceed to do, using two sequences of games, each beginning with
Game 4.

Game 5

We begin by assuming that the server is corrupted, which by the
freshness requirements means that the adversary will never get to
corrupt the players in our chosen session. We modify the game by
having our initiator oracle encrypt random messages instead the real

Offline Assisted Group Key Exchange 45

messages. Any responder oracle that receives this exact ciphertext
will use values directly from our initiator oracle, instead of decrypting
the (nonsense) ciphertext.

We shall now use A and any difference in Pr[E4|F] and Pr[E5]
to construct an adversary B2 against multi-user security of public key
encryption, as defined in Appendix A.

Our adversary B2 works as follows:

• It gets encryption keys for the users as input.

• When B2 must simulate a responder oracle that gets input from
a corrupted initiator, it uses its decryption oracle to get the
decryption of the ciphertexts.

• When B2 simulates responders that get input from an uncor-
rupted initiator, then because we have forbidden signature forg-
eries, the ciphertext was created by an initiator oracle, so B2
knows what is inside the ciphertext and does not need to de-
crypt that ciphertext.

• When the adversary corrupts a principal, B2 gets the decryption
key from its oracle.

• When simulating the initiator oracle of our chosen session, B2
uses its encryption oracle to encrypt the messages.

We see that if B2’s encryption oracle encrypts the real messages, B2
perfectly simulates the situation in Game 4 given F . If B2’s encryption
oracle encrypts random messages, B2 perfectly simulates the situation
in Game 5 given F .

We get that
∣∣∣Pr[E5|F]−Pr[E4|F]

∣∣∣ ≤ nrAdvror-cca2
PKE (B2). (7)

Game 6

Next, we modify the responder oracles in our chosen session so that
they reject if the unblinded decapsulated key kj computed in Step 34
does not match the key k computed by the initiator oracle in Step 13.

46 C. Boyd et al.

If a responder oracle rejects in this game, but would not have
rejected in the previous game, it has found a collision in KDF. We
can therefore construct a collision finder B3 such that

∣∣∣Pr[E6|F]−Pr[E5|F]
∣∣∣ ≤ AdvCR

KDF(B3). (8)

Game 7

In this game, we modify the responder oracles of our chosen session so
that instead of using the encapsulation sent by the initiatior oracle,
they create their own encapsulation of a random, independent key
using the corrupt server’s encapsulation key, blind it and compare
the unblinded decapsulation with this key. Instead of computing the
key to be output, they simply output the one output by the initiator
oracle.

By rigidity, there is exactly one server response that a responder
oracle will accept, and this answer depends only on the blinding sent
by the responder, not on which encapsulation was used to create the
blinding.

It follows by ε-blindness that
∣∣∣Pr[E7|F]−Pr[E6|F]

∣∣∣ ≤ rε. (9)

Furthermore, we see that in this game, the adversary has no infor-
mation about the key chosen by the initiator oracle and later output
by the responder oracles. This means that if the adversary asks a Test
query for this session the response will be a random key, regardless of
the value of b. It follows that

Pr[E7|F] = 1/2. (10)

By equations (7)–(10) we get that
∣∣∣Pr[E4|F]− 1/2

∣∣∣ ≤ nrAdvror-cca2
PKE (B2) +AdvCR

KDF(B3) + rε. (11)

Game 5’

Now we assume that the server is not corrupted until every responder
has accepted. We modify the game so that in our chosen session, the

Offline Assisted Group Key Exchange 47

initiator oracle ignores the encapsulated key and instead outputs a
randomly chosen key. The responder oracles also ignore the key they
compute and instead output the key chosen by the initiator oracle.

We can now construct an adversary B4 against indistinguishability
for our blinded KEM. The adversary B4 gets an encapsulation key, an
encapsulation, a key and r pairs of blindings and blinded decapsula-
tions as input. It uses the encapsulation key to simulate the server
message to the initiator oracle. It uses the encapsulation to simulate
the messages to the responders. And it uses the blindings and blinded
decapsulations to simulate the conversations between the responders
and the server. Finally, it has the oracles of our chosen session output
its input key.

We see that if the key input to B4 is the real encapsulated key, then
B4 perfectly simulates the situation in Game 4 given ¬F . If the key
input to B4 is a random key, then B4 perfectly simulates the situation
in this game given ¬F .

We get that
∣∣∣Pr[E5′ |¬F]−Pr[E4|¬F]

∣∣∣ = Advind
BKEM(B4, r). (12)

Furthermore, if the adversary asks a Test query for our chosen
session in this game, the response will be a random key regardless of
the value of b. It follows that

Pr[E5′ |¬F] = 1/2. (13)

By equations (12) and (13) we get that
∣∣∣Pr[E4|¬F]− 1/2

∣∣∣ ≤ Advind
BKEM(B4, r). (14)

The claim now follows by equations (1)–(6), (11) and (14).

5.4 Instantiating the protocol with the DH-BKEM

We instantiate the above offline assisted group key exchange protocol
OAGK with the DH-based blinded KEM from Section 4.1, the protocol
denoted by DH-OAGK. In this instantiation, we choose the nonce NI

from the group G.

48 C. Boyd et al.

In Fig. 12, we present the core of the resulting protocol (without
identities, nonces, session identifiers, key confirmation, authentication
and encryption) similar to Fig. 9. We only show one responder.

Thm. 1 and Thm. 2 show that this instantiation is secure.

S

1. dk $←− Z∗q , ek ← gdk 4. k̃ ← C̃dk

I

2. i $←− Z∗q
C ← gi

k ← eki

R

3. t $←− Z∗q
C̃ ← Ct

uk ← t−1

5. k = k̃uk

1. ek

2. {C}

3. C̃
4. k̃

Figure 12: Running protocol DH-OAGK with one responder, where
{C} = EncR(C, · · ·).

References

[1] Masayuki Abe, Rosario Gennaro, Kaoru Kurosawa, and Victor
Shoup. Tag-KEM/DEM: A new framework for hybrid encryp-
tion and a new analysis of Kurosawa–Desmedt KEM. In Ronald
Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, volume 3494 of Lecture
Notes in Computer Science, pages 128–146. Springer, 2005.

[2] Dan Boneh and Alice Silverberg. Applications of multilinear
forms to cryptography. IACR Cryptology ePrint Archive, 2002:80,
2002.

[3] Dan Boneh and Mark Zhandry. Multiparty key exchange, effi-
cient traitor tracing, and more from indistinguishability obfusca-

Offline Assisted Group Key Exchange 49

tion. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014: 34th Annual Cryptology Confer-
ence, pages 480–499. Springer Berlin Heidelberg, 2014.

[4] Emmanuel Bresson and Mark Manulis. Securing group key ex-
change against strong corruptions. In Masayuki Abe and Virgil D.
Gligor, editors, Proceedings of the 2008 ACM Symposium on In-
formation, Computer and Communications Security, ASIACCS
2008, pages 249–260. ACM, 2008.

[5] Mike Burmester and Yvo Desmedt. A secure and efficient con-
ference key distribution system. In Alfredo De Santis, editor,
Advances in Cryptology - EUROCRYPT ’94, volume 950 of Lec-
ture Notes in Computer Science, pages 275–286. Springer, 1995.

[6] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure
public-key encryption scheme. J. Cryptology, 20(3):265–294,
2007.

[7] Cheng-Kang Chu, Sherman S. M. Chow, Wen-Guey Tzeng, Jiany-
ing Zhou, and Robert H. Deng. Key-aggregate cryptosystem for
scalable data sharing in cloud storage. IEEE Trans. Parallel Dis-
trib. Syst., 25(2):468–477, 2014.

[8] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican,
and Kevin Milner. On ends-to-ends encryption: Asynchronous
group messaging with strong security guarantees. Cryptology
ePrint Archive, Report 2017/666, 2017. https://eprint.iacr.
org/2017/666.

[9] Ronald Cramer and Victor Shoup. Design and analysis of practi-
cal public-key encryption schemes secure against adaptive chosen
ciphertext attack. IACR Cryptology ePrint Archive, 2001:108,
2001.

[10] Ronald Cramer and Victor Shoup. Design and analysis of practi-
cal public-key encryption schemes secure against adaptive chosen
ciphertext attack. SIAM J. Comput., 33(1):167–226, 2003.

50 C. Boyd et al.

[11] Alexander W. Dent. A designer’s guide to KEMs. In Ken-
neth G. Paterson, editor, Cryptography and Coding, 9th IMA In-
ternational Conference, Cirencester, UK, December 16-18, 2003,
Proceedings, volume 2898 of Lecture Notes in Computer Science,
pages 133–151. Springer, 2003.

[12] David Derler, Tibor Jager, Daniel Slamanig, and Christoph
Striecks. Bloom filter encryption and applications to efficient
forward-secret 0-rtt key exchange. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April
29 - May 3, 2018 Proceedings, Part III, volume 10822 of Lecture
Notes in Computer Science, pages 425–455. Springer, 2018.

[13] Weizheng Gao, Kashi Neupane, and Rainer Steinwandt. Tuning a
two-round group key agreement. Int. J. Inf. Sec., 13(5):467–476,
2014.

[14] M. D. Green and I. Miers. Forward secure asynchronous messag-
ing from puncturable encryption. In 2015 IEEE Symposium on
Security and Privacy, pages 305–320, May 2015.

[15] Matthew Green. Secure blind decryption. In Proceedings of
the 14th International Conference on Practice and Theory in
Public Key Cryptography Conference on Public Key Cryptogra-
phy, PKC’11, pages 265–282, Berlin, Heidelberg, 2011. Springer-
Verlag.

[16] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer.
0-RTT key exchange with full forward secrecy. In EUROCRYPT
(3), volume 10212 of Lecture Notes in Computer Science, pages
519–548, 2017.

[17] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from
weakened key encapsulation. In Alfred Menezes, editor, Advances
in Cryptology - CRYPTO 2007, 27th Annual International Cryp-
tology Conference, volume 4622 of Lecture Notes in Computer
Science, pages 553–571. Springer, 2007.

Offline Assisted Group Key Exchange 51

[18] Jonathan Katz and Moti Yung. Scalable protocols for authen-
ticated group key exchange. In Dan Boneh, editor, Advances
in Cryptology - CRYPTO 2003, pages 110–125. Springer Berlin
Heidelberg, 2003.

[19] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid
encryption scheme. In Matthew K. Franklin, editor, Advances in
Cryptology - CRYPTO 2004, 24th Annual International Cryptol-
ogyConference, Santa Barbara, California, USA, August 15-19,
2004, Proceedings, volume 3152 of Lecture Notes in Computer
Science, pages 426–442. Springer, 2004.

[20] István Lám, Szilveszter Szebeni, and Levente Buttyán.
Invitation-oriented TGDH: key management for dynamic groups
in an asynchronous communication model. In 41st International
Conference on Parallel Processing Workshops, ICPPW 2012,
pages 269–276. IEEE Computer Society, 2012.

[21] István Lám, Szilveszter Szebeni, and Levente Buttyán. Treso-
rium: Cryptographic file system for dynamic groups over un-
trusted cloud storage. In 41st International Conference on Par-
allel Processing Workshops, ICPPW 2012, pages 296–303. IEEE
Computer Society, 2012.

[22] Xuefeng Liu, Yuqing Zhang, Boyang Wang, and Jingbo Yan.
Mona: Secure multi-owner data sharing for dynamic groups in
the cloud. IEEE Trans. Parallel Distrib. Syst., 24(6):1182–1191,
2013.

[23] Moxie Marlinspike and Trevor Perrin. The X3DH key agreement
protocol. https://signal.org/docs/specifications/x3dh/,
November 2016.

[24] Kouichi Sakurai and Yoshinori Yamane. Blind decoding, blind
undeniable signatures, and their applications to privacy protec-
tion. In Proceedings of the First International Workshop on Infor-
mation Hiding, pages 257–264, London, UK, UK, 1996. Springer-
Verlag.

52 C. Boyd et al.

A Multi-user Public-Key Encryption Security

In the proof of the main theorems, it is convenient to consider a multi-
user variant of public key encryption. The security notion we consider
is equivalent to the usual real-or-random security notion for public key
encryption. We first explain and define the notion and then prove the
relevant theorem.

We consider a multi-user setting with n users. All users use PKE,
each user Ui keeps their own secret decryption key sk i and all public
encryption keys are assumed to be known to the public (and thus all
algorithms).

For our security analysis we define the adversary’s capacity. The
adversary is given all public keys and can ask for challenge encryp-
tions of any (valid) message under different public keys. In a chosen-
ciphertext attack the adversary is allowed to ask for decryptions of
arbitrary ciphertexts, except for those that would allow a trivial win.

We also give the adversary the ability to corrupt a user, that is,
obtain the secret key of the corrupted user. In order to prevent trivial
wins, we must restrict this capability to users for which the adversary
has not yet asked for challenge encryptions. (This is a fundamen-
tal restriction for ordinary public-key encryption. For other notions
such as puncturable encryption or non-committing encryption, this
restriction could be somewhat relaxed.)

We now define real-or-random indistinguishability for a multi-user
public-key encryption scheme under chosen-ciphertext attack and cor-
ruption attack (mu-ror-cca2): an adversary cannot distinguish encryp-
tions of chosen plaintexts, possibly encrypted under different public
keys, from the encryptions of equal-length random strings, encrypted
under the same public keys.

In the definition of the security experiment we employ a list FLIST
of of forbidden ciphertext, a list ULIST, and a corrupted user CLIST to
prevent trivial wins.

Remark 1. We now describe the restrictions on our adversaries that
we enforce by using FLIST, ULIST and CLIST. If the adversary asks its
real-or-random (O.RoR) challenge oracle for some corrupted user (that
belongs to CLIST), the oracle will return encryptions of real messages.

Offline Assisted Group Key Exchange 53

If the adversary asks for decryptions of some ciphertext that it received
from its O.RoR oracle, the adversary will obtain nothing (to stop trivial
wins). In a Corrupt query, the adversary cannot reveal the secret key of
some user in ULIST, since the challenge oracle has returned encryptions
under their key (which means that revealing the key would allow the
adversary to win trivially by decrypting the challenge ciphertext).

Definition 12. Let PKE = (KGpke,Enc,Dec) be a public-key en-
cryption scheme. Then the mu-ror-cca2 advantage of an adversary
A against PKE is defined as

Adv
(t ,n, c)-mu-ror-cca2
PKE (A) = 2

∣∣∣∣Pr[Exp
(t ,n, c)-mu-ror-cca2
PKE (A) = 1]− 1

2

∣∣∣∣.

where n is the number of users, c the maximal number of corrupted
users and t the maximal number of challenge ciphertexts the adversary
can receive, respectively. The experiment Exp

(t ,n, c)-mu-ror-cca2
PKE (A) is

given in Fig. 13.

Exp
(t ,n, c)-mu-ror-cca2
PKE (A) :

b
$←− {0, 1}

FLIST,ULIST,CLIST ← ∅
for j ∈ {1, . . . , r} do

(sk j , pk j)← KGpke−→
pk ← −→pk ∪ pk j

b′ ← AO.RoRb,O.Dec,O.Corrupt(
−→
pk)

return b′ ?
= b

O.Corrupt(pk)
if pk ∈ ULIST then
return ⊥

CLIST ← CLIST ∪ {pk}
return sk

O.RoRb(pk ,m) :
if pk ∈ CLIST then
return c← Encpk (m)

m1 ← m

m0
$←−Mpk

c← Encpk (mb)
ULIST ← ULIST ∪ {pk}
FLIST ← FLIST ∪ {c}
return c

O.Dec(pk , c)
if c ∈ FLIST then
return ⊥

m← Decsk (c)
return m

Figure 13: The experiment defining (t ,n, c)-mu-ror-cca2 security for
a public-key encryption scheme PKE = (KGpke,Enc,Dec).

54 C. Boyd et al.

The following result describes the relationship between the usual
ror-cca2 notion and the mu-ror-cca2 notion.

Theorem 3. Let PKE = (KGpke,Enc,Dec) be a public-key encryption
scheme. Let A be an adversary against PKE under adaptive chosen
ciphertext attack and corruption attack in the multi user setting, run-
ning with n users. Suppose c is the maximal number of corrupted
users, t is the maximal number of challenge ciphertexts the adver-
sary can receive. Then there exists an adversary B against PKE under
adaptive chosen ciphertext attack in the single user setting, such that

Adv
(t ,n, c)-mu-ror-cca2
PKE (A) ≤ ntAdvror-cca2

PKE (B).

A.1 Proof of Theorem 3

The proof is in three parts. The first part is a straight-forward hybrid
argument, reducing the number of key pairs to one. The second part
shows that when we only consider a single key pair, we can disregard
the corruption oracle. And finally, the third part is again a straight-
forward hybrid argument reducing the number of challenge encryp-
tions to one. This completes the argument, since (1, 1, 0)-mu-ror-cca2
is the same as ror-cca2.

Part 1. We first prove that there exists an adversary A1 against
PKE under adaptive chosen ciphertext attack and corruption attack
in the single user setting, such that

Adv
(t ,n, c)-mu-ror-cca2
PKE (A) ≤ nAdv

(t , 1, 1)-mu-ror-cca2
PKE (A1). (15)

Proof. We use a hybrid argument with n + 1 hybrid games, counting
from 0. For corrupted users, O.RoR will always encrypt real messages.
In the ith hybrid game the challenge oracle O.RoR will encrypt real
messages for the ith first public keys. For the remaining n − i public
keys, the challenge oracle will encrypt random messages.

An adversary’s advantage is bounded by n times the average dis-
tinguishing advantage for the same adversary against two consecutive
hybrid games.

Offline Assisted Group Key Exchange 55

Now we use a (t ,n, c)-adversary A to create a (t , 1, 1)-adversary
A1 against the scheme, and prove that this new adversary has the
same advantage as the average distinguishing advantage for A against
two consecutive hybrid games. The adversary A1 is given in Fig. 14.

If A1’s challenge oracle always encrypts the real message, then
A1 perfectly simulates the ith hybrid game for A. Likewise, if A1’s
challenge oracle always encrypts random messages, then A1 perfectly
simulates the i− 1th hybrid game for A.

When A1 has chosen i, and thereby the two hybrid games to po-
tentially simulate, its advantage is exactly equal to the distinguishing
advantage of A for the two consecutive hybrid games chosen. Since A1

chooses i uniformly at random, the advantage of A1 is exactly equal
to the average distinguishing advantage of A against two consecutive
hybrid games.

The claim follows.

Part 2. We now prove that there exists an (t , 1, 0)-mu-ror-cca2 ad-
versary A2 against PKE such that

Adv
(t , 1, 1)-mu-ror-cca2
PKE (A1) = Adv

(t , 1, 0)-mu-ror-cca2
PKE (A2). (16)

Proof. We first note that if A1 calls its corruption oracle on its sin-
gle public key, it has no way to get any information about b, so its
advantage is 0.

The adversary A2 runs A1. It forwards any O.RoR and O.Dec
queries from A1 to its own oracles. If A1 queries its corruption oracle,
A2 stops, flips a fair coin b′ and outputs b′.

If A1 does not query its corruption oracle, A2 proceeds exactly as
A1 and wins with exactly the same probability. Furthermore, if A1

does query its corruption oracle, A2 does not proceed exactly as A1,
but it wins with exactly the same probability.

Let E be the event that A1 wins, E′ the event that A2 wins, and
let F be the event that A1 queries its corruption oracle, while F ′ is
the probability that A2 flips a fair coin to determine its result. Note
that Pr[F] = Pr[F ′] by definition, and Pr[E|F] = Pr[E′|F ′] and

56 C. Boyd et al.

Reduction A1.

i
$←− {1, 2, . . . ,n}

FLIST,ULIST,CLIST ← ∅
receive pk i
for j ∈ {1, . . . ,n} \ {i} do

(sk j , pk j)← KGpke−→
pk ← (pk1, pk2, . . . , pkn)

b′ ← AO.RoRb,O.Dec,O.Corrupt(
−→
pk)

return b′

O.Corrupt(pk j)
if pk j ∈ ULIST then
return ⊥

if pk j = pk i then
sk ← O.Corrupt(pk i)

else
sk ← sk j

CLIST ← CLIST ∪ {pk j}
return sk

O.RoRb(pk j ,m) :
if pk j ∈ CLIST then
return c← Encpkj

(m)

m$ $←−Mpk

if pk j = pk i then
c← O.RoR(pk i,m)

if j < i then
c← Encpkj

(m)
if j > i then
c← Encpkj

(m$)
ULIST ← ULIST ∪ {pk j}
FLIST ← FLIST ∪ {c}
return c

O.Dec(pk j , c)
if c ∈ FLIST then
return ⊥

if pk j = pk i then
m← O.Dec(pk i, c)

if j 6= i then
m← Decskj

(c)
return m

Figure 14: Reduction A1 playing Exp
(t , 1, 1)-mu-ror-cca2
PKE (A1), used in

proof of (15).

Pr[E|¬F] = Pr[E′|¬F] by the above paragraphs. Then we have

Pr[E] = Pr[E|F]Pr[F] +Pr[E|¬F]Pr[¬F]
= Pr[E′|F ′]Pr[F ′] +Pr[E′|¬F ′]Pr[¬F ′]
= Pr[E′].

The claim follows.

Offline Assisted Group Key Exchange 57

Part 3. We now prove, again using a standard hybrid argument,
that there exists an (1, 1, 0)-mu-ror-cca2 adversary A3 such that

Adv
(t , 1, 0)-mu-ror-cca2
PKE (A2) ≤ tAdv

(1, 1, 0)-mu-ror-cca2
PKE (A3). (17)

Proof. Again, we have a hybrid argument with t + 1 hybrid games,
counting from 0. In the ith hybrid game, the challenge oracle O.RoR
will encrypt the real message for the first i queries, and then encrypt
random messages for the remaining t − i queries.

An adversary’s advantage is bounded by t times the average dis-
tinguishing advantage for the same adversary against two consecutive
hybrid games.

Now we use a (t , 1, 0)-mu-ror-cca2 adversaryA2 to create a (1, 1, 0)-
mu-ror-cca2 adversary A3 against the scheme, and prove that this new
adversary has the same advantage as the average distinguishing ad-
vantage for A2 against two consecutive hybrid games. The adversary
A3 is given in Fig. 15

Reduction A3.
receive pk
FLIST ← ∅
b′ ← AO.RoRb,O.Dec,O.Corrupt

2 (pk)
return b′

O.Dec(pk , c)
if c ∈ FLIST then
return ⊥

m← O.Dec(c)
return m

O.RoRb(pk ,mj) :

m$ $←−Mpk

if j = i then
c← O.RoR(mi)

if j < i then
c← Encpk (mj)

if j > i then
c← Encpk (m

$)
FLIST ← FLIST ∪ {c}
return c

Figure 15: The reduction A3 from (t , 1, 0)-mu-ror-cca2 to
(1, 1, 0)-mu-ror-cca2 used to prove (17).

If A3’s challenge oracle encrypts the real message, then A3 per-
fectly simulates the ith hybrid game for A2. Likewise, if A3’s chal-
lenge oracle encrypts a random message, then A3 perfectly simulates
the i− 1th hybrid game for A2.

58 C. Boyd et al.

When A3 has chosen i, and thereby two hybrid games to poten-
tially simulate, its advantage is exactly equal to the distinguishing
advantage of A2 for the two consecutive hybrid games chosen. Since
A3 chooses i uniformly at random, the advantage of A3 is exactly
equal to the average distinguishing advantage of A2 against two con-
secutive hybrid games.

The claim follows.

Now we observe that a (1, 1, 0)-mu-ror-cca2 adversary against the
scheme is simply an ror-cca2 adversary, and the theorem follows from
equations (15)–(17).

Offline Assisted Group Key Exchange 59

Paper ii

Cloud-assisted Asynchronous Key Transport
with Post-Quantum Security

Gareth T. Davies, Herman Galteland, Kristian Gjøsteen and
Yao Jiang

Published in the 25th Australasian Conference on Information
Security and Privacy, ACISP2020.

Cloud-assisted Asynchronous Key Transport
with Post-Quantum Security

Gareth T. Davies1, Herman Galteland2, Kristian Gjøsteen2, and Yao
Jiang2

1Bergische Universität Wuppertal, Germany.
davies@uni-wuppertal.de

2Norwegian University of Science and Technology, NTNU, Norway.
{herman.galteland,kristian.gjosteen,yao.jiang}

@ntnu.no

Abstract
In cloud-based outsourced storage systems, many users wish to

securely store their files for later retrieval, and additionally to share
them with other users. These retrieving users may not be online at
the point of the file upload, and in fact they may never come online at
all. In this asynchoronous environment, key transport appears to be
at odds with any demands for forward secrecy. Recently, Boyd et al.
(ISC 2018) presented a protocol that allows an initiator to use a mod-
ified key encapsulation primitive, denoted a blinded KEM (BKEM),
to transport a file encryption key to potentially many recipients via
the (untrusted) storage server, in a way that gives some guarantees of
forward secrecy. Until now all known constructions of BKEMs are
built using RSA and DDH, and thus are only secure in the classical
setting.

We further the understanding of secure key transport protocols in
two aspects. First, we show how to generically build blinded KEMs
from homomorphic encryption schemes with certain properties. Sec-
ond, we construct the first post-quantum secure blinded KEMs, and
the security of our constructions are based on hard lattice problems.

Keywords: Lattice-based cryptography, NTRU, Group Key Exchange, Blinded
Key Encapsulation, Forward Secrecy, Cloud Storage, Post-quantum cryp-
tography

63

1 Introduction

Consider the following scenario: a user of a cloud storage service wishes to
encypt and share a file with a number of recipients, who may come online to
retrieve the file at some future time. In modern cloud storage environments,
access control for files is normally done via the storage provider’s interface,
and the user is usually tasked with performing any encryption and manag-
ing the resulting keys. However the users do not trust the server, and in
particular may be concerned that key compromise may occur to any of the
involved parties at some point in the future – they thus desire some forward
secrecy guarantees. A number of approaches can be taken for transporting
a (randomly chosen) file encryption key from the initiator to the recipi-
ents. The first option is public-key encryption – simply encrypting under
each recipient’s public key. This approach does not provide any forward
secrecy, however if the initiator were to use puncturable encryption then
this would provide a (currently inefficient) solution for achieving forward
secrecy. The users could also perform a (necessarily interactive) group key
exchange protocol, however this requires all recipients to be online: a dis-
qualifying criterion for many usage scenarios. The challenge of providing
efficient key transport that allows asynchronous fetching by the recipients
and simultaneously gives some forward secrecy guarantees appears to in-
voke trade-offs.

Recent work by Boyd et al. [10] (hereafter BDGJ) provided a solu-
tion that utilized the high availability of the storage provider. The ini-
tiator essentially performs key encapsulation, using an (public) encapsu-
lation key belonging to the server, and sends an encapsulated value (out-
of-band) to each recipient. Then, each recipient blinds this value in such a
way that when it asks the server to decapsulate, the server does not learn
anything about the underlying file encryption key, and the homomorphic
properties of the scheme enable successful unblinding by the recipient.
This encapsulation-and-blinding procedure was named by the authors as
a blinded KEM (BKEM), and the complete protocol built from this was
called offline assisted group key exchange (OAGKE). Forward secrecy is
achieved if the recipients delete their ephemeral values after recovering the
file encryption key, and if the server deletes its decapsulation key after all
recipients have been online and recovered the file.

64 G. Davies et al.

A conceptual overview of the construction, which can achieve all these
security properties, is described in Figure 1, and we refer to BDGJ [10] for
full details. In the protocol, the server runs the key generation algorithm
KG and the decapsulation algorithm Decap to help the initiator share file
encryption key k. The blinding algorithm Blind, executed by the respon-
der, should prohibit the server from learning any information about the file
encryption key. After the server has decapsulated a blinded encapsulation,
the responder can use the unblinding algorithm Unblind to retrieve the file
encryption key.

S

(ek , dk)← KG k̃ ← Decapdk (C̃)

I

(C, k)← Encapek

R

(C̃, uk)← Blindek (C)

k ← Unblinduk (k̃)

1. ek

2. C

3. C̃4. k̃

Figure 1: A simplified overview of an OAGKE protocol [10] between an
initiator I, server S and potentially many recipients R (one is given here for
ease of exposition), built using a BKEM. File encryption key k is used by
I to encrypt one or more files. The numbered arrows indicate the order in
which operations occur.

While the approach appears promising, their two BKEM constructions
built from DDH and RSA, are somewhat ad hoc, and further do not resist
attacks in the presence of quantum computers. In this work we focus on one
of the components of the OAGKE protocol, namely the BKEM scheme. Our
wish is to achieve a post-quantum secure OAGKE protocol, where we need
the individual components – a blinded KEM (parameterized by a homo-
morphic encryption scheme), a collision resistant hash function, a digital
signature scheme, and a key derivation function – to all be post-quantum
secure. Achieving post-quantum security of all components except for the
BKEM has been covered extensively in prior work, and thus we focus on
finding post-quantum constructions of BKEMs.

Cloud-assisted Asynchronous Key Transport 65

Much work has been done in the past on constructing regular key encap-
sulation mechanisms (KEMs) [1,18,19,21,30,32] that are post-quantum se-
cure [8,14,31,35,37] (the ongoing NIST standardization effort [40] specif-
ically asks for KEMs), however BKEMs do not generalize KEMs, since
decapsulation operates on blinded ciphertexts.

Providing post-quantum-secure BKEMs invokes a number of technical
challenges. The Blind algorithm must modify the file encryption key by in-
corporating some randomness r, in such a way that after decapsulation (by
the server) the recipient can strip off r to recover the file encryption key. In
the DDH setting this is straightforward since the recipient can simply expo-
nentiate the encapsulation, and apply the inverse on the received value from
the server (the RSA setting is similarly straightforward), and, importantly,
the encapsulation (with the underlying file encryption key) and multiple
blinded samples (each with a value that is derived from the file encryption
key) will all look like random group elements. In the security game for
BKEMs (as provided by BDGJ), the adversary receives: an encapsulation
of a ‘real’ key, a number of blinded versions of this encapsulation (blinded
encapsulations), a number of blinded versions of the ‘real’ key (blinded
keys), and either this ‘real’ key or a random key, and must decide which it
has been given. If the blinded key samples (the k̃s) leak information about
the file encryption key then the adversary’s task in this game becomes much
easier. For example, if the blinding algorithm alters the file encryption key
such that the blinded keys are located close to it then exhaustive search be-
comes possible. We overcome this hurdle by using a large blinding value
to hide the file encryption key. Similarly the blinded encapsulation samples
(the C̃s) can leak information about the blinding value used to hide the file
encryption key, which can be used to recover the file encryption key. For
example, if the blinded encapsulation is a linear combination of the original
encapsulation, the blinding value, and some small error then the distance
between the blinded encapsulation and the original encapsulation could re-
veal the blinding value, or a small interval containing it, and therefore the
file encryption key. By making sure blinded encapsulations look fresh then
all blinded encapsulation samples and the encapsulation looks independent
of each other. We use these techniques to provide secure BKEMs built from
(a variant of) NTRU [29, 41] and ideas from Gentry’s FHE scheme [24].

The second shortfall of the work of BDGJ lies in the non-generic na-

66 G. Davies et al.

ture of their constructions. The two provided schemes appear to have sim-
ilar properties, yet do not immediately indicate how any further BKEM
schemes could be constructed. We show how to generically build BKEMs
from homomorphic encryption schemes with minimal properties. This al-
lows us to more precisely cast the desirable properties of schemes used to
build BKEMs, generalizing the way that the responder alters the content of
an encapsulation (ciphertext) by adding an encrypted random value. Essen-
tially, the resulting blinded ciphertext is an encryption of the sum of a file
encryption key and the random value. The server can decrypt the blinded
ciphertext to retrieve the blinded key, and then the responder can unblind by
removing (subtracting) the random value.

1.1 Related work

Boyd et al. [10] formalized OAGKE and BKEMs, and provided BKEM
constructions based on Diffie-Hellman and RSA. To our knowledge these
are the only BKEM constructions in the literature.

Recent works on secure messaging have shown how to perform secure
key transport in the presence of pre-keys of the recipients [17, 38, 42]: we
wish to avoid this assumption in our system architecture. Puncturable en-
cryption has developed rapidly [6,22,27,28], however current constructions
are still impractical or unsuitable for the cloud-based key transport scenario
that we consider.

Gentry introduced the first fully homomorphic encryption (FHE) scheme,
based on lattice problems, and gave a generic framework [24]. Soon af-
ter, several FHE schemes followed this framework [11, 16, 23, 26]: all of
these schemes rely on the learning with errors (LWE) problem. Two FHE
schemes based their security on an overstretched variant of the NTRU prob-
lem [9, 33], however, subfield lattice attacks against this variant was subse-
quently found [2,15], and consequently these schemes are no longer secure.
As a side note, our NTRU based BKEM construction relies on the hardness
of the LWE problem.

To make a BKEM from existing post-quantum secure KEM schemes we
need, for each individual scheme, a method for altering the encapsulations
in a predictable way. Most of the post-quantum secure KEM schemes sub-
mitted to NIST are built from a PKE scheme, where we can use our tech-
niques to make a BKEM if the PKE scheme supports one homomorphic

Cloud-assisted Asynchronous Key Transport 67

operation. FrodoKEM is the only submission that advertises its additive
homomorphic properties of its FrodoPKE scheme [3]. Other submissions
based on lattices [34], LWE [4, 5, 20], or NTRU [7, 13] are potential candi-
dates for a BKEM construction. Note that the NTRU submission of Chen
et al. [13] does not use the Gaussian distribution to sample their polynomi-
als, and NTRU Prime of Bernstein et al. [7] uses a large Galois group to
construct their polynomial field, instead of a cyclotomic polynomial. Fur-
thermore, the NTRU contruction of Stehlé and Steinfeld [41] chooses the
distribution of the secret keys such that the public key looks uniformly ran-
dom and they provide a security proof which relies on this.

1.2 Our contribution

Our aim in this work is to further the understanding of the use of blinding
in cryptography attaining post-quantum security. In particular, we focus
on blinded KEMs and their possible instantiations, in order to deliver se-
cure key transport protocols in cloud storage environments. Specifically,
we provide:

• a generic homomorphic-based BKEM construction, and show that
it meets the expected indistinguishability-based security property for
BKEMs, under feasible requirements.

• two instantiations of our homomorphic-based BKEM, built from prim-
itives with post-quantum security. The proof chain is as follows.

Hard problems
Quantum, Gentry [24]−−−−−−−−−−−−−−→

or Lyubashevsky et al. [36]
IND-CPA HE

This work−−−−−→ IND-secure
HE-BKEM

As long as the underlying schemes HE (which rely on hard lattice problems)
are post-quantum secure, then our HE-BKEM schemes are post-quantum
secure.

1.3 Organization

In Section 2 we provide the necessary background of ideal lattices and the
discrete Gaussian Distribution. In Section 3 we formally define BKEMs
and their security. In Section 4 we construct a generic homomorphic BKEM
schemes and analyze its security requirements. In Section 5 we provide two
homomorphic-based BKEM constructions and prove that they are secure.

68 G. Davies et al.

L a lattice
B a basis of ideal lattice I

P(B) the half-open parallelepiped associated to the basis
B, where P(B) = {∑n

i=1 xibi | xi ∈ [−1/2, 1/2) ,
bi ∈ B}

R = Z[x]/(f(x)) a polynomial ring, where f(x) is a monic polynomial
of degree n

‖v‖ Euclidean norm of a vector v
‖B‖ norm of a basis B, where ‖B‖ = max1≤i≤n(‖bi‖)
L∗ dual lattice of L

γ×(R) multiplicative expansion factor
r mod B the distinguished representative of the coset r + I
R mod B set of all distinguished representatives in R

Bc(r) closed Euclidean ball centered at c with radius r
B(r) closed Euclidean ball centered at 0 with radius r
λi(L) the ith successive minimum

∆(D1, D2) statistical distance between two discrete distributions
D1 and D2

DL,s,c discrete Gaussian distribution over L centered at c
with standard deviation s

ηε(L) smoothing parameter for lattice L

Figure 2: Summary of notation used in this paper.

2 Preliminaries

This section introduces terminology and results from [24, 25, 39], and pro-
vides an introduction to our notation and building blocks for constructing
post-quantum secure homomorphic encryption schemes. In Fig. 2 we given
an overview of the notation used in the paper. Towards the end of this
section we detail two specific constructions of post-quantum secure homo-
morphic encryption schemes [24, 41].

Cloud-assisted Asynchronous Key Transport 69

2.1 Notation

Given n linearly independent vectors {b1, . . . ,bn}, bi ∈ Rm, the m-
dimensional lattice L generated by the vectors is L = {∑n

i=1 xibi | xi ∈
Z}. If n = m then L is a full-rank n-dimensional lattice, we always use
full-rank lattices in this paper.

Suppose B = {b1,b2, · · · ,bn} is a basis of I , letP(B) = {∑n
i=1 xibi |

xi ∈ [−1/2, 1/2) ,bi ∈ B} be the half-open parallelepiped associated to
the basis B. Let R = Z[x]/(f(x)) be a polynomial ring, where f(x) is a
monic polynomial of degree n. Any ideal I ⊆ R yields a corresponding in-
teger sublattice called ideal lattice of the polynomial ring. For convenience,
we identify all ideals of R with its ideal lattice. Let ‖v‖ be the Euclidean
norm of a vector v. Define the norm of a basis B to be the Euclidean norm
of its longest column vector, that is, ‖B‖ = max1≤i≤n(‖bi‖).

For a full-rank n-dimensional lattice L, let L∗ = {x ∈ Rn | 〈x,y〉 ∈
Z,∀y ∈ L} denote its dual lattice. If B is a basis for the full-rank lattice
L, then (B−1)T is a basis of L∗. Let γ×(R) = maxx,y∈R

‖x·y‖
‖x‖·‖y‖ be the

multiplicative expansion factor. For r ∈ R, define r mod B to be the
unique vector r′ ∈ P(B) such that r− r′ ∈ I . We call r mod B to be the
distinguished representative of the coset r + I . Denote R mod B = {r
mod B | r ∈ R} to be the set of all distinguished representatives in R,
this set can be chosen to be the same as the half-open parallelepiped P(B)
associated to the basis B. For convinience we treat R mod B and P(B)
as the same set. Let Bc(r) denote the closed Euclidean ball centered at c
with radius r, for c = 0 we write B(r). For any n-dimensional lattice L and
i = 1, . . . , n, let the ith successive minimum λi(L) be the smallest radius r
such that B(r) contains i linearly independent lattice vectors.

The statistical distance between two discrete distributions D1 and D2

over a set S is ∆(D1, D2) = 1
2

∑
s∈S |Pr[D1 = s]−Pr[D2 = s]|.

2.2 Discrete Gaussian Distributions over Lattices

Definition 1 (Discrete Gaussian Distribution). Let L ⊆ Rn be a lattice,
s ∈ R+, c ∈ Rn. For all x ∈ L, let ρs,c(x) = exp(−π ‖x− c‖2 /s2).
For a set S let ρs,c(S) =

∑
x∈S exp(−π ‖x− c‖2 /s2). Define the discrete

Gaussian distribution over L centered at c with standard deviation s to be

70 G. Davies et al.

the probability distribution

DL,s,c(x) =
ρs,c(x)

ρs,c(L)
.

If the standard deviation of a discrete Gaussian distribution is larger
than the smoothing parameter, defined below,then there are known, useful,
results of discrete Gaussian distributions that we will use in this paper.

Definition 2 (Smoothing parameter). For lattice L and real value ε > 0, let
the smoothing parameter ηε(L) denote the smallest s: ρ1/s(L

∗ \ {0}) ≤ ε.
We say that “s exceeds the smoothing parameter” if s ≥ ηε(L) for negligi-
ble ε.

Below we show that the discrete Gaussian distribution is spherical if its
standard deviation is larger than the smoothing parameter.

Lemma 1 (Micciancio and Regev [39]). Let L be any full-rank n-dimen-
sional lattice. For any c ∈ Rn, real ε ∈ (0, 1), and s ≥ ηε(L), we have

Pr[‖x− c‖ > s · √n | x← DL,s,c] ≤ 1 + ε

1− ε · 2
−n.

For a discrete Gaussian distribution over L centered at 0, with standard
deviation s, DL,s,0 we let the translated discrete Gaussian distribution over
L centered at any c, with standard deviation s, be DL,s,c. Below we show
that the statistical distance between the original discrete Gaussian distribu-
tion and its translated discrete Gaussian distribution is negligible when ‖c‖
is small.

Lemma 2 (Brakerski and Vaikuntanathan [12]). Let L be any full-rank n-
dimensional lattice. For any s ≥ ηε(L), and any c ∈ Rn, we have then the
statistical distance between DL,s,0 and DL,s,c is at most ‖c‖/s.

2.3 Gentry’s homomorphic encryption scheme

Let GHE = (KGGHE,EncGHE,DecGHE,AddGHE) be an (additively) Homo-
morphic encryption scheme derived from ideal lattices, with algorithms as
defined in Figure 3. The scheme is similar to Gentry’s somewhat-homomorphic
scheme [24]. The parameters of the GHE scheme are chosen as follows:

Cloud-assisted Asynchronous Key Transport 71

• Polynomial ring R = Z[x]/(f(x)),

• Basis BI of the ideal I ⊆ R,

• IdealGen takes (R,BI) as input and outputs public and secret bases
Bpk
J and Bsk

J of some ideal J , where I and J are relatively prime,

• Samp takes (BI ,x ∈ R, s) as input and outputs a sample from the
coset x + I according to a discrete Gaussian distribution with stan-
dard deviation s. In our construction we use the following two distri-
butions.

– Samp1(BI ,x, s) = x +DI,s,−x,

– Samp2(BI ,x, s) = x +DI,s,0.

• Plaintext space P = R mod BI is the set of distinguished represen-
tatives of cosets of I with respect to the basis BI .

KGGHE(R,BI) :

(Bpk
J ,B

sk
J)

$←− IdealGen(R,BI)

pk = (R,BI ,B
pk
J ,Samp), sk =

Bsk
J

return pk, sk
DecGHE(sk, ψ) :

π ← (ψ mod Bsk
J) mod BI

return π

EncGHE(pk, s, π ∈ P) :
ψ′ ← Samp(BI , π, s)

ψ ← ψ′ mod Bpk
J

return ψ
AddGHE(pk, ψ1, ψ2) :

ψ ← ψ1 + ψ2 mod Bpk
J

return ψ

Figure 3: The algorithms of the GHE homomorphic encryption
scheme, which is similar to Gentry’s somewhat homomorphic encryption
scheme [24].

Correctness. Let XEnc denote the image of Samp and XDec denote R
mod Bsk

J = P(Bsk
J). Notice that all ciphertexts are in XEnc + J, because

XDec is the set of distinguished representatives with respect to Bsk
J . The

correctness requirement of this encryption scheme is XEnc ⊆ XDec. Fur-
thermore, for the addition algorithm AddGHE to output valid ciphertexts we
require that XEnc +XEnc ⊆ XDec.

72 G. Davies et al.

Let rEnc be the smallest value such that XEnc ⊆ B(rEnc) and let rDec

be the largest value such that XDec ⊇ B(rDec). By the spherical property
of discrete Gaussian distribution (Lemma 1) we know that, for Samp1 as
above, XEnc is located inside the ball B(s

√
n) with high probability and

rEnc = s
√
n. For a general Samp algorithm, which is located in B(lSamp),

we have that rEnc ≤ (n +
√
nlSamp) ‖BI‖ [24]. For rDec we know that

rDec = 1/(2 ·
∥∥((Bsk

J)−1)T
∥∥) [24].

For GHE, if
√

2rEnc ≤ rDec, both ciphertexts and the sum of two ci-
phertexts decrypt to the correct message except for negligible probability.

2.4 The revised NTRU encryption scheme

The NTRU encryption scheme variant by Stehlé and Steinfeld [41], which
relies on the LWE problem, has the similar structure as Gentry’s homomor-
phic encryption scheme. We modify the NTRU scheme to use a discrete
Gaussian distribution as the noise distribution instead of an elliptic Gaus-
sian. The parameters of the scheme, given in Figure 4, are as follows:

• R = Z[x]/(xn + 1), where n ≥ 8 is a power of 2,

• q is a prime, 5 ≤ q ≤ Poly(n), Rq = R/q,

• p ∈ R×q , I = (p), the plaintext space P = R/p,

• set the noise distribution to be DZn,s,0.

Correctness Let ψ′ = fπ+ p(fe1 + ge2) ∈ Rq and ψ′′ = fπ+ p(fe1 +
ge2) ∈ R (not modulo q), if ‖ψ′′‖∞ ≤ q/2 then the decryption algorithm
will output π (see [41, Lemma 12]). We will perform a single homomorphic
addition and want to find a bound on the sum of two ciphertexts. Discrete
Gaussian samples are bounded by s

√
n with high probability (Lemma 1)

and the message space parameter p is a polynomial with small coefficients,
where we let pi denote the largest coefficient of p. We have

‖f(ψ1 + ψ2)‖∞ =
∥∥f(π1 + π2) + pi(f(e1 + e′1) + g(e2 + e′2))

∥∥
∞

≤ 2(p2
i (s
√
n)2 + p2

i s
√
n+ pis

√
n+ pi + (s

√
n)2)

≤ 8p2
i s

2n.

Cloud-assisted Asynchronous Key Transport 73

KGNTRU(n, q ∈ Z, p ∈ R×q , s > 0) :

while (f mod q) /∈ R×q do
f ′ ← DZn,s,0
f = p · f ′ + 1

while (g mod q) /∈ R×q do
g ← DZn,s,0

h = pg/f ∈ Rq
(pk, sk)← (h, f)
return (pk, sk)

EncNTRU(pk = h, s, π ∈ P) :
e1, e2 ← DZn,s,0
ψ ← π + pe1 + he2 ∈ Rq
return ψ

DecNTRU(sk = f, ψ) :
ψ′ = f · ψ ∈ Rq
π ← ψ′ mod p
return π

AddNTRU(ψ1, ψ2) :
ψ ← ψ1 + ψ2 ∈ Rq
return ψ

Figure 4: The algorithms of the revised NTRU encryption scheme [41].

Standard deviation s ≥ ηε(Zn) and has to satisfy ηε(Zn) ≤ s and 8p2
i s

2n <
q/2 for decryption to be correct with high probability. Then both ciphertexts
and the sum of two ciphertexts, in the revised NTRU encryption scheme,
decrypt to the correct message except for negligible probability.

2.5 Hard lattice problems

The following lattice problems, that are assumed to be hard, are used in the
paper.

Definition 3 (Shortest Vector Problem (SVP)). Given a basis B for a n-
dimensional lattice L, output a nonzero vector v ∈ L of length at most
λ1(L).

Definition 4 (Ideal Shortest Independent Vector Problem (SIVP)). Fix a
polynomial ring R and positive real γ ≥ 1. Let BI be a basis for an ideal
lattice I of R. Given BI , and parameters, output a basis B′I of I with
‖B′I‖ ≤ γ · λn(I).

Reduce Hard problems to the semantic security of Gentry’s encryption
scheme. The following two theorems describe Gentry’s reduction from
worst-case SIVP (believed to be a hard problem) to the semantic security of
the encryption scheme GHE, via the ideal independent vector improvement
problem (IVIP).

74 G. Davies et al.

Theorem 1 (Gentry [24, Corollary 14.7.1], reduce IVIP to semantic secu-
rity). Suppose that sIVIP < (

√
2sε − 4n2(max{‖BI‖})2)/(n4γ×(R) ‖f‖

max{‖BI‖}), where s is the Gaussian deviation parameter in the encryp-
tion scheme GHE. Also suppose that s/2 exceeds the smoothing parameter
of I , that IdealGen always outputs an ideal J with s ·√n < λ1(J), and that
[R : I] is prime. Finally, suppose that there is an algorithm A that breaks
the semantic security of GHE with advantage ε. Then there is a quantum
algorithm that solves sIVIP-IVIP for an ε/4 (up to negligible factors) weight
fraction of bases output by IdealGen.

Theorem 2 (Gentry [24, Theorem 19.2.3 and Corollary 19.2.5], reduce
SIVP to IVIP). Suppose dSIVP = (3 · e)1/n · dIVIP, where e is Euler’s con-
stant. Suppose that there is an algorithm A that solves sIVIP-IVIP for pa-
rameter sIVIP > 16·γ×(R)2 ·n5 ·‖f‖·g(n) for some g(n) that is ω(

√
log n),

whenever the given ideal has det(J) ∈ [a, b], where [a, b] = [dnIVIP, 2·dnIVIP].
Assume that invertible prime ideals with norms in [a, b] are not negligibly
sparse. Then, there is an algorithm B that solves worst-case dSIVP-SIVP.

In summary we have the following informal result, which we will use
to prove that our GHE-BKEM (see Section 5.4) is post-quantum secure.

Theorem 3 (Gentry [24]). If there exists an algorithm that breaks the se-
mantic security of GHE with parameters chosen as in Theorem 1 and Theo-
rem 2, then there exists a quantum algorithm that solves worst-case SIVP.

Reduce Hard problems to the semantic security of the revised NTRU
encryption scheme We define the ring learning with error problem as
follows. For s ∈ Rq and error distribution D over Rq, let As,D be a dis-
tribution that outputs tuples of the form (a, as + e), where a is sampled
uniformly at random from Rq and e is sampled from D. The problem is to
distinguish between tuples sampled fromAs,D and uniformly random ones.

We now introduce the tools necessary to analyze the NTRU construc-
tion.

Definition 5 (Ring-LWE). LetD be a distribution over a family of distribu-
tions, each over Rq. The Ring Learning With Errors Problem with param-
eters q, and D (R-LWEq,D) is as follows. Let D be sampled from D and
s be sampled uniformly at random from Rq. Given access to an oracle O

Cloud-assisted Asynchronous Key Transport 75

that produces samples in R2
q , distinguish whether O outputs samples from

the distribution As,D or U(R2
q). The distinguishing advantage should be

non-negligible.

Lyubashevsky et al. [36] proposed a reduction from SIVP or SVP (both
are thought to be hard problems) to R-LWE.

Theorem 4 (Lyubashevsky et al. [36]). Let α <
√

log n/n and q = 1
mod 2n be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). Then

there is a polynomial-time quantum reduction from O(
√
n/α)-approximate

SIVP (or SVP) on ideal lattices to R-LWEq,Ds
given only l(≥ 1) samples,

where s = α · (nl/ log(nl))1/4.

We consider a different variant of the R-LWE problem, namely R-LWE×HNF,
which is the same as R-LWEq,D except for the oracle O that outputs sam-
ples from the distribution A×s,D or U(R2

q), where A×s,D outputs (a, as + e)

with a ∈ R×q , s ∈ D. The analysis in the end of Section 2 of Stehlé and
Steinfeld [41] shows that when q = Ω(n), R-LWE×HNF remains hard.

The security proof of NTRU encryption scheme is similar to the security
proof of Lemma 3.8 of Stehlé and Steinfeld [41]. The proof relies on the
uniformity of public key and p ∈ R×q . We chose a slightly different error
distribution for our construction in Section 5.4, but adaption to our setting
is straightforward.

Lemma 3. Let n ≥ 8 be a power of 2 such that Φ = xn + 1 splits into
n irreducible factors modulo prime q ≥ 5. Let 0 < ε < 1/3, p ∈ R×q
and s ≥ 2n

√
ln(8nq) · q1/2+ε. For any IND-CPA adversary A against

NTRU encryption scheme, there exists an adversary B solving R-LWE×HNF
such that

AdvIND-CPA
NTRU (A) ≤ AdvR-LWE×

HNF
(B) + q−Ω(n).

3 Blinded KEM

The blinded KEM primitive is the most important building block that BDGJ
used to construct their key transport protocol [10] – also required are a sig-
nature scheme, a public-key encryption scheme, a hash function and a key
derivation function. In this paper we only focus on blinded KEMs.

76 G. Davies et al.

A blinded KEM scheme BKEM = (KG,Encap,Blind,Decap, Unblind)
is parameterized by a key encapsulation mechanism KEM = (KG, Encap,
Decap), a blinding algorithm Blind and an unblinding algorithm Unblind.
The key generation algorithm KG outputs an encapsulation key ek ∈ KE
and a decapsulation key dk ∈ KD. The encapsulation algorithm Encap
takes as input an encapsulation key and outputs a (file encryption) key
k ∈ KF together with an encapsulation C ∈ C of that key. The blinding
algorithm takes as input an encapsulation key and an encapsulation and out-
puts a blinded encapsulation C̃ ∈ C and an unblinding key uk ∈ KU . The
decapsulation algorithm Decap takes a decapsulation key and a (blinded)
encapsulation as input and outputs a (blinded) key k̃ ∈ KB . The unblinding
algorithm takes as input an unblinding key and a blinded key and outputs a
key.

Definition 6 (Correctness of a BKEM). We say that a blinded KEM scheme
BKEM has (1− ε)-correctness if:

Pr[Unblinduk (k̃) = k] ≥ 1− ε,

for (ek , dk) ← KG, (C, k) ← Encapek , (C̃, uk) ← Blindek (C) and k̃ ←
Decapdk (C̃).

(A KEM scheme KEM has (1− ε)-correctness if

Pr[Decapdk (C) = k] ≥ 1− ε,

where (ek , dk)← KG and (C, k)← Encapek .)
We parameterize all BKEM schemes by a public key encryption scheme

(PKE), since any PKE scheme can trivially be turned into a KEM. We mod-
ify the above definition to be a PKE-based BKEM, where the KEM algo-
rithms are described in Figure 5.

Definition 7 (PKE-based BKEM). We call BKEM a PKE-based BKEM if
the underlying scheme KEM = (KG,Encap,Decap) is parameterized by a
PKE scheme PKE = (KGPKE,Enc,Dec) as described in Figure 5.

Cloud-assisted Asynchronous Key Transport 77

KG(λ) :
pk, sk← KGPKE(λ)
(ek , dk)← (pk, sk)
return ek , dk

Encapek :

k
$←−M

C ← Encek (k)
return C, k

Decapdk (C̃) :

k̃ ← Decdk (C̃)
return k̃

Figure 5: KEM algorithms parameterized by a PKE scheme
PKE = (KGPKE,Enc,Dec).

3.1 Security

We define indistinguishability under chosen-plaintext attack (IND-CPA) for
public key encryption and indistinguishability (IND) for blinded KEMs, re-
spectively.

Definition 8. Let PKE = (KGPKE,Enc,Dec) be a public key encryption
scheme. The IND-CPA advantage of any adversary A against PKE is

AdvIND-CPA
PKE (A) = 2

∣∣∣Pr[ExpIND-CPA
PKE (A) = 1]− 1/2

∣∣∣ ,

where the experiment ExpIND-CPA
PKE (A) is given in Figure 6 (left).

Definition 9. Let BKEM = (KG,Encap,Blind,Decap,Unblind) be a blinded
KEM. The distinguishing advantage of any adversaryA against BKEM get-
ting r blinded encapsulations and their blinded decapsulation tuples is

AdvIND
BKEM(A, r) = 2

∣∣∣Pr[ExpIND
BKEM(A, r) = 1]− 1/2

∣∣∣ ,

where the experiment ExpIND
BKEM(A, r) is given in Figure 6 (right).

The value r represents the number of recipients in the OAGKE protocol
of BDGJ – in practice this will often be fairly small, and certainly bounded
by the number of users of the system.

4 Homomorphic-based BKEM

We now show how to turn a homomorphic encryption scheme with certain
properties into a BKEM, and analyze the security requirements of such a

78 G. Davies et al.

ExpIND-CPA
PKE (A) :

b
$←− {0, 1}

(pk, sk)← KGPKE

(m0,m1, state)
$←− A(pk)

Cb ← Encpk(mb)
b′ ← A(state, Cb)

return b′ ?
= b

ExpIND
BKEM(A, r) :

b
$←− {0, 1}

(ek , dk)← KG
(C, k1)← Encapek

k0
$←− KF

for j ∈ {1, . . . , r} do
(C̃j , uk j)← Blindek (C)
k̃j ← Decapdk (C̃j)

b′ ← A(ek , C, kb, {(C̃j , k̃j)}1≤j≤r)
return b′ ?

= b

Figure 6: IND-CPA experiment ExpIND-CPA
PKE (A) for a PKE scheme

PKE (left). Indistinguishability experiment ExpIND
BKEM(A, r) for a BKEM

scheme BKEM (right).

BKEM. We eventually prove that the homomorphic-based BKEM is post-
quantum secure as long as the underlying homomorphic encryption scheme
is post-quantum secure.

4.1 Generic homomorphic-based BKEM

We look for PKE schemes with the following homomorphic property: sup-
pose C and C ′ are two ciphertexts, then Decsk(C ⊕1 C

′) = Decsk(C) ⊕2

Decsk(C
′), where ⊕1 and ⊕2 denote two group operations.

We construct blinding and unblinding algorithms using this homomor-
phic property. Suppose the underlying PKE scheme has 1 − ε-correctness.
To blind an encapsulation C (with corresponding file encryption key k) the
Blind algorithm creates a fresh encapsulation C ′ (with corresponding blind-
ing value k′) using the Encapek algorithm, the blinded encapsulation C̃ is
computed as C̃ ← C⊕1C

′. The unblinding key uk is the inverse element of
k′ with respect to ⊕2, that is, uk ← k′−1. The blinding algorithms outputs
C̃ and uk . The decapsulation algorithm can evaluate the blinded encap-
sulation because of the homomorphic property. The blinded key k̃ is the
output of this decapsulation algorithm, that is, k̃ ← Decapdk (C̃). Hence,
k̃ = k ⊕2 k

′ with probability 1 − 2ε + ε2. To unblind k̃ the unblinding

Cloud-assisted Asynchronous Key Transport 79

algorithm outputs k̃⊕2 uk , which is k except for probability 2ε− ε2, and so
the BKEM scheme has (1 − 2ε + ε2)-correctness. Formally, we define the
BKEM scheme constructed above as follows.

Definition 10 (Homomorphic-based BKEM). Let BKEM be a PKE-based
BKEM, as in Definition 7. Suppose the underlying public key encryp-
tion scheme is a homomorphic encryption scheme HE = (KGHE,Enc,Dec)

such that for any ciphertexts C,C ′ ∈ C and any key pair (sk, pk)
$←− KGHE

it holds that

Decsk(C ⊕1 C
′) = Decsk(C)⊕2 Decsk(C

′),

where (M,⊕2) is the plaintext group and (C,⊕1) is the ciphertext group.
Furthermore, let the blinding and unblinding algorithms operate according
to Figure 7. We call such a scheme BKEM a homomorphic-based BKEM.

Blindek (C) :
(C ′, k′)← Encapek
C̃ ← C ⊕1 C

′

uk ← k′−1

return C̃, uk

Unblinduk (k̃) :

k ← k̃ ⊕2 uk
return k

Figure 7: Blinding and unblinding algorithms of the homomorphic based
BKEM.

We stress that all BKEM schemes we consider in the rest of this paper
are homomorphic-based BKEMs. The homomorphic encryption scheme
HE does not need to be fully homomorphic, since we only need one opera-
tion in the blinding algorithm: a somewhat group homomorphic encryption
scheme is sufficient.

4.2 Security requirements

In the indistinguishability game IND for BKEMs the adversary A has r
blinded samples. If the decryptions of blinded encapsulations output the
correct blinded keys, then these r blinded samples are the following two
sets: {C̃i = C ⊕1 C

′
i}1,...,r and {k̃i = k⊕2 k

′
i}i=1...r, where the encapsula-

tion is C and the real file encryption key is k. We want the blinded samples

80 G. Davies et al.

and the encapsulation to be random looking such that the combination of
all these values does not reveal any information about the underlying file
encryption key k that is being transported.

First, we show how to choose the blinding values k′i to make the blinded
keys k̃i look random. Then, we show how to make the blinded encapsula-
tions C̃i look random, which is achievable when C̃i looks like a fresh output
of the encapsulation algorithm: this idea is similar to circuit privacy [24].
Finally, we show how an IND-CPA-secure HE scheme ensures that the en-
capsulation does not reveal any information about the file encryption key.
With these steps in place, we provide the main theorem in this paper stating
how to achieve an IND secure BKEM scheme. In particular, if the under-
lying HE scheme is post-quantum IND-CPA secure then the corresponding
homomorphic-based BKEM scheme is post-quantum IND secure.

Random-looking blinded keys. We want the blinded key to look like a
random element of the space containing blinded keys. In the IND game the
adversary is given several blinded keys of the form k̃ = k ⊕2 k

′, where
k is the file encryption key and k′ is a blinding value, and wishes to gain
information about k.

Let k be sampled uniformly at random from the file encryption key set,
denoted KF , and let k′ be sampled uniformly at random from the blinding
value set, denoted KR. We would like that the size of KF is large enough
to prevent a brute force attacker from guessing k, say |KF | = 2λ for some
security parameter λ. If KR is a small set then the value of any blinded key
k̃ = k⊕2k

′ will be located within a short distance around k, so the adversary
can successfully guess k with high probability. We always assume that KR
is at least as large as KF .

If a given blinded key k̃ can be expressed as a result of any file encryp-
tion key k and a blinding value k′, with respect to an operation, then our
goal is to ensure that the adversary cannot get any information of the true
file encryption key hidden in k̃: ideally we wish it to be indistinguishable
from a random element.

Definition 11 (ε-blinded blinded key). Let BKEM be a blinded KEM with
blinded key set KB . Let k be sampled uniformly random from the file
encryption key set KF and let k′ be sampled uniformly random from the
blinding value set KR. We define a ε-blinded blinded key set S := {k̃ ∈

Cloud-assisted Asynchronous Key Transport 81

KB | ∀k ∈ KF ,∃1k′ ∈ KR such that k̃ = k⊕2 k
′}: we say that BKEM has

ε-blinded blinded keys if

Pr
[
k̃ = k ⊕2 k

′ ∈ S | k $←− KF , k′ $←− KR
]

= 1− ε.

Suppose the adversary is given any number of ε-blinded blinded keys
from S with the same underlying file encryption key k. By the definition
of the ε-blinded blinded set the file encryption key k can be any value in
KF and all values are equally probable. In other words, guessing k, given
ε-blinded blinded keys, is the same as guessing a random value from KF .
To prevent giving the adversary a better chance at guessing the key k we
wish the blinded keys to be located inside the ε-blinded blinded key set S
with high probability, which means we want ε to be small.

Fresh-looking blinded encapsulations. In the IND game for BKEMs the
adversary A gets r blinded samples and has knowledge of the set {C̃i =
C ⊕1 C

′
i}1,...,r, where C is an encapsulation of a file encryption key k and

C ′i is an encapsulation of a blinding value. We cannot guarantee that the
set of the blinded encapsulations do not reveal any information about the
encapsulation C. However, if each of these blinded encapsulations looks
like a fresh output of the encapsulation algorithm then they are indepen-
dent and random-looking compared to the encapsulation C. Therefore we
want this set to be indistinguishable from the output set of the encapsulation
algorithm.

Definition 12 (ε-blinded blinded encapsulation). Let HE-BKEM be a ho-
momorphic based BKEM. Let ek be any encapsulation key and C0 be
an encapsulation with the underlying file encryption key k0. We say that
HE-BKEM has ε-blinded blinded encapsulation if the statistical distance
between the following distributions is at most ε:

X = {C0 ⊕1 C
′ | k′ $←− KR, C ′ ← Encek (k′)},

Y = {C | k′ $←− KR, C ← Encek (k0 ⊕2 k
′)}.

This property ensures that the output of the blinding algorithm looks
like a fresh encapsulation except for probability ε. Note that the BKEM

82 G. Davies et al.

constructions in [10], DH-BKEM [10, Section 4.1] and RSA-BKEM [10,
Section 4.2], both have 0-blinded blinded encapsulation.

In most fully homomorphic encryption schemes the product of two ci-
phertexts is much larger in size compared to the sum of two ciphertexts,
hence, it is easier to achieve ε-blinded blinded encapsulation for one addi-
tion compared to one multiplication. In our constructions we use addition.

Indistinguishability of BKEMs. Furthermore, if we want to achieve in-
distinguishability of blinded KEMs. We require the underlying homomor-
phic encryption scheme have some kind of semantic security to protect the
message (the file encryption key) in the ciphertext (the encapsulation).

Theorem 5 (Main Theorem). For negligible ε3, let BKEM be a homomor-
phic based BKEM designed as in Definition 10 from a (1 − ε3)-correct
homomorphic encryption scheme HE. Let the file encryption key k and the
blinding value k′ be sampled uniformly random from the large sets KF and
KR, respectively. Suppose BKEM has ε1-blinded blinded encapsulations
and ε2-blinded blinded keys. For any adversary A against BKEM getting
r blinded encapsulations and their blinded decapsulation samples, there
exists an IND-CPA adversary B against HE such that

AdvIND
BKEM(A, r) ≤ 2(r + 1)(ε1 + ε2 + ε3) + AdvIND-CPA

HE (B)

Proof. The proof of the theorem consists of a sequence of games.

Game 0

The first game is the experiment ExpIND
BKEM(A, r), given in Figure 6 (right).

Let E0 be the event that the adversary’s guess b′ equals b (and let Ei be the
corresponding event for Game i). From Definition 9 we have that

AdvIND
BKEM(A, r) = 2 |Pr[E0]− 1/2| .

Game 1

We consider a modified game which is the same as Game 0 except that
blinded key given to the adversary is the sum of the file encryption key and
the blinding value instead of the decryption of the blinded encapsulation.

Cloud-assisted Asynchronous Key Transport 83

More precisely, suppose C is the encapsulation with corresponding file en-
cryption key k. For 1 ≤ j ≤ r, let C ′j + C is the blinded encapsulation
where C ′j is a fresh encapsulation with corresponding blinding value k′j .
When A queries for the blinded key of user j, the game outputs k ⊕2 k

′
j .

By the homomorphic property of PKE, if C and C ′1, . . . , C
′
r all decrypt

to the correct messages, then the output of blinded keys are the same in both
Game 1 and Game 0. Hence the difference between Game 1 and Game 0 is
upper bounded by the decryption error of PKE as follows.

∣∣∣Pr[E1]− Pr[E0]
∣∣∣ ≤ 1− (1− ε3)r+1 ≈ (r + 1)ε3.

Game 2

We consider a modified game which is the same as Game 1 except that
blinded encapsulation and blinded key pairs given to the adversary are now
independent and random compared to the file encryption key. More pre-
cisely, for 1 ≤ j ≤ r:

• When A queries the blinded encapsulation of user j, the game first

chooses a random ε-blinded blinded key (Definition 11), k̃j
$←− S,

and computes an encapsulation of this random key, C̃j ← Encek (k̃j),
which is given to A.

• When A queries for the blinded key of user j, the game outputs k̃j .

Step 1. We first prove that a real pair of blinded key and blinded encap-
sulation in Game 1 is (ε1 + ε2)-statistically close to the modified values in
Game 2.

Suppose k0 ∈ KF is the file encryption key and C0 ← Encek (k0) is the

encapsulation with k0, let X = {(k0 ⊕2 k
′, C0 ⊕1 C

′) | k′ $←− KR, C ′ ←
Encek (k′)} be the statistical distribution of the real pair of blinded key and

blinded encapsulation output in Game 1, and Y = {(k̃, C̃) | k̃ $←− S, C̃ ←
Encek (k̃)} be the statistical distribution of the modified values output in

Game 2. We define a middle distribution Z = {(k0 ⊕2 k
′, C) | k′ $←−

KR, C ← Encek (k0 ⊕2 k
′)}. We compute the statistical distance between

X and Y as follows.

84 G. Davies et al.

∆(X,Y) ≤ ∆(X,Z)+∆(Z, Y)

= ∆(X,Z)+
1

2
(
∑

k̃∈KB

C̃∈C

∣∣∣Pr[Z=(k̃, C̃)]−Pr[Y =(k̃, C̃)]
∣∣∣)

≤ ε1+
1

2
(
∑

k̃∈KB

C̃∈C

∣∣∣Pr[Z=(k̃, C̃) | k̃ ∈ S]·Pr[k̃ ∈ S]

+Pr[Z=(k̃, C̃) | k̃ /∈ S]·Pr[k̃ /∈ S]−Pr[Y =(k̃, C̃)]
∣∣∣)

= ε1+
1

2
(
∑

k̃∈S
C̃∈C

∣∣∣Pr[Z=(k̃, C̃) | k̃ ∈ S]·(1−ε2)−Pr[Y =(k̃, C̃)]
∣∣∣

+
∑

k̃ 6∈S
C̃∈C

∣∣∣Pr[Z=(k̃, C̃) | k̃ 6∈ S] · ε2
∣∣∣) (1)

≤ ε1+
1

2
(
∑

k̃∈S
C̃∈C

∣∣∣ε2 ·Pr[Y =(k̃, C̃)]
∣∣∣+1 · ε2) (2)

≤ ε1+ε2

Note that in (1) we split the summation into two parts, namely k̃ ∈ S
and k̃ 6∈ S. For k̃ ∈ S we have Pr[Z = (k̃, C̃) | k̃ /∈ S] ·Pr[k̃ /∈ S] = 0,
and for k̃ 6∈ S we have Pr[Z = (k̃, C̃) | k̃ ∈ S] ·Pr[k̃ ∈ S] = 0 and
Pr[Y =(k̃, C̃)] = 0. Furthermore, (2) holds because distributions Z and Y
over set S are equal. For r samples:

∣∣∣Pr[E2]− Pr[E1]
∣∣∣ ≤ r(ε1 + ε2).

Step 2. Next, we claim that there exists an adversary B against IND-CPA
security of HE such that

2
∣∣∣Pr[E2]− 1

2

∣∣∣ = AdvIND-CPA
HE (B).

We construct a reduction B that plays the IND-CPA game by running A,
that simulates the responses of Game 2 to A as follows.

Cloud-assisted Asynchronous Key Transport 85

1. B flips a coin b $←− {0, 1},
2. B queries its IND-CPA challenger to get the public key of its IND-CPA

game, and forwards this public key as the encapsulation key to A,

3. B simulates the encapsulation by randomly choosing two group key
k0, k1, sends challenge query with input (k0, k1) to its IND-CPA chal-
lenger, and forwards the response C to A,

4. B simulates the output of Blind and Decap by using the Encap algo-

rithm. B samples k̃ $←− S, computes C̃ ← Encek (k̃), and outputs C̃ as
the blinded encapsulation and k̃ as the decapsulation of the blinded
encapsulation,

5. When A asks for a challenge, B sends kb to A,

6. After A returns b′, B sends 1⊕ b⊕ b′ to the challenger.

If the challenge ciphertext B received in ExpIND-CPA
HE (B) is Cb, then B

perfectly simulates the inputs ofA in Game 2 when the output of the key is a
real key. Otherwise (the challenge ciphertext B received in ExpIND-CPA

HE (B)
is C1-b), kb is a random key to A and B perfectly simulate the inputs of A
in Game 2 when the output of the key is a random key.

Remark 1. As a specific case of Theorem 5, the DH-BKEM construction
of BDGJ has 0-blinded blinded encapsulations and 0-blinded blinded keys,
and the indistinguishibility of DH-BKEM is upper bounded by DDH ad-
vantage (defined in the real-or-random sense instead of left-or-right). That
is

AdvIND
DH-BKEM(A, r) ≤ AdvDDH(B).

This observation matches with the result of Boyd et al. [10, Theorem 1].

5 Instantiating Homomorphic-based BKEMs

We provide two homomorphic-based BKEM constructions, based on Gen-
try’s homomorphic encryption scheme (Section 2.3) and the NTRU variant
by Stehlé and Steinfeld (Section 2.4). We show that (for some parameters)
our BKEM schemes are post-quantum secure, by Theorem 5, as long as the

86 G. Davies et al.

underlying HE schemes are post-quantum secure [24, 36, 41]. We only re-
quire the HE scheme to support one homomorphic operation, and we have
chosen addition. Our HE schemes do not need to support bootstrapping or
any multiplicative depth.

5.1 Two Homomorphic-based BKEM Schemes

Let HE = (KGHE,EncHE,DecHE) be a homomorphic encryption scheme
described in Section 2.3 or Section 2.4 with (1− ε3)-correctness for negli-
gible ε3. Let L be any full-rank n-dimensional lattice, for any ε ∈ (0, 1),
s ≥ ηε(L), and r ≥ 2ω(log(n)) · s. The abstract construction of HE-BKEM
is in Figure 8.

KG(λ) :
pk, sk← KGHE(λ)
(ek , dk)← (pk, sk)
return ek , dk

Encapek :

k
$←− KF

C ← EncHE(ek , s, k)
return C, k

Blindek (C) :

k′ $←− KR
C ′ ← EncHE(ek , r, k′)
C̃ ← AddHE(C,C ′)
uk ← −k′ mod B
return C̃, uk

Decapdk (C̃) :

k̃ ← DecHE(dk, C̃)
return k̃

Unblinduk (k̃) :

k ← k̃ + uk mod B
return k

Figure 8: HE-BKEM, where B is the basis of the plaintext space P .

5.2 Constructions of random-looking blinded keys

We want the blinded keys to be in the ε-blinded blinded key set S with high
probability, and we analyze the requirements of the blinding values. We
provide two constructions of the ε-blinded blinded keys set S as follows.

Cloud-assisted Asynchronous Key Transport 87

Construction I. A file encryption key of HE-BKEM is a random element
located in a subspace of the underlying HE scheme’s message space M.
We want to take a small file encryption key k and add a large blinding value
k′ to produce a slightly larger blinded key k̃, hence, the corresponding key
sets should satisfy KF ⊆ KR ⊆ KB ⊆ M Suppose M is HE scheme’s
message space with generators 1, x, . . . , xn−1 and order q, i.e.M = {d0 +
d1x + · · · + dn−1x

n−1 | di ∈ Fq}. The addition of two elements inM is
defined as follows

(a0 + a1x+ · · ·+ an−1x
n−1) + (b0 + b1x+ · · ·+ bn−1x

n−1)

= (a0 + b0) + (a1 + b1)x+ · · ·+ (an−1 + bn−1)xn−1

Suppose KF = {d0 + d1x + · · · + dn−1x
n−1 | di ∈ Zb

√
q/2c} and

KR = {d0 + d1x + · · · + dn−1x
n−1 | di ∈ Zbq/2c}. For any ci ∈

{b
√
q/2c, . . . , bq/2c} and any ai ∈ Zb

√
q/2c there exists a unique bi =

ci − ai ∈ Zbq/2c. As such, for these restricted c0 + c1x + · · · + cn−1x
n−1

and for any a0 +a1x+ · · · an−1x
n−1 ∈ KF there exists a unique b0 +b1x+

· · · bn−1x
n−1 ∈ KR such that (a0 + a1x + · · · an−1x

n−1) + (b0 + b1x +
· · · bn−1x

n−1) = c0 + c1x+ · · ·+ cn−1x
n−1. Then

S = {d0 + d1x+ · · ·+ dn−1x
n−1 | di ∈ {b

√
q/2c, . . . , bq/2c}}

Note that for any i ∈ {0, . . . , n− 1},

Pr

[
ai+bi∈{b

√
q

2
c, . . . , bq

2
c} | ai $←−Zb√ q

2
c, bi

$←−Zb q
2
c

]
=1−

b
√

q
2c−1

b q2c
,

so the probability that a blinded key is located in the ε-blinded blinded set
is

Pr
[
k̃=k+k′∈S | k $←− KF , k′ $←− KR

]
=

1−

b
√

q
2c−1

b q2c

n

≈1− n

b
√

q
2c
.

In this construction, HE-BKEM has ε-blinded blinded keys with ε =
n

b
√

q
2
c . For suitably large q, the above ε can be made negligible.

88 G. Davies et al.

Construction II. Let the file encryption key k be an element in a subset
ofM: we want to add a random blinding value k′ from the whole message
space M to produce a random-looking blinded key k̃, hence, the corre-
sponding key sets should satisfy KF ⊆ KR = KB = M. For any blinded
key k̃ ∈ M and any file encryption key k ∈ KF there exists a unique ran-
dom value k′ = k̃ − k mod B ∈ M such that k̃ = k + k′ mod B, thus
the ε-blinded blinded set S isM and thus

Pr
[
k̃ = k + k′ mod B ∈ S | k $←− KF , k′ $←−M

]
= 1.

In this construction, HE-BKEM has ε-blinded blinded keys with ε = 0.

Remark 2. Both of these constructions can be applied to our HE-BKEM
schemes.

5.3 Construction of fresh-looking blinded encapsulations

We claim that HE-BKEM in Figure 8 has ε-blinded blinded encapsulations
with negligible ε. The idea is to take the small constant ciphertext and add
a ciphertext with large error(s) and the resulting ciphertext should look like
a fresh ciphertext with large error(s). The details are given in the following
lemma.

Lemma 4. Let HE-BKEM be a homomorphic based BKEM with the un-
derlying homomorphic encryption scheme described in Section 2.3 or 2.4
Let ek be any encapsulation key, and recall that the encryption algorithm
EncHE(ek , s, ·) uses the discrete Gaussian distribution DL,s,0 as the error
distribution. Suppose C0 = EncHE(ek , s, k0) is an encapsulation of the
underlying file encryption key k0. For any ε ∈ (0, 1), let s ≥ ηε(L) and
r ≥ 2ω(log(n)) · s, then the statistical distance between the following distri-
butions is negligible

X = {C0 ⊕1 C
′ | k′ $←− KR, C ′ ← EncHE(ek , r, k′)}

Y = {C | k′ $←− KR, C ← EncHE(ek , r, k0 ⊕2 k
′)}.

Proof. We prove the result for Gentry’s scheme; similar analysis for NTRU
follows the same approachch. Suppose C0 = k0 + e0, where e0 ← DL,s,0.
Then

C0 ⊕1 EncHE(ek , r, k′)=k0+e0+k′+DL,r,0=k0+k′+e0+DL,r,0.

Cloud-assisted Asynchronous Key Transport 89

By Lemma 1, we have ‖e0‖ > s
√
n with negligible probability. For

‖e0‖ ≤ s
√
n, we have ‖e0‖r ≤

√
n

2ω(log(n)) , which is negligible for sufficient

large n. By Lemma 2, we have e0+DL,r,0
s≈DL,r,0. Therefore,

C0 ⊕1 EncHE(ek , r, k′)
s≈ k0+k′+DL,r,0=EncHE(ek , r, k0 ⊕2 k

′).

5.4 Indistinguishability of our HE-BKEM

The HE-BKEM schemes, defined in Section 5.1, have random-looking blinded
keys, which follows from the designs discussed in Section 5.2. Further-
more, these schemes have fresh-looking blinded encapsulations, which fol-
lows from from Lemma 4 discussed in Section 5.3. The following corol-
laries show GHE-BKEM and NTRU-BKEM are IND-secure BKEMs with
post-quantum security.

Corollary 1. Let GHE-BKEM be a homomorphic-based BKEM described
in Section 5.1. For negligible ε, ε2, choose parameters as in Lemma 4, The-
orem 1 and Thm. 2. Suppose GHE-BKEM has ε2-blinded blinded keys. If
there is an algorithm that breaks the indistinguishability of GHE-BKEM,
i.e. the distinguishing advantage of this algorithm against GHE-BKEM
getting r blinded encapsulation and their blinded decapsulation tuples is
non-negligible, then there exists a quantum algorithm that solves worst-
case SIVP.

Proof. By Lemma 4 there exists a negligible ε1 such that GHE-BKEM has
ε1-blinded blinded encapsulations. Then we can apply Theorem 5, which
states that if there is an algorithm that breaks the indistinguishability of
GHE-BKEM then there exists an algorithm breaks IND-CPA security of
GHE, and by Theorem 3 we have a quantum algorithm that solves worst-
case SIVP.

Corollary 2. Let NTRU-BKEM be a homomorphic-based BKEM described
in Section 5.1. For negligible ε, ε2, choose parameters as in Lemma 4,
Lemma 3, and Thm. 4. Suppose NTRU-BKEM has ε2-blinded blinded keys.
If there is an algorithm that breaks indistinguishability of NTRU-BKEM
then there exists a quantum algorithm that solves O(

√
n/α)-approximate

SIVP (or SVP) on ideal lattices.

90 G. Davies et al.

Proof. Similar to the proof of Corollary 1, from Lemma 4 and Theorem 5
we know that if there is an algorithm that breaks the indistinguishability of
NTRU-BKEM then there exists an algorithm that breaks IND-CPA security
of NTRU. By Lemma 3 there exists an adversary solving R-LWE×HNF and
by Theorem 4 there exists a quantum algorithm that solves SIVP.

Parameter settings. For our HE-BKEM schemes, the parameters of the
underlying homomorphic encryption schemes are chosen from Gentry [24]
or Stehlé and Steinfeld [41], which is required to achieve IND-CPA security.
Furthermore, our BKEM schemes require that r = 2ω(log(n)) · s, where s is
the standard deviations of a “narrow” Gaussian distributionsDL,s,0 and r is
the standard deviations of a “wider” Gaussian distributions DL,r,0. We also
follows the designs discussed in Section 5.2 to construct random-looking
blinded keys. We conclude that for these parameter settings our proposed
BKEM schemes are post-quantum secure.

References

[1] Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-kem/dem:
A new framework for hybrid encryption and A new analysis of
kurosawa-desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT. Lecture
Notes in Computer Science, vol. 3494, pp. 128–146. Springer (2005).
https://doi.org/10.1007/11426639_8

[2] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded
encoding schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO (1). pp.
153–178. Springer-Verlag (2016). https://doi.org/10.1007/978-3-662-
53018-4_6

[3] Alkim, E., Bos, J.W., Ducas, L., Easterbrook, K., LaMac-
chia, B., Longa, P., Mironov, I., Nikolaenko, V., Peikert,
C., Raghunathan, A., Stebila, D.: FrodoKEM: Learning With
Errors Key Encapsulation. https://frodokem.org/files/
FrodoKEM-specification-20190330.pdf, Submission to
the NIST Post-Quantum Standardization project, round 2

Cloud-assisted Asynchronous Key Transport 91

[4] Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum
key exchange - A new hope. In: Holz, T., Savage, S. (eds.) USENIX
Security Symposium. pp. 327–343. USENIX Association (2016)

[5] Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-
Kyber (version 2.0). https://pq-crystals.org/kyber/
data/kyber-specification-round2.pdf, Submission to
the NIST Post-Quantum Standardization project, round 2

[6] Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and
efficient forward security for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT (2). Lecture Notes in Computer Science, vol.
11477, pp. 117–150. Springer (2019). https://doi.org/10.1007/978-3-
030-17656-3_5

[7] Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.:
NTRU prime: Reducing attack surface at low cost. In: Adams, C.,
Camenisch, J. (eds.) SAC. Lecture Notes in Computer Science, vol.
10719, pp. 235–260. Springer (2017)

[8] Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Niko-
laenko, V., Raghunathan, A., Stebila, D.: Frodo: Take off the ring!
practical, quantum-secure key exchange from LWE. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
Conference on Computer and Communications Security. pp. 1006–
1018. ACM (2016). https://doi.org/10.1145/2976749.2978425

[9] Bos, J.W., Lauter, K.E., Loftus, J., Naehrig, M.: Improved security
for a ring-based fully homomorphic encryption scheme. In: Stam, M.
(ed.) IMACC. Lecture Notes in Computer Science, vol. 8308, pp. 45–
64. Springer (2013). https://doi.org/10.1007/978-3-642-45239-0_4

[10] Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Offline assisted
group key exchange. In: Chen, L., Manulis, M., Schneider, S. (eds.)
ISC. Lecture Notes in Computer Science, vol. 11060, pp. 268–285.
Springer (2018). https://doi.org/10.1007/978-3-319-99136-8_15

[11] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled)
fully homomorphic encryption without bootstrapping. In:

92 G. Davies et al.

Goldwasser, S. (ed.) ITCS. pp. 309–325. ACM (2012).
https://doi.org/10.1145/2090236.2090262

[12] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In: Rogaway,
P. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 6841, pp.
505–524. Springer (2011). https://doi.org/10.1007/978-3-642-22792-
9_29

[13] Chen, C., Danba, O., Hoffstein, J., Hülsing, A., Rijneveld, J., Schanck,
J.M., Schwabe, P., Whyte, W., Zhang, Z.: NTRU). https://
ntru.org/f/ntru-20190330.pdf, Submission to the NIST
Post-Quantum Standardization project, round 2

[14] Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-
quantum public-key cryptosystem based on spLWE. In: Hong, S.,
Park, J.H. (eds.) ICISC. Lecture Notes in Computer Science, vol.
10157, pp. 51–74 (2016). https://doi.org/10.1007/978-3-319-53177-
9_3

[15] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems
and cryptanalysis of the GGH multilinear map without a low-level en-
coding of zero. LMS Journal of Computation and Mathematics 19(A),
255–266 (2016). https://doi.org/10.1112/S1461157016000371

[16] Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption
for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT (1). Lecture Notes in Computer Science, vol. 10624, pp.
409–437. Springer (2017). https://doi.org/10.1007/978-3-319-70694-
8_15

[17] Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Mil-
ner, K.: On ends-to-ends encryption: Asynchronous group mes-
saging with strong security guarantees. In: Lie, D., Mannan, M.,
Backes, M., Wang, X. (eds.) CCS. pp. 1802–1819. ACM (2018).
https://doi.org/10.1007/978-3-030-17656-3_5

[18] Cramer, R., Shoup, V.: Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext at-

Cloud-assisted Asynchronous Key Transport 93

tack. Cryptology ePrint Archive, Report 2001/108 (2001), https:
//eprint.iacr.org/2001/108

[19] Cramer, R., Shoup, V.: Design and analysis of practical
public-key encryption schemes secure against adaptive chosen
ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003).
https://doi.org/10.1137/S0097539702403773

[20] D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber:
Module-LWR based key exchange, cpa-secure encryption and
cca-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT. Lecture Notes in Computer Science, vol. 10831, pp.
282–305. Springer (2018). https://doi.org/10.1007/978-3-319-89339-
6_16

[21] Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.)
IMACC. Lecture Notes in Computer Science, vol. 2898, pp. 133–151.
Springer (2003). https://doi.org/10.1007/978-3-540-40974-8_12

[22] Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryp-
tion and applications to efficient forward-secret 0-rtt key exchange.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT (3). Lecture Notes
in Computer Science, vol. 10822, pp. 425–455. Springer (2018).
https://doi.org/10.1007/978-3-319-78372-7_14

[23] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144 (2012),
https://eprint.iacr.org/2012/144

[24] Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis,
Stanford University, Stanford, CA, USA (2009), aAI3382729

[25] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Dwork, C. (ed.) STOC. pp.
197–206. ACM (2008). https://doi.org/10.1145/1374376.1374407

[26] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO (1).

94 G. Davies et al.

Lecture Notes in Computer Science, vol. 8042, pp. 75–92. Springer
(2013). https://doi.org/10.1007/978-3-642-40041-4_5

[27] Green, M.D., Miers, I.: Forward secure asynchronous messag-
ing from puncturable encryption. In: IEEE Symposium on Se-
curity and Privacy. pp. 305–320. IEEE Computer Society (2015).
https://doi.org/10.1109/SP.2015.26

[28] Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with
full forward secrecy. In: Coron, J., Nielsen, J.B. (eds.) EUROCRYPT
(3). Lecture Notes in Computer Science, vol. 10212, pp. 519–548
(2017). https://doi.org/10.1007/978-3-319-56617-7_18

[29] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based pub-
lic key cryptosystem. In: Buhler, J. (ed.) ANTS. Lecture Notes
in Computer Science, vol. 1423, pp. 267–288. Springer (1998).
https://doi.org/10.1007/BFb0054868

[30] Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened
key encapsulation. In: Menezes, A. (ed.) CRYPTO. Lecture Notes
in Computer Science, vol. 4622, pp. 553–571. Springer (2007).
https://doi.org/10.1007/978-3-540-74143-5_31

[31] Hülsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed
key encapsulation from NTRU. In: Fischer, W., Homma, N. (eds.)
CHES. Lecture Notes in Computer Science, vol. 10529, pp. 232–252.
Springer (2017). https://doi.org/10.1007/978-3-319-66787-4_12

[32] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryp-
tion scheme. In: Franklin, M.K. (ed.) CRYPTO. Lecture Notes
in Computer Science, vol. 3152, pp. 426–442. Springer (2004).
https://doi.org/10.1007/978-3-540-28628-8_26

[33] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryp-
tion. In: Karloff, H.J., Pitassi, T. (eds.) STOC. pp. 1219–1234. ACM
(2012). https://doi.org/10.1145/2213977.2214086

Cloud-assisted Asynchronous Key Transport 95

[34] Lu, X., Liu, Y., Jia, D., Xue, H., He, J., Zhang, Z., Liu, Z., Yang, H.,
Li, B., Wang, K.: LAC Lattice-based Cryptosystems, Submission to
the NIST Post-Quantum Standardization project, round 2

[35] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT. Lec-
ture Notes in Computer Science, vol. 6110, pp. 1–23. Springer (2010).
https://doi.org/10.1007/978-3-642-13190-5_1

[36] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learn-
ing with errors over rings. J. ACM 60(6), 43:1–43:35 (Nov 2013).
https://doi.org/10.1145/2535925

[37] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for Ring-LWE
cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT.
Lecture Notes in Computer Science, vol. 7881, pp. 35–54. Springer
(2013). https://doi.org/10.1007/978-3-642-38348-9_3

[38] Marlinspike, M., Perrin, T.: The X3DH key agreement protocol.
https://signal.org/docs/specifications/x3dh/
(November 2016)

[39] Micciancio, D., Regev, O.: Worst-case to average-case reductions
based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (Apr
2007). https://doi.org/10.1137/S0097539705447360

[40] NIST Post-Quantum Cryptography Stan-
dardization. https://csrc.nist.gov/
projects/post-quantum-cryptography/
post-quantum-cryptography-standardization,
accessed: 2019-11-15

[41] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case prob-
lems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT. pp.
27–47. Lecture Notes In Computer Science, Springer-Verlag (2011).
https://doi.org/10.1007/978-3-642-20465-4_4

[42] The messaging layer security (MLS) protocol. Internet draft, in
progress. https://datatracker.ietf.org/wg/mls/
about, accessed: 2019-11-25

96 G. Davies et al.

Paper iii

Fast and Secure Updatable Encryption
Colin Boyd, Gareth T. Davies, Kristian Gjøsteen and Yao

Jiang

Published in the 40th Annual International Cryptology
Conference, CRYPTO 2020.

† c© IACR 2020: An extended abstract of this paper appears in the proceedings of
IACR CRYPTO 2020, with DOI: 10.1007/978-3-030-56784-2_16. This is the full
version.

Fast and Secure Updatable Encryption†

Colin Boyd1 Gareth T. Davies2 ID Kristian Gjøsteen1 and Yao
Jiang1

1Norwegian University of Science and Technology, NTNU, Norway.
{colin.boyd,kristian.gjosteen,yao.jiang}

@ntnu.no
2Bergische Universität Wuppertal, Wuppertal, Germany.

davies@uni-wuppertal.de

Abstract

Updatable encryption allows a client to outsource ciphertexts to
some untrusted server and periodically rotate the encryption key. The
server can update ciphertexts from an old key to a new key with the
help of an update token, received from the client, which should not
reveal anything about plaintexts to an adversary.

We provide a new and highly efficient suite of updatable en-
cryption schemes that we collectively call SHINE. In the variant
designed for short messages, ciphertext generation consists of ap-
plying one permutation and one exponentiation (per message block),
while updating ciphertexts requires just one exponentiation. Variants
for longer messages provide much stronger security guarantees than
prior work that has comparable efficiency. We present a new confi-
dentiality notion for updatable encryption schemes that implies prior
notions. We prove that SHINE is secure under our new confidential-
ity definition while also providing ciphertext integrity.

99

1 Introduction

The past decades have demonstrated clearly that key compromise is a real
threat for deployed systems. The standard technique for mitigating key
compromise is to regularly rotate the encryption keys – generate new ones
and switch the ciphertexts to encryption under the new keys. Key rotation is
a well-established technique in applications such as payment cards [Cou18]
and cloud storage [KRS+03].

For a local drive or server, key rotation is feasible by decrypting and re-
encrypting with a new key, since symmetric encryption operations are fast
and parallelizable and bandwidth is often plentiful. When ciphertext storage
has been outsourced to some (untrusted) cloud storage provider, bandwidth
is often considerably more expensive than computation, and even for small
volumes of data it may be prohibitively expensive to download, re-encrypt
and upload the entire database even once. This means that key rotation
by downloading, decrypting, re-encrypting and reuploading is practically
infeasible.

An alternative approach to solving this problem is to use updatable en-
cryption (UE), first defined by Boneh et al. [BLMR13] (henceforth BLMR).
The user computes a token and sends it to the storage server. The token al-
lows the server to update the ciphertexts so that they become encryptions
under some new key. Although the token clearly depends on both the old
and new encryption keys, knowledge of the token alone should not allow
the server to obtain either key. In a typical usage of UE, the cloud storage
provider will receive a new token on a periodic basis, and the provider then
updates every stored ciphertext. The time period for which a given key is
valid for is called an epoch.

In the past few years there has been considerable interest in extending
the understanding of UE. A series of prominent papers [BLMR13, EPRS17a,
LT18a, KLR19a] have provided both new (typically stronger) security defi-
nitions and concrete or generic constructions to meet their definitions. (We
make a detailed comparison of related work in Section 1.1.1 next.) An im-
portant distinction between earlier schemes is whether or not the token (and
in particular its size) depends on the ciphertexts to be updated (and in par-
ticular the number of ciphertexts). Schemes for which a token is assigned to
each ciphertext are ciphertext-dependent and were studied by Everspaugh et

100 C. Boyd et al.

al. [EPRS17a] (henceforth EPRS). If the token is independent of the cipher-
texts to be updated, such as in BLMR [BLMR15], we have a ciphertext-
independent1 scheme. A clear and important goal is to limit the band-
width required and so, in general, one should prefer ciphertext-independent
schemes. Thus, as with the most recent work [LT18a, KLR19a], we focus
on such schemes in this paper. The ciphertext update procedure, performed
by the server, may be deterministic or randomized – note that in the latter
case the server is burdened with producing (good) randomness and using it
correctly.

Despite the considerable advances of the past few years, there remain
some important open questions regarding basic properties of UE. In terms
of security, various features have been added to protect against stronger ad-
versaries. Yet it is not obvious what are the realistic and optimal security
goals of UE and whether they have been achieved. In terms of efficiency,
we only have a few concrete schemes to compare. As may be expected,
schemes with stronger security are generally more expensive but it remains
unclear whether this cost is necessary. In this paper we make contributions
to both of these fundamental questions by defining new and stronger secu-
rity properties and showing that these can be achieved with more efficient
concrete UE schemes.

Security. The main security properties that one would expect from up-
datable encryption are by now well studied; however the breadth of infor-
mation that is possible to protect in this context is more subtle than at first
glance. Consider, for example, a journalist who stores a contact list with
a cloud storage provider. At some point, the storage is compromised and
an adversary recovers the ciphertexts. At this point, it may be important
that the cryptography does not reveal which of the contacts are recent, and
which are old. That is, it must be hard to decide if some ciphertext was re-
cently created, or if it has been updated from a ciphertext stored in an earlier
epoch.

So how do we define realistic adversaries in this environment? A natu-

1Note that Boneh et al. [[BLMR15], § Definition 7.6] use ciphertext-independence to
mean that the updated ciphertext should have the same distribution as a fresh ciphertext
(i.e. independent of the ciphertext in the previous epoch) – we follow the nomenclature of
Lehmann and Tackmann [LT18a].

Fast and Secure Updatable Encryption 101

ral first step for security in updatable encryption is confidentiality of cipher-
texts – given a single ciphertext, the adversarial server should not be able
to determine anything about the underlying plaintext. The security model
here must take into account that this adversary could be in possession of a
number of prior keys or update tokens, and snapshot access to the storage
database in different epochs. The next step is to consider unlinkability be-
tween different epochs arising from the ciphertext update procedure: given
a ciphertext for the current epoch, the adversary should not be able to tell
which ciphertext (that existed in the previous epoch) a current ciphertext
was updated from. Both of these properties can be naturally extended to
chosen-ciphertext (CCA) security via provision of a decryption oracle.

These steps have been taken by prior work, but unfortunately even a
combination of these properties is not enough to defend against our mo-
tivating example. Previous security definitions cannot guarantee that the
adversary is unable to distinguish between a ciphertext new in the current
epoch and an updated ciphertext from an earlier epoch. We give a single
new security property that captures this requirement and implies the no-
tions given in prior work. Therefore we believe that this definition is the
natural confidentiality property that is required for updatable encryption.

An additional factor to consider is integrity: the user should be confi-
dent that their ciphertexts have not been modified by the adversarial server.
While prior work has shown how to define and achieve integrity in the con-
text of updatable encryption, a composition result of the style given by Bel-
lare and Namprempre for symmetric encryption [BN08] – the combination
of CPA security and integrity of ciphertexts gives CCA security – has been
missing. We close this gap.

Efficiency and Functionality. Although UE is by definition a form of
symmetric key cryptography, techniques from asymmetric cryptography ap-
pear to be needed to achieve the required functionality in a sensible fashion.
All of the previous known schemes with security proofs use exponentiation
in both the encryption and update functions, even for those with limited se-
curity properties. Since a modern database may contain large numbers of
files, efficiency is critical both for clients who will have to encrypt plain-
texts initially and for servers who will have to update ciphertexts for all of
their users.

102 C. Boyd et al.

To bridge the gap between the academic literature and deployments
of encrypted outsourced storage, it is crucial to design fast schemes. We
present three novel UE schemes that not only satisfy our strong security
definitions (CCA and ciphertext integrity), but in the vast majority of appli-
cation scenarios are also at least twice as fast (in terms of computation each
message block) as any previous scheme with comparable security level.

The ciphertext expansion of a scheme says how much the size of a ci-
phertext grows compared to the size of the message. For a cloud server that
stores vast numbers of files, it is naturally crucial to minimize the ciphertext
expansion rate. It is also desirable to construct UE schemes that can encrypt
arbitrarily large files, since a client might want to upload media files such
as images or videos. Prior schemes that have achieved these two proper-
ties have only been secure in comparatively weak models. Our construction
suitable for long messages – enabling encryption of arbitrarily large files
with almost no ciphertext expansion – is secure in our strong sense and is
thus the first to bridge this gap.

1.1 Related Work

1.1.1 Security Models for UE.

We regard the sequential, epoch-based corruption model of Lehmann and
Tackmann [LT18a] (LT18) as the most suitable execution environment to
capture the threats in updatable encryption. In this model, the adversary
advances to the next epoch via an oracle query. It can choose to submit
its (single) challenge when it pleases, and it can later update the challenge
ciphertext to the ‘current’ epoch. Further, the adversary is allowed to adap-
tively corrupt epoch (i.e. file encryption) keys and update tokens at any
point in the game: only at the end of the adversary’s execution does the
challenger determine whether a trivial win has been made possible by some
combination of the corruption queries and the challenge.

LT18 introduced two notions: IND-ENC asks the adversary to submit
two plaintexts and distinguish the resulting ciphertext, while possibly hav-
ing corrupted tokens (but of course not keys) linking this challenge cipher-
text to prior or later epochs. Further, they introduced IND-UPD: the adver-
sary provides two ciphertexts that it received via regular encryption-oracle
queries in the previous epoch, and has to work out which one has been up-

Fast and Secure Updatable Encryption 103

dated. They observed2 that plaintext information can be leaked not only
through the encryption procedure, but also via updates. For schemes with
deterministic updates, the adversary would trivially win if it could acquire
the update token that takes the adversarially-provided ciphertexts into the
challenge epoch, hence the definition for this setting, named detIND-UPD,
is different from that for the randomized setting, named randIND-UPD.

LT18’s IND-UPD definition was not the first approach to formalizing
the desirable property of unlinkability of ciphertexts, which attempts to
specify that given two already-updated ciphertexts, the adversary cannot tell
if the plaintext is the same. Indeed EPRS (UP-REENC) and later KLR19
(UP-REENC-CCA) also considered this problem, in the ciphertext-dependent
update and CCA-secure setting respectively. KLR19 [[KLR19a], § Ap-
pendix A] stated that “an even stronger notion [than IND-UPD] might be
desirable: namely that fresh and re-encrypted ciphertexts are indistinguish-
able... which is not guaranteed by UP-REENC” – we will answer this open
question later on in our paper.

In the full version of their work [BLMR15], BLMR introduced a secu-
rity definition for UE denoted update – an extension of a model of sym-
metric proxy re-encryption. This non-sequential definition is considerably
less adaptive than the later work of LT18, since the adversary’s key/token
corruption queries and ciphertext update queries are very limited. Further,
they only considered schemes with deterministic update algorithms.

EPRS [EPRS17a] provided (non-sequential) definitions for updatable
authenticated encryption, in the ciphertext-dependent setting. Their work
(inherently) covered CCA security and ciphertext integrity (CTXT). These
definitions were ambiguous regarding adaptivity: these issues have since
been fixed in the full version [EPRS17b].

KLR19 attempted to provide stronger security guarantees for cipher-
text-independent UE than LT18, concentrating on chosen-ciphertext secu-

2The proceedings and full versions of LT18 stated that “IND-ENC security cannot guar-
antee anything about the security of updates. In fact, a scheme where the update algorithm
UE.Upd includes all the old ciphertexts C0, ...,Ce in the updated ciphertext Ce+1 could
be considered IND-ENC secure, but clearly lose all security if a single old key gets com-
promised.” This line of argument is flawed, and in fact IND-ENC rules out schemes of this
form: encryptions were always fresh at some point. This claim was corrected and clarified in
a June 2019 presentation by the first author [Leh19], and further elaborated on in an update
to the full version in December 2019 [LT18b].

104 C. Boyd et al.

rity (and the weaker replayable CCA) in addition to integrity of plaintexts
and ciphertexts. We revisit these definitions later on, and show how a small
modification to their INT-CTXT game gives rise to natural composition re-
sults.

In practice, LT18’s randIND-UPD definition insists that the ciphertext
update procedure Upd requires the server to generate randomness for up-
dating each ciphertext. Further, a scheme meeting both IND-ENC and
IND-UPD can still leak the epoch in which the file was uploaded (the ‘age’
of the ciphertext). While it is arguable that metadata is inherent in out-
sourced storage, the use of updatable encryption is for high-security appli-
cations, and it would not be infeasible to design a system that does not re-
veal meta-data, which is clearly impossible if the underlying cryptosystem
reveals the meta-data.

Recent work by Jarecki et al. [JKR19] considers the key wrapping en-
tity as a separate entity from the data owner or the storage server. While
this approach seems promising, their security model is considerably weaker
than those considered in our work or the papers already mentioned in this
section: the adversary must choose whether to corrupt the key management
server (and get the epoch key) or the storage server (and get the update to-
ken) for each epoch, and thus it cannot dynamically corrupt earlier keys or
tokens at a later stage.

1.1.2 Constructions of Ciphertext-Independent UE

The initial description of updatable encryption by Boneh et al. [BLMR13]
was motivated by providing a symmetric-key version of proxy re-encryption
(see below). BLMR imagined doing this in a symmetric manner, where
each epoch is simply one period in which re-encryption (rotation) has oc-
curred. Their resulting scheme, denoted BLMR, deploys a key-homomorphic
PRF, yet the nonce attached to a ciphertext ensures that IND-UPD cannot
be met (the scheme pre-dates the IND-UPD notion).

The symmetric-Elgamal-based scheme of LT18, named RISE, uses a
randomized update algorithm and is proven to meet randIND-UPD and
IND-ENC under DDH. These proofs entail a seemingly unavoidable loss
– a cubic term in the total number of epochs – our results also have this fac-
tor. LT18 also presented an extended version of the scheme by BLMR, de-
noted BLMR+, where the nonce is encrypted: they showed that this scheme

Fast and Secure Updatable Encryption 105

meets a weak version of IND-UPD called weakIND-UPD, in which if the
adversary corrupts the token that links the challenge epoch to the epoch
immediately after then a trivial win condition is triggered.

The aim of KLR19 was to achieve stronger security than BLMR, EPRS
and LT18 in the ciphertext-independent setting: in particular CCA security
and integrity protection. They observed that the structure of RISE ensures
that ciphertext integrity cannot be achieved: access to just one update to-
ken allows the storage provider to construct ciphertexts of messages of its
choice. Their generic constructions, based on encrypt-and-MAC and the
Naor-Yung paradigm, are strictly less efficient than RISE. We show how to
achieve CCA security and integrity protections with novel schemes that are
comparably efficient with RISE.

1.1.3 Related Primitives

Proxy re-encryption (PRE) allows a ciphertext that is decryptable by some
secret key to be re-encrypted such that it can be decrypted by some other
key. Security models for PRE are closer to those for encryption than the
strictly sequential outsourced-storage-centric models for UE, and as ob-
served by Lehmann and Tackmann [LT18a] the concepts of allowable cor-
ruptions and trivial wins for UE need considerable care when translating
to the (more general) PRE setting. Unlinkability is not necessarily de-
sired in PRE – updating the entire ciphertext may not be essential for a
PRE scheme to be deemed secure – thus even after conversion to the sym-
metric setting, prior schemes [AFGH05, CH07] cannot meet the indistin-
guishability requirements that we ask of UE schemes. Recent works by
Lee [Lee17] and Davidson et al. [DDLM19] have highlighted the links be-
tween the work of BLMR and EPRS and PRE, and in particular the second
work gives a public-key variant of the (sequential) IND-UPD definition of
LT18. Myers and Shull [MS18] presented security models for hybrid proxy
re-encryption, and gave a single-challenge version of the UP-IND notion of
EPRS. While the models are subtly different, the techniques for achieving
secure UE and PRE are often similar: in particular rotating keys via expo-
nentiation to some simple function of old and new key (RISE is essentially
a combination of Blaze et al.’s symmetric version of ElGamal [BBS98]
and ciphertext randomization). Further, the symmetric-key PRE scheme
of Sakurai et al. [SNS17] is at a high level similar to SHINE (their all-

106 C. Boyd et al.

or-nothing-transform as an inner layer essentially serves the same purpose
as the ideal cipher in SHINE), but in a security model that does not allow
dynamic corruptions. Their approach includes – this natural approach is
somewhat similar to the schemes that we introduce later in the paper.

Tokenization schemes aim to protect short secrets, such as credit card
numbers, using deterministic encryption and deterministic updates: this
line of work reflects the PCI DSS standard [Cou18] for the payment card
industry. Provable security of such schemes was initially explored by Diaz-
Santiago et al. [DRC14] and extended to the updatable setting by Cachin et
al. [CCFL17]. While much of the formalism in the model of Cachin et al.
has been used in recent works on UE (in particular the epoch-based corrup-
tion model), the requirements on ciphertext indistinguishability are stronger
in the UE setting, where we expect probabilistic encryption of (potentially
large) files.

1.2 Contributions

Our first major contribution is defining the xxIND-UE-atk security notion
for updatable encryption schemes, for (xx, atk) ∈ {(det,CPA), (rand,CPA),
(det,CCA)}, and comprehensively analyzing its relation to other, existing3

security notions (xxIND-ENC-atk, xxIND-UPD-atk). Our single definition
requires that ciphertexts output by the encryption algorithm are indistin-
guishable from ciphertexts output by the update algorithm. We show that
our new notion is strictly stronger even than combinations of prior notions,
both in the randomized- and deterministic-update settings under chosen-
plaintext attack and chosen-ciphertext attack. This not only gives us the
unlinkability desired by prior works, but also answers the open question
posed by KLR19 mentioned on page . Fig. 18 describes the relationship
between our new notion xxIND-UE-atk and prior notions.

After a slight tweak to KLR19’s definitions for CTXT and CCA, we
show the following generic composition result for ciphertext independent
updatable encryption schemes: CPA security plus CTXT security implies
CCA security. Combining this result with the relations from detIND-UE-atk

3The notions IND-ENC, randIND-UPD and detIND-UPD (which we denote as
IND-ENC-CPA, randIND-UPD-CPA and detIND-UPD-CPA, resp.) are from LT18. The
notions UP-IND-CCA and UP-REENC-CCA (detIND-ENC-CCA and detIND-UPD-CCA,
resp.) are from KLR19. LT18 and KLR19 both build upon the definitions given by EPRS.

Fast and Secure Updatable Encryption 107

above, we show that the combination of detIND-UE-CPA and INT-CTXT
yields detIND-yy-CCA for all yy ∈ {UE,ENC,UPD}.

Our second major contribution is in designing a new, fast updatable en-
cryption scheme SHINE. Our scheme is based on a random-looking permu-
tation combined with the exponentiation map in a cyclic group, and comes
in a number of variants: SHINE0, MirrorSHINE and OCBSHINE, for small
messages, medium-sized messages and arbitrarily large messages respec-
tively. In Fig. 1, we provide a comparison of security, ciphertext expansion
and efficiency between our new schemes and those from prior literature.
We also further the understanding of schemes with deterministic update
mechanisms. In particular, we identify the properties that are necessary of
such schemes to meet a generalized version of our detIND-UE-atk notion.
Another important contribution is that we further improve on the existing
epoch insulation techniques that have been used to create proofs of security
in the strong corruption environment we pursue. These have been shown to
be very useful for studying updatable encryption schemes, and we expect
our new techniques to be useful in the future.

1.3 Further Discussion

We have had to make a number of practical design decisions for our new UE
scheme SHINE. The main idea is to permute the (combination of nonce and)
message and then exponentiate the resulting value, with different mecha-
nisms for enforcing ciphertext integrity depending on the flavor that is be-
ing used (which is in turn defined by the desired message length). In this
subsection we give some motivation for why we believe that these choices
are reasonable.

Deterministic updates. Since we will require indistinguishability of ci-
phertexts, we know that the UE encryption algorithm should be random-
ized. The update algorithm may or may not be randomized, however. All
known schemes indicate that randomized updates are more expensive than
deterministic updates, but there is a small, well-understood security loss
in moving to deterministic updates: an adversary with an update token
in an appropriate epoch can trivially distinguish between an update of a
known ciphertext and other ciphertexts in the next epoch. As a result, in the

108 C. Boyd et al.

IN
D

IN
T

|M
|

|C
|

E
n
c

(U
p
d

)
B
L
M
R

[B
L

M
R

13
]

(d
et
,E

N
C
,C

P
A

)
8

l|G
|

(l
+1

)|G
|

lE

B
L
M
R
+

[B
L

M
R

13
,L

T
18

a]
(w

ea
k,
U
E
,C

P
A

)
8

l|G
|

(l
+1

)|G
|

lE

R
IS
E

[L
T

18
a]

(r
an
d
,U

E
,C

P
A

)
8

1|
G
|

2|
G
|

2E
S
H
IN
E
0[
C
P
A

]
§

5.
1.

1
(d
et
,U

E
,C

P
A

)
8

(1
-γ

)|G
|

1|
G
|

1E

N
Y
U
E

[K
L

R
19

a]
(r
an
d
,E

N
C
,R

C
C
A

)
(r
an
d
,U

P
D
,R

C
C
A

)
8

1|
G

1
|

(3
4
|G

1
|,3

4|
G

2
|)

(6
0E

,7
0E

)

N
Y
U
A
E

[K
L

R
19

a]
(r
an
d
,E

N
C
,R

C
C
A

)
(r
an
d
,U

P
D
,R

C
C
A

)
P
T
X
T

1|
G

1
|

(5
8
|G

1
|,4

4|
G

2
|)

(1
10

E
,9

0E
)

E
&
M

[K
L

R
19

a]
(d
et
,E

N
C
,C

C
A

)
(d
et
,U

P
D
,C

C
A

)
C
T
X
T

1|
G
|

3|
G
|

3E

S
H
IN
E
0

§
5.

1.
1

(d
et
,U

E
,C

C
A

)
C
T
X
T

(1
-2
γ

)|G
|

1|
G
|

1E
M
ir
ro
rS
H
IN
E

§
5.

1.
2

(d
et
,U

E
,C

C
A

)
C
T
X
T

(1
-γ

)|G
|

2|
G
|

2E
O
C
B
S
H
IN
E

§
5.

1.
3

(d
et
,U

E
,C

C
A

)
C
T
X
T

l|G
|

(l
+2

)|G
|

(l
+2

)E

Fi
gu

re
1:

C
om

pa
ri

so
n

of
se

cu
ri

ty
,

ci
ph

er
te

xt
ex

pa
ns

io
n

an
d

ef
fic

ie
nc

y
fo

r
up

da
ta

bl
e

en
cr

yp
tio

n
sc

he
m

es
.

(x
x,
yy
,a
tk

)
re

pr
es

en
ts

th
e

be
st

po
ss

ib
le

xx
IN
D

-y
y-
at
k

no
tio

n
th

at
ea

ch
sc

he
m

e
ca

n
ac

hi
ev

e.
E

re
pr

es
en

ts
th

e
co

st
of

an
ex

po
ne

nt
ia

tio
n,

fo
r

en
cr

yp
tio

n
E
n
c

an
d

ci
ph

er
te

xt
up

da
te

U
p
d

.
γ

re
pr

es
en

ts
th

e
bi

t-
si

ze
of

th
e

us
ed

no
nc

e
as

a
pr

op
or

tio
n

of
th

e
gr

ou
p

el
em

en
tb

it-
si

ze
.F

or
N
Y
U
E

an
d
N
Y
U
A
E

,s
iz

e/
co

st
is

in
pa

ir
in

g
gr

ou
ps

G
1
,G

2
.

S
H
IN
E
0[
C
P
A

]
is
S
H
IN
E
0

w
ith

a
ze

ro
-l

en
gt

h
in

te
gr

ity
ta

g.
B
L
M
R

,B
L
M
R
+

an
d
O
C
B
S
H
IN
E

su
pp

or
te

nc
ry

pt
io

n
of

ar
bi

tr
ar

y
si

ze
m

es
sa

ge
s

(o
fl

bl
oc

ks
),

w
ith
|M
|≈

l|G
|.

Fast and Secure Updatable Encryption 109

detIND-UE-CPA case the adversary is only forbidden from obtaining one
token compared to randIND-UE-CPA. Furthermore, UE schemes with ran-
domized updates cannot achieve CTXT and CCA security, which is possible
for the deterministic-update setting. We believe that the minor CPA secu-
rity loss is a small price to pay for stronger security (CTXT and CCA) and
efficiency gain, in particular to reduce computations in the UE encryption
and update algorithms and also improve ciphertext expansion.

Bi-directional key updates. In principle, the token used to update cipher-
texts need not be sufficient to derive the new key from the old key. But for
every known practical scheme, this derivation is indeed easy. Moreover, for
every known practical scheme including ours, the old key can be derived
from the new key (and token). While uni-directional update algorithms are
desirable, constructing efficient protocols has so far been elusive: this has
technical implications for how security notions are defined.

Limited number of epochs. In many applications that we would like to
consider, the user of the storage service will control when updates occur
(perhaps when an employee with access to key material leaves the organi-
sation, or if an employee loses a key-holding device): this indicates that the
total number of key rotations in the lifetime of a storage system might be
numbered in the thousands, and in particular could be considerably smaller
than the number of outsourced files.

1.4 Organization

After introducing syntax and preliminaries in Section 2, we detail the neces-
sary formalism for security modeling in updatable encryption in Section 3.
In Section 4 we define our new confidentiality property IND-UE and show
how it implies prior notions; in Section 5 we give our new scheme, SHINE,
including intuition behind its security analysis and implementation options.
We show the security properties that can be met, in our new framework, by
prior work schemes BLMR and RISE (LT18) in Section B and C respec-
tively.

110 C. Boyd et al.

2 Preliminaries

Pseudocode return b′ ?
= b is used as shorthand for if b′ = b then return

1 // else return 0, with an output of 1 indicating adversarial success.
We use the concrete security framework, defining adversarial advantage as
probability of success in the security game, and avoid statements of security
with respect to security notions. In the cases where we wish to indicate that
notion A implies notion B (for some fixed primitive), i.e. an adversary’s ad-
vantage against B carries over to an advantage against A, we show this by
bounding these probabilities.

2.1 Hardness Assumptions

For the definition of DDH, CDH and later on, we assume the existence of a
group-generation algorithm that is parameterized by λ and outputs a cyclic
group G of order q (where q is of length λ bits) and a generator g. We adapt
the definition of pseudorandom functions from Boneh et al. [BLMR13].

Definition 1 (DDH). Fix a cyclic group G of prime order q with generator
g. The advantage of an algorithm A solving the Decision Diffie-Hellman
(DDH) problem for G and g is

AdvDDH
G, A(λ) =

∣∣∣Pr[ExpDDH-1
G, A (λ) = 1]−Pr[ExpDDH-0

G, A (λ) = 1]
∣∣∣

where the experiment ExpDDH-b
G, A is given in Fig. 2.

Definition 2 (CDH). Fix a cyclic group G of prime order q with generator g.
The advantage of an algorithmA solving the Computational Diffie-Hellman
(CDH) problem for G and g is

AdvCDH
G,A (λ) = Pr[ExpCDH

G, A(λ) = 1]

where the experiment ExpCDH
G, A is given in Fig. 3.

Definition 3 (PRF). Let F : K × X −→ Y be an efficiently computable
function, where K is called the key space, X is the domain, and Y is the
range. The PRF advantage for A against F is given by

AdvPRF
F, A(λ) =

∣∣∣Pr[ExpPRF-1
F, A (λ) = 1]−Pr[ExpPRF-0

F, A (λ) = 1]
∣∣∣

where the experiment ExpPRF-b
F, A is given in Fig. 4.

Fast and Secure Updatable Encryption 111

ExpDDH-b
G, A (λ)

1 : x, y, r
$←− Zq

2 : X ← gx;Y ← gy

3 : if b = 0

4 : Z ← gxy

5 : else

6 : Z ← gr

7 : b′ ← A(g,X, Y, Z)

8 : return b′

Figure 2: DDH experiment ExpDDH-b
G, A

ExpCDH
G, A(λ)

1 : x, y
$←− Zq

2 : X ← gx

3 : Y ← gy

4 : Z ← A(g,X, Y)

5 : if Z = gxy

6 : return 1

7 : else

8 : return 0

Figure 3: CDH experiment ExpCDH
G, A

ExpPRF-b
F, A (λ)

1 : if b = 0

2 : k
$←− K

3 : f(·)← F (k, ·)
4 : else

5 : f(·) $←− {f : X −→ Y}
6 : b′ ← AO.f ()

7 : return b′

O.f(x)

8 : if x 6∈ X
9 : return ⊥

10 : else

11 : return f(x)

Figure 4: PRF experiment ExpPRF-b
F, A

2.2 Updatable Encryption

We follow the syntax of prior work [KLR19a], defining an Updatable En-
cryption (UE) scheme as a tuple of algorithms {UE.KG,UE.TG,UE.Enc,
UE.Dec,UE.Upd} that operate in epochs, these algorithms are described in
Fig. 5. A scheme is defined over some plaintext spaceMS, ciphertext space
CS , key space KS and token space T S . We specify integer n + 1 as the
(total) number of epochs over which a UE scheme can operate, though this
is only for proof purposes. Correctness [KLR19a] is defined as expected:
fresh encryptions and updated ciphertexts should decrypt to the correct mes-

112 C. Boyd et al.

Algorithm Rand/Det Input Output Syntax

Key Gen:
Rand λ ke

ke
$←−

UE.KG UE.KG(λ)

Token Gen:
Det ke, ke+1 ∆e+1

∆e+1 ←
UE.TG UE.TG(ke, ke+1)

Encryption:
Rand M, ke Ce

Ce
$←−

UE.Enc UE.Enc(ke,M)

Decryption:
Det Ce, ke M′ or ⊥ {M′/ ⊥} ←

UE.Dec UE.Dec(ke,Ce)

Update Ctxt:
Rand/det Ce,∆e+1 Ce+1

Ce+1
$←−

UE.Upd UE.Upd(∆e+1,Ce)

Figure 5: Syntax of algorithms defining an Updatable Encryption scheme
UE.

sage under the appropriate epoch key. In contrast to prior work, we only
consider deterministic token generation algorithms – all schemes in prior
literature and our schemes allow the token to be produced deterministically
from epoch keys alone.

In addition to enabling ciphertext updates, in many schemes the to-
ken allows ciphertexts to be ‘downgraded’: performing some analog of
the UE.Upd operation on a ciphertext C created in (or updated to) epoch
e yields a valid ciphertext in epoch e-1. Such a scheme is said to have
bi-directional ciphertext updates4. Furthermore, for many constructions,
the token additionally enables key derivation, given one adjacent key. If
this can be done in both directions – i.e. knowledge of ke and ∆e+1 allows
derivation of ke+1 AND knowledge of ke+1 and ∆e+1 allows derivation of
ke – then such schemes are referred to by LT18 as having bi-directional
key updates. If such derivation is only possible in one ‘direction’ then the
scheme is said to have uni-directional key updates. Much of the prior lit-
erature on updatable encryption has distinguished these notions: we stress
that all schemes and definitions of security considered in this paper have
bi-directional key updates and bi-directional ciphertext updates.

4For example if the Upd procedure exponentiates all ciphertext components using the
token, as done in SHINE, then Upd itself is sufficient to demonstrate this property.

Fast and Secure Updatable Encryption 113

3 Security Models for Updatable Encryption

We consider a number of indistinguishability-based confidentiality games
and integrity games for assessing security of updatable encryption schemes.
The environment provided by the challenger attempts to give as much power
as possible to adversaryA. The adversary may call for a number of oracles,
and after A has finished running the challenger computes whether or not
any of the actions enabled a trivial win. The available oracles are described
in Fig. 6. An overview of the oracles A has access to in each security game
is provided in Fig. 7.

Confidentiality. A generic representation of all confidentiality games de-
scribed in this paper is detailed in Fig. 8. The current epoch is advanced by
an adversarial call to O.Next – simulating UE.KG and UE.TG – and keys
and tokens (for the current or any prior epoch) can be corrupted viaO.Corr.
The adversary can encrypt arbitrary messages via O.Enc, and update these
‘non-challenge’ ciphertexts via O.Upd. In CCA games, the adversary can
additionally call decryption oracle O.Dec (with some natural restrictions
to prevent trivial wins). At some point A makes its challenge by provid-
ing two inputs, and receives the challenge ciphertext – and in later epochs
can receive an updated version by calling O.UpdC̃ (computing this value
is actually done by O.Next, a call to O.UpdC̃ returns it). A can then in-
teract with its other oracles again, and eventually outputs its guess bit. The
flag phase tracks whether or not A has made its challenge, and we always
give the epoch in which the challenge happens a special identifier ẽ. If A
makes any action that would lead to a trivial win, the flag twf is set as 1
and A’s output is discarded and replaced by a random bit. We follow the
bookkeeping techniques of LT18 and KLR19, using the following sets to
track ciphertexts and their updates that can be known to the adversary.

• L: List of non-challenge ciphertexts (from O.Enc or O.Upd) with
entries of form (c,C, e), where query identifier c is a counter incre-
mented with each new O.Enc query.

• L̃: List of updated challenge ciphertexts (created via O.Next, re-
ceived by adversary via O.UpdC̃), with entries of form (C̃, e).

Further, we use the following lists that track epochs only.

114 C. Boyd et al.

O.Enc(M)

1 : C← UE.Enc(ke,M)

2 : c← c + 1

3 : L ← L ∪ {(c,C, e)}
4 : return C

O.Dec(C)

5 : twf ← 1 if

6 : phase = 1 and C ∈ L̃
7 : M′ or ⊥ ← UE.Dec(ke,C)

8 : return M′ or ⊥
O.Next()
9 : e← e + 1

10 : ke
$←− UE.KG(λ)

11 : ∆e
$←− UE.TG(ke-1, ke)

12 : if phase = 1

13 : C̃e ← UE.Upd(∆e, C̃e-1)

O.Upd(Ce−1)

14 : if (j,Ce−1, e− 1) /∈ L
15 : return ⊥
16 : Ce ← UE.Upd(∆e,Ce−1)

17 : L ← L ∪ {(j,Ce, e)}
18 : return Ce

O.Corr(inp, ê)
19 : if ê > e

20 : return ⊥
21 : if inp = key

22 : K ← K ∪ {ê}
23 : return kê

24 : if inp = token

25 : T ← T ∪ {ê}
26 : return ∆ê

O.UpdC̃

27 : C ← C ∪ {e}
28 : L̃ ← L̃ ∪ {(C̃e, e)}
29 : return C̃e

O.Try(C̃)

30 : if phase = 1

31 : return ⊥
32 : phase← 1

33 : twf ← 1 if

34 : e ∈ K∗ or C̃ ∈ L∗

35 : M′ or ⊥ ← UE.Dec(ke, C̃)

36 : if M′ 6= ⊥
37 : win← 1

Figure 6: Oracles in security games for updatable encryption. The boxed
lines in O.Try only apply to INT-CTXTs: in this game the adversary is
allowed to query theO.Try oracle only once. Computing L̃∗ is discussed in
Section 3.2.

Fast and Secure Updatable Encryption 115

Notion O.
E
nc

O.
D
ec

O.
N
ex
t

O.
U
pd

O.
C
or
r

O.
U
pd

C̃

O.
T
ry

detIND-yy-CPA X × X X X X ×
randIND-yy-CPA X × X X X X ×
detIND-yy-CCA X X X X X X ×
INT-CTXT X × X X X × X

Figure 7: Oracles the adversary is allowed to query in different security
games, where yy ∈ {ENC,UPD,UE}. × indicates the adversary does not
have access to the corresponding oracle,X indicates the adversary has ac-
cess to the corresponding oracle.

• C: List of epochs in which adversary learned updated version of chal-
lenge ciphertext (via CHALL or O.UpdC̃).

• K: List of epochs in which the adversary corrupted the encryption
key.

• T : List of epochs in which the adversary corrupted the update token.

All experiments necessarily maintain some state, but we omit this for
readability reasons. The challenger’s state is S← {L, L̃, C,K, T }, and the
system state in the current epoch is given by st← (ke,∆e,S, e).

An at-a-glance overview of CHALL for various security definitions is
given in Fig. 9. For security games such as LT18’s IND-UPD notion, where
the adversary must submit as its challenge two ciphertexts (that it received
from O.Enc) and one is updated, the game must also track in which epochs
the adversary has updates of these ciphertexts. We will later specify a ver-
sion of our new xxIND-UE-atk notion that allows the adversary to submit
a ciphertext that existed in any epoch prior to the challenge epoch, not just
the one immediately before: this introduces some additional bookkeeping
(discussed further in Section 3.2).

A note on nomenclature: the adversary can make its challenge query to
receive the challenge ciphertext, and then acquire updates of the challenge
ciphertext via calls to O.UpdC̃, and additionally it can calculate challenge-
equal ciphertexts via applying tokens it gets via O.Corr queries.

116 C. Boyd et al.

ExpxxIND-yy-atk-b
UE, A (λ)

1 : do Setup

2 : CHALL←AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr(λ)

3 : phase← 1; ẽ← e

4 : Create C̃ with CHALL; L̃ ← L̃ ∪ {(C̃e, e)}
5 : b′←AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)

6 : twf ← 1 if

7 : K∗ ∩ C∗ 6= ∅ or

8 : xx = det and I∗ ∩ C∗ 6= ∅
9 : if twf = 1

10 : b′
$←− {0, 1}

11 : return b′

Setup(λ)

12 : k0 ← UE.KG(λ)

13 : ∆0 ←⊥
14 : e, c← 0

15 : phase, twf ← 0

16 : L, L̃, C,K, T ← ∅

Figure 8: Generic description of confidentiality experiment
ExpxxIND-yy-atk-b

UE, A for scheme UE and adversary A, for xx ∈ {det, rand},
yy ∈ {ENC,UPD,UE} and atk ∈ {CPA,CCA}. We do not consider (and
thus do not formally define) randIND-yy-CCA; only in detIND-yy-CCA
games does A have access to O.Dec. CHALL is the challenge input
provided by A: how to perform Create C̃ with CHALL is shown in Fig. 11,
Fig. 12 and Fig. 17. Trivial win conditions, i.e. deciding the value of twf
and computing K∗, C∗, I∗, are discussed in Section 3.2.

When appropriate, we will restrict our experiments to provide defi-
nitions of security that are more suitable for assessing schemes with de-
terministic update mechanisms. For such schemes, access to the update
token for the challenge epoch (∆ẽ) allows the adversary to trivially win
detIND-UPD-atk and detIND-UE-atk for atk ∈ {CPA,CCA}. Note how-
ever that the definitions are not restricted to schemes with deterministic up-
dates: such schemes are simply insecure in terms of randIND-UPD-CPA
and randIND-UE-CPA.

Ciphertext Integrity. In ciphertext integrity (CTXT) game, the adversary
is allowed to make calls to oracles O.Enc, O.Next, O.Upd and O.Corr.

Fast and Secure Updatable Encryption 117

At some point A attempts to provide a forgery via O.Try; as part of this
query the challenger will assess if it is valid. We distinguish between the
single-O.Try case (INT-CTXTs) and the multi-O.Try case (INT-CTXT).
Here, “valid” means decryption outputs a message (i.e. not ⊥). In the
single-O.Try case, A can continue making oracle queries after its O.Try
query, however this is of no benefit since it has already won or lost. In the
multi-O.Try case, A can make any number of O.Try queries: as long as it
wins once, it wins the ciphertext integrity game. Formally, the definition of
ciphertext integrity is given in Definition 4.

Definition 4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. Then the INT-CTXT advantage of an
adversary A against UE is defined as

AdvINT-CTXT
UE, A (λ) = Pr[ExpINT-CTXT

UE, A = 1]

where the experiment ExpINT-CTXT
UE, A is given in Fig. 6 and Fig. 10. Partic-

ularly, if A is allowed to ask only one O.Try query, denote such notion as
INT-CTXTs.

Note that INT-CTXT trivially implies INT-CTXTs. We can prove that
INT-CTXTs implies INT-CTXT too, with loss upper-bounded by the num-
ber of O.Try queries. We prove this result in Lemma 1. KLR19 defined
ciphertext integrity with one O.Try query plus access to O.Dec, and the
game ends when the O.Try query happens. It is hard to prove the generic
relation among CPA, CTXT and CCA using this formulation. Notice that
decryption oracles give the adversary power to win the CTXT game even
it only has one O.Try query. The adversary can send its forgery to the de-
cryption oracle to test if it is valid (if O.Dec outputs a message and not
⊥) – thus A can continue to send forgeries to O.Dec until a valid one is
found, and then send this as a O.Try query (and win the game). So intu-
itively, a decryption oracle is equivalent to multipleO.Try queries. Proving
that all these variants of CTXT definitions are equivalent to each other is
straightforward, with the loss upper-bounded by the sum of O.Try queries
and decryption queries.

118 C. Boyd et al.

CHALL Output of “ Create C̃ with CHALL” (in ẽ)

xxIND-ENC-atk M̄0, M̄1 UE.Enc(kẽ, M̄0) or UE.Enc(kẽ, M̄1)

xxIND-UPD-atk C̄0, C̄1 UE.Upd(∆ẽ, C̄0) or UE.Upd(∆ẽ, C̄1)

xxIND-UE-atk M̄, C̄ UE.Enc(kẽ, M̄) or UE.Upd(∆ẽ, C̄)

Figure 9: Intuitive description of challenge inputs and outputs in con-
fidentiality games for updatable encryption schemes, for (xx, atk) ∈
{(det,CPA), (rand,CPA), (det,CCA)}. Full definitions are given in Sec-
tion 3.1 and 4.1.

ExpINT-CTXT
UE, A (λ)

1 : do Setup

2 : win← 0

3 : AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)

4 : if twf = 1

5 : win← 0

6 : return win

Figure 10: INT-CTXT security notion for updatable encryption scheme UE
and adversary A. Deciding twf and computing L∗ are discussed in Section
3.2.

Remark 1. The definition of INT-CTXT is more natural for defining ci-
phertext integrity, however, it is easier to use INT-CTXTs notion to prove
ciphertext integrity for specific UE schemes. As INT-CTXT and INT-CTXTs

is equivalent, we use both definitions in this paper.

Lemma 1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an
updatable encryption scheme. For any INT-CTXT adversary A against UE
that queries as most QT O.Try queries, there exists an INT-CTXTs adver-
sary B1 against UE such that

AdvINT-CTXT
UE, A (λ) ≤ QT ·AdvINT-CTXTs

UE, B1 (λ).

Proof. As definition 4, we have

AdvINT-CTXT
UE, A (λ) = Pr[ExpINT-CTXT

UE, A = 1].

Fast and Secure Updatable Encryption 119

We define QT games, for the i-th game Gi, it is identical to INT-CTXT
game except for the challenger only responses the i-th O.Try query and
returns ⊥ to the rest of O.Try queries. Then we have

Pr[ExpINT-CTXT
UE, A = 1] ≤

QT∑

i=1

Pr[Gi = 1].

Then we claim that for any i ∈ {1, ..., QT } there exists an adversary

Pr[Gi = 1] = AdvINT-CTXTs

UE, B1,i (λ).

We can construct the reduction B1,i playing INT-CTXTs game and
simulating the responses of Gi by submitting the i-th O.Try query to its
INT-CTXTs challenger and returns ⊥ for the rest O.Try queries. Other
queries and the final result can be passed from INT-CTXTs game to Gi.
Then we have the desired result.

3.1 Existing Definitions of Confidentiality

Here we describe existing confidentiality notions given by LT18 and KLR19,
including formal definitions for their IND-yy-CPA and IND-yy-CCA no-
tions, respectively. (Note that KLR19 used UP-REENC to refer to the the
unlinkability notion that we and LT18 call IND-UPD). We will define our
new security notion in Section 4.1 and compare the relationship between all
notions in Section 4.2.

Definition 5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. Then the xxIND-ENC-atk advantage, for
(xx, atk)∈{(det,CPA), (rand,CPA), (det,CCA)}, of an adversaryA against
UE is defined as

AdvxxIND-ENC-atk
UE, A (λ) =∣∣∣∣Pr[ExpxxIND-ENC-atk-1

UE, A = 1]−Pr[ExpxxIND-ENC-atk-0
UE, A = 1]

∣∣∣∣,

where the experiment ExpxxIND-ENC-atk-b
UE, A is given in Fig. 6, Fig. 8 and

Fig. 11.

120 C. Boyd et al.

Definition 6. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. Then the xxIND-UPD-atk advantage,
for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}, of an adversary A
against UE is defined as

AdvxxIND-UPD-atk
UE, A (λ) =∣∣∣Pr[ExpxxIND-UPD-atk-1

UE, A = 1]−Pr[ExpxxIND-UPD-atk-0
UE, A = 1]

∣∣∣,

where the experiments ExpxxIND-UPD-atk-b
UE, A are given in Fig. 6, Fig. 8 and

Fig. 12.

ExpxxIND-ENC-atk-b
UE, A (λ)

1 : (M̄0, M̄1)← A
2 : Create C̃ with (M̄0, M̄1)

3 : if |M̄0| 6= |M̄1|
4 : return ⊥

5 : C̃
$←− UE.Enc(kẽ, M̄b)

6 : return C̃

Figure 11: Challenge call defini-
tion for xxIND-ENC-atk security
experiment; the full experiment is
given in combination with Fig. 6
and Fig. 8.

ExpxxIND-UPD-atk-b
UE, A (λ)

1 : (C̄0, C̄1)← A
2 : Create C̃ with (C̄0, C̄1)

3 : if |C̄0| 6= |C̄1|
4 : return ⊥
5 : if (C̄0, ẽ-1) /∈L or (C̄1, ẽ-1) /∈L
6 : return ⊥

7 : C̃
$←− UE.Upd(∆ẽ, C̄b)

8 : return C̃

Figure 12: Challenge call definition
for xxIND-UPD-atk security experi-
ment; the full experiment is given in
combination with Fig. 6 and Fig. 8.

We do not define randIND-ENC-CCA or randIND-UPD-CCA – these
notions were formalized by KLR19. Note that trivial win via direct update
(see Section 3.2) is never triggered in the detIND-ENC-CPA game. Thus,
randIND-ENC-CPA is equivalent to detIND-ENC-CPA. For simplicity, we
will often denote the notion xxIND-ENC-CPA as IND-ENC-CPA.

Remark 2. LT18 defined weakIND-ENC-CPA and weakIND-UPD-CPA
for analyzing BLMR+, a modification of BLMR’s scheme where the nonce

Fast and Secure Updatable Encryption 121

is encrypted using symmetric encryption. In this notion, the adversary triv-
ially loses if it obtains an update token linking the challenge epoch to the
epoch before or after. We show that BLMR+ is weakIND-UE-CPA secure
in Section B.

3.2 Trivial Win Conditions

3.2.1 Trivial Win Conditions in Confidentiality Games

Trivial wins via keys and ciphertexts. The following is for analyzing all
confidentiality games. We again follow LT18 in defining the epoch identi-
fication sets C∗, K∗ and T ∗ as the extended sets of C, K and T in which the
adversary has learned or inferred information via its acquired tokens. These
extended sets are used to exclude cases in which the adversary trivially wins,
i.e. if C∗∩K∗ 6= ∅, then there exists an epoch in which the adversary knows
the epoch key and a valid update of the challenge ciphertext. Note that the
challenger computes these sets once the adversary has finished running. We
employ the following algorithms of LT18 (for bi-directional updates):

• K∗ ← {e ∈ {0, ..., n}|CorrK(e) = true}, where CorrK(e) = true if
and only if (e ∈ K)∨(CorrK(e-1)∧e ∈ T)∨(CorrK(e+1)∧e+1 ∈ T);

• T ∗ ← {e ∈ {0, ..., n}|(e ∈ T) ∨ (e ∈ K∗ ∧ e-1 ∈ K∗)};

• C∗ ← {e ∈ {0, ..., n}|ChallEq(e) = true}, where ChallEq(e) = true
if and only if (e = ẽ) ∨ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗) ∨
(ChallEq(e+1) ∧ e+1 ∈ T ∗).

Trivial wins via direct updates. For yy ∈ {UE,UPD} and atk ∈ {CPA,
CCA}, the following is for analyzing detIND-yy-atk security notions, where
the adversary provides as its challenge one or two ciphertexts that it received
from O.Enc. The challenger needs to use L to track the information the
adversary has about these challenge input values.

Define a new list I as the list of epochs in which the adversary learned
an updated version of the ciphertext(s) given as a challenge input. Further-
more, define I∗ to be the extended set in which the adversary has learned
or inferred information via token corruption. We will use this set to exclude

122 C. Boyd et al.

cases which the adversary trivially wins, i.e. if I∗ ∩ C∗ 6= ∅, then there ex-
ists an epoch in which the adversary knows the updated ciphertext of C̄ and
a valid challenge-equal ciphertext. For deterministic updates, the adversary
can simply compare these ciphertexts to win the game. In particular, if C̄
is restricted to come from ẽ − 1 (recall the challenge epoch is ẽ), then the
condition I∗ ∩ C∗ 6= ∅ is equivalent to the win condition that LT18 used
for IND-UPD: ∆ẽ ∈ T ∗ or A did O.Upd(C̄) in ẽ. Our generalization is
necessary for a variant of xxIND-UE-atk that we define later in which the
challenge ciphertext input can come from any prior epoch, and not just the
epoch immediately before the one in which the challenge is made.

To compute I, find an entry in L that contains challenge input C̄. Then
for that entry, note the query identifier c, scan L for other entries with this
identifier, and add into list I all found indices:

I ← {e ∈ {0, ..., n}|(c, ·, e) ∈ L}.

Then compute I∗ as follows:

I∗ ← {e ∈ {0, ..., n}|ChallinputEq(e) = true},

where ChallinputEq(e) = true if and only if (e ∈ I)∨(ChallinputEq(e-1)∧
e ∈ T ∗) ∨ (ChallinputEq(e+1) ∧ e+1 ∈ T ∗).

Additionally, if the adversary submits two ciphertexts C̄0, C̄1 as chal-
lenge (as in xxIND-UPD-atk), we compute Ii, I∗i , i ∈ {0, 1} first and then
use I∗ = I∗0 ∪ I∗1 to check the trivial win condition. An example of trivial
win conditions K∗ ∩ C∗ 6= ∅ and I∗ ∩ C∗ 6= ∅ is shown in Fig. 16.

We do not consider this trivial win condition for the ENC notion, as
there is no ciphertext in the challenge input value, i.e. I∗ = ∅. Thus, the
assessment I∗ ∩ C∗ 6= ∅ in experiment ExpdetIND-ENC-atk-b

UE, A (see Fig. 8)
will never be true.

Trivial wins via decryptions. For yy ∈ {UE,ENC,UPD}, the following
is for analyzing detIND-yy-CCA where the adversary has access to O.Dec.
We follow the trivial win analysis in KLR19: suppose the adversary knows
a challenge ciphertext (C̃, e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch
e, then the adversary can update the challenge ciphertext from epoch e0 to
epoch e. If A sends the updated ciphertext to O.Dec this will reveal the

Fast and Secure Updatable Encryption 123

underlying message, and A trivially wins the game: we shall exclude this
type of attack.

Define L̃∗ to be the extended set of L̃ in which the adversary has learned
or inferred information via token corruption. Whenever O.Dec receives a
ciphertext located in L̃∗, the challenger will set the trivial win flag twf to
be 1. The list L̃∗ is updated while the security game is running. After the
challenge query happens, the challenger updates L̃∗ whenever an element
is added to list L̃ or a token is corrupted. In Fig. 13 we show how list L̃∗ is
updated.

3.2.2 Trivial Win Conditions in Ciphertext Integrity Games

We again follow the trivial win analysis in KLR19. In ciphertext integrity
games for updatable encryption, we do not consider the randomized update
setting as the adversary can update an old ciphertext via a corrupted token
to provide any number of new valid forgeries to the Try query to trivially
win this game.

Trivial wins via keys. If an epoch key is corrupted, then the adversary
can use this key to forge ciphertexts in this epoch. We exclude this trivial
win.

Trivial wins via ciphertexts. Suppose the adversary knows a ciphertext
(C, e0) ∈ L and tokens from epoch e0 + 1 to epoch e, then the adversary

Update L̃∗

1 : if challenge query or O.UpdC̃ happens

2 : L̃∗ ← L̃∗ ∪ {(C̃, ·)}
3 : if phase=1 and O.Corr(token, ·) happens

4 : for i ∈ T ∗ and (C̃i−1, i− 1) ∈ L̃∗ do

5 : L̃∗ ← L̃∗ ∪ {(C̃i, i)}

Figure 13: Update procedure for
list L̃∗

Update L∗

1 : if O.Enc or O.Upd happens
2 : L∗ ← L∗ ∪ {(·,C, ·)}
3 : if O.Corr(token, ·) happens
4 : for i ∈ T ∗ do

5 : for (j,Ci−1, i− 1) ∈ L∗ do

6 : Ci ← UE.Upd(∆i,Ci−1)

7 : L∗ ← L∗ ∪ {(j,Ci, i)}

Figure 14: Update procedure for
list L∗.

124 C. Boyd et al.

can provide a forgery by updating C to epoch e. We shall exclude this type
of forgeries.

Define L∗ to be the extended set of L in which the adversary has learned
or inferred information via token corruption. If O.Try receives a ciphertext
located in L∗, the challenger will set twf to 1. The list L∗ is updated while
the security game is running. Ciphertexts output by O.Enc and O.Upd are
known to the adversary. Furthermore, whenever a token is corrupted, the
challenger may update list L∗ as well. In Fig. 14 we show how list L∗ is
updated.

3.3 Firewall Technique

In order to prove security for updatable encryption in the epoch-based model
with strong corruption capabilities, cryptographic separation is required be-
tween the epochs in which the adversary knows key material, and those in
which it knows challenge-equal ciphertexts (acquired/calculated via queries
to O.UpdC̃ and O.Corr(∆)). To ensure this, we follow prior work in ex-
plicitly defining the ‘safe’ or insulated regions, as we explain below. These
regions insulate epoch keys, tokens and ciphertexts: outside of an insulated
region a reduction in a security proof can generate keys and tokens itself,
but within these regions it must embed its challenge while still providing
the underlying adversary with access to the appropriate oracles. A thorough
discussion of how we leverage these insulated regions in proofs is given in
Section 5.3.

To understand the idea of firewalls, consider any security game (for bi-
directional schemes) in which the trivial win conditions are not triggered.
If the adversary A corrupts all tokens then either it never corrupts any keys
or it never asks for a challenge ciphertext. Suppose that A does ask for
a challenge ciphertext in epoch ẽ 5. Then there exists an (unique) epoch
continuum around ẽ such that no keys in this epoch continuum, and no to-
kens in the boundaries of this epoch continuum are corrupted. Moreover,
we can assume that all tokens within this epoch continuum are corrupted,
because once the adversary has finished corrupting keys, it can corrupt any

5In the situation that the adversary does not corrupt any keys to the left or the right (or
both) of the challenge epoch, the insulated region thus extends to the boundary (or bound-
aries) of the epoch continuum.

Fast and Secure Updatable Encryption 125

remaining tokens that do not ‘touch’ those corrupted keys. This observa-
tion is first used in the IND-UPD proof of RISE provided by Lehmann and
Tackmann [LT18a], and Klooß et al. [KLR19a] provided an extended de-
scription of this ‘key insulation’ technique. We name these epoch ranges
insulated regions and their boundaries to be firewalls.

Definition 7. An insulated region with firewalls fwl and fwr is a consecutive
sequence of epochs (fwl, . . . , fwr) for which:

• no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;

• the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist);

• all tokens (∆fwl+1, . . . ,∆fwr) are corrupted (if any exist).

We denote the firewalls bordering the special insulated region that con-
tains ẽ as ˆfwl and ˆfwr – though note that there could be (many, distinct)
insulated regions elsewhere in the epoch continuum. Specifically, when the
adversary asks for updated versions of the challenge ciphertext, the epoch in
which this query occurs must also fall within (what the challenger later cal-
culates as) an insulated region. In Fig. 15 we give an algorithm FW-Find for
computing firewall locations. The list FW tracks, and appends a label to,
each insulated region and its firewalls. Observe that if an epoch is a left fire-
wall, then neither the key nor the token for that epoch are corrupted. From
the left firewall, since we assume that all tokens are corrupted, track to the
right until either a token is not corrupted or a key is.

3.3.1 Example of Epoch Corruption and Trivial Wins

In Fig. 16 we indicate the trivial win conditions and insulated regions for
a particular adversarial corruption strategy, in the detIND-UE∗-CPA exper-
iment (this notion chosen here to demonstrate how the challenger popu-
lates its lists). Suppose challenge epoch ẽ = 8, and further assume K∗ =
{1, 6, 9}, and T ∗ = {3, 4, 8}, meaning that C∗ = {7, 8}. Suppose C̄ is in
epoch 1 and the adversary has asked O.Upd(C̄) in epoch 2, so C̄2, C̄3, C̄4

are updated ciphertexts of C̄, therefore I∗ = {1, 2, 3, 4}. So C∗ ∩ K∗ = ∅
and I∗ ∩ C∗ = ∅, the trivial win conditions have not occurred. Then we
see insulated regions: {0} is the first insulated region, {2, 3, 4} is the sec-
ond insulated region, etc. We compute T ∗ ∪ K∗ = {1, 3, 4, 6, 8, 9}, so

126 C. Boyd et al.

FW-Find

1 : FW ← ∅
2 : j = 0

3 : for e ∈ {0, ..., n} do

4 : if e ∈ ¬(T ∗ ∪ K∗)
5 : j ← j + 1

6 : fwlj ← e

7 : if (e + 1 /∈ T ∗) and (e /∈ K∗)
8 : fwrj ← e

9 : FW ← {(j, fwlj , fwrj)}
Figure 15: Algorithm FW-Find for computing all firewalls.

¬(T ∗ ∪ K∗) = {0, 2, 5, 7}: using FW-Find we know this is the set of left
firewalls, and the right firewalls are {0, 4, 5, 8}.

Epoch {0} 1 {2 3 4} {5} 6 {7 ẽ} 9
Key × k1 × × × × k6 × × k9

Token × × ∆3 ∆4 × × × ∆8 ×
C̃ × × × × × × × C̃7 C̃8 ×
C̄ × C̄ C̄2 C̄3 C̄4 × × × × ×

Figure 16: An example of trivial win conditions and insulated re-
gions incurred by an adversary playing detIND-UE∗-CPA, where C̃ indi-
cates challenge ciphertexts, C̄ indicates challenge input, × indicates the
keys/tokens/ciphertexts not revealed to the adversary, and {} indicates in-
sulated regions.

4 On the Security of Updates

In this section we present a new notion of security for updatable encryption
schemes, which we denote xxIND-UE-atk. This notion captures both se-
curity of fresh encryptions (i.e. implies xxIND-ENC-atk) and unlinkability
(i.e. implies xxIND-UPD-atk). We first explain the new notion and then de-

Fast and Secure Updatable Encryption 127

scribe its relation to previous notions. Then, we prove a generic relationship
among CPA, CTXT and CCA to complete the picture for security notions
for UE schemes.

4.1 A New Definition of Confidentiality

In the security game for xxIND-UE-atk, the adversary submits one message
and a ciphertext from an earlier epoch that the adversary received via a
call to O.Enc. The challenger responds with either an encryption of that
message or an update of that earlier ciphertext, in the challenge (current)
epoch ẽ.

Definition 8 (xxIND-UE-atk). Let UE={UE.KG,UE.TG,UE.Enc,UE.Dec,
UE.Upd} be an updatable encryption scheme. Then the xxIND-UE-atk ad-
vantage, for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}, of an ad-
versary A against UE is defined as

AdvxxIND-UE-atk
UE, A (λ) =∣∣∣Pr[ExpxxIND-UE-atk-1

UE, A = 1]−Pr[ExpxxIND-UE-atk-0
UE, A = 1]

∣∣∣,

where the experiment ExpxxIND-UE-atk-b
UE, A is given in Fig. 6, Fig. 8 and

Fig. 17.

Note that randIND-UE-CPA is strictly stronger than detIND-UE-CPA,
since the adversary has strictly more capabilities. A generalized version
of xxIND-UE-atk, denoted xxIND-UE∗-atk, is also given in Fig. 17. In
this game the input challenge ciphertext can come from (i.e. be known to
A in) any prior epoch, not just the epoch immediately before ẽ. Note that
xxIND-UE-atk is a special case of xxIND-UE∗-atk. Under some fairly weak
requirements (that all schemes discussed in this paper satisfy) we can prove
that xxIND-UE-atk implies xxIND-UE∗-atk – we prove this result in Sec-
tion. 4.2.1.

Remark 3. The definition of xxIND-UE-atk is more concise and intuitively
easier to understand than that of xxIND-UE∗-atk, however in Theorem 2.1
and Theorem 2.2 in Section 4.2.1 we show that these two versions of se-
curity notions are equivalent. This result and our generic proof techniques
mean that all results in this paper that hold for xxIND-UE-atk, also hold for
xxIND-UE∗-atk, and vice versa.

128 C. Boyd et al.

ExpxxIND-UE-atk-b
UE, A (λ)

1 : (M̄, C̄)← A
2 : Create C̃ with (M̄, C̄)

3 : if (C̄, ẽ− 1) /∈ L
4 : return ⊥
5 : if b = 0

6 : C̃ẽ ← UE.Enc(kẽ, M̄)

7 : else

8 : C̃ẽ ← UE.Upd(∆ẽ, C̄)

9 : return C̃ẽ

ExpxxIND-UE∗-atk-b
UE, A (λ)

1 : (M̄, (C̄, e′))← A
2 : Create C̃ with (M̄, (C̄, e′))

3 : if (C̄, e′) /∈ L
4 : return ⊥
5 : if b = 0

6 : C̃ẽ ← UE.Enc(kẽ, M̄)

7 : else

8 : C̃e′ ← C̄

9 : for j ∈ {e′+1, ..., ẽ} do

10 : C̃j ← UE.Upd(∆j , C̃j−1)

11 : return C̃ẽ

Figure 17: Challenge call definition for xxIND-UE-atk and xxIND-UE∗-atk
security experiments; the full experiment is defined in Fig. 6 and Fig. 8.

Remark 4. In Section C.1 we show that the RISE scheme presented by
LT18 is randIND-UE-CPA secure under DDH. While this result is perhaps
unsurprising6, the proof techniques we use are novel and may be of inde-
pendent interest. We give an Oracle-DDH-like game that inherits the epoch-
based nature of the updatable encryption security model, and then use this
as a bridge to prove security.

4.2 Relations among Security Notions

In Fig. 18 we show the relationship between the new and existing UE secu-
rity notions. Note that our new notion is strictly stronger than the IND-ENC
and IND-UPD notions presented in prior work, and is in fact stronger than
the combination of the prior notions. Further, we show that the generic
relation among CPA, CTXT and CCA, that CPA security coupled with ci-
phertext integrity implies CCA security, also holds for updatable encryption
schemes. The relationships are proven via Theorem 2.2 to 2.8, and Theo-

6LT18 had already shown that RISE is IND-ENC-CPA and randIND-UPD-CPA, so our
result shows that it is stronger than was previously known.

Fast and Secure Updatable Encryption 129

rem 3, which follow next.

Theorem 2 (Informal Theorem). The relationship among the security no-
tions xxIND-UE-atk, xxIND-ENC-atk and xxIND-UPD-atk are as in Fig. 18.
This is proven via Theorem 2.2 to 2.8, and Theorem 3.

randIND-UE-CPA

IND-ENC-CPA

randIND-UPD-CPA

IND-ENC-CPA
+randIND-UPD-CPA

2.3

2.5

\ 2.7

detIND-UE-CPA

detIND-UPD-CPA

IND-ENC-CPA

IND-ENC-CPA
+detIND-UPD-CPA

2.6
2.4+2.2

\ 2.7
Def. 8

\

2.8
detIND-UE-CCA

detIND-UPD-CCA

detIND-ENC-CCA

IND-ENC-CCA
+detIND-UPD-CCA

+CTXT

3

+CTXT

3

+CTXT

3

2.4+2.2

2.6

\ 2.7

Figure 18: Relations among confidentiality notions xxIND-yy-atk for xx ∈
{det, rand}, yy ∈ {UE,ENC,UPD}, atk ∈ {CPA,CCA}, and ciphertext
integrity (INT-CTXT). Arrow labelling refers to Theorem numbering ex-
cept where otherwise specified.

4.2.1 Relations between IND-UE and IND-UE∗

Properties of Deterministic Updates Here we will use an an alternative
representation of UE.Enc that specifies a deterministic algorithm with ran-
domness as input, i.e. Ce ← UE.Enc(ke,M; r).

One of our main contributions is a scheme with a deterministic update
mechanism – we now discuss some of the properties of such schemes. The
first two properties, simulatable token generation and randomness-preserving
updates, were introduced by Klooß et al. [KLR19a]. Simulatable token gen-
eration states that the real token looks like a token generated from a token

130 C. Boyd et al.

simulation algorithm, as we consider bi-directional updates we omit the
generation of the reverse token. Randomness-preserving states that the up-
date of a ciphertext looks like an encryption of the same message, with the
same randomness, under the new key.

Definition 9 (Simulatable token [KLR19a]). Let UE be an updatable en-
cryption scheme. We say that UE has simulatable token generation if it has
the following property: There is a PPT algorithm SimTG(λ) which samples

a token ∆. Furthermore, for arbitrary (fixed) kold
$←− UE.KG(λ) following

distributions of ∆ are identical:

• {∆ | ∆ $←− SimTG(λ)}

• {∆ | knew
$←− UE.KG(λ),∆← UE.TG(kold, knew)}

Notice that BLMR, BLMR+, RISE, SHINE all have simulatable token
generation. Furthermore, the simulatable token generation algorithms of
these UE schemes generates a token by randomly picking a token from the

token space, i.e. SimTG : ∆
$←− T S .

Definition 10 (Randomness-preserving [KLR19a]). Let UE be an updatable
encryption scheme. We say that UE.Upd (for UE) is randomness-preserving
if the following holds: First, as usually assumed, UE encrypts with uni-

formly chosen randomness. Second, all keys (kold, knew)
$←− UE.KG(λ),

tokens ∆new $←− UE.TG(kold, knew), plaintext m and randomness r, we
have

UE.Upd(∆new,Cold) = UE.Enc(knew,m; r),

where Cold = UE.Enc(kold,m; r).

Suppose Ci = UE.Enc(ki,m; r), and Cj is an updated ciphertext of Ci

from epoch i to epoch j. Randomness-preserving property makes sure that
Cj = UE.Enc(kj ,m; r), which means a (updated) ciphertext under some
epoch key is uniquely decided by the message and randomness.

We define an even weaker property which we call update-preserving:
any update sequence starting and ending at the same key that starts with the
same ciphertext will result in the same ciphertext.

Fast and Secure Updatable Encryption 131

Definition 11 (Update-preserving). Let UE = {UE.KG,UE.TG,UE.Enc,
UE.Dec,UE.Upd} be an updatable encryption scheme with deterministic
update algorithm. We say that UE.Upd (for UE) is update-preserving if
the following holds: for any two sequence of key pairs with the same
start key and end key (ki, ki+1, ..., kj) and (k′i, k

′
i+1, ..., k′j), where ki(=

k′i), ki+1, k
′
i+1, ..., kj−1, k

′
j−1, kj(= k′j)

$←− UE.KG(λ), and tokens ∆l
$←−

UE.TG(kl−1, kl), ∆′l
$←− UE.TG(k′l−1, k

′
l), f or any ciphertext Ci in epoch

i, we have Cj = C′j where C′i = Ci,Cl = UE.Upd(∆l,Cl−1), C′l =
UE.Upd(∆′l,C

′
l−1) for l = i+ 1, ..., j.

The diagrams in Fig. 19 show how the property works, with the left-
hand side indicating keys and tokens and the right-hand side showing ci-
phertexts.

ki

k′i+1

ki+1

k′j−1

kj−1

kj

∆′i+1 ∆′i+2, ...,∆′j−1
∆′j

∆i+1
∆i+2, ...,∆j−1 ∆j

Ci

C′i+1

Ci+1

C′j−1

Cj−1

Cj

∆′i+1 ∆′i+2, ...,∆′j−1
∆′j

∆i+1
∆i+2, ...,∆j−1 ∆j

Figure 19: Keys and updated ciphertexts in Definition 11

We have that update-preserving property implies that the updated ci-
phertext is uniquely determined by (Ci, kj , j-i), where Ci is the beginning
ciphertext for updating, j-i decides how many updates have occurred, and
kj decides the value of the ending epoch’s epoch key.

We now define another property which states that ciphertexts encrypted
under one key can be simulated by ciphertexts encrypted under another key.
All schemes in this paper meet this property.

Definition 12 (Simulatable Encryption). Let UE be an updatable encryption

scheme. For all keys kold, knew $←− UE.KG(λ), tokens ∆new $←− UE.TG(kold,
knew), plaintextm, defineXold, Xnew to be the statistical distribution of the
ciphertexts output by UE.Enc(kold,m), UE.Enc(knew,m), resp.. We say
that UE has simulatable encryption if update algorithm keeps the ciphertext
distribution, i.e. UE.Upd(∆new, Xold)

dist
= Xnew.

Note that we do not restrict that the update algorithm is probabilistic.

132 C. Boyd et al.

This means when the update algorithm is deterministic, it will not add ran-
domness to the updated ciphertext, and it maintains the ciphertext distri-
bution. For example, suppose U(Z) is a uniform distribution over Z, and
for any integer ∆, let UE.Upd(∆, x) = x+ ∆, then UE.Upd(∆, U(Z)) =
U(Z). This definition looks similar to the definition of perfect re-encryption
provided by Klooß et al. [KLR19a], which mandates that update has the
same distribution as decrypt-then-encrypt. Perfect re-encryption requires
the update algorithm is probabilistic, which makes it possible for any up-
dated ciphertext looks like a fresh encryption. The simulatable encryption
property is to make sure that the update algorithm can keep the distribu-
tion of encryption – however it is not necessary to require that the update
algorithm is probabilistic.

All schemes discussed in this paper satisfy all of the above proper-
ties. Note that randomness-preserving property is strictly stronger than
the update-preserving property and simulatable encryption. Obviously, if a
scheme is randomness-preserving then it is also update-preserving and has
simulatable encryption. However, the update-preserving property does not
imply randomness-preserving property, even with simulatable encryption.
To see this, construct a deterministic update variant of the RISE scheme
(Section C) such that the randomness r updates to r + 2: this scheme
has the update-preserving property and simulatable encryption, but not the
randomness-preserving property.

xxIND-UE-atk implies xxIND-UE∗-atk. We prove xxIND-UE-atk implies
xxIND-UE∗-atk in this section, and consequently we have the result that
xxIND-UE-atk and xxIND-UE∗-atk are equivalent.

randIND-UE-CPA implies randIND-UE∗-CPA.

Theorem 2.1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. For any randIND-UE∗-CPA adversary A
against UE, there exists an randIND-UE-CPA adversary B2.1 against UE
such that

AdvrandIND-UE∗-CPA
UE, A (λ) ≤ AdvrandIND-UE-CPA

UE, B2.1 (λ).

Proof. We construct a reduction B2.1: before the epoch counter is incre-
mented, every ciphertext is updated using the available update oracles. This

Fast and Secure Updatable Encryption 133

needs to happen when the adversary moves to the next epoch, so that it is
always possible to provide a valid challenge input to the reducton’s own
randIND-UE-CPA challenger and respond with a valid challenge output to
the adversary.

More precisely, when the adversary makes the randIND-UE∗-CPA chal-
lenge query, the reduction make its own randIND-UE-CPA query, submit-
ting the ciphertext provided by the adversary but updated to the epoch one
before the challenge epoch that both algorithms are in. This should give
the exact same result as updating the older ciphertext. Consequently, and
since all other oracle queries can just be forwarded, the reduction perfectly
simulates the randIND-UE∗-CPA game. We have the required result.

detIND-UE-atk implies detIND-UE∗-atk.

Proof technique of Theorem 2.2. The proof uses the firewall technique,
where the reduction will ‘pause’ its own epoch continuum while respond-
ing to the adversary’s queries. The main left firewall in the detIND-UE∗-atk
game is an epoch in which the detIND-UE-atk reduction can possibly ask
for a valid challenge query. Before the left firewall, the reduction sends
the queries received from the adversaryA to its detIND-UE-atk challenger,
and forwards responses to A. Within the firewalls, the reduction stops ask-
ing any O.Next queries, and instead simulates the responses of each query
to provide answers to A. Because of this action, the detIND-UE-atk chal-
lenger will stay in epoch ˆfwl. When A makes the detIND-UE∗-atk chal-
lenge queries (if the trivial win conditions of the detIND-UE∗-atk game are
not satisfied then the trivial win conditions of the detIND-UE-atk game will
be not satisfied as well), the reduction makes its detIND-UE-atk query us-
ing the old ciphertext (in ˆfwl − 1) instead. After receiving the response,
the reduction updates its challenge ciphertext to the challenge epoch to re-
ply to A. After the right firewall, the query responses are calculated and
forwarded, in the same manner as before the left firewall.

Theorem 2.2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme has simulatable token generation, update-
preserving property and simulatable encryption property.

For any detIND-UE∗-atk adversary A against UE, where atk ∈ {CPA,

134 C. Boyd et al.

CCA}, there exists an detIND-UE-atk adversary B2.2 against UE such that

AdvdetIND-UE∗-atk
UE, A (λ) ≤ (n+ 1)2 ·AdvdetIND-UE-atk

UE, B2.2 (λ).

Proof. We use three steps to prove this result.
(Step 1.) Consider a modified version of detIND-UE∗-atk. For b ∈

{0, 1}, define experiments ExpINT1-b to be the same as ExpdetIND-UE∗-atk-b

except that the experiments randomly pick ˆfwl, ˆfwr, and if ˆfwl, ˆfwr are not
the firewalls around challenge epoch ẽ, then the experiment returns a ran-
dom bit b′. More formally, the values ˆfwl, ˆfwr are the desired firewalls if the
challenge is made inside – i.e. ẽ ∈ [ˆfwl, ˆfwr] – and they actually consitute
an insulate region, i.e. (, ˆfwl, ˆfwr) ∈ FW)).

These firewalls ˆfwl, ˆfwr could take any value in {0, ..., n}, so this loss
is upper bounded by (n+ 1)2. We have

AdvdetIND-UE∗atk
UE,A (λ) ≤ (n+ 1)2AdvINT1

UE,A.

(Step 2.) Then we consider experiments ExpINT2-b, which is the same
as ExpINT1-b except for: in the insulated region all encryptions are updated
ciphertexts of ciphertexts encrypted in left firewall ˆfwl By this we mean
that if the adversary asks for any O.Enc, O.Dec and challenge query, the
responses work as follows:

• O.Enc(M): if called in an epoch ˆfwl < e ≤ ˆfwr, encrypt the message
in left firewall ˆfwl, then update the ciphertext to epoch e, and return
the updated ciphertext.

• O.Dec(C): if called in an epoch ˆfwl < e ≤ ˆfwr, reverse update the
ciphertext from e back to ˆfwl, then decrypt the updated ciphertext,
and return the decrypted value.

• challenge query, on input (M̄, (C̄, e′)): if b = 0, encrypt the mes-
sage M̄ in left firewall ˆfwl, then update the ciphertext to the challenge
epoch ẽ; if b = 1, update ciphertext C̄ from epoch e′ to epoch ẽ.
Return the challenge ciphertext.

Since we assume that UE has the simulatable encryption property, both op-
erations are possible so we have

AdvINT1
UE, A(λ) = AdvINT2

UE, A(λ).

Fast and Secure Updatable Encryption 135

(Step 3.) We construct a reduction B2.2, detailed in Fig. 20 and Fig. 21,
that is playing the detIND-UE-atk game and runs A. We claim that

AdvINT2
UE, A(λ) ≤ AdvdetIND-UE-atk

UE, B2.2 (λ).

If ˆfwl, ˆfwr are the desired firewalls, then [ˆfwl, ˆfwr] ⊆ C∗. If the trivial
win conditions in ExpINT2-b are not set (the same result as the trivial win
conditions in ExpdetIND-UE∗-atk-b), i.e. I∗ ∩C∗ = ∅, then I∗ ∩ [ˆfwl, ˆfwr] =
∅. That means A never asks O.Upd(C̄) and O.Corr(token) in ˆfwl. So the
reduction uses the relevant challenge input to ask a challenge query to its
own detIND-UE-atk challenger in epoch ˆfwl, and it will not trivially lose.

Before the epoch counter is incremented, every ciphertext is updated us-
ing the available update oracles. This needs to happen when the adversary
moves to the next epoch, so that it is always possible to provide a valid chal-
lenge input to the reducton’s own detIND-UE-atk challenger and respond
with a valid challenge output to the adversary.

Within the firewalls, the reduction simulates all ciphertexts and uses the
list FL and the list F̃L to track non-challenge ciphertexts and challenge-
equal ciphertexts, respectively. When the challenge query happens with in-
put (M̄, (C̄, e′)), the reduction can find all updated versions of C̄ by check-
ing the first entry of the list L. The reduction uses the ciphertext in epoch
ˆfwl-1 with the same query identifier c as a challenge input, sending to its

own detIND-UE-atk challenger. (Note that e′ < ˆfwl, otherwise, [ˆfwl, ˆfwr] ⊆
I∗ and the trivial win condition is triggered.) After receiving the response
from the detIND-UE-atk challenger, B2.2 updates the received ciphertext to
the challenge epoch to reply A.

Eventually B2.2 receives b′ from A, and simply outputs b′ to its own
detIND-UE-atk challenger. When B2.2 interacts with ExpdetIND-UE-atk-b

UE, B2.2 ,
B2.2 can perfectly simulate ExpINT2-b

UE, A to A. Then we have the required
result.

4.2.2 Relations among IND-ENC, IND-UPD, and IND-UE

In this section, we analyze the relations among notions with different chal-
lenge input. Since similar proof techniques are used in Theorems 2.3, 2.4,
2.5 and 2.6, of these we give full proof details only for Theorem 2.3.

136 C. Boyd et al.

Reduction B2.2 playing ExpdetIND-UE-atk-b
UE, B2.2

1 : do Setup;FL, F̃L,L, L̃ ← ∅

2 : ˆfwl, ˆfwr
$←− {0, ..., n}

3 : M̄, (C̄, e′)← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr(λ)

4 : phase← 1

5 : Create C̃ with (M̄, (C̄, e′)), get C̃ẽ

6 : b′ ← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅
9 : if ABORT occurred or (·, ˆfwl, ˆfwr) 6∈ FW or twf = 1

10 : b′
$←− {0, 1}

11 : return b′

Figure 20: Reduction B2.2 for proof of Theorem 2.2. The adversary may
call for O.Dec in the CCA game. The oracles in Fig. 21 show how B2.2

responds to A, including calls to oracles in its own detIND-UE-atk game.

Theorem 2.3. Let UE be a UE scheme. For any IND-ENC-CPA adversary
A against UE, there exists an randIND-UE-CPA adversary B2.3 against UE
such that

AdvIND-ENC-CPA
UE, A (λ) ≤ 2 ·AdvrandIND-UE-CPA

UE, B2.3 (λ).

Proof. We construct a reduction B2.3 running the randIND-UE-CPA experi-
ment which will simulate the responses of queries made by the adversaryA.
To provide a valid non-challenge ciphertext to its own challenger, B2.3 must
run A out of step with its own game, so epoch 0 as far as A is concerned is
actually epoch 1 for B2.3, and so on.

1. B2.3 chooses b
$←− {0, 1}.

2. B2.3 receives the setup parameters from its randIND-UE-CPA chal-

lenger, chooses M
$←− MS and calls O.Enc(M) which returns some

C0. Then B2.3 calls O.Next once and sends the setup parameters to
A.

Fast and Secure Updatable Encryption 137

O.Enc(M)

1 : c← c + 1

2 : if e 6∈ { ˆfwl+1, ..., ˆfwr}
3 : call O.Enc(M), get Ce

4 : L ← L ∪ {(c,Ce, e)}
5 : if e ∈ { ˆfwl+1, ..., ˆfwr}
6 : call O.Enc(M), get C ˆfwl

7 : L ← L ∪ {(c,C ˆfwl,
ˆfwl)}

8 : for j ∈ { ˆfwl+1, ..., e} do

9 : Cj ← UE.Upd(∆j ,Cj−1)

10 : FL ← FL ∪ {(c,Ce, e)}
11 : return Ce

O.Next
12 : if e ∈ {1, ..., ˆfwl-1} then

13 : for (c,Ce−1, e− 1) ∈ L do

14 : call O.Upd(Ce-1), get Ce

15 : L ← L ∪ {(c,Ce, e)}
16 : call O.Next
17 : if e ∈ { ˆfwr+1, ..., n} then

18 : call O.Next
19 : if e ∈ { ˆfwl, ..., ˆfwr-1} then

20 : e← e+1,∆e
$←− SimTG(λ)

21 : if e = ˆfwr then

22 : for j ∈ { ˆfwl+1, ..., ˆfwr+1} do

23 : call O.Next
24 : for (c,Cj-1, j-1) ∈ L do

25 : call O.Upd(Cj-1,get Cj

26 : L ← L ∪ {(c,Cj , j)}
27 : for (C̃j-1, j-1) ∈ L̃ do

28 : call O.UpdC̃(C̃j-1)),get C̃j

29 : L̃ ← L̃ ∪ {(C̃j , j)}

O.Upd(Ce−1)

30 : if (c,Ce−1, e− 1) /∈ L ∪ FL
31 : return ⊥
32 : if e ∈ {1, ..., ˆfwl}
33 : call O.Upd(Ce−1), get Ce

34 : L ← L ∪ {(c,Ce, e)}
35 : if e ∈ { ˆfwr+2, ..., n}
36 : call O.Upd(Ce−1), get Ce

37 : L ← L ∪ {(c,Ce, e)}
38 : if e ∈ { ˆfwl+1, ..., ˆfwr}
39 : Ce ← UE.Upd(∆e,Ce−1)

40 : FL ← FL ∪ {(c,Ce, e)}
41 : if e = ˆfwr+1

42 : find (c,Ce, e) ∈ L
43 : return Ce

O.Corr(inp, ê)
44 : do Check(inp, ê; e; ˆfwl, ˆfwr)

45 : if inp = key

46 : K ← K ∪ {ê}
47 : return kê

48 : if inp = token

49 : T ← T ∪ {ê}
50 : if ê ∈ {1, ..., ˆfwl-1}
51 : call O.Corr(inp, ê)
52 : get ∆ê

53 : if { ˆfwr+2, ..., n}
54 : call O.Corr(inp, ê)
55 : get ∆ê

56 : if ê ∈ { ˆfwl+1, ..., ˆfwr}
57 : find ∆ê

58 : return ∆ê

Figure 21: Part 1. Oracles used in the proof of Theorem 2.2.

138 C. Boyd et al.

Create C̃ with (M̄, (C̄, e′))

59 : if ẽ 6∈ { ˆfwl, ..., ˆfwr}
60 : ABORT

61 : if (c, C̄, e′) 6∈ L
62 : ABORT

63 : find (c,C ˆfwl−1,
ˆfwl− 1) ∈ L

64 : call cq (M̄,C ˆfwl−1)

65 : get C̃ ˆfwl

66 : L̃ ← L̃ ∪ {(C̃ ˆfwl,
ˆfwl)}

67 : for j ∈ { ˆfwl+1, ..., ˆfwr} do

68 : C̃j ← UE.Upd(∆j , C̃j−1)

69 : F̃L ← F̃L ∪ {(C̃j , j)}
70 : return C̃ẽ

O.UpdC̃

71 : if e ∈ {1, ..., ˆfwl-1}
72 : return ⊥
73 : C ← C ∪ {e}
74 : if e ∈ { ˆfwl}
75 : find (C̃e, e) ∈ L̃
76 : if e ∈ { ˆfwl+1, ..., ˆfwr}
77 : find (C̃e, e) ∈ F̃L
78 : if e ∈ { ˆfwr+1, ..., n}
79 : call O.UpdC̃, get C̃e

80 : return C̃e

O.Dec(C)

81 : if phase← 1 and C ∈ L̃∗
82 : twf ← 1

83 : return ⊥
84 : if e 6∈ { ˆfwl+1, ..., ˆfwr}
85 : call O.Dec(C), get M′/⊥
86 : if e ∈ { ˆfwl+1, ..., ˆfwr}
87 : for j ∈ {e, ..., ˆfwl+1} do

88 : Cj−1 ← UE.Upd−1(∆j ,Cj)

89 : call O.Dec(C ˆfwl), get M′/⊥
90 : return M′ or ⊥

Figure 21: Part 2. Oracles used in the proof of Theorem 2.2. In line 64 of
the Create C̃ description, call cq means that the reduction makes its own
challenge query with these values.

Fast and Secure Updatable Encryption 139

3. (a) WheneverB2.3 receives the queriesO.Enc,O.Upd,O.Corr from
A, B2.3 sends these queries to its randIND-UE-CPA challenger,
and forwards the responses to A.

(b) WheneverO.Next is called byA, B2.3 randomly chooses a mes-

sage M
$←− MS and calls O.Enc(M) to receive some Ce, and

then calls O.Next.

4. At some point, in epoch ẽ (for its game), B2.3 receives the challenge
query (M̄0, M̄1) fromA. Then B2.3 sends (M̄b,Cẽ−1) as challenge to
its own randIND-UE-CPA challenger. After receiving the challenge
ciphertext, C̃ẽ, from its challenger, B2.3 sends C̃ẽ to A.

5. B2.3 continues to answer A’s queries using its own oracles, now in-
cluding O.UpdC̃.

6. Finally B2.3 receives the output bit b′ from A. If b = b′ then B2.3

returns 0. Otherwise B2.3 returns 1.

We now bound the advantage of B2.3. The point is that whenever B2.3

returns a random encryption to A, B2.3’s probability of winning is exactly
1/2 because the bit b′ fromA is independent of its choice of b. This happens
with probability 1/2. However, when B2.3 returns a “correct” value toA (an
encryption of M̄0 or M̄1), then B2.3’s probability of winning is the same as
the probability that A wins.

First note that, as usual,

AdvrandIND-UE-CPA
UE,B2.3 =

|Pr[ExprandIND-UE-CPA-1
UE, B2.3 = 1]−Pr[ExprandIND-UE-CPA-0

UE, B2.3 = 1]|.

We claim that Pr[ExprandIND-UE-CPA-1
UE, B2.3 = 1] = 1/2 because in this

case C̃ẽ is independent of b and so b′ must also be independent of b. Then
we have:

140 C. Boyd et al.

AdvrandIND-UE-CPA
UE,B2.3

=

∣∣∣∣
1

2
−Pr[ExprandIND-UE-CPA-0

UE, B2.3 = 1]

∣∣∣∣

=

∣∣∣∣
1

2
−
(

1

2
Pr[ExpIND-ENC-CPA-0

UE, A =1] +
1

2
Pr[ExpIND-ENC-CPA-1

UE, A =0]

)∣∣∣∣

=

∣∣∣∣
1

2
− 1

2
Pr[ExpIND-ENC-CPA-0

UE, A =1]− 1

2

(
1−Pr[ExpIND-ENC-CPA-1

UE, A =1]
)∣∣∣∣

=

∣∣∣∣
1

2
·
(
Pr[ExpIND-ENC-CPA-0

UE, A = 1]−Pr[ExpIND-ENC-CPA-1
UE, A = 1]

)∣∣∣∣

=
1

2
·AdvIND-ENC-CPA

UE, A .

A remark on Theorem 2.4. Directly proving that detIND-UE-atk implies
detIND-ENC-atk is very challenging, and in fact the difficulty is the same
as proving that detIND-UE-atk implies detIND-UE∗-atk. Since we have
proved detIND-UE-atk implies detIND-UE∗-atk in Theorem 2.2 in Sec-
tion 4.2.1, we do not repeat the similar proof approach here. We just prove
detIND-UE∗-atk implies detIND-ENC-atk, which is easy. We follow a very
similar approach to the proof of Theorem 2.3. The detIND-UE∗-atk (reduc-
tion) adversary can ask for tokens almost as freely as the detIND-ENC-atk
adversary without incurring the trivial win conditions. But since there should
at least one token, in an epoch before (include) challenge epoch ẽ, is un-
known to the adversary, we again have to run our reduction out of step with
the detIND-ENC-atk adversary (essentially creating an artificial epoch).

Theorem 2.4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. For any detIND-ENC-atk adversary A
against UE, where atk ∈ {CPA,CCA}, there exists a detIND-UE∗-atk ad-
versary B2.4 against UE such that

AdvdetIND-ENC-atk
UE, A (λ) ≤ 2 ·AdvdetIND-UE∗-atk

UE, B2.4 (λ).

Proof. Similar to the proof strategy used in Theorem 2.3, we construct a
detIND-UE∗-atk adversary B2.4 against UE to simulate the responses to

queries made by detIND-ENC-atk adversary A. B2.4 chooses b
$←− {0, 1}.

Fast and Secure Updatable Encryption 141

Since B2.4 is allowed to takes its challenge ciphertext from any epoch in its
detIND-UE∗-atk experiment, it can in particular uses the random ciphertext
created in epoch 0, C0. Note that, in contrast to Step 3 (b) of the simulation
in the proof of Theorem 2.3, there is now no need for B2.4 to generate a
random ciphertext for each epoch. Also B2.4 will never ask for O.Upd(C0)
to its own detIND-UE∗-atk challenger.

When receiving the challenge query (M̄0, M̄1) from A, the reduction
B2.4 sends (M̄b,C0) as challenge to its own detIND-UE∗-atk challenger.
Since A has no view of epoch 0, A cannot ask for ∆1. In addition, A will
never ask for O.Upd(C0).

Thus the trivial win condition I∗ ∩ C∗ 6= ∅ will not be satisfied in
the detIND-UE∗-atk game. The other trivial win(s), i.e. trivial win via
keys and ciphertexts (and trivial wins via decryptions), will also pass from
detIND-ENC-atk game to detIND-UE∗-atk game. The result follows using
the same calculation as in the proof of Theorem 2.3.

Theorem 2.5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. For any randIND-UPD-CPA adversary
A against UE, there exists an randIND-UE-CPA adversary B2.5 against UE
such that

AdvrandIND-UPD-CPA
UE, A (λ) ≤ 2 ·AdvrandIND-UE-CPA

UE, B2.5 (λ).

Proof. Similarly to the proof method used in Theorem 2.3, we construct a
randIND-UE-CPA reduction B2.5 against UE to simulate the responses of
queries made by randIND-UPD-CPA adversary A. However in this case
it is not necessary for the reduction to be out-of-step with the adversary.

B2.5 first chooses b
$←− {0, 1}. B2.5 forwards all queries from A to its

own oracles, and when it receives challenge query (C̄0, C̄1) from A, B2.5

samples a random message M, and sends (M, C̄b) to the randIND-UE-CPA
challenger. The result follows using a similar calculation to that in the proof
of Theorem 2.3.

Theorem 2.6. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme For any detIND-UPD-atk adversary A
against UE, where atk ∈ {CPA,CCA}, there exists an detIND-UE-atk ad-
versary B2.6 against UE such that

AdvdetIND-UPD-atk
UE, A (λ) ≤ 2 ·AdvdetIND-UE-atk

UE, B2.6 (λ).

142 C. Boyd et al.

Proof. The proof follows exactly the same steps as that of Theorem 2.5,
in addition to the observation that in the det versions and CCA versions of
the games, the trivial win flag twf is either triggered for both adversary and
reduction or for neither when O.Corr queries are made by the underlying
adversary.

Theorem 2.7. Each of the following hold for (xx, atk) ∈ {(det,CPA),
(rand,CPA), (det,CCA)}.
(i). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updat-
able encryption scheme and let αENC be the xxIND-ENC-atk advantage of
an adversary A against UE. Then there exists a modified scheme UE′ such
that A’s xxIND-ENC-atk advantage against UE′ is (still) αENC, and there
exists an xxIND-UE-atk adversary B against UE′ with advantage 1.
(ii). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updat-
able encryption scheme and let αUPD be the xxIND-UPD-atk advantage of
an adversary A against UE. Then there exists a modified scheme UE′ such
that A’s xxIND-UPD-atk advantage against UE′ is (still) αUPD, and there
exists an xxIND-UE-atk adversary B against UE′ with advantage 1.
(iii). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an up-
datable encryption scheme and let αENC be the xxIND-ENC-atk advantage
of an adversary AENC against UE and αUPD be the xxIND-UPD-atk ad-
vantage of an adversary . Then there exists a modified scheme UE′ such
thatAENC’s xxIND-ENC-atk advantage against UE′ is (still) αENC, AUPD’s
xxIND-UPD-atk advantage against UE′ is (still) αUPD, and there exists an
xxIND-UE-atk adversary B against UE′ with advantage 1.

Proof. All three are demonstrated using the same counterexample. All al-
gorithms for UE′ are the same as for UE, except UE′.Enc is defined by
modifying UE.Enc to append the epoch number in which the ciphertext
was initially created. This change does not affect an adversary’s ability
to win the xxIND-ENC-atk or xxIND-UPD-atk games but trivially breaks
xxIND-UE-atk security.

A remark on Theorem 2.8. We construct an updatable encryption scheme
which is detIND-UE-CPA secure but not randIND-UE-CPA secure to prove
that detIND-UE-CPA does not imply randIND-UE-CPA. Note that in Sec-
tion 5 we will prove that SHINE is detIND-UE-CPA secure (yet it is trivially

Fast and Secure Updatable Encryption 143

not randIND-UE-CPA secure), which provides an example to support this
result. However the proof that SHINE is detIND-UE-CPA in the ideal ci-
pher model (if DDH holds). Here we demonstrate the theorem based on a
weaker assumption, namely the existence of pseudorandom functions.

Proof technique of Theorem 2.8. We use a xxIND-UE-CPA secure UE
scheme to construct a new UE scheme UEnew, where we use a PRF to make
a part of the new update algorithm deterministic. Because of this UEnew will
not be randIND-UE-CPA secure. In order to bound the detIND-UE-CPA
security of UEnew, we need to make sure the newly added deterministic part
of the updates will not make Enc(m) and Upd(C) distinguishable – this is
where we need the PRF.

Theorem 2.8. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme, and define a new updatable encryption
scheme UEnew in Fig. 22, built using pseudorandom function F : K×X −→
X . Then, for any detIND-UE-CPA adversary A against UEnew that asks at
most QE queries toO.Enc before it makes its challenge, there exists a PRF
adversary BPRF against F and a detIND-UE-CPA adversary B2.8 against
UE such that

AdvdetIND-UE-CPA
UEnew, A (λ) ≤

(n+ 1) · (AdvdetIND-UE-CPA
UE, B2.8 (λ) + 2 ·AdvPRF

F, BPRF +
2QE

2

|X |),

and there exists a randIND-UE-CPA adversary C against UEnew that wins
with probability 1.

Proof. UEnew is not randIND-UE-CPA secure. If the token in the challenge
epoch is corrupted then the adversary can compare r in the value it re-
ceives with the value it provided and therefore trivially win. So UEnew is
not randIND-UE-CPA secure.
UEnew is detIND-UE-CPA secure. We proceed in three steps.

(Step 1.) Consider a modified version of detIND-UE-CPA. For b ∈
{0, 1}, define experiments ExpINT1-b to be the same as ExprandIND-UE-CPA-b

except that the experiments randomly pick e∗ ← {0, ..., n}, and if e∗ 6= ẽ
the experiments return a random bit for b′. The loss is upper bounded by

144 C. Boyd et al.

UEnew.KG(λ)

1 : k
$←− UE.KG(λ)

2 : return k

UEnew.TG(ke, ke+1)

3 : ∆′e+1 ← UE.TG(ke, ke+1)

4 : fke+1
$←− K

5 : return (∆′e+1, fke+1)

UEnew.Enc(ke,M)

6 : re
$←− X

7 : C′e
$←− UE.Enc(ke,M)

8 : return (re,C
′
e)

UEnew.Dec(ke,Ce)

9 : parse Ce = (re,C
′
e)

10 : M′/⊥ ← UE.Dec(ke,C
′
e)

11 : return M′

UEnew.Upd(∆e+1,Ce)

12 : parse ∆e+1 = (∆′e+1, fke+1)

13 : parse Ce = (re,C
′
e)

14 : re+1 ← F (fke+1, re)

15 : C′e+1 ← UE.Upd(∆′e+1,C
′
e)

16 : return (re+1,C
′
e+1)

Figure 22: Updatable encryption scheme UEnew for proof of Theo-
rem 2.8, built from PRF F and updatable encryption scheme UE.

n+ 1. Then:

AdvdetIND-UE-CPA
UEnew, A (λ) ≤ (n+ 1) ·AdvINT1

UEnew, A(λ).

(Step 2.) Then we consider modified experiments ExpINT2-b, which
are the same as ExpINT1-b except that the first element of ciphertexts in
the guessed epoch e∗ is a uniformly random element. We show that the
ability to notice this change is upper bounded by PRF advantage. More
precisely, experiment ExpINT2-b tracks randomness in the setX (initialized
as empty), and when adversary asks an O.Upd or challenge query:

• ForO.Upd(Ce∗-1): parse ∆e∗ = (∆′e∗ ,), parse Ce∗-1 = (re∗-1,C
′
e∗-1),

if re∗-1 ∈ X , then the experiment aborts; otherwise, set X ← X ∪
{re∗-1}, randomly choose re∗

$←−X . Return (re∗ ,UE.Upd(∆′e∗ ,C
′
e∗-1)).

• For challenge input (M̄, (r, C̄)): parse ∆e∗ = (∆′e∗ ,), if e∗ 6= ẽ or
r ∈ X , then the experiment aborts; otherwise, set X ← X ∪ {r}.
If b = 0, return UEnew.Enc(ke∗ , M̄). If b = 1, randomly choose

re∗
$←− X , return (re∗ ,UE.Upd(∆′e∗ , C̄)).

Fast and Secure Updatable Encryption 145

Reduction BPRF playing ExpPRF-b
F, BPRF

1 : do Setup

2 : M̄, (r, C̄)← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄, (r, C̄)), get C̃e∗

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃e∗)

6 : twf ← 1 if

7 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅
8 : if ABORT occurred or twf = 1

9 : b′
$←− {0, 1}

10 : return b′

11 : if b′ = b

12 : return 0

13 : else

14 : return 1

Figure 23: Part 1. Reduction BPRF for proof of Theorem 2.8, BPRF simu-
lates O.Enc, O.Next,O.Corr and O.UpdC̃ queries as described in Fig. 6.

Note that

AdvINT1

UEnew, A(λ) =
∣∣∣Pr[ExpINT1-1

UEnew, A = 1]−Pr[ExpINT1-0
UEnew, A = 1]

∣∣∣
≤ AdvINT2

UEnew, A(λ)

+
∣∣∣Pr[ExpINT2-1

UEnew, A = 1]−Pr[ExpINT1-1
UEnew, A = 1]

∣∣∣

+
∣∣∣Pr[ExpINT2-0

UEnew, A = 1]−Pr[ExpINT1-0
UEnew, A = 1]

∣∣∣

For b ∈ {0, 1}, we wish to prove that

∣∣∣Pr[ExpINT2-b
UEnew, A = 1]−Pr[ExpINT1-b

UEnew, A = 1]
∣∣∣ ≤ AdvPRF

F +
QE

2

|X | .

Suppose A is an adversary who is trying to distinguish ExpINT2-b
UEnew, A

from ExpINT1-b
UEnew, A. We construct a PRF reductionBPRF, detailed in Fig. 23,

146 C. Boyd et al.

Setup(λ)

15 : k0 ← UE.KG(λ); ∆0 ←⊥; e← 0; phase, twf ← 0; e∗
$←− {0, ..., n}

16 : L, L̃, C,K, T , X ← ∅
O.Next†
O.Upd(re−1,C

′
e−1)

17 : if (·, (re−1,C
′
e−1), e− 1) 6∈ L

18 : return ⊥
19 : if e 6= e∗

20 : Ce←UEnew.Upd((∆′e, fke), (re−1,C
′
e−1))

21 : if e = e∗

22 : if re−1 ∈ X
23 : return ABORT

24 : re ← O.f(re−1) // embed

25 : X ← X ∪ {re−1}; C′e ← UE.Upd(∆′e,C
′
e−1); Ce ← (re,C

′
e)

26 : L ← L ∪ {(·,Ce, e)}
27 : return Ce

Create C̃ with (M̄, (r, C̄))

28 : if (·, (r, C̄), ẽ− 1) 6∈ L or e∗ 6= ẽ or r ∈ X
29 : return ⊥
30 : X ← X ∪ {r}
31 : if b = 0

32 : C̃ẽ ← UEnew.Enc(kẽ, M̄)

33 : else

34 : rẽ ← O.f(r) // embed

35 : C̃′ẽ ← UE.Upd(∆′ẽ, C̄); C̃ẽ ← (rẽ, C̃
′
ẽ)

36 : return C̃ẽ

Figure 23: Part 2. Reduction BPRF for proof of Theorem 2.8, BPRF simu-
lates O.Enc, O.Next,O.Corr and O.UpdC̃ queries as described in Fig. 6.
Recall that the PRF advantage in Definition 3, O.f replies with F(k, r) or
a random value. † indicates fke∗ are skipped in the generation.

Fast and Secure Updatable Encryption 147

against F to simulate the responses of queries made by A. BPRF first
guesses when A is going to ask a challenge query (assume e∗) and in
that epoch BPRF does bookkeeping for the randomness in X (initialized
as empty set). Note that the reduction generates all keys and tokens ex-
cept for fke∗ . Update randomness in epoch e∗ is simulated by sending the
randomness to the PRF challenger and forwarding the response to A.

Eventually BPRF receives the guess from A, and outputs 0 if A guesses
that it is in ExpINT1-b, and 1 if A guesses that it is in ExpINT2-b.

When BPRF interacts with ExpPRF-0, it can simulate ExpINT1-b per-
fectly except with a negligible probability. The negligible term is due to
BPRF aborts the game. Since the number of existed randomnesses is small
compared to the number of possible random elements, the probability that
BPRF aborts the game is upper bounded by QE

2

|X | . When BPRF interacts with

ExpPRF-1, it can perfectly simulate ExpINT2-b, thus we have the required
result.

(Step 3.) Now we conclude that the advantage of winning INT2 is upper
bounded by detIND-UE-CPA advantage (against UE). Suppose an INT2

adversary A is trying to attack UEnew. We construct a detIND-UE-CPA
reduction B2.8, detailed in Fig. 24, attacking UE and runs A. B2.8 first
guesses when A is going to ask a challenge query (assume e∗) and in that

Reduction B2.8 playing ExpdetIND-UE-CPA
UE, B2.8

1 : do Setup

2 : M̄, (r, C̄)← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄, (r, C̄)), get C̃e∗

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃e∗)

6 : twf ← 1 if

7 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅
8 : if ABORT occurred or twf = 1

9 : b′
$←− {0, 1}

10 : return b′

Figure 24: Part 1. Reduction B2.8 for proof of Theorem 2.8.

148 C. Boyd et al.

Setup(λ)

11 : k0 ← UE.KG(λ), e∗
$←− {0, ..., n}

12 : ∆0 ←⊥; e← 0; phase, twf ← 0

13 : L, L̃, C,K, T , X ← ∅
O.Enc(M)

14 : call O.Enc(M),get C′

15 : r
$←− X

16 : return (r,C′)

O.Next
17 : call O.Next

18 : fke+1
$←− K

19 : if phase = 1

20 : r̃e+1 = F (fke+1, r̃e)

21 : L̃ ← L̃ ∪ {((r̃e+1, ·), e + 1)}
O.Upd((re−1,C

′
e−1))

22 : if (·, (re−1,C
′
e−1), e− 1) 6∈ L

23 : return ⊥
24 : call O.Upd(C′e−1),get C′e
25 : if e 6= e∗

26 : re = F (fke, r)

27 : if e = e∗

28 : if re−1 ∈ X
29 : return ABORT

30 : X ← X ∪ {re−1}, re $←− X
31 : L ← L ∪ {(·, (re,C′e), e)}
32 : return (re,C

′
e)

O.Corr(inp, ê)
33 : call O.Corr(inp, ê)
34 : get ⊥ or kê or ∆′ê
35 : return ⊥ or kê or (∆′ê, fkê)

Create C̃ with (M̄, (r, C̄))

36 : if (·, (r, C̄), ẽ− 1) 6∈ L
37 : or e∗ 6= ẽ or r ∈ X
38 : return ⊥
39 : X ← X ∪ {r}
40 : call cq with (M̄, C̄)

41 : get C̃′ // embed

42 : r̃ẽ
$←− X

43 : L̃ ← L̃ ∪ {((r̃ẽ, C̃′), ẽ)}
44 : return (r̃ẽ, C̃

′)

O.UpdC̃

45 : call O.UpdC̃,get C̃′e // embed

46 : L̃ ← L̃ ∪ {((r̃e, C̃′e), e)}
47 : return (r̃e, C̃

′
e)

Figure 24: Part 2. Reduction B2.8 for proof of Theorem 2.8. In line 40 of
the Create C̃ description, call cq means that the reduction makes its own
challenge query with these values.

Fast and Secure Updatable Encryption 149

epoch B2.8 does bookkeeping for the randomness inX (initialized as empty
set).

Eventually B2.8 receives b′ from A, and simply outputs b′. Then B2.8

perfectly simulates ExpINT2-b to A. We have the required result

AdvINT2

UEnew, A(λ) ≤ AdvdetIND-UE-CPA
UE, B2.8 (λ).

4.2.3 Relation among CPA, CTXT and CCA Security

Theorem 3. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an
updatable encryption scheme. For any detIND-yy-CCA adversaryA against
UE, there exists an INT-CTXT adversary B3a and an detIND-yy-CPA ad-
versary B3b against UE such that

AdvdetIND-yy-CCA
UE, A (λ) ≤ 2AdvINT-CTXT

UE, B3a (λ) + AdvdetIND-yy-CPA
UE, B3b (λ)

where yy ∈ {UE,ENC,UPD}.

We now prove Theorem 3, which states that, for yy ∈ {UE,ENC,UPD},
the combination of detIND-yy-CPA security and INT-CTXT security yields
detIND-yy-CCA. The proof proceeds via a single game hop.

Proof. Game 0

The first game is the experiment ExpdetIND-yy-CCA
UE, A , given in Fig. 11 (or

Fig. 12 or Fig. 17). From Def. 5 (or Def. 6 or Def. 8) we have

AdvdetIND-yy-CCA
UE, A (λ) = 2

∣∣∣Pr[G0 = 1]− 1/2
∣∣∣.

Game 1

In this game we introduce an event bad that is triggered if the adversary
asks its decryption oracle for something that would count as a forgery, and
then show that the success probability of a distinguisher between the two
games is bounded by INT-CTXT. Then, we bound the success probability
in this modified game by an adversary against detIND-yy-CCA. We modify
O.Dec, such that the boxed statements only run in Game 1:

150 C. Boyd et al.

O.Dec(C)

1 : if phase← 1 and C ∈ L̃∗
2 : return ⊥
3 : M/ ⊥← UE.Dec(ke,C)

4 : if C /∈ L∗ and M′ 6= ⊥
5 : bad← true

6 : return ⊥

We have
∣∣∣Pr[G0 = 1]− 1/2

∣∣∣ ≤
∣∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣∣+
∣∣∣Pr[G1 = 1]− 1/2

∣∣∣

We claim that there exists an INT-CTXT adversary B3a against UE such
that ∣∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣∣ ≤ AdvINT-CTXT
UE, B3a (λ),

and there exists an detIND-yy-CPA adversary B3b such that

2
∣∣∣Pr[G1 = 1]− 1/2

∣∣∣ ≤ AdvdetIND-yy-CPA
UE, B3b (λ).

Claim 1.
∣∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣∣ = Pr[bad = true in G1] = AdvINT-CTXT
UE, B3a (λ).

We construct a reduction B3a playing INT-CTXT that simulates the en-
vironment of G1 toA. B3a starts by picking a random bit b, then runsA an-
swering its queries as follows. For a challenge query with input (C̃0 or M̄0,
C̃1 or M̄1). If b =0, B3a sends C̃0 (or M̄0) to its O.Upd (or O.Enc); b =1,
B3a sends C̃1 (or M̄1) to its O.Upd (or O.Enc); eventually, returns the re-
sponse toA. Furthermore, B3a simulatesO.UpdC̃ by sending the challenge
ciphertext to O.Upd, and forwards the response to A.

For a decryption query O.Dec with input C: If C ∈ L∗, B3a checks the
corresponding message in list L∗ (adversary B3a does bookkeeping for this
list and additionally stores message in this list, list is updated by O.Enc,
O.Upd, O.Corr. Hence this simulation is feasible by an INT-CTXT adver-
sary.), and returns it to A. If C /∈ L∗, B3a returns ⊥ to A, and sends C to
its O.Try oracle.

Fast and Secure Updatable Encryption 151

B3a perfectly simulates G1. Notice that G0 and G1 are identical until
UE.Dec(ke,C) 6= ⊥ and C /∈ L∗ happens (which causes bad = true in G1):
denote this event to be E. Thus, we have

∣∣∣Pr[G0 = 1] − Pr[G1 = 1]
∣∣∣ =

Pr[bad = true in G1] = Pr[E]. If eventE happens, which results in win =
1 in the INT-CTXT game, that means C is a valid forgery in INT-CTXT
game. So Pr[E] = AdvINT-CTXT

UE, B3a (λ).
Claim 2.

2
∣∣∣Pr[G1 = 1]− 1/2

∣∣∣ ≤ AdvdetIND-yy-CPA
UE, B3b (λ).

We only need to consider how the detIND-yy-CPA adversary B3b sim-
ulates the O.Dec oracle. Since B3b knows L̃∗ and L∗, whenever A asks
O.Dec with C, B3b checks if C ∈ L̃∗ or C /∈ L∗, and if so, responds ⊥.
Otherwise, B3b checks the corresponding message in list L∗ (adversary B3b

does bookkeeping for this list and additionally stores message in this list as
well, list is updated by O.Enc, O.Upd, O.Corr. Hence this simulation is
feasible by an detIND-yy-CPA adversary), and returns it to A.

5 The SHINE Schemes

We now describe our new UE scheme SHINE (Secure Homomorphic Ideal-
cipher Nonce-based Encryption). The encryption algorithm uses a permu-
tation to obfuscate the input to the exponentiation function. Updating a
ciphertext simply requires exponentiation once by the update token, which
itself is the quotient of the current epoch key and the previous epoch key.
The scheme comes in three flavors: SHINE0 is presented in Fig. 25 and
takes in short messages and only uses a single permutation. The second
flavor, MirrorSHINE, is provided in Fig. 26 and runs two different permuta-
tions with the same input. The third flavor OCBSHINE is given in Fig. 28
and is for applications with arbitrarily long messages, using a family of
permutations.

We discuss implementation details of the SHINE schemes in Section 5.6.
In particular, for each scheme in the SHINE suite, it is necessary to embed
the output of the permutation (a regular block cipher) into an appropriate
DDH-hard group.

Our proofs of security, given as Theorem 4 for confidentiality and The-
orem 5 for integrity, bound an adversary’s detIND-UE-CPA (INT-CTXTs)

152 C. Boyd et al.

advantage by DDH (CDH), and are provided in the ideal cipher model. Fur-
thermore, combining the results of Theorem 3, Theorem 4 and Theorem 5,
we have that the suite of SHINE schemes (i.e. SHINE0, MirrorSHINE and
OCBSHINE) are detIND-UE-CCA secure.

5.1 Construction of SHINE Schemes

5.1.1 SHINE via Zero Block: SHINE0.

Suppose a message space ofMS = {0, 1}m and random nonce spaceN =
{0, 1}v. The encryption algorithm feeds as input to the permutation a nonce,
the message, and a zero string. The decryption algorithm will return ⊥ if
the decrypted value does not end with 0t. The SHINE0 scheme is defined
in Fig. 25. If ciphertext integrity is not required (or file/ciphertext integrity
is performed in some other manner), then SHINE0 without the zero block
results in a scheme (denoted SHINE0[CPA]) that is still detIND-UE-CPA
secure.

SHINE0.KG(λ)

1 : k
$←− Z∗q

2 : return k

SHINE0.TG(ke, ke+1)

3 : ∆e+1 ←
ke+1

ke

4 : return ∆e+1

SHINE0.Enc(ke,M)

5 : N
$←− N

6 : Ce ← (π(N‖M‖0t))ke

7 : return Ce

SHINE0.Dec(ke,Ce)

8 : a← π−1(C1/ke
e)

9 : parse† a as N′‖M′‖Z
10 : if Z = 0t

11 : return M′

12 : else

13 : return ⊥
SHINE0.Upd(∆e+1,Ce)

14 : Ce+1 ← (Ce)
∆e+1

15 : return Ce+1

Figure 25: Updatable encryption scheme SHINE0. Note that there may
be an additional embedding step after the permutation π, as discussed in
Section 5.6. †: ‖N′‖ = v, ‖M′‖ = m, ‖Z‖ = t.

Fast and Secure Updatable Encryption 153

5.1.2 SHINE via Double Encryption: MirrorSHINE

The construction of MirrorSHINE is similar to SHINE0, except that instead
of padding a zero block after the message, the encryption algorithm pro-
cesses each message and nonce twice using two different random permu-
tations. For authentication, we compare if two ciphertext blocks have the
same underlying message and nonce. The idea of the authentication is sim-
ilar to SHINE0, however here we use the difference of the underlying mes-
sage and nonce as the “zero block”. Compared to SHINE0, MirrorSHINE
does one more exponentiation in both encryption and update and requires
two ciphertext elements per message, but larger messages are supported
(when using the same – for example standardized – group).

MirrorSHINE.KG(λ)

1 : k
$←− Z∗q

2 : return k

MirrorSHINE.TG(ke, ke+1)

3 : ∆e+1 ←
ke+1

ke

4 : return ∆e+1

MirrorSHINE.Enc(ke,M)

5 : N
$←− N

6 : C1
e ← (π1(N||M))ke

7 : C2
e ← (π2(N||M))ke

8 : Ce ← (C1
e ,C

2
e)

9 : return Ce

MirrorSHINE.Dec(ke,Ce)

10 : parse Ce = (C1
e ,C

2
e)

11 : a1 ← π−1
1 ((C1

e)1/ke)

12 : a2 ← π−1
2 ((C2

e)1/ke)

13 : parse‡a1 as N′||M′
14 : if a1 = a2

15 : return M′

16 : else

17 : return ⊥
MirrorSHINE.Upd(∆e+1,Ce)

18 : parse Ce = (C1
e ,C

2
e)

19 : C1
e+1 ← (C1

e)∆e+1

20 : C2
e+1 ← (C2

e)∆e+1

21 : return C1
e+1,C

2
e+1

Figure 26: Updatable encryption scheme MirrorSHINE, where π1, π2 are
two different random permutations. Note that there may be an additional
embedding step after the permutations π1 and π2, as discussed in Sec-
tion 5.6. ‡: ‖N′‖ = v, ‖M′‖ = m.

154 C. Boyd et al.

5.1.3 SHINE for Long Messages via Checksum: OCBSHINE.

The schemes SHINE0 and MirrorSHINE both require that the message space
be smaller than the size of an element of the exponentiation group. This ci-
phertext expansion is undesirable in many practical scenarios, and so we
wish to construct a SHINE scheme which gives us (almost) no ciphertext
expansion and can be applied to arbitrarily long messages. We build a new
SHINE scheme, OCBSHINE, with these properties.

The construction of OCBSHINE is inspired by the authenticated encryp-
tion scheme OCB [RBBK01]. Different from OCB mode, the nonce is en-
crypted inside the ciphertext instead of sending it along with the ciphertext.
In order to determine the length of the last message block, the encryption
algorithm of OCB mode removes some bits of the last ciphertext block to
reveal this information. However in our setting, the output of the permuta-
tions are (mapped to) the input of the exponentiation function: thus all bits
of permutation outputs must be included. Therefore, OCBSHINE includes
the length of the last message block in the first ciphertext component. If
ciphertext integrity is not required, then OCBSHINE can be improved by
removing the last ciphertext block.

N‖|M3| M1 M2 M3‖0∗ Σ

π0 πN‖1‖0 πN‖2‖0 πN‖3‖0 πN‖3‖1

Expke Expke Expke Expke Expke

C0 C1 C2 C3 C4

Figure 27: Diagram describing how the OCBSHINE encryption algorithm
works on message M = (M1,M2,M3). Σ = M1 ⊕M2 ⊕M3‖0∗. There
may be an additional embedding step after the permutations, as discussed
in Section 5.6.

OCBSHINE is formally defined in Fig. 28 and the encryption process
is pictorially represented in Fig. 27; we give an intuitive description here.
Suppose the blocksize is m, and the encryption algorithm OCBSHINE.Enc

Fast and Secure Updatable Encryption 155

has input message M. By “partition M into M1, ...,Ml” we mean setting
l ← max{d|M|/me, 1} and dividing M into l blocks, i.e. M1, ...,Ml,
where |M1| = ... = |Ml−1| = m. The last message block Ml is padded
with zeros to make it length m before computing the permutation output
and the checksum, i.e Ml‖0∗ with |Ml‖0∗| = m. Let a = dlog(m)e, so the
length of Ml (|Ml| ≤ m) can be written as an a-bit representation.

OCBSHINE.KG(λ)

1 : k
$←− Z∗q

2 : return k

OCBSHINE.TG(ke, ke+1)

3 : ∆e+1 ←
ke+1

ke

4 : return ∆e+1

OCBSHINE.Enc(ke,M)

5 : partition M into M1, ...,Ml

6 : Σ← ⊕l-1
i=1Mi ⊕Ml‖0∗

7 : N
$←− N

8 : C0 ←
(
π0(N‖|Ml|)

)ke

9 : Cl+1 ←
(
πN‖l‖1(Σ)

)ke

10 : for i = 1, ..., l-1 do

11 : Ci ←
(
πN‖i‖0(Mi)

)ke

12 : Cl ←
(
πN‖l‖0(Ml‖0∗)

)ke

13 : Ce ← (C0, ...,Cl,Cl+1)

14 : return Ce

OCBSHINE.Dec(ke,Ce)

15 : parse Ce = (C0, ...,Cl,Cl+1)

16 : N′‖A′ ← π−1
0 (
(
C0
)1/ke

)

17 : Σ′ ← π−1
N′‖l‖1(

(
Cl+1

)1/ke
)

18 : for i = 1, ..., l do

19 : M′i ← π−1
N′‖i‖0(

(
Ci
)1/ke

)

20 : if Σ′ = ⊕l
i=1M′i

21 : M′ ← (M′1, ...,M′l[x])

22 : return M′

23 : else

24 : return ⊥
OCBSHINE.Upd(∆e+1,Ce)

25 : parse Ce = (C0, ...,Cl,Cl+1)

26 : for i = 0, ..., l + 1 do

27 : Ci
e+1 ← (Ci

e)
∆e+1

28 : return Ce+1

Figure 28: Updatable encryption scheme OCBSHINE. Note that there may
be an additional embedding step after the permutations, as discussed in Sec-
tion 5.6. In line 21, Ml[x] represents the first A′ bits of Ml.

Let Perm(m) be the set of all permutations on {0, 1}m. Randomly

choose π0
$←−Perm(m), and use this permutation to randomize the con-

156 C. Boyd et al.

catenation of the nonce N and an a-bit representation of the last message
block length. Then, index the (random) permutations used to encrypt mes-
sage blocks by the nonce and a counter. Let Perm(S,m) be the set of all
mappings from S to permutations on {0, 1}m. Suppose the nonce space is
N = {0, 1}m−a, S = N × N∗ × {0, 1}, for each (N ∈ N , i ∈ N∗, b ∈
{0, 1}), set πN‖i‖b

$←−Perm(N×N∗×{0, 1},m), which form a random per-
mutation family: we use these permutations to randomize message blocks
and the checksum.

5.2 Security of SHINE

All three SHINE schemes, i.e. SHINE0, MirrorSHINE and OCBSHINE,
have the same security properties, and the proofs are very similar for each
flavor. We refer to SHINE to mean the family containing all these three
schemes. In Theorem 4, we show that SHINE is detIND-UE-CPA in the
ideal cipher model, if DDH holds. In Theorem 5, we show that SHINE is
INT-CTXTs, and therefore INT-CTXT (INT-CTXT and INT-CTXTs are
equivalent, recall Section 3), in the ideal cipher model, if CDH holds. The
loss incurred by this proof is the normal (n+1)3 (or (n+1)2 for INT-CTXT)
and also the number of encryption queries the adversary makes before it
makes its challenge: to avoid the issues described in Section 5.3 we not only
need to guess the locations of the challenge firewalls but also the ciphertext
that the adversary will submit as its challenge.

The ideal cipher model, a version of which was initially given by Shan-
non [Sha49] and shown to be equivalent to the random oracle model by
Coron et al. [CPS08], gives all parties access to a permutation chosen ran-
domly from all possible key-permutation possibilities of appropriate length.
The SHINE schemes exponentiate the output of the permutation by the
epoch key to encrypt, so our reduction can ‘program’ the transformation
from permutation outputs to group elements.

In the following two Theorems we detail the security properties met by
SHINE, i.e. detIND-UE-CPA, INT-CTXT and thus detIND-UE-CCA. Note
that this is the strongest known security property for updatable encryption
schemes with deterministic updates. In Section 5.3 we discuss the chal-
lenges that arise in the proofs of these two theorems, and in Section 5.4
and Section 5.5 we describe the novel techniques and methods used in the

Fast and Secure Updatable Encryption 157

proofs.

Theorem 4 (SHINE is detIND-UE-CPA). Let SHINE be the UE scheme
described in Fig. 25 (or Fig. 26 or Fig. 28), where SHINE ∈ {SHINE0,
MirrorSHINE,OCBSHINE}. For any ideal cipher model adversary A (that
makes max QE encryption queries before its challenge), there exists an ad-
versary B4 such that

AdvdetIND-UE-CPA
SHINE, A (λ) ≤ O(1)(n+ 1)3 ·QE ·AdvDDH

G, B4(λ).

This is proven via Theorem 4.1, and Theorem 4.3 and Theorem 4.4 in Sec-
tion 5.4.

Theorem 5 (SHINE is INT-CTXTs). Let SHINE be the UE scheme de-
scribed in Fig. 25 (or Fig. 26 or Fig. 28), where SHINE ∈ {SHINE0,
MirrorSHINE,OCBSHINE}.For any ideal cipher model adversary A (that
makes max QE encryption queries before calling O.Try), there exists an
adversary B5 such that

AdvINT-CTXTs

SHINE, A (λ) ≤ O(1)(n+ 1)2 ·QE ·AdvCDH
B5 + negligible terms

This is proven via Theorem 5.1, and Theorem 5.3 and Theorem 5.4 in Sec-
tion 5.5.

Remark 5. Combining the results of Theorem 3, Theorem 4 and Theo-
rem 5, we have that SHINE is detIND-UE-CCA.

Remark 6. Proofs for SHINE0 are extendable to the other two SHINE
schemes (MirrorSHINE and OCBSHINE), so we only show full proof de-
tails of Theorem 4.1 and Theorem 5.1 in Section 5.4 and Section 5.5, re-
spectively.

5.3 Proof Challenges in Schemes with Deterministic Updates

In each variant of SHINE all ciphertext components are raised to the epoch
key, so the update mechanism transforms a ciphertext for epoch e to one
for e + 1 by raising this value to ke+1

ke
. We now highlight the difficulties

in creating security proofs for such ‘single-component’ updatable encryp-
tion schemes. Randomness is used in creation of the initial ciphertext (via

158 C. Boyd et al.

N) but updates are completely deterministic, and thus in any reduction it
is necessary to provide consistent ciphertexts to the adversary (i.e. the N
value must be consistent). The (cryptographic) separation gained by using
the firewall technique (see Section 3.3 for discussion and definition) assists
with producing (updates of) non-challenge ciphertexts, but embedding any
challenge value while also providing answers to the O.Corr queries of the
underlying adversary is very challenging.

The regular key insulation technique as introduced by LT18 – where the
reduction constructs one hybrid for each epoch – does not work. Specif-
ically, in any reduction to a DDH-like assumption, it is not possible to
provide a challenge ciphertext in a left or right sense (to the left of this
challenge ciphertext are of some form, and to the right of this challenge
ciphertext are of some other form) if the underlying adversary asks for to-
kens around the challenge epoch: deterministic updates mean that tokens
will make these ciphertexts of the same form and this gap will be easily
distinguishable.

We counteract this problem by constructing a hybrid argument across
insulated regions. This means that in each hybrid, we can embed at one
firewall of the insulated region, and simulate all tokens within that insulated
region to enable answering queries to both O.Upd and O.UpdC̃. The re-
duction’s distinguishing task is thus ensured to be at the boundaries of the
insulated regions, the firewalls, so any (non-trivial) win for the underlying
adversary is ensured to carry through directly to the reduction.

5.4 SHINE is detIND-UE-CPA

We now explain how we bound the advantage of any adversary playing the
detIND-UE-CPA game for SHINE by the advantage of a reduction playing
DDH.

Proof Method for Confidentiality: Constructing a Hybrid Argument
across Insulated Regions.

Notice that the non-corrupted key space is the union set of all insulated
regions, i.e. {0, 1, ..., n} \ K∗ = ∪(j,fwlj ,fwrj)∈FW{fwlj , ..., fwrj}. If the
trivial win conditions are not triggered and the adversary knows a challenge-
equal ciphertext in some epoch within an insulated region, then since the

Fast and Secure Updatable Encryption 159

adversary knows all tokens in that insulated region, the adversary will know
all challenge-equal ciphertexts in that insulated region. Then we have

C∗ = ∪(j,fwlj ,fwrj)∈S⊆FW{fwlj , ..., fwrj},

where S is a subset of firewall list FW .
We apply the firewall technique to set up hybrid games such that in

hybrid i, we embed within the i-th insulated region: this means that to the
left of the i-th insulated region the game responds with the b = 1 case of the
detIND-UE-CPA experiment, and to the right of the i-th insulated region it
gives an encryption of the challenge input message as output, i.e. b = 0.
This means we have one hybrid for each insulated region, moving left-to-
right across the epoch space.

We construct a reduction B playing the DDH experiment in hybrid i.
Initially, B guesses the location of the i-th insulated region. If the under-
lying adversary has performed a corrupt query within this insulated region
that would lead to the reduction failing, the reduction aborts the game. We
use the algorithm Check described in Fig. 29 to check if this event happens.

Check(inp, ê; e; fwl, fwr)

1 : if ê > e

2 : return ⊥
3 : if inp = key and ê ∈ {fwl, ..., fwr}
4 : return ABORT

5 : if inp = token and ê ∈ {fwl, fwr+1}
6 : return ABORT

Figure 29: Algorithm Check, used in proofs in this section. In Check, ê is
the epoch in the adversary’s request, and e is the current epoch.

In particular, within the insulated region, the reduction can simulate
challenge ciphertexts and non-challenge ciphertexts using its DDH tuple.
Furthermore, ciphertexts can be moved around within the insulated region
by tokens.

Remark 7. We note that the problem of challenge insulation in schemes
with deterministic updates was also observed independently by Klooß et

160 C. Boyd et al.

al. [[KLR19b], § B.2]. Their solution (though in the different context of
CCA security of UE with certain properties) is to form a hybrid argument
with a hybrid for each epoch, and essentially guess an epoch r which is the
first token ‘after’ the hybrid index that the adversary has not corrupted, and
use the inherent ‘gap’ in the adversary’s knowledge continuum to replace
challenge updates across this gap with encryptions of just one of the chal-
lenge messages. It is not clear if this approach would work for showing
detIND-UE-CPA (or IND-ENC-CPA) of SHINE. We conjecture that even if
it were possible to construct a reduction in this vein, our approach enables a
more direct proof: in particular we do not need to assume specific additional
properties of the UE scheme in question for it to work.

SHINE0 is detIND-UE-CPA.

Theorem 4.1 (SHINE0 is detIND-UE-CPA). Let G be a group of order q
(a λ-bit prime) with generator g, and let SHINE0 be the updatable encryp-
tion scheme described in Fig. 25. For any detIND-UE-CPA adversary A
against SHINE0 that asks at most QE queries to O.Enc before it makes its
challenge, there exists an adversary B4.1 against DDH such that

AdvdetIND-UE-CPA
SHINE0, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B4.1(λ).

Proof. Play hybrid games. We begin by partitioning non-corrupted key space
as follows: {0, 1, ..., n} \ K∗ = ∪(j,fwlj ,fwrj)∈FW{fwlj , ..., fwrj}, where
fwri and fwri are firewalls of the i-th insulated region. Recall the definition
from Section 3.3 and firewall computing algorithm FW-Find in Fig. 15:
fwli, fwri are firewalls of the i-th insulated region if (i, fwli, fwri) ∈ FW .

For b ∈ {0, 1}, define game Gb
i as ExpdetIND-UE-CPA-b

SHINE0, A except for:

• The game randomly picks an integer h, and if the challenge input C̄
is not an updated ciphertext of the h-th O.Enc query, it (aborts and)
returns a random bit for b′. This loss is upper-bounded by QE.

• The game randomly picks fwli, fwri
$←− {0, ..., n} and if fwli, fwri

are not the i-th firewalls, returns a random bit for b′. This loss is
upper-bounded by (n+ 1)2.

• For the challenge (made in epoch ẽ, input (M̄, C̄)): If ẽ < fwli then
return a ciphertext with respect to C̄, if ẽ > fwri return a ciphertext

Fast and Secure Updatable Encryption 161

with M̄, and if fwli ≤ ẽ ≤ fwri then return a ciphertext with M̄ when
b = 0, return a ciphertext with respect to C̄ when b = 1.

• After A outputs b′, returns b′ if twf 6= 1 or some additional trivial
win condition triggers.

If h, fwli, fwri are the desired values, then G0
1 is ExpdetIND-UE-CPA-0

SHINE0, A ,
i.e. all challenge-equal ciphertexts are encryptions of M̄. And there exists
some l (the total number of insulated regions, bounded by n+ 1), game G1

l

is ExpdetIND-UE-CPA-1
SHINE0, A , i.e. all challenges are updates of C̄. Let E to be the

event that h, fwli, fwri are the desired values, notice that Pr[Gb
i = 1|¬E] =

1
2 for any 1 ≤ i ≤ n+ 1 and b ∈ {0, 1}. Then

Pr[G1
l = 1] = Pr[G1

l = 1|E] ·Pr[E] + Pr[G1
l = 1|¬E] ·Pr[¬E]

= Pr[ExpdetIND-UE-CPA-1
SHINE0, A = 1] · 1

(n+ 1)2QE

+
1

2
· (1− 1

(n+ 1)2QE
), and

Pr[G0
1 = 1] = Pr[ExpdetIND-UE-CPA-0

SHINE0, A = 1] · 1

(n+ 1)2QE

+
1

2
· (1− 1

(n+ 1)2QE
).

Thus we have that
∣∣Pr[G1

l = 1]−Pr[G0
1 = 1]

∣∣ =
1

(n+ 1)2QE

∣∣∣Pr[ExpdetIND-UE-CPA-1
SHINE0, A =1]

−Pr[ExpdetIND-UE-CPA-0
SHINE0, A =1]

∣∣∣

=
1

(n+ 1)2QE
·AdvdetIND-UE-CPA

SHINE0, A (λ).

Notice that all queries in G1
i−1 and G0

i have the equal responses: for the
challenge query and O.UpdC̃, if called in epoch in first i − 1 insulated re-
gions, the reduction returns a ciphertext with respect to C̄, otherwise returns
an encryption of M̄. Therefore, for any l(≤ n+1), |Pr[G1

l = 1]−Pr[G0
1 =

1]| ≤∑l
i=1 |Pr[G1

i = 1]−Pr[G0
i = 1]|. We prove that for any 1 ≤ i ≤ l,

|Pr[G1
i = 1] −Pr[G0

i = 1]| ≤ 2AdvDDH
G, (λ). We only prove one of these

l hybrids, the rest can be similarly proven.

162 C. Boyd et al.

In hybrid i. Suppose that Ai is an adversary attempting to distinguish G0
i

from G1
i . For all queries concerning epochs outside of the i-th insulated

region the responses will be equal in either game, so we assume thatAi asks
for at least one challenge ciphertext in an epoch within the i-th insulated
region (then [fwli, fwri] ⊆ C∗) and this is where we will embed DDH tuples
in our reduction.

We construct a reduction B4.1, detailed in Fig. 30, that is playing the
standard DDH game and will simulate the responses of queries made by
adversary Ai.

The reduction B4.1 receives DDH tuples (X,Y, Z), flips a coin b and
simulates game Gb

i . Whenever the reduction needs to provide an output of
π(·) toA, it chooses (‘programs’) some random value r such that π(·) = gr.
Then, we use the fact that (gr)ke = (gke)r and use the gke values as ‘public
keys’ to allow simulation. In this setting, decryption (i.e. π−1) is simply a
lookup to this mapping of the ideal cipher π. A summary of the technical
simulations follows:

Initially,

1. B4.1 guesses the values of h, fwli, fwri.

2. B4.1 generates all keys and tokens except for kfwli , ..., kfwri , ∆fwli ,
∆fwri+1. If Ai ever corrupts these keys and tokens – which indicates
the firewall guess is wrong – the reduction aborts the game.

3. B4.1 computes the public values of keys in an epoch:

• e 6∈ {fwli, ..., fwri}: B4.1 computes PKe = gke ;

• e ∈ {fwli, ..., fwri}: B4.1 embeds DDH value Y as PKfwli .
More precisely, if b = 0,PKfwli = Y , otherwise PKfwli =
Y kfwli−1 (since g∆fwli = Y). Then B4.1 uses tokens ∆fwli+1, ...,
∆fwri to compute the remaining public key values PKe in the
insulated region.

To simulate a non-challenge ciphertext that is:

• not the h-th query toO.Enc: B4.1 generates a random value r for each
encryption (so that the randomness will be consistent for calls thatAi

Fast and Secure Updatable Encryption 163

Reduction B4.1 playing ExpDDH
G, B4.1

1 : receive (g,X, Y, Z)

2 : do Setup

3 : M̄, C̄← Aors(λ)

4 : phase← 1

5 : Create C̃ with (M̄, C̄), get C̃ẽ

6 : b′ ← Aors,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅ or

9 : I∗ ∩ C∗ 6= ∅
10 : if ABORT occurred or twf = 1

11 : b′
$←− {0, 1}

12 : return b′

13 : if (i, fwli, fwri) 6∈ FW

14 : b′
$←− {0, 1}

15 : return b′

16 : if b′ = b

17 : return 0

18 : else

19 : return 1

Setup(λ)

20 : b
$←− {0, 1}

21 : k0 ← SHINE0.KG(λ)

22 : ∆0 ←⊥
23 : e, c, phase, twf ← 0

24 : L, L̃, C,K, T ← ∅

25 : fwli, fwri
$←− {0, ..., n}

26 : h
$←− {1, ...,QE}

27 : for j∈{0, ..., fwli-1} do

28 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

29 : PKj ← gkj

30 : for j∈ {fwri+1, ..., n} do

31 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

32 : PKj ← gkj

33 : if b = 0

34 : PKfwli ← Y ; C
$←− G

35 : else

36 : PKfwli ← Y kfwli−1 ; C← X

37 : for j ∈ {fwli+1, ..., fwri} do

38 : ∆j
$←− Z∗q ;PKj ← PK

∆j

j−1

Figure 30: Part 1. Reduction B4.1 for proof of Theorem 4.1, in hybrid i.
Moving left-to-right through embedding DDH tuples in the i-th insulated
region: when b = 1, embedding DDH tuples to token values to move left
to random; when b = 0, embedding DDH tuples to key values to move
right to random. inf encodes fixed programming information: it marks an
epoch if c = h, otherwise it is the random encryption exponent. On lines 3
and 6, ors refers to the set {O.Enc,O.Next,O.Upd,O.Corr}. On lines 28
and 31, ./ indicates ∆0 and ∆fwri+1 are skipped in the computation.

164 C. Boyd et al.

O.Enc(M)

39 : c← c + 1

40 : if c = h

41 : Ce ← C; inf ← e

42 : else

43 : inf
$←− Z∗q

44 : π(N||M)← ginf

45 : Ce ← PKinf
e

46 : L ← L ∪ {(c,Ce, e; inf)}
47 : return Ce

O.Next
48 : e← e + 1

O.Upd(Ce−1)

49 : if (c,Ce−1, e− 1; inf) 6∈ L
50 : return ⊥
51 : if c = h

52 : Ce ← C∆e
e−1

53 : else

54 : Ce ← PKinf
e

55 : L ← L ∪ {(c,Ce, e; inf)}
56 : return Ce

O.Corr(inp, ê)
57 : do Check(inp, ê; e; fwli, fwri)

58 : if inp = key

59 : K ← K ∪ {ê}
60 : return kê

61 : if inp = token

62 : T ← T ∪ {ê}
63 : return ∆ê

Create C̃ with (M̄, C̄)

64 : if (h, C̄, ẽ− 1; inf) /∈ L
65 : return ABORT

66 : if b = 0

67 : π(N||M̄)← X; C̃fwli ← Z

68 : else

69 : π(N||M̄)
$←− G

70 : C̃fwli ← Z
∏fwli−1

j=inf+1 ∆j

71 : for j ∈ {0, ..., fwli − 1} do

72 : C̃j ← C̄(
∏j

k=0 ∆k)/(
∏ẽ−1

k=0 ∆k) // left

73 : for j ∈ {fwli + 1, ..., fwri} do

74 : C̃j ← C̃
∆j

j−1 // embed

75 : for j ∈ {fwri + 1, ..., n} do

76 : C̃j ← (π(N||M̄))kj // right

77 : L̃ ← ∪nj=0{(C̃j , j)}
78 : return C̃ẽ

O.UpdC̃

79 : C ← C ∪ {e}
80 : find(C̃e, e) ∈ L̃
81 : return C̃e

Figure 30: Part 2. Reduction B4.1 for proof of Theorem 4.1, in hybrid i.

Fast and Secure Updatable Encryption 165

makes to O.Upd) and programs the ideal cipher with Ce = PKr
e. To

respond to O.Upd queries, the reduction computes Ce′ = PKr
e′ to

update a non-challenge ciphertext to epoch e′.

• the h-th query to O.Enc: B4.1 embeds either a random ciphertext
(b = 0) or a DDH value (b = 1) to the encryption (Ceh). Further-
more, the reduction uses tokens ∆0, ...,∆fwli−1 to update the h-th
encryption. Note that C̄ is an update of the h-th encryption. The
adversary can not ask for update of the h-th encryption in an epoch
e ≥ fwli, as this would trigger the trivial win condition [fwli, fwri] ⊆
I∗ ∩ C∗ 6= ∅.

To simulate challenge-equal ciphertext in an epoch that is:

• to the left of the i-th insulated region: B4.1 simulates SHINE0.Upd(C̄)
using the tokens that it created itself.

• within the i-th insulated region: B4.1 simulates SHINE0.Upd(C̄) if
b = 1, and simulates SHINE0.Enc(M̄) if b = 0. More precisely, B4.1

embeds DDH value X to ciphertext information of challenge input,
embeds DDH value Z to the challenge ciphertext. Which means if

b = 1, the reduction will give the value X to Ceh , Z
∏fwli−1

j=eh+1
∆j to

C̃fwli (recall g∆fwli = Y) since

C̃fwli = SHINE0.Upd(C̄) = C̄
∆fwli
fwli−1 = (C

∆fwli
eh)

∏fwli−1
j=eh+1

∆j
.

If b = 0, the reduction will give X to π(N||M̄), and Z to C̃fwli (re-
call PKfwli = Y) since C̃fwli = SHINE0.Enc(M̄) = π(N||M̄)kfwli .
Furthermore, the reduction uses tokens ∆fwli+1, ...,∆fwri to update
C̃fwli to simulate all challenge ciphertext in epochs within the insu-
lated region.

• to the right of the i-th insulated region: the reduction B4.1 simulates
SHINE0.Enc(M̄) using the keys that it created itself.

Eventually, B4.1 receives the output bit b′ from Ai. If b′ = b, then B4.1

guesses that it has seen real DDH tuples (returns 0 to its DDH challenger),
otherwise, B4.1 guesses that it has seen random DDH tuples (returns 1).

166 C. Boyd et al.

If B4.1 receives a real DDH tuple, then B4.1 perfectly simulates the envi-
ronment of Ai in Gb

i . If B4.1 receives a random DDH tuple, then B4.1 wins
with probability 1/2. After some computation similar to that in the proof of
Theorem 2.3 we have AdvDDH

G, B4.1(λ) = 1
2 |Pr[G1

i = 1]−Pr[G0
i = 1]|.

SHINE0 is IND-ENC-CPA Secure. As a corollary of Theorem 2.4 and
Theorem 4.1, SHINE0 is IND-ENC-CPA – however in Appendix A we
give a tighter proof – eliminating the QE term – by directly proving the
IND-ENC-CPA security of SHINE0. The proof follows a similar strategy to
that of Theorem 4.1, with one hybrid for each insulated region.

MirrorSHINE is detIND-UE-CPA.

Theorem 4.3 (MirrorSHINE is detIND-UE-CPA). Let G be a group of or-
der q (a λ-bit prime) with generator g, and let MirrorSHINE be the updatable
encryption scheme described in Fig. 26. For any detIND-UE-CPA adver-
sary A against MirrorSHINE that asks at most QE queries to O.Enc before
it makes its challenge, there exists an adversary B4.3 against DDH such that

AdvdetIND-UE-CPA
MirrorSHINE, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B4.3(λ).

Proof. The proof is similar to the security proof of Theorem 4.1, except that
the reduction will embed two random group elements to the image of π1, π2

while it simulates the output of the O.Enc oracle, instead of embedding
one random group element to the image of π. We will not give a detailed
construction of the reduction in this proof, since we will give a more general
construction in the proof of Theorem 4.4.

OCBSHINE is detIND-UE-CPA. For convenience, we denote a vector
with l + 2 elements to be ~C = (C0, ..., C l+1). We also use the shorthand
~A ← ~Bc (component-wise exponentiation) and ~A ← B~c (common-base
exponentiation) to mean the following:

~A← ~Bc

1 : for j = 0, ..., l + 1 do

2 : Aj ← (Bj)c

~A← B~c

1 : for j = 0, ..., l + 1 do

2 : Aj ← Bcj

Fast and Secure Updatable Encryption 167

Theorem 4.4 (OCBSHINE is detIND-UE-CPA). Let G be a group of order
q (a λ-bit prime, λ = m) with generator g, and let OCBSHINE be the up-
datable encryption scheme described in Fig. 28. For any detIND-UE-CPA
adversaryA against OCBSHINE that asks at most QE queries toO.Enc be-
fore it makes its challenge, there exists an adversary B4.4 against DDH such
that

AdvdetIND-UE-CPA
OCBSHINE, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B4.4(λ).

Proof. The proof is similar to the security proof of Theorem 4.1, except
that here we are dealing with vector of ciphertexts. To simulate the output
of O.Enc, the reduction will embed a vector of random group elements to
the image of the random permutation family. The reduction is detailed in
Fig. 31.

5.5 SHINE is INT-CTXTs

We then explain how we bound the advantage of any adversary playing the
INT-CTXTs game for SHINE by the advantage of a reduction playing CDH.

Proof Method for ciphertext integrity. In the INT-CTXTs game, the
challenger will keep a list of consistent values for ciphertexts (i.e. the un-
derlying permutation output). Suppose C̃ is a forgery attempt sent to the
O.Try query in epoch ẽ. Let c̃ = (C̃)1/kẽ be the underlying permutation
output.

If c̃ is a new value, since we have that π (or (π1, π2) or (π0, {πN‖i‖b})) is
a random permutation then the INT-CTXTs challenger simulates the preim-
age of c̃ under the corresponding random permutation(s) to be a random
string(s). So the probability that this (these) random string(s) matches the
integrity tag is negligible, and this carries over to the probability that the
adversary wins the INT-CTXTs game.

If c̃ is an already-existing value, and suppose this event happens with
probability p. We construct a reduction playing the CDH game such that it
wins CDH game with probability p · 1

QE(n+1)2
. Similar to the proof method

of Theorem 4.1, we construct a reduction playing the CDH experiment by
guessing the location of the firewalls around the challenge epoch. The re-
duction embeds the CDH value and simulates the INT-CTXTs game, using

168 C. Boyd et al.

Reduction B4.4 playing ExpDDH
G, B4.4

1 : receive (g,X, Y, Z)

2 : do Setup

3 : ~̄M, ~̄C← Aors(λ)

4 : phase← 1

5 : Create C̃ with (~̄M, ~̄C), get C̃ẽ

6 : b′ ← Aors,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅ or

9 : I∗ ∩ C∗ 6= ∅
10 : if ABORT occurred or twf = 1

11 : b′
$←− {0, 1}

12 : return b′

13 : if (i, fwli, fwri) 6∈ FW

14 : b′
$←− {0, 1}

15 : return b′

16 : if b′ = b

17 : return 0

18 : else

19 : return 1

Setup(λ)

20 : b
$←− {0, 1}

21 : k0 ← SHINE0.KG(λ)

22 : ∆0 ←⊥
23 : e, c, phase, twf ← 0

24 : L, L̃, C,K, T ← ∅

25 : fwli, fwri
$←− {0, ..., n}

26 : h
$←− {1, ...,QE}

27 : for j∈{0, ..., fwli-1} do

28 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

29 : PKj ← gkj

30 : for j∈ {fwri+1, ..., n} do

31 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

32 : PKj ← gkj

33 : if b = 0

34 : PKfwli ← Y

35 : ~C
$←− Gl+2

36 : else

37 : PKfwli ← Y kfwli−1

38 : ~r
$←− (Z∗q)l+2

39 : ~C
$←− X~r

40 : for j ∈ {fwli+1, ..., fwri} do

41 : ∆j
$←− Z∗q

42 : PKj ← PK
∆j

j−1

Figure 31: Part 1. Reduction B4.4 for proof of Theorem 4.4, in hybrid i. On
lines 3 and 6, ors refers to the set {O.Enc,O.Next,O.Upd,O.Corr}. On
lines 28 and 31, ./ indicates ∆0 and ∆fwri+1 are skipped in the computation.

Fast and Secure Updatable Encryption 169

O.Enc(~M)

43 : c← c + 1

44 : if c = h

45 : ~Ce ← ~C; inf ← e

46 : else

47 : ~inf
$←− (Z∗q)l+2

48 : Π(~M)
$←− g ~inf // see caption

49 : ~Ce ← PK
~inf
e

50 : L ← L ∪ {(c, ~Ce, e; inf or ~inf)}
51 : return ~Ce

O.Next
52 : e← e + 1

O.Upd(~Ce−1)

53 : if (j, ~Ce−1, e− 1; inf or ~inf) 6∈ L
54 : return ⊥
55 : if j = h

56 : ~Ce ← ~C∆e
e−1

57 : else

58 : ~Ce ← PK
~inf
e

59 : L ← L ∪ {(j, ~Ce, e; inf or ~inf)}
60 : return ~Ce

O.Corr(inp, ê)
61 : do Check(inp, ê; e; fwli, fwri)

62 : if inp = key

63 : K ← K ∪ {ê}, return kê

64 : if inp = token

65 : T ← T ∪ {ê}, return ∆ê

Create C̃ with (~̄M, ~̄C)

66 : if (h, ~̄C, ẽ− 1; inf) /∈ L
67 : return ABORT

68 : if b = 0

69 : ~s
$←− (Z∗q)l+2

70 : Π(~̄M)
$←− X~s

71 : ~̃Cfwli ← Z~s

72 : else

73 : Π(~̄M)
$←− Gl+2

74 : ~̃Cfwli ← (Z
∏fwli−1

j=inf+1 ∆j)
~r

75 : for j ∈ {0, ..., fwli − 1} do

76 : ~̃Cj ← ~̄C(
∏j

k=0 ∆k)/(
∏ẽ−1

k=0 ∆k) // left

77 : for j ∈ {fwli + 1, ..., fwri} do

78 : ~̃Cj ← ~̃C
∆j

j−1 // embed

79 : for j ∈ {fwri + 1, ..., n} do

80 : ~̃Cj ← {Π(~̄M)}kj // right

81 : L̃ ← ∪nj=0{(~̃Cj , j)}

82 : return ~̃Cẽ

O.UpdC̃

83 : C ← C ∪ {e}

84 : find(~̃Ce, e) ∈ L̃

85 : return ~̃Ce

Figure 31: Part 2. Reduction B4.4 for proof of Theorem 4.4, in hy-
brid i. On line 48 of O.Enc, vector Π(~M) = (π0(N), πN‖1‖0(M1),
..., πN‖l‖0(Ml), πN‖l‖1(Σ)).

170 C. Boyd et al.

any successfully-forged ciphertext to compute the CDH output to its CDH
challenger.

SHINE0 is INT-CTXTs.

Theorem 5.1 (SHINE0 is INT-CTXTs). Let G be a group of order q (a
λ-bit prime, where λ = v + m + l) with generator g, and let SHINE0 be
the updatable encryption scheme described in Fig. 25. For any INT-CTXTs

adversary A against SHINE0 that asks at most QE queries to O.Enc before
it asks its O.Try query, there exists an adversary B5.1 against CDH such
that

AdvINT-CTXTs

SHINE0, A (λ) ≤ 1/2l + QE(n+ 1)2AdvCDH
B5.1 .

Proof. Note that the probability of a random string ends by 0l is 1/2l.
In the INT-CTXTs game, whenever, the adversary sends a forgery, sup-

pose C∗, to the O.Try oracle. If the trivial win conditions does not trigger,
then C∗ is a new ciphertext to the challenger and there exists an insulated
region around the challenge epoch. We split the proof into two parts based
on if C∗1/ke is a new value to the challenger:

1. If C∗1/ke is a new value, the random permutation π−1 will pick a
random string a as the output of π−1(C∗1/ke). So the probability of
a is valid (a (v +m+ l)-bit string with a l-bit zero string in the end)
is upper bounded by 1/2l.

2. If C∗1/ke is an existed value, denote this event as E3, we claim that
the probability of E3 happens is very low. Which means it is hard
to provide a valid forgery with a known permutation value. In other
words, without the knowledge of the encryption key, it is difficult to
provide a correct exponentiation. Formally, we prove the following
inequality in Lemma 5.2.

Pr[E3] = Pr[C∗1/ke exists,C∗ is new] ≤ QE(n+ 1)2AdvCDH.

In order to analyze the security, we define some events:

• E1 = {C∗ is new},

• E2 = {C∗1/ke is new,C∗ is new},

Fast and Secure Updatable Encryption 171

• Recall E3 = {C∗1/ke exists,C∗ is new}.

Denote the experiment ExpINT-CTXTs

SHINE0, A to be Exp. Then we have the fol-
lowing results:

• Pr[Exp = 1 | ¬E1] = 0.

• We have proved Pr[Exp = 1 | E2] ≤ 1/2l in part 1.

• Events¬E1, E2, E3 are disjoint from each other, so Pr[¬E1]+Pr[E2]
+Pr[E3] = 1.

• We have proved Pr[E3] ≤ QE(n+ 1)2AdvCDH in Lemma 5.2.

Applying the above properties, we can compute the INT-CTXTs advan-
tage

AdvINT-CTXTs

SHINE0, A (λ)

= Pr[Exp = 1]

= Pr[Exp = 1 | ¬E1] ·Pr[¬E1] + Pr[Exp = 1 | E2] ·Pr[E2]

+ Pr[Exp = 1 | E3] ·Pr[E3]

= Pr[Exp = 1 | E2] ·Pr[E2] + Pr[Exp = 1 | E3] ·Pr[E3]

≤ Pr[Exp = 1 | E2] + Pr[E3]

≤ 1/2l + QE(n+ 1)2AdvCDH.

Lemma 5.2. Let A be an INT-CTXTs adversary against SHINE0 that asks
at most QE queries to O.Enc before it asks its O.Try query. Suppose C̃ is a
forgery attempt provided by A and the corresponding permutation value is
c̃. Define E to be the event that c̃ is an existed value but C̃ is a new value.
Then there exists an adversary B5.2 against CDH such that

Pr[E] ≤ QE(n+ 1)2AdvCDH
B5.2

Proof. Suppose A is an adversary against INT-CTXTs game, and it can
provide a forgery such that C̃ is a new ciphertext but the underlying permu-
tation value is an existed one with probability Pr[E]. We claim that there
exists a reduction B5.2, detailed in Figure 32, such that it wins CDH game
with probability Pr[E] · 1

QE(n+1)2
.

172 C. Boyd et al.

Reduction B5.2 playing ExpCDH
G, B5.2

1 : receive (g,X, Y)

2 : do Setup

3 : AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)

4 : if twf = 1 or ABORT occurred
5 : win← 0

6 : else

7 : return win

Setup(λ)

8 : k0 ← SHINE0.KG(λ)

9 : ∆0 ←⊥; e, c← 0; win← 0

10 : L∗, C,K, T ← ∅
11 : ˆfwl, ˆfwr

$←− {0, ..., n}
12 : h

$←− {1, ...,QE}
13 : for j ∈ {0, ..., ˆfwl-1} do

14 : kj
$←− Z∗q

15 : ∆j ←
kj

kj−1
// except ∆0

16 : PKj ← gkj

17 : for { ˆfwr+1, ..., n} do

18 : kj
$←− Z∗q

19 : ∆j ←
kj

kj−1
// except ∆ ˆfwr+1

20 : PKj ← gkj

21 : PK ˆfwl ← Y

22 : for j ∈ { ˆfwl+1, ..., ˆfwr} do

23 : ∆j
$←− Z∗q ;PKj ← PK

∆j

j−1

O.Enc(M)

24 : c← c + 1

25 : if c = h

26 : if e < ˆfwl

27 : π(N‖M‖0l)← X

28 : Ce ← Xke

29 : else

30 : return ABORT

31 : else

32 : r
$←− Z∗q ;

33 : π(N‖M‖0l)← gr

34 : Ce ← PKr
e

35 : L∗ ← L∗ ∪ {(c,Ce, e; r)}m
36 : return Ce

O.Next()
37 : e← e + 1

O.Upd(Ce−1)

38 : if (j,Ce−1, e− 1; r) /∈ L∗
39 : return ⊥
40 : if j = h

41 : if e < ˆfwl

42 : Ce ← C∆e
e−1

43 : else

44 : return ABORT

45 : else

46 : Ce ← PKr
e

47 : L∗ ← L∗ ∪ {(j,Ce, e; r)}
48 : return Ce

Figure 32: Part 1. Reduction B5.2 for proof of Lemma 5.2. On line 35, m
indicates r is empty when c = h.

Fast and Secure Updatable Encryption 173

O.Corr(inp, ê)
49 : do Check(inp, ê; e; ˆfwl, ˆfwr)

50 : if inp = key

51 : K ← K ∪ {ê}
52 : return kê

53 : if inp = token

54 : T ← T ∪ {ê}
55 : for i ∈ T ∗ do

56 : for (j,Ci−1, i− 1; r) ∈ L∗ do

57 : Ci ← O.Upd(Ci−1)

58 : L∗ ← L∗ ∪ {(j,Ci, i; r)}
59 : return ∆ê

O.Try(C̃)

60 : if phase = 1

61 : return ⊥
62 : phase← 1

63 : if ẽ ∈ K∗ or C̃ ∈ L∗
64 : twf ← 1

65 : if ẽ 6∈ { ˆfwl, ..., ˆfwr}
66 : twf ← 1

67 : y ← C̃
1/

∏e=ẽ
e= ˆfwl+1

∆e

68 : call Chall with y; get b

69 : win← b

Figure 32: Part 2. Reduction B5.2 for proof of Lemma 5.2.

The reduction will guess the location of firewalls around the epoch when
O.Try query happens, furthermore, it guess which message (suppose the
h-th encryption) might be the underlying message of the forgery. After
it receives the CDH values ga, gb, it embeds ga to the h-th encryption as
π(N‖M‖0l) ← ga, embeds gb to the public key value on the left firewall

as PK ˆfwl = gk ˆfwl ← gb. Then C̃ = g
ab

∏e=ẽ
e= ˆfwl+1

∆e with probability Pr[E] ·
1

QE(n+1)2
, which is the advantage of winning the CDH game.

MirrorSHINE is INT-CTXTs.

Theorem 5.3 (MirrorSHINE is INT-CTXTs). Let G be a group of order
q (a λ-bit prime) with generator g, and let MirrorSHINE be the updatable
encryption scheme described in Fig. 26. For any INT-CTXTs adversary A
against MirrorSHINE that asks at most queries at most QE queries toO.Enc
before it asks its O.Try query, there exists an adversary B5.3 against CDH
such that

AdvINT-CTXTs

MirrorSHINE, A(λ) ≤ 1/2|N | + 2QE(n+ 1)2AdvCDH
B5.3

174 C. Boyd et al.

Proof. Similar to the proof in Theorem 5.1. Suppose C̃ = (C̃1, C̃2) is a new
ciphertext sent as theO.Try query. Then at least one block of the ciphertext,
suppose C̃i, is new. We split the proof in two parts:

• If (C̃i)1/ke is new. The random permutation π−1
i will pick a random

string ai as the output of π−1
i ((C̃i)1/ke). So the probability of ai is

valid (satisfy a1 = a2) is upper bounded by 1/2|N |.

• If (C̃i)1/ke is an existed value outputted by permutation πi. Similar
to the proof in Theorem 5.1, we can prove that

Pr[(C̃i)1/ke exists, C̃i is new] ≤ 2QE(n+ 1)2AdvCDH
B5.3 .

OCBSHINE is INT-CTXTs.

Theorem 5.4 (OCBSHINE is INT-CTXTs). Let G be a group of order q (a
λ-bit prime, λ = m) with generator g, and let OCBSHINE be the updatable
encryption scheme described in Fig. 28. For any INT-CTXTs adversary A
against OCBSHINE that asks at most QE queries, on messages with at most
L message blocks, to O.Enc before it asks its O.Try query, there exists an
adversary B5.4 against CDH such that

AdvINT-CTXTs

OCBSHINE, A(λ) ≤ QE
2 + QE

2m−a
+ (L + 1)QE(n+ 1)2AdvCDH

B5.4 .

Proof. Game 0

The first game is the experiment ExpINT-CTXTs

OCBSHINE, A, given in Fig. 6 and
Fig. 10. As definition 4 we have

AdvINT-CTXTs

OCBSHINE, A(λ) = Pr[G0 = 1]

Game 1

Modify the response of the encryption oracle such that the game randomly
picks a nonce and if the nonce repeats, it aborts the game and returns win =

0. This loss is upper-bounded by QE
2

2m−a , then we have

|Pr[G0 = 1]−Pr[G1 = 1]| ≤ QE
2

2m−a

Fast and Secure Updatable Encryption 175

Finally, we claim Pr[G1 = 1] ≤ QE

2m−a + (l + 1)QE(n + 1)2AdvCDH.
Similar to the proof in Theorem 5.1. Suppose C̃ = (C̃0, ..., C̃l̃+1) is a
forgery attempt sent as the O.Try query in epoch ẽ. Suppose c̃i = (C̃i)1/kẽ ,
the corresponding message is M̃i. Let Ñ be the underlying nonce and Σ̃ be
the underlying checksum. We consider the following two situations.

1. If (c̃0, ..., c̃l̃+1) is new, we claim that the probability of the adversary
correctly guessing Σ̃ is upper-bounded by QE

2m−a .

(a) If c̃0 is new, then either Ñ is new or |M̃l̃| is new.

i. If Ñ is equal to some already existing nonce N, we claim
that the probability that this event happens is very low.
Since π0 is a random permutation, the first (m-a) bits of
the preimage of c̃0 under π0, which is Ñ, is as likely as any
(m-a)-bit string. So the probability that Ñ collides with
one of the existed nonces is upper bounded by QE/2

m−a.
ii. If Ñ is new, therefore πÑ‖l̃‖1 is a new random permutation.

The adversary sees no image and preimage of πÑ‖l̃‖1. The

preimage of c̃l̃+1 under πÑ‖l̃‖1, which is Σ̃, is as likely as
any otherm-bit string. So the probability that the adversary
correctly guesses Σ̃ (which means Σ̃ = ⊕l

i=1M̃i) is 2−m.

(b) If c̃0 = c0 for some already existing (c0, ..., cl+1) but l̃ 6= l,
similar to the above situation πÑ‖l̃‖1 is a new random permuta-

tion. So the probability that the adversary correctly guesses Σ̃
is 2−m.

(c) If c̃0 = c0 for some already existing (c0, ..., cl+1) and l̃ = l but
c̃j 6= cj for some j ∈ {1, ..., l̃}. The adversary sees one image
of πÑ‖j‖0, that is, cj . The preimage of c̃j under πÑ‖j‖0, which

is M̃j , is as likely as any m-bit string except for Mj (or Ml‖0∗
when j = l). So the probability that the adversary correctly
guesses Σ̃ is 1

2m−1 .

(d) If c̃0 = c0 for some already existing (c0, ..., cl+1) and l̃ = l
and c̃j = cj for all j ∈ {1, ..., l̃} but c̃l̃+1 6= cl+1. This event
is impossible to happen, as Ñ = N, |Ml̃| = |Ml| and l̃ = l so

176 C. Boyd et al.

πÑ‖l̃‖1 = πN‖l‖1, furthermore M̃j = Mj for all j ∈ {1, ..., l̃},
so Σ̃ = Σ and then c̃l̃+1 = cl+1.

2. If (c̃0, ..., c̃l̃+1) is an already existing value output by the permuta-

tions but C̃ = (C̃0, ..., C̃l̃+1) is a new ciphertext, then this is equiv-
alent to (c̃0, ..., c̃l̃) exists but (C̃0, ..., C̃l̃) is new, as in the analysis
of 1.(d). Similar to the proof in Theorem 5.1, we can prove that the
probability of this event happening is upper-bounded by CDH advan-
tage:

Pr[(c̃0, ..., c̃l̃) exists but (C̃0, ..., C̃l̃) is new]

≤ (L + 1)QE(n+ 1)2AdvCDH.

5.6 Implementing the SHINE Schemes

In the proofs of Theorem 4 and Theorem 5, we require that π is a random
(unkeyed) permutation which must be followed by a mapping to an appro-
priate group for exponentiation by the epoch key. For the permutation we
do not need any specific and strong properties that are provided by modern
constructions of block ciphers and sponges. As far as the proof goes, and
in practice, the property that we want from this permutation is that given a
ciphertext and the inverse of the epoch key ke, the only way to extract use-
ful information about the message is to apply the inverse permutation π−1.
The random permutation model (or ideal cipher model) is thus the tool we
need here to create a simple interface for this aspect of our proof.

The different members of the SHINE family are suited to different ap-
plication scenarios. The variants SHINE0 and MirrorSHINE are best suited
to cases where messages are of small, fixed size, such as customer creden-
tials (or phone contact details, to return to the motivating example in the
Introduction). For applications with longer messages (i.e. larger than the
size of the exponentiation group), OCBSHINE is considerably faster and we
will assume that these choices are made in our implementation suggestions.
This removes any need for larger groups in order to encrypt longer mes-
sages. Using larger groups would not only carry a significant performance
penalty, but also force us to construct custom large blocklength block ci-
phers. Although this can be done (and has been for RSA groups [GOR18],
where our approach would not work), the analysis is tricky.

Fast and Secure Updatable Encryption 177

Instantiating the ideal permutation. The message block in SHINE0,
MirrorSHINE and the final message block in OCBSHINE must be appro-
priately padded to allow application of the permutation. The permutation
could be deployed using a variable-output-length sponge construction, a
block cipher or an authenticated encryption scheme with a fixed key and
suitably large nonce space. In practice, we suggest to instantiate the ran-
dom permutation with a block cipher of a suitable block length. AES has
only 128-bit blocks which does not match the minimum required size of the
group, so we instead suggest block ciphers such as Threefish, or original
Rijndael, allowing block lengths of 256 or 512 bits.

Mapping to elliptic curve group. We would like to instantiate our groups
using elliptic curves. Using modern techniques it is always possible to find a
suitable curve over a field with a size matching the block length of the ideal
permutation, but using standard curves like NIST P-256 or P-521 seems
desirable. A standard approach [Kob87] is to embed bit strings in the X-
coordinate of a point as follows. Note that close to half the field elements
are X-coordinates of points. Given a field of size q, we consider a t-bit
block as an integer x0 and find a small integer u such that u2t + x0 is the
X-coordinate of a curve point. If log q − t is between 8 and 9, this will fail
to terminate with probability around 2−256 under reasonable assumptions.

With this approach we could use Threefish with 512-bit blocks together
with NIST P-521 curve. If we want to use 256-bit blocks from Threefish, or
original Rijndael, together with NIST P-256 curve, we can use a standard
block cipher iteration trick [RSA78] to reduce the block length from 256
bits, so that embedding in the X-coordinate still works, as follows. With
block length t+ τ , concatenate a t-bit block with τ leading zeros and apply
the block cipher until the τ leading bits of the result are all zeros. Discard
these zeros to get a t-bit block. This is fairly cheap as for our purposes 8 or
9 bits will do.

Note that we have constructed an injective embedding of a block into
an elliptic curve, not a bijection as assumed in our proofs. When we sample
group elements in our proof, we must take care to sample points in the
image of our embedding, but this can be done cheaply.

178 C. Boyd et al.

6 Conclusions

In this work we provided a suite of new updatable encryption schemes,
collectively called SHINE, and a new definition of security xxIND-UE-atk
(that implies prior notions) in which we prove our schemes secure. In the
process, we provided a greater understanding of the proof techniques that
are inherent in the strong corruption model that is desirable for updatable
encryption – in particular in the context of deterministic updates that is de-
sirable in practice.

Acknowledgements. This research was funded by the Research Council
of Norway under Project No. 248166. Gareth T. Davies is supported by
the European Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme, grant agreement 802823.
We would like to thank Frederik Armknecht, Håvard Raddum and Mohsen
Toorani for fruitful discussions in the initial stages of this project, and
anonymous reviewers for a number of useful suggestions for improvement.
We would also like to thank Adam O’Neill for a number of useful sugges-
tions for improvement. Parts of this work were conducted while Gareth T.
Davies was employed by NTNU Trondheim and the University of Pader-
born.

References

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Ho-
henberger. Improved proxy re-encryption schemes with appli-
cations to secure distributed storage. In Proceedings of the Net-
work and Distributed System Security Symposium, NDSS 2005,
San Diego, California, USA. The Internet Society, 2005.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible
protocols and atomic proxy cryptography. In Kaisa Nyberg,
editor, Proceedings of EUROCRYPT 1998, volume 1403 of
Lecture Notes in Computer Science, pages 127–144. Springer,
1998.

Fast and Secure Updatable Encryption 179

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and
Ananth Raghunathan. Key homomorphic prfs and their appli-
cations. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Pro-
ceedings, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 410–428. Springer, 2013.

[BLMR15] Dan Boneh, Kevin Lewi, Hart William Montgomery, and
Ananth Raghunathan. Key homomorphic prfs and their ap-
plications. IACR Cryptology ePrint Archive, Report 2015/220,
2015.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. J. Cryptology, 21(4):469–491, 2008.

[CCFL17] Christian Cachin, Jan Camenisch, Eduarda Freire-
Stögbuchner, and Anja Lehmann. Updatable tokenization:
Formal definitions and provably secure constructions. In
Aggelos Kiayias, editor, Financial Cryptography and Data
Security - 21st International Conference, FC 2017, Sliema,
Malta, April 3-7, 2017, Revised Selected Papers, volume
10322 of Lecture Notes in Computer Science, pages 59–75.
Springer, 2017.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext se-
cure proxy re-encryption. In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, Proceedings of the
2007 ACM Conference on Computer and Communications Se-
curity, CCS 2007, Alexandria, Virginia, USA, October 28-31,
2007, pages 185–194. ACM, 2007.

[Cou18] PCI Security Standards Council. Data security standard (PCI
DSS v3.2.1), 2018. https://www.pcisecuritystandards.org/.

[CPS08] Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin.
The random oracle model and the ideal cipher model are equiv-
alent. In David A. Wagner, editor, Advances in Cryptology

180 C. Boyd et al.

- CRYPTO 2008, 28th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2008. Pro-
ceedings, volume 5157 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2008.

[DDLM19] Alex Davidson, Amit Deo, Ela Lee, and Keith Martin.
Strong post-compromise secure proxy re-encryption. In Ju-
lian Jang-Jaccard and Fuchun Guo, editors, Information Secu-
rity and Privacy - 24th Australasian Conference, ACISP 2019,
Christchurch, New Zealand, July 3-5, 2019, Proceedings, vol-
ume 11547 of Lecture Notes in Computer Science, pages 58–
77. Springer, 2019.

[DRC14] Sandra Diaz-Santiago, Lil María Rodríguez-Henríquez, and
Debrup Chakraborty. A cryptographic study of tokenization
systems. In Mohammad S. Obaidat, Andreas Holzinger, and
Pierangela Samarati, editors, SECRYPT 2014 - Proceedings of
the 11th International Conference on Security and Cryptog-
raphy, Vienna, Austria, 28-30 August, 2014, pages 393–398.
SciTePress, 2014.

[EPRS17a] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart,
and Samuel Scott. Key rotation for authenticated encryption.
In Jonathan Katz and Hovav Shacham, editors, Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part III, volume 10403 of Lecture Notes in
Computer Science, pages 98–129. Springer, 2017.

[EPRS17b] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart,
and Samuel Scott. Key rotation for authenticated encryption.
IACR Cryptology ePrint Archive, Report 2017/527, 2017.

[GOR18] Craig Gentry, Adam O’Neill, and Leonid Reyzin. A unified
framework for trapdoor-permutation-based sequential aggre-
gate signatures. In Michel Abdalla and Ricardo Dahab, editors,
Public-Key Cryptography – PKC 2018, pages 34–57, Cham,
2018. Springer International Publishing.

Fast and Secure Updatable Encryption 181

[JKR19] Stanislaw Jarecki, Hugo Krawczyk, and Jason K. Resch. Up-
datable oblivious key management for storage systems. In
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, pages 379–393.
ACM, 2019.

[KLR19a] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA se-
cure updatable encryption with integrity protection. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I,
volume 11476 of Lecture Notes in Computer Science, pages
68–99. Springer, 2019.

[KLR19b] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA
secure updatable encryption with integrity protection. IACR
Cryptology ePrint Archive, Report 2019/222, 2019.

[Kob87] Neil Koblitz. Elliptic curve cryptosystems. Mathematics of
Computation, 48(177):203–209, 1987.

[KRS+03] Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian
Wang, and Kevin Fu. Plutus: Scalable secure file sharing on
untrusted storage. In Jeff Chase, editor, Proceedings of the
FAST ’03 Conference on File and Storage Technologies, March
31 - April 2, 2003, Cathedral Hill Hotel, San Francisco, Cali-
fornia, USA. USENIX, 2003.

[Lee17] Ela Lee. Improved security notions for proxy re-encryption to
enforce access control. In Tanja Lange and Orr Dunkelman,
editors, Progress in Cryptology - LATINCRYPT 2017 - 5th In-
ternational Conference on Cryptology and Information Secu-
rity in Latin America, Havana, Cuba, September 20-22, 2017,
Revised Selected Papers, volume 11368 of Lecture Notes in
Computer Science, pages 66–85. Springer, 2017.

182 C. Boyd et al.

[Leh19] Anja Lehmann. Updatable encryption & key rota-
tion (presentation slides), 2019. https://summerschool-
croatia.cs.ru.nl/2019/slides/lehmann1.pdf.

[LT18a] Anja Lehmann and Björn Tackmann. Updatable encryption
with post-compromise security. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, vol-
ume 10822 of Lecture Notes in Computer Science, pages 685–
716. Springer, 2018.

[LT18b] Anja Lehmann and Björn Tackmann. Updatable encryp-
tion with post-compromise security. IACR Cryptology ePrint
Archive, Report 2018/118, 2018.

[MS18] Steven Myers and Adam Shull. Practical revocation and key
rotation. In Nigel P. Smart, editor, Topics in Cryptology - CT-
RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceed-
ings, volume 10808 of Lecture Notes in Computer Science,
pages 157–178. Springer, 2018.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed
pseudo-random functions and kdcs. In Jacques Stern, edi-
tor, Advances in Cryptology - EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceed-
ing, volume 1592 of Lecture Notes in Computer Science, pages
327–346. Springer, 1999.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: a block-cipher mode of operation for efficient authenti-
cated encryption. In Michael K. Reiter and Pierangela Sama-
rati, editors, CCS 2001, Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security, Philadel-
phia, Pennsylvania, USA, November 6-8, 2001, pages 196–
205. ACM, 2001.

Fast and Secure Updatable Encryption 183

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for ob-
taining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21:120–126, 1978.

[Sha49] Claude E Shannon. Communication theory of secrecy systems.
Bell system technical journal, 28(4):656–715, 1949.

[SNS17] Kouichi Sakurai, Takashi Nishide, and Amril Syalim. Im-
proved proxy re-encryption scheme for symmetric key cryp-
tography. In International Workshop on Big Data and Infor-
mation Security, IWBIS 2017, Jakarta, Indonesia, September
23-24, 2017, pages 105–111. IEEE, 2017.

A SHINE0 is IND-ENC -CPA Secure

Theorem 4.2. Let G be a group of order q (a λ-bit prime) with generator g,
and let SHINE0 be the updatable encryption scheme described in Fig. 25.
For any IND-ENC -CPA adversary A against SHINE0, there exists an ad-
versary B4.2 against DDH such that

AdvIND-ENC-CPA
SHINE0, A (λ) ≤ 2(n+ 1)3 ·AdvDDH

G, B4.2(λ).

Proof. Similarly to the proof of Theorem 4.1, we use the firewall tech-
nique and construct hybrid games. For b ∈ {0, 1}, define game Gb

i as
ExpIND-ENC-CPA-b

SHINE0, A except for:

• The game randomly picks two numbers fwli, fwri and if fwli, fwri are
not the i-th firewalls, a random bit is returned for b′. This loss is
upper bounded by (n+ 1)2;

• For challenge made in epoch ẽ with input (M̄0, M̄1): If ẽ < fwli then
return a ciphertext of M̄1, if ẽ > fwri return a ciphertext of M̄0, and
if fwli ≤ ẽ ≤ fwri return a ciphertext of M̄b;

• After A outputs b′: returns b′ if twf 6= 1 or some additional trivial
win condition is triggered.

184 C. Boyd et al.

Reduction B4.2 playing ExpDDH
G, B4.2 in hybrid i

1 : receive (g,X, Y, Z)

2 : do Setup

3 : M̄0, M̄1 ← AO.Enc,O.Next,O.Upd,O.Corr(λ)

4 : phase← 1,Create C̃ with (M̄0, M̄1), get C̃ẽ

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

6 : twf ← 1 if C∗ ∩ K∗ 6= ∅
7 : if ABORT occurred or twf = 1

8 : b′
$←− {0, 1}, return b′

9 : if (i, fwli, fwri) 6∈ FW

10 : b′
$←− {0, 1}, return b′

11 : if b′ = b

12 : return 0

13 : else

14 : return 1

Setup(λ)

19 : b
$←− {0, 1}; k0 ← SHINE0.KG(λ)

20 : ∆0 ←⊥; e← 0; phase, twf ← 0

21 : L, L̃, C,K, T ← ∅

22 : fwli, fwri
$←− {0, ..., n}

23 : PKfwli ← Y

24 : for j ∈ {fwli+1, ..., fwri} do

25 : ∆j
$←− Z∗q ;PKj ← PK

∆j

j−1

26 : for j∈{0, ..., fwli-1}∪{fwri+1, ..., n} do

27 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

;PKj ← gkj

Figure 33: Part 1. Reduction B4.2 for proof of Theorem 4.2. Embedding
DDH tuples to challenge ciphertexts requires faithful responses to queries
within the i-th insulated region. On line 27, ./ indicates ∆0 and ∆fwri+1

are skipped in the computation.

Fast and Secure Updatable Encryption 185

O.Enc(M)

28 : r
$←− Z∗q

29 : π(N||M)← gr; Ce ← PKr
e

30 : L ← L ∪ {(·,Ce, e; r)}
31 : return Ce

O.Next
31 : e← e + 1

O.Upd(Ce−1)

32 : if (·,Ce−1, e− 1; r) 6∈ L
33 : return ⊥
34 : Ce ← PKr

e

35 : L ← L ∪ {(·,Ce, e; r)}
36 : return Ce

O.Corr(inp, ê)
37 : do Check(inp, ê; e; fwli, fwri)

38 : if inp = key

39 : K ← K ∪ {ê}
40 : return kê

41 : if inp = token

42 : T ← T ∪ {ê}
43 : return ∆ê

Create C̃ with (M̄0, M̄1)

44 : π(N||M̄b)← X

45 : π(N||M̄b⊕1)
$←− G

46 : C̃fwli ← Z

47 : for j ∈ {0, ..., fwli − 1} do

48 : C̃j ← (π(N||M̄1))kj // left

49 : for j ∈ {fwli + 1, ..., fwri} do

50 : C̃j ← C̃
∆j

j−1 // embed

51 : for j ∈ {fwri + 1, ..., n} do

52 : C̃j ← (π(N||M̄0))kj // right

53 : L̃ ← ∪nj=0{(C̃j , j)}
54 : return C̃ẽ

O.UpdC̃

55 : C ← C ∪ {e}
56 : find(C̃e, e) ∈ L̃
57 : return C̃e

Figure 33: Part 2. Reduction B4.2 for proof of Theorem 4.2.

Similarly to the computation in Theorem 4.1, we have

AdvIND-ENC-CPA
SHINE0, A (λ) = (n+ 1)2 ·

(
l∑

i=1

|Pr[G1
i = 1]−Pr[G0

i = 1]|
)
,

for some l. Again we need to prove that |Pr[G1
i = 1] − Pr[G0

i = 1]| ≤
2AdvDDH

G, (λ).
We construct a reduction B4.2, detailed in Fig. 33, that is playing the

standard DDH game and runs Ai. The reduction B4.2 flips a coin b, and

186 C. Boyd et al.

simulates Gb
i by using DDH tuples (X,Y, Z) to output SHINE0.Enc(M̄b)

in the i-th insulated region. If Ai guess b correctly, then B4.2 guesses its
real DDH tuples, otherwise, B4.2 guess its random DDH tuples. If B4.2

receives a real DDH tuple, then B4.2 perfectly simulates the input of Ai in
Gb
i . If B4.2 receives a random DDH tuple, then B4.2 wins with probability

1/2. After some computation similar to that in the proof of Theorem 2.3 we
have that AdvDDH

G, B4.2(λ) = 1
2 |Pr[G1

i = 1]−Pr[G0
i = 1]|.

B The BLMR Scheme of Boneh, Lewi, Montgomery,
and Raghunathan

We present the original scheme given by Boneh et al. [BLMR13], which we
denote by BLMR. The scheme is a direct application of the key-homomorphic
PRFs defined in the same paper: the authors observed that the Naor-Reingold-
Pinkas PRF [NPR99] is key homomorphic, and presented a number of other
constructions based on DLIN and LWE. The updatable encryption scheme
BLMR [BLMR13], which is ciphertext-independent and defined in Fig. 34,
represented the first UE construction.

To present the schemes and the results in this section, we first need
to introduce a definition of a key-homomorphic PRF, and also the regular
(left-or-right) IND-CPA security definition for symmetric encryption.

Definition 13 (Key-homomorphic PRF [BLMR13]). Let F : KS×X → Y
be some efficiently-computable function, where (KS,⊕) and (Y,⊗) are
groups. Then, (F,⊕,⊗) is a key-homomorphic PRF if F is a PRF, and for
every k1, k2 ∈ KS and every x ∈ X , F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2).

Definition 14. Let SKE = {KG,E,D} be an symmetric encryption scheme.
Then the IND-CPA advantage of an adversary A against SKE is defined as

AdvIND-CPA
SKE, A (λ) =

∣∣∣∣Pr[ExpIND-CPA-1
SKE, A = 1]−Pr[ExpIND-CPA-0

SKE, A = 1]

∣∣∣∣,

where the experiment ExpIND-CPA-b
SKE, A is given in Fig. 35.

Note that BLMR is trivially insecure in terms of xxIND-UPD-atk (in any
of its three flavors) since the adversary can gain the epoch key for the epoch

Fast and Secure Updatable Encryption 187

BLMR.KG(λ)

1 : ke
$←− F.KG(λ)

2 : return ke

BLMR.TG(ke, ke+1)

3 : ∆e+1 ← ke ⊕ ke+1

4 : return ∆e+1

BLMR.Enc(ke,M)

5 : N
$←− χ

6 : C1
e ← F(ke,N)⊗M

7 : Ce ← (C1
e ,N)

8 : return Ce

BLMR.Dec(ke,Ce)

9 : parse Ce = (C1
e ,N)

10 : M′ ← C1
e ⊗ F(ke,N)

11 : return M′

BLMR.Upd(∆e+1,Ce)

12 : parse Ce = (C1
e ,N)

13 : Ce+1 ← (C1
e ⊗ F(∆e+1,N),N)

14 : return Ce+1

Figure 34: Updatable encryption scheme BLMR [BLMR13] for key-
homomorphic PRF F.

ExpIND-CPA-b
SKE, A (λ)

1 : k
$←− KG

2 : (M0,M1, st)← AO.E(λ)

3 : if |M0| 6= |M1|
4 : return ⊥

5 : C̃
$←− SKE.Enc(k,Mb)

6 : b′ ← AO.E(C̃)

7 : return b′

O.E(M)

8 : C← SKE.Enc(k,M)

9 : return C

Figure 35: The experiments defining IND-CPA security for symmetric en-
cryption schemes.

preceding the challenge epoch, allowing decryption of the challenge input
ciphertexts and consequently a direct comparison of nonce values between
these input ciphertexts and the challenge ciphertext.

LT18 detailed an extension of BLMR, denoted BLMR+, where the nonce

188 C. Boyd et al.

is encrypted: this scheme is described in Fig. 36. LT18 showed that BLMR+
is IND-ENC-CPA and weakIND-UPD-CPA secure, however it is not able to
achieve detIND-UE-CPA security, since the token contains the encryption
key for the nonce value. More precisely, the adversary runs as follows:

• Choose some M0, call O.Enc(M0) and receive some C.

• CallO.Next, choose M1 (that is distinct from M0), doO.Chall(C,M1)
and receive C̃.

• CallO.Next, callO.UpdC̃, callO.Corr(token, 2) andO.Corr(key, 0).

• Do BLMR+.Deck0(C) to see its nonce, do Dk2
2
(C̃) to see nonce of

challenge ciphertext and compare.

This is a very similar attack to the one LT18 used to demonstrate that
BLMR+ is not detIND-UPD-CPA secure.

Although BLMR+ is not detIND-UE-CPA secure, we can prove that it
is weakIND-UE-CPA secure.

B.1 BLMR+ is weakIND-UE-CPA Secure.

Trivial wins for a weak model. An additional notion weakIND-UPD-CPA
was used by LT18 for proving their BLMR+ scheme secure: if the adversary
has access to any token or key which could leak the nonce of a challenge
input ciphertext, the trivial win flag is triggered if the adversary gains ac-
cess to any token which could reveal the nonce of a known (version of the)
challenge ciphertext (i.e. if I∗ ∩ (K∗ ∪ T ∗) 6= ∅, then twf ← 1 if ∃e ∈ C∗
such that e or e+ 1 ∈ T ∗). This is necessary because the token in BLMR+
contains the symmetric keys that enable decryption and re-encryption of the
nonce.

Proof technique of Proposition 6. The proof technique is very similar to
the proof of weakIND-UPD-CPA security of BLMR+ in LT18 [LT18a]. We
consider two situations of the additional requirements of weakIND-UE-CPA
security and provide two proofs based on these situations. We only describe
the first proof technique as both proofs use the same strategy. We construct
hybrid games across each epoch, such that distinguishing the endpoints rep-
resents success in the weakIND-UE-CPA game. SupposeAi is an adversary

Fast and Secure Updatable Encryption 189

BLMR+.KG(λ)

1 : k1 $←− F.KG(λ)

2 : k2 $←− SKE.KG(λ)

3 : ke ← (k1, k2)

4 : return ke

BLMR+.TG(ke, ke+1)

5 : parse ke = (k1
e , k

2
e)

6 : parse ke+1 = (k1
e+1, k

2
e+1)

7 : ∆e+1 ← (k1
e ⊕ k1

e+1, (k
2
e , k

2
e+1))

8 : return ∆e+1

BLMR+.Enc(ke,M)

9 : parse ke = (k1
e , k

2
e)

10 : N
$←− χ

11 : C1
e ← F(k1

e ,N)⊗M

12 : C2
e ← SKE.E(k2

e ,N)

13 : Ce ← (C1
e ,C

2
e)

14 : return Ce

BLMR+.Dec(ke,Ce

15 : parse ke = (k1
e , k

2
e)

16 : parse Ce = (C1
e ,C

2
e)

17 : N← SKE.D(k2
e ,C

2
e)

18 : M′ ← C1
e ⊗ F(k1

e ,N)

19 : return M′

BLMR+.Upd(∆e+1,Ce)

20 : parse ∆e+1 = (∆′e+1, (k
2
e , k

2
e+1))

21 : parse Ce = (C1
e ,C

2
e)

22 : N← SKE.D(k2
e ,C

2
e)

23 : C1
e+1 ← C1

e ⊗ F(∆′e+1,N)

24 : C2
e+1 ← SKE.E(k2

e+1,N)

25 : Ce+1 ← (C1
e+1,C

2
e+1)

26 : return Ce+1

Figure 36: Updatable encryption scheme BLMR+ [BLMR13, LT18a] for
key-homomorphic PRF F and symmetric key encryption scheme SKE.

trying to distinguish games in hybrid i. We consider a modified hybrid game
in which the first element of ciphertexts is a uniformly random element. We
can prove that the ability to notice this change is upper bounded by PRF ad-
vantage. Then, we conclude the proof by switching out the nonce inside the
encryption in the second component: noticing this change is upper bounded
by IND-CPA advantage of an adversary against SKE.

Proposition 6. Let BLMR+ be the updatable encryption scheme described
in Fig. 36. For any weakIND-UE-CPA adversary A against UE that asks
at most QE queries to O.Enc before it makes its challenge, there exists an
IND-CPA adversary BIND-CPA

6b against SKE and an PRF adversary BPRF
6a

190 C. Boyd et al.

against F such that

AdvweakIND-UE-CPA
BLMR+, A (λ) ≤

(n+ 1)3 ·
(

AdvIND-CPA
SKE, BIND-CPA

6b
(λ) + 2AdvPRF

F, BPRF
6a

(λ) +
2QE

2

|X |

)
.

Proof. The additional requirement of weakIND-UE-CPA security states: If
the adversary knows a secret key or a token in epoch e∗ ∈ I∗, then for any
e ∈ C∗, if the adversary corrupts ∆e or ∆e+1 then the adversary trivially
loses, i.e. twf ← 1. We consider two situations (whether or not I∗ ∩ (K∗ ∪
T ∗) = ∅) that might happen. The reduction can flip a coin at the beginning
of the simulation to guess which situation the adversary will produce and
set up the simulation appropriately.

Situation 1. Suppose the adversary knows a secret key or a token in epoch
e∗ ∈ I∗.

(Step 1.) We construct a sequence of hybrid games. Define game Gi as
ExpweakIND-UE-CPA-b

BLMR+, A except for:

• The challenge input (M̄, C̄), called in epoch j. If j ≤ i then return a
ciphertext that is an update of C̄, if j > i then return a ciphertext that
is an encryption of M̄.

• After A outputs b′, returns b′ if twf 6= 1.

Similarly the advantage AdvweakIND-UE-CPA
BLMR+, A (λ) is upper bounded by

|Pr[G−1 = 1]−Pr[Gn = 1]|. For any i, we prove that

|Pr[Gi = 1]−Pr[Gi−1 = 1]| ≤

AdvIND-CPA
SKE, BIND-CPA

6b
(λ) + 2AdvPRF

F, BPRF
6a

(λ) +
2QE

2

|X | .

Suppose Ai is an adversary trying to distinguish Gi from Gi−1. For all
queries concerning epochs other than i the responses will be equal in either
game, so we assume Ai asks for a challenge ciphertext in epoch i. That
means if the adversary corrupts tokens in epoch i or epoch i+ 1, the trivial
win condition is met and the adversary loses.

Fast and Secure Updatable Encryption 191

(Step 2.) We consider a modified game GPRF which is the same as Gi
except for: the first element of ciphertexts given to the adversary in epoch i
is a uniformly random element in Y . More precisely, in epoch i, when Ai

asks for O.Enc,O.Upd or a challenge-equal ciphertext to game Gb
PRF:

• AnO.Enc(M) query: randomly choose a nonce N
$←− X\X , setX ←

X ∪ {N}, randomly choose C1
i

$←− Y , compute C2
i ← SKE.E(k2

i ,N),
set L ← L ∪ {(·,Ci, i; N,M)}. Output Ci.

• An O.Upd(Ci−1) query: proceed if (·,Ci−1, i− 1; N,M) ∈ L. If
N ∈ X , then abort the game; otherwise, set X ← X ∪ {N}, ran-

domly choose C1
i

$←− Y , compute C2
i ← SKE.E(k2

i ,N), set L ←
L ∪ {(·,Ci, i; N,M)}. Output Ci.

• A challenge-equal ciphertext (with the underlying challenge input
(M̄0, C̄)): proceed if (·, C̄, ẽ − 1; N1, M̄1) ∈ L. If N1 ∈ X , then
abort the game; otherwise, set X ← X ∪ {N1}. Randomly choose a

nonce N0
$←− X \X , set X ← X ∪{N0}, randomly choose C1

i
$←− Y ,

compute C̃2
i ← SKE.E(k2

i ,Nb), (C̃i, i; Nb, M̄b) ∈ L̃. Output C̃i.

We wish to prove that

|Pr[Gi = 1]−Pr[Gi−1 = 1]| ≤ AdvGPRF(λ) + 2AdvPRF
F, BPRF

6a
(λ) +

2QE
2

|X | .

If the following results are true, then we have the above result.

|Pr[Gi = 1]−Pr[G1
PRF = 1]| ≤ AdvPRF

F, BPRF
6a

(λ) +
QE

2

|X |

and

|Pr[Gi−1 = 1]−Pr[G0
PRF = 1]| ≤ AdvPRF

F, BPRF
6a

(λ) +
QE

2

|X | .

We construct an PRF adversary BPRF
6a , detailed in Fig. 37, against F to

simulate the responses of queries made by Ai.
The reduction does appropriate bookkeeping for the nonce, message,

and ciphertexts in list L. Specifically, in epoch i, BPRF
6a collects used nonces

192 C. Boyd et al.

Reduction BPRF
6a playing ExpPRF-b

F, B6a in hybrid i

1 : do Setup

2 : M̄0, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄0, C̄), get C̃ẽ

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

6 : if I∗ ∩ (K∗ ∪ T ∗) = ∅
7 : return ABORT

8 : twf ← 1 if

9 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅ or

10 : (∃e ∈ C∗ : e ∈ T ∗ or e + 1 ∈ T ∗)
11 : if ABORT occurred or twf = 1

12 : b′
$←− {0, 1}

13 : return b′

14 : if b′ = b

15 : return 0

16 : else

17 : return 1

Setup(λ)

18 : b
$←− {0, 1}

19 : ∆0 ←⊥; e← 0; phase, twf ← 0

20 : L, L̃, C,K, T , X ← ∅
21 : for j ∈ {0, ..., n} do

22 : k¶j
$←− BLMR+.KG(λ)

23 : ∆�j+1
$←− BLMR+.TG(kj , kj+1)

Figure 37: Part 1. Reduction BPRF
6a for proof of Proposition 6. On line 22,

¶ indicates k1
i are skipped in the generation; on line 23, � indicates ∆i and

∆i+1 are skipped in the generation.

Fast and Secure Updatable Encryption 193

O.Enc(M)

24 : if e 6= i

25 : Ce ← BLMR+.Enc(ke,M)

26 : if e = i

27 : N
$←− X \X;X ← X ∪ {N}

28 : call y ← O.f(N)

29 : C1
i ← y ⊗M // embed

30 : C2
i ← SKE.E(k2

i ,N)

31 : Ci ← (C1
i ,C

2
i)

32 : L ← L ∪ {(·,Ce, e; N,M)}
33 : return Ce

O.Next
34 : e← e + 1

O.Upd(Ce-1)

35 : if (·,Ce-1, e-1; N,M) 6∈ L
36 : or (e = i and N ∈ X)

37 : return ⊥
38 : if e 6= i, i+ 1

39 : Ce←BLMR+.Upd(∆e,Ce-1)

40 : if e = i+ 1

41 : Ce←(F(k1
e ,N)⊗M,SKE.E(k2

e ,N))

42 : if e = i

43 : X ← X ∪ {N}
44 : call y ← O.f(N)

45 : C1
i ← y ⊗M // embed

46 : C2
i ← SKE.E(k2

i ,N)

47 : Ci ← (C1
i ,C

2
i)

48 : L ← L ∪ {(·,Ce, e; N,M)}
49 : return Ce

O.Corr(inp, ê)
50 : if ê > e or e = i

51 : or (e = i+1 and inp = token)

52 : return ⊥
53 : if inp = key

54 : K ← K ∪ {ê}
55 : return kê

56 : if inp = token

57 : T ← T ∪ {ê}
58 : return ∆ê

Create C̃ with (M̄0, C̄)

59 : if (·, C̄, ẽ− 1; N1, M̄1) 6∈L or N1∈X
60 : return ⊥

61 : N0
$←− X \ (X ∪ {N1})

62 : X ← X ∪ {N0,N1}
63 : call yb ← O.f(Nb)

64 : C̃1
i ← yb ⊗ M̄b // embed

65 : C̃2
i ← SKE.E(k2

i ,Nb)

66 : C̃i ← (C̃1
i , C̃

2
i)

67 : for j ∈ {0, ..., i− 1} do

68 : C̃1
j←F(k1

j ,N1)⊗M̄1 // left

69 : C̃2
j←SKE.E(k2

j ,N1) // left

70 : for j ∈ {i+ 1, ..., n} do

71 : C̃1
j←F(k1

j ,N0)⊗M̄0 // right

72 : C̃2
j←SKE.E(k2

j ,N0) // right

73 : L̃ ← ∪nj=0{(C̃j , j)}
74 : return C̃ẽ

O.UpdC̃

75 : C ← C ∪ {e}
76 : find (C̃e, e) ∈ L̃
77 : return C̃e

Figure 37: Part 2. Reduction BPRF
6a for proof of Proposition 6. Recall that

in the PRF game in Definition 3, the oracle O.f responds to query input N
with either F(k,N) or a random value.

194 C. Boyd et al.

in list X (initiated as empty set). Initially, the reduction flips a coin b
$←−

{0, 1}, simulates the challenge response with M̄0 if b = 0; otherwise, simu-
lates the challenge response with C̄. The reduction BPRF

6a generates all keys
and tokens except for k1

i . In epoch i, BPRF
6a calls its PRF challenger for help

computing F(k1
i ,N).

Eventually BPRF
6a receives b′ fromAi, and if b′ = b, then BPRF

6a guesses
that it is interacting with the ‘real’ PRF, i.e. outputs 0 to the PRF chal-
lenger, otherwise BPRF

6a outputs 1.
WhenBPRF

6a interacts with ExpPRF-0
F, BPRF

6a
, the simulation of Gi−1 (if b = 0)

or Gi (if b = 1) is perfect except if a nonce collision during the game has
caused an abort, this term is bounded by QE

2

|X | . When BPRF
6a interacts with

ExpPRF-1
F, BPRF

6a
, the simulation of Gb

PRF to Ai is perfect. We have the desired
result.

(Step 3.) Suppose Ai is an adversary trying to distinguish game G0
PRF

from game G1
PRF. Then we construct a reduction BIND-CPA

6b , detailed in Fig.
38, playing the IND-CPA game that runs Ai. We claim that

AdvGPRF
Ai

(λ) ≤ AdvIND-CPA
BIND-CPA
6b

(λ).

Reduction BIND-CPA
6b generates all keys and tokens except for ki. In

epoch i, BIND-CPA
6b uses the IND-CPA challenger for assistance in comput-

ing SKE.E(k2
i ,N). In epoch i, the reduction forwards all nonces of O.Enc

andO.Upd to the IND-CPA challenger, and sets the reply in the second part
of ciphertext, i.e. C2

i . For challenge input (M̄, C̄), suppose C̄ has the un-
derlying nonce N1, BIND-CPA

6b chooses nonce N0 while encrypting M, sends
(N0,N1) to the IND-CPA challenger as challenge input, and sets the reply
in the second part of the challenge ciphertext. The following shows how
BIND-CPA

6b simulates the responses of queries made by Ai:
Eventually, BIND-CPA

6b sends the guess bit of A to the IND-CPA chal-
lenger. We have the required result.

Situation 2. Suppose the adversary knows none of the secret keys and
tokens in epoch e∗ ∈ I∗.

Since the adversary never knows the nonce in the challenge C̄, we do
not need to worry if the adversary knows a token in the challenge epoch or
the next epoch will make the adversary trivially win the game.

Fast and Secure Updatable Encryption 195

Reduction BIND-CPA
6b playing ExpIND-CPA

SKE, B6b in hybrid i

1 : do Setup

2 : M̄0, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄0, C̄), get C̃ẽ

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

6 : if if I∗ ∩ (K∗ ∪ T ∗) 6= ∅
7 : return ABORT

8 : twf ← 1if

9 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅ or

10 : (∃e ∈ C∗ : e ∈ T ∗ or e + 1 ∈ T ∗)
11 : if ABORT occurred or twf = 1

12 : b′
$←− {0, 1}

13 : return b′

14 : if b′ = b

15 : return 0

16 : else

17 : return 1

Setup(λ)

18 : b
$←− {0, 1}

19 : ∆0 ←⊥; e← 0; phase, twf ← 0

20 : L, L̃, C,K, T , X ← ∅
21 : for j ∈ {0, ..., n} do

22 : k~
j

$←− BLMR+.KG(λ)

23 : ∆�j+1
$←− BLMR+.TG(kj , kj+1)

Figure 38: Part 1. Reduction BIND-CPA
6b for proof of Proposition 6; the simu-

lation is almost the same as BPRF
6a except for the underlined simulations. On

line 22, ~ indicates ki is skipped in the generation; on line 23, � indicates
∆i and ∆i+1 are skipped in the generation.

196 C. Boyd et al.

O.Enc(M)

24 : if e 6= i

25 : Ce ← BLMR+.Enc(ke,M)

26 : if e = i

27 : N
$←− X \X;X ← X ∪ {N}

28 : C1
i

$←− Y
29 : call y ← O.E(N)

30 : C2
i ← y // embed

31 : Ci ← (C1
i ,C

2
i)

32 : L ← L ∪ {(·,Ce, e; N,M)}
33 : return Ce

O.Next
34 : e← e + 1

O.Upd(Ce-1)

35 : if (·,Ce-1, e-1; N,M) 6∈ L
36 : or (e = i and N ∈ X)

37 : return ⊥
38 : if e 6= i, i+ 1

39 : Ce ← BLMR+.Upd(∆e,Ce-1)

40 : if e = i+ 1

41 : C1
e ← F(k1

e ,N)⊗M

42 : C2
e ← SKE.E(k2

e ,N)

43 : if e = i

44 : X ← X ∪ {N}; C1
i

$←− Y
45 : call y ← O.E(N)

46 : C2
i ← y // embed

47 : Ci ← (C1
i ,C

2
i)

48 : L ← L ∪ {(·,Ce, e; N,M)}
49 : return Ce

O.Corr(inp, ê)
50 : if ê > e or e = i

51 : or (e = i+1 and inp = token)

52 : return ⊥
53 : if inp = key

54 : K ← K ∪ {ê}
55 : return kê

56 : if inp = token

57 : T ← T ∪ {ê}
58 : return ∆ê

Create C̃ with (M̄0, C̄)

59 : if (·, C̄, ẽ− 1; N1, M̄1) 6∈ L or N1 ∈ X
60 : return ⊥

61 : N0
$←−X \ (X∪{N1}); X←X∪{N0,N1}

62 : C̃1
i

$←− Y
63 : callCHALLwith (N0,N1),get C̃2

i // embed

64 : C̃i ← (C̃1
i , C̃

2
i)

65 : for j ∈ {0, ..., i− 1} do

66 : C̃1
j ← F(k1

j ,N1)⊗ M̄1 // left

67 : C̃2
j ← SKE.E(k2

j ,N1) // left

68 : for j ∈ {i+ 1, ..., n} do

69 : C̃1
j ← F(k1

j ,N0)⊗ M̄0 // right

70 : C̃2
j ← SKE.E(k2

j ,N0) // right

71 : L̃ ← ∪nj=0{(C̃j , j)}
72 : return C̃ẽ

O.UpdC̃

73 : C ← C ∪ {e}
74 : find(C̃e, e) ∈ L̃
75 : return C̃e

Figure 38: Part 2. Reduction BIND-CPA
6b for proof of Proposition 6; the sim-

ulation is almost the same as BPRF
6a except for the underlined simulations.

Recall that in the IND-CPA game in Definition 14, the encryption oracle
O.E replies to input N with SKE.Enc(k,N).

Fast and Secure Updatable Encryption 197

We use the firewall technique to construct hybrid games: in hybrid i,
we embed within the i-th insulated region. This means that to the left of
the i-th insulated region the game responds with an update of the chal-
lenge input ciphertext and to the right of the i-th insulated region it gives
an encryption of the challenge input message. Similarly the advantage
AdvweakIND-UE-CPA

BLMR+, A (λ) is upper bounded by (n + 1)2 · |Pr[G1
l = 1] −

Pr[G0
1 = 1]|. For any 1 ≤ i ≤ l, we prove that

|Pr[G1
i = 1]−Pr[G0

i = 1]| ≤

AdvIND-CPA
SKE, BIND-CPA

6b
(λ) + 2AdvPRF

F, BPRF
6a

(λ) +
2QE

2

|X | .

Suppose Ai is an adversary trying to distinguish game G0
i from game

G1
i in hybrid i.

As the above step 2 proof, we consider a modified hybrid game in which
the first element of ciphertexts in epoch fwli is a uniformly random element
in Y . The difference here is that if Ai asks for encryption queries or chal-
lenge queries in an epoch within the i-th insulated region, the reduction will
simulate these queries in epoch fwli and then output the updated version
(updated from epoch fwli to the queried epoch). Since the update algorithm
of BLMR+ is deterministic, this simulation is valid.

Similarly we can prove the modified hybrid game is indistinguishable
from the original hybrid game, and that the distinguishing advantage is up-
per bounded by the PRF advantage. Finally, similarly to the above step
3 proof (the difference is the same as the difference mentioned in the for-
mer paragraph), the advantage is upper bounded by IND-CPA advantage of
SKE. We have the following result:

AdvweakIND-UE-CPA
BLMR+, A (λ)

≤ (n+1)3

(
AdvIND-CPA

SKE, BIND-CPA
6b

(λ)+2AdvPRF
F, BIND-CPA

6b
(λ)+

2QE
2

|X |

)
.

C The RISE Scheme of Lehmann and Tackmann

In this section we discuss the Elgamal-based updatable encryption scheme
RISE, developed by Lehmann and Tackmann [LT18a] and given in Fig. 39.

198 C. Boyd et al.

LT18 showed7 that RISE is randIND-ENC and randIND-UPD-CPA, under
DDH. KLR19 observed that for RISE, knowledge of an update token allows
the storage host to create arbitrary ciphertexts for messages of its choice:
this is a very undesirable feature for an UE scheme, and is not possible
for SHINE. This emphasizes the importance of ciphertext integrity for UE
schemes.

RISE.KG(λ)

1 : x
$←− Z∗q

2 : ke ← (x, gx)

3 : return ke

RISE.TG(ke, ke+1)

4 : parse ke = (x, y)

5 : parse ke+1 = (x′, y′)

6 : ∆e+1 ← (
x′

x
, y′)

7 : return ∆e+1

RISE.Enc(ke,M)

8 : parse ke = (x, y)

9 : r
$←− Zq

10 : Ce ← (yr, gr ·M)

11 : return Ce

RISE.Dec(ke,Ce)

12 : parse ke = (x, y)

13 : parse Ce = (C1,C2)

14 : M′ ← C2 · C−1/x
1

15 : return M′

RISE.Upd(∆e+1,Ce)

16 : parse ∆e+1 = (∆, y′)

17 : parse Ce = (C1,C2)

18 : r′
$←− Zq

19 : C′1 ← C∆
1 · y′

r′

20 : C′2 ← C2 · gr
′

21 : Ce+1 ← (C′1,C
′
2)

22 : return Ce+1

Figure 39: Updatable encryption scheme RISE [LT18a] for λ-bit prime q.

C.1 RISE is randIND-UE-CPA Secure

We show that RISE is randIND-UE-CPA under DDH. First, we adapt (an
extended version of) the Oracle-DDH experiment to the epoch-based cor-
ruption model found in updatable encryption, in a way that ensures that it
still reduces to DDH. In this way, we lift a lot of the bookkeeping and com-

7On 19th December 2019, the authors updated the full version of their paper [LT18b] to
include a new proof of randIND-ENC security, fixing a flaw in the prior proof methodology.

Fast and Secure Updatable Encryption 199

plexity. Then, the reduction from randIND-UE-CPA to this oracle-based
game is straightforward. We believe that this two-step proof strategy may
be useful for proving security of other UE schemes, under any of the secu-
rity notions discussed so far.

Oracle-Decision-Diffie Hellman for RISE. We now give an experiment
O-DDHRISE, where each exponent represents an epoch key, and corruption
of keys and tokens is represented: the game allows the adversary to acquire
the difference of two exponents in the form ti = ei

ei−1
. In each ‘epoch’ the

adversary can possibly ask for a challenge viaO.Chall, which returns either
a ‘real’ DDH tuple, with the epoch key defined as one of the exponents,
or a random tuple. The game is given in Fig. 40. Just as in the games for
UE, the challenger keeps track of the epochs in which the adversary has
access to ‘updates’ of the ‘challenge’ (via CL∗), and access to the keys (ex-
ponents, via EL∗). If these overlap then the adversary can trivially extract
from the challenge value whether it is ‘real’ or ‘random’ and win, so this
is of course ruled out. The syntax also follows the UE games in the sense
that once the adversary asks for a challenge, it can only ask for ‘later’ chal-
lenges (i.e. with a higher index) from this oracle – it can of course move this
challenge ‘backwards’ into earlier epochs/indices by applying ‘token’ t.

Definition 15. Fix a cyclic group G of prime order q with generator g. The
advantage of an algorithm A solving the Oracle-Decision Diffie-Hellman
for RISE (O-DDHRISE) problem for G and g is

AdvO-DDHRISE

G, A =∣∣∣Pr[ExpO-DDHRISE-1
G, A (λ) = 1]−Pr[ExpO-DDHRISE-0

G, A (λ) = 1]
∣∣∣,

where the experiment ExpO-DDHRISE-b
G, A is given in Fig. 40.

Proposition 7. Let G be a group of order q (a λ-bit prime) with generator g,
and let RISE be the updatable encryption scheme described in Fig. 39. For
any randIND-UE-CPA adversary A against RISE, there exists an adversary
B7 against DDH such that

AdvrandIND-UE-CPA
RISE, A (λ) = 2(n+ 1)3 ·AdvDDH

G, B7(λ).

200 C. Boyd et al.

ExpO-DDHRISE-b
G, A (λ)

1 : phase, i∗ ← 0

2 : EL∗,CL∗ ← ∅
3 : if b = 1

4 : w1, ..., wn
$←− Z∗q

5 : else

6 : w1, ..., wn ← 0

7 : e1, ..., en
$←− Z∗q

8 : x1, ..., xn
$←− Z∗q

9 : for i ∈ {0, ...n} do

10 : si ← gei

11 : Xi ← gxi

12 : b′←AO.Open,O.Difr,O.Chall(g, {s1,..., sn})
13 : if EL∗ ∩ CL∗ 6= ∅

14 : b′
$←− {0, 1}

15 : return b′

O.Open(i)

16 : update EL∗

17 : return ei

O.Difr(i)
18 : ti ←

ei
ei−1

19 : update EL∗,CL∗

O.Chall(i)
20 : if phase = 1 and i < i∗

21 : return ⊥
22 : CL∗ ← CL∗ ∪ {i}
23 : Zi ← sxi

i · gwi

24 : if phase = 0

25 : i∗ ← i

26 : phase← 1

27 : return (Xi, Zi)

Figure 40: O-DDHRISE experiment for G of order q (λ-bit prime) and gen-
erator g.

This theorem is proven by Lemmas 7.1 and 7.2.

Lemma 7.1. Let G be a group of order q (a λ-bit prime) with generator
g. For any adversary A against O-DDHRISE, there exists an adversary B7.1

against DDH such that

AdvO-DDHRISE

G, A (λ) = (n+ 1)3 ·AdvDDH
G, B7.1(λ),

where n+ 1 is the number of exponents in the O-DDHRISE game.

Proof. We use a sequence of game hops and a hybrid argument. Define
game Gb

i as ExpO-DDHRISE-b
G, A except for O.Chall: if called in index j, if

Fast and Secure Updatable Encryption 201

j < i then return a ‘real’ sample (with wj = 0), and if j > i return a ‘ran-

dom sample’ (wj
$←− Z∗q). Thus G1

0 is ExpO-DDHRISE-1
G , i.e. all challenges

result in ‘random’ DDH tuples, and G0
n is ExpO-DDHRISE-0

G , i.e. all chal-
lenges result in ‘real’ DDH tuples. Thus distinguishing G1

0 from G0
n is the

task of distinguishing ExpO-DDHRISE-1
G, A from ExpO-DDHRISE-0

G, A for adversary
A.

Notice that all queries in G0
i−1 and G1

i have the equal responses (For
j ≤ i − 1, returns a real sample. For j > i− 1, returns a random sample).
We have AdvO-DDHRISE

G, A (λ) =
∑n

i=0 |Pr[G1
i = 1]−Pr[G0

i = 1]|. Then we
prove that |Pr[G1

i = 1]−Pr[G0
i = 1]| ≤ (n+ 1)2 ·AdvDDH

G, (λ) for any i.
LetAi be an adversary trying to distinguish G1

i from G0
i . For all queries

concerning epochs other than i the responses will be equal in either game,
so we assume that Ai asks for a challenge ciphertext in epoch i and this
is where we will embed in our reduction. We construct a reduction B7.1,
detailed in Fig. 41, that is playing the standard DDH game (Fig. 2) and
runs Ai. This reduction guesses the locations of the firewalls around the
challenge query: if Ai adds any of the epochs within this insulated region
to its EL∗ list then the reduction fails. fwl and fwr could take any value in
{0, ..., n}, so this loss is upper bounded by (n+ 1)2.

For all challenge queries smaller than i the reduction needs to faithfully
respond with a ‘real’ tuple, that is the exponent of Zj is the product of the
exponent used in sj and the exponent in Xj . These queries must still be
consistent with each other, which is why even though the reduction is free
to choose xj it must compute the correct value of sj . For challenge queries
larger than i the reduction produces a random value.

Note that Ai will have its own CL∗ and EL∗ lists and B7.1 will simulate
these, however we omit this calculation for readability.

If B7.1 is playing ExpDDH-1
G, B7.1 then it receives a random tuple from its

challenger and thus provides a random response to O.Chall(i), creating a
perfect simulation of G1

i toAi. If B7.1 is playing ExpDDH-0
G, B7.1 then its tuple is

real, providing a perfect simulation of G0
i . We have the required result.

Lemma 7.2. Let G be a group of order q (a λ-bit prime) with generator g,
and let RISE be the updatable encryption scheme described in Fig. 39. For
any randIND-UE-CPA adversary A against RISE, there exists an adversary

202 C. Boyd et al.

B7.2 against O-DDHRISE such that

AdvrandIND-UE-CPA
RISE, A (λ) = 2 ·AdvO-DDHRISE

G, B7.2 (λ).

Proof. The reduction B7.2 is given in Fig. 42. The reduction B7.2 is play-
ing O-DDHRISE game and runs A. B7.2 flips a coin b, and simulates the
experiment ExprandIND-UE-CPA-b

RISE, A by interacting with its own O-DDHRISE

challenger.
To simulate updated non-challenge ciphertexts (i.e. respond to O.Upd

queries), B7.2 must track the underlying messages for these encryptions so
that it can generate valid ‘fresh’ encryptions using the ‘public key’ values
{s1, ..., sn} received from its O-DDHRISE challenger. Since updated non-
challenge ciphertexts are of the form Ce = (sre, g

r ·M), where r is a fresh
random value, the si values allow B7.2 to successfully simulate updated
non-challenge ciphertexts.

To simulate challenge ciphertext (i.e. respond to challenge query or
O.UpdC̃), B7.2 must embed using its own challenge. Recall that in the
O-DDHRISE experiment in Fig. 40, a call to O.Chall(i) will result in a
response Zi = gkẽxi or gkẽxi+wi , and Xi = gxi . When B7.2 receives a chal-
lenge query (M̄0,C) (where C = (gr2kẽ−1 , gr2M̄1) for some M̄1) from A,
B7.2 tries to simulate encryption RISE.Enc(kẽ, M̄0) = (gr1kẽ , gr1M̄0) or up-
dating RISE.Upd(∆ẽ−1,C)=(C

∆ẽ−1

1 gkẽr3 ,C2g
r3)=(gkẽ(r2+r3), gr2+r3M̄1),

where r1, r3 are fresh random values. B7.2 will embed Zẽ to the first part
of the challenge ciphertext and embed Xẽ to the second part of the chal-
lenge ciphertext, i.e. C̃ẽ = (Zẽ, Xẽ · M̄b). Similarly, B7.2 can simulate the
response of O.UpdC̃ using the same approach.

Eventually, B7.2 receives the output bit b′ from Ai. If b′ = b, then B7.2

returns 0 to its O-DDHRISE challenger, otherwise, B7.2 returns 1.
If B7.2 interacting with ExpO-DDHRISE-0

G, B7.2 , then it perfectly simulates the
experiment ExprandIND-UE-CPA-b

RISE, A to A. If B7.2 interacting with the experi-

ment ExpO-DDHRISE-1
G, B7.2 , then it wins with probability 1/2. After some com-

putation similar to that in the proof of Theorem 2.3 we have the desired
result.

Fast and Secure Updatable Encryption 203

B7.1 playing ExpDDH-b
G, B7.1(λ) in hybrid i

1 : receive (g,X, Y, Z)

2 : fwl, fwr
$←− {0, ..., n}

3 : wi+1, ..., wn
$←− Z∗q

4 : w0, ..., wi−1 ← 0

5 : si ← Y

6 : for j ∈ {0, ..., i-1} ∪ {i+1, ..., n} do

7 : xj
$←− Z∗q ;Xj ← gxj

8 : for j ∈ {0,..., fwl-1}∪{fwr+1,..., n}do

9 : ej
$←− Z∗q ; tj ←

ej
ej-1

†
; sj ← gej

10 : for j ∈ {fwl+1, ..., fwr} do

11 : tj
$←− Z∗q

12 : for j ∈ {fwl, ..., i-1} do

13 : sj ← Y −
∏i

k=j+1 tk

14 : for j ∈ {i+1, ..., fwr} do

15 : sj ← Y
∏j

k=i+1 tk

16 : b′←AO.Open,O.Difr,O.Chall
i (g, {s1,..., sn})

17 : if ABORT occurred then

18 : return b′
$←− {0, 1}

19 : return b′

O.Open(j)

20 : if j ∈ {fwl, ..., fwr}
21 : return ABORT

22 : return ei

O.Difr(j)
23 : if j ∈ {fwl, fwr+1}
24 : return ABORT

25 : return tj

O.Chall(j)
26 : if j = i

27 : Xj ← X

28 : Zj ← Z

29 : else

30 : Zj ← sj
xjgwj

31 : return (Xj , Zj)

Figure 41: Reduction B7.1 for proof of Lemma 7.1. On line 9, † indicates
t0 and tfwr+1 are skipped in the computation.

204 C. Boyd et al.

B7.2 playing ExpO-DDHRISE

G, B7.2

1 : receive g, {s1, ..., sn}
2 : e← 0; phase← 0;L ← ∅
3 : M̄0,C← AO.Enc,O.Next,O.Upd,O.Corr(λ)

4 : phase← 1

5 : if (·,C = (C1,C2), ẽ− 1; M̄1) 6∈ L
6 : return ⊥
7 : call (Xẽ, Zẽ)← O.Chall(ẽ)

8 : b
$←− {0, 1}

9 : C̃← (Zẽ, Xẽ · M̄b) // embed

10 : b′←AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)

11 : if b′ = b

12 : return 0

13 : else

14 : return 1

O.Enc(M)

15 : r
$←− Z∗q

16 : Ce ← (sre , g
r ·M)

17 : L ← L ∪ {(·,Ce, ·; M)}
18 : return Ce

O.Next
19 : e← e + 1

O.Upd(Ce−1)

20 : if (·,Ce−1, ·; M) 6∈ L
21 : return ⊥

22 : r
$←− Z∗q

23 : Ce ← (sre , g
r ·M)

24 : L ← L ∪ {(·,Ce, ·; M)}
25 : return Ce

O.Corr(inp, ê)
26 : if ê > e

27 : return ⊥
28 : if inp = key

29 : call eê ← O.Open(ê)

30 : kê ← (eê, g
êe)

31 : return kê

32 : if inp = token

33 : call tê ← O.Difr(ê)
34 : ∆ê ← (tê, sê)

35 : return ∆ê

O.UpdC̃

36 : call (Xe, Ze)←O.Chall(e)
37 : C̃← (Ze, Xe · M̄b)

38 : return C̃e

Figure 42: Reduction B7.2 for proof of Lemma 7.2.

Fast and Secure Updatable Encryption 205

Paper iv

The Direction of Updatable Encryption does
not Matter Much

Yao Jiang

Published in the 26th Annual International Conference on the
Theory and Application of Cryptology and Information

Security, Asiacrypt 2020.

† c© IACR 2020: An extended abstract of this paper appears in the proceedings
of Asiacrypt 2020, with DOI: 10.1007/978-3-030-64840-4_18. This is the full
version.

The Direction of Updatable Encryption does
not Matter Much

Yao Jiang

Norwegian University of Science and Technology, NTNU, Norway.
yao.jiang@ntnu.no

Abstract

Updatable encryption schemes allow for key rotation on cipher-
texts. A client outsourcing storage of encrypted data to a cloud server
can change its encryption key. The cloud server can update the stored
ciphertexts to the new key using only a token provided by the client.

This paper solves two open problems in updatable encryption,
that of uni-directional vs. bi-directional updates, and post-quantum
security.

The main result in this paper is to analyze the security notions
based on uni- and bi-directional updates. Surprisingly, we prove that
uni- and bi-directional variants of each security notion are equivalent.

The second result in this paper is to provide a new and efficient
updatable encryption scheme based on the Decisional Learning with
Error assumption. This gives us post-quantum security. Our scheme
is bi-directional, but because of our main result, this is sufficient.

209

1 Introduction

Consider the following scenario: a client wishes to outsource data to a cloud
storage provider with a cryptoperiod (client key lifetime). The cryptoperiod
is decided by the client or the cloud storage provider or both. If the key
lifetime is expired, the old key is no longer available for either encryption
or decryption, a new key must be used in the new cryptoperiod. However,
the client might still want to keep the data in the cloud storage in the new
cryptoperiod and needs to update the data. The above requirement implies
a need to update ciphertext from the old key to the new key. During this
process, it is also reasonable to expect that no information of plaintexts are
leaked while updating. Another benefit to consider in such a scenario is that
it can be used to protect the data and reduce the risk of key compromise
over time.

Key rotation is the process of generating a new key and altering ci-
phertexts from the old key to the new key without changing the underlying
massage.

Key rotation can be done by downloading the old ciphertext, decrypting
with the old key, re-encrypting with a new key and reuploading the new ci-
phertext. However, this is expensive. Updatable encryption (UE) [BLMR13,
EPRS17, LT18, KLR19, BDGJ20, BEKS20] provides a better solution for
key rotation. A client generates an update token and send it to the cloud
server, the cloud server can use this update token to update the ciphertexts
from the old key to the new key. In recent years there has been consider-
able interest in understanding UE, including defining the security notions
for UE and constructing UE schemes (we make a detailed comparison of
related work in Section 1.1).

Consider the following two variants of updatable encryption schemes:
ciphertext-dependent schemes and ciphertext-independent schemes. If the
generation of update token depends on the ciphertext to be updated then
the UE scheme is ciphertext-dependent. In ciphertext-dependent schemes,
the updating process of a ciphertext requires a specific token which forces
the client to download the old ciphertext before this token can be gener-
ated. Therefore, ciphertext-dependent schemes are less practical. If the
token is independent of the old ciphertext then the UE scheme is ciphertext-
independent. Hence, a single token can be used to update all ciphertexts a

210 Y. Jiang

client owns. As ciphertext-independent updatable encryption schemes are
considerably more efficient than ciphertext-dependent schemes, in terms of
bandwidth, most recent works [BLMR15, LT18, KLR19, BDGJ20] focus
on ciphertext-independent schemes. In this paper, we will focus on such
schemes.

Consider the following four variants of update setting for ciphertext-
independent UE schemes: uni-directional ciphertext updates, bi-directional
ciphertext updates, uni-directional key updates and bi-directional key up-
dates. If the update token can only move ciphertexts from the old key to the
new key then ciphertext updates in such UE schemes are uni-directional.
If the update token can additionally downgrade ciphertexts from the new
key to the old key then ciphertext updates in such UE schemes are bi-
directional. On the other hand, the update token can potentially be used
to derive keys from other keys. In the uni-directional key update setting,
the update token can only infer the new key from the old key. While in
the bi-directional key update setting, the update token can both upgrade and
downgrade keys. Prior works [BLMR15, LT18, KLR19, BDGJ20] focus
on UE schemes with bi-directional updates, and no security notion was in-
troduced in uni-directional update setting. We close this gap. Intuitively,
UE schemes with uni-directional updates are desirable, such schemes leak
less ciphertext/key information to an adversary compared to schemes with
bi-directional updates. In this paper, we analyze the relationship between
security notions with uni- and bi-directional updates. We show that the
(confidentiality and integrity) security of UE schemes are not influenced by
uni- or bi-directional updates.

No-directional key updates is another key update setting to consider,
where the update token cannot be used to derive keys. A UE scheme with
optimal leakage, discussed in [LT18], is a scheme where no token inference
(no token can be inferred via keys), keys cannot be updated via a token, and
ciphertext updates are only uni-directional. We do not consider no token
inference, instead in this work an update token can be computed via two
consecutive epoch keys. We show that the no-directional key update vari-
ant of a security notion is strictly stronger than the uni- and bi-directional
update variant of the same security notion.

While the study of security notions for UE schemes appears promising,
existing ciphertext-independent UE schemes are either vulnerable to quan-

The Direction of Updatable Encryption 211

tum computers or only achieve weak security. The schemes of Lehmann and
Tackmann [LT18], Klooß et al. [KLR19] and Boyd et al. [BDGJ20] base
their security on the DDH problem, and thus are only secure in the classical
setting. Boneh et al. [BLMR13] constructed key homomorphic PRFs, based
on the learning with errors (LWE) problem, and it can be used to construct
UE schemes. However, all of these schemes of Boneh et al. [BLMR13]
cannot achieve IND-UPD security (introduced in [LT18]).

In this work, we construct a post-quantum secure UE scheme and the
security of our construction is based on hard lattice problems. In par-
ticular, our scheme provides the randIND-UE-CPA security (introduced
in [BDGJ20], stronger than IND-UPD and IND-ENC security).

Efficiency. All of the previous known ciphertext-independent UE schemes
with security proofs (RISE, E&M, NYUE (NYUAE), SHINE) have compu-
tation cost that are comparable to PKE schemes that rely on the DDH prob-
lem, while our scheme has a computation cost that is comparable to PKE
schemes that rely on lattice problems.

1.1 Related Work

Security Notions. Boneh et al. [BLMR13] introduced a security defini-
tion for UE, however, this notion is less adaptive than the later works [LT18,
KLR19, BDGJ20] which allows the adversary to adaptively corrupt epoch
keys and update tokens at any point in the game.

In the ciphertext-dependent setting, Everspaugh et al. [EPRS17] pro-
vided two security notions, a weak form of ciphertext integrity and re-
encryption indistinguishability, that strengthen the security notion in the
work of Boneh et al. [BLMR13]. Recently, Boneh et al. [BEKS20] intro-
duced new definitions for updatable encryption in the ciphertext-dependent
setting to further strengthen the confidentiality property and the integrity
definition in [EPRS17]. Boneh et al. [BEKS20] stated that for authenticated
updatable encryption schemes it is necessary to expect that ciphertexts will
not reveal how many times they have been updated, which was a desired
property independently presented in [BDGJ20].

Lehmann and Tackmann [LT18] introduced two notions to achieve CPA
security for ciphertext-independent UE schemes. Their IND-ENC notion re-

212 Y. Jiang

quires that ciphertexts output by the encryption algorithm are indistinguish-
able from each other. Their IND-UPD notion ensures ciphertexts output by
the update algorithm are indistinguishable from each other.

Klooß et al. [KLR19] attempted to provide stronger security notions
for ciphertext-independent UE than LT18, specifically, CCA security and
integrity protection.

Boyd et al. [BDGJ20] provided a new notion IND-UE which states that
a ciphertext output by the encryption algorithm is indistinguishable from a
ciphertext output by the update algorithm. They showed that the new notion
is strictly stronger than any combinations of prior notions, both under CPA
and CCA. They also tweaked the CTXT and CCA notions in [KLR19] and
showed the following generic composition result: CPA + CTXT =⇒ CCA.

Constructing Ciphertext-Independent Updatable Encryption Schemes.
The UE scheme BLMR in [BLMR13] is an application of key homomorphic
PRFs, however, the encrypted nonce in the ciphertext can be decrypted by
an update token which makes it impossible for BLMR to achieve IND-UPD
security.

In the classical setting, RISE in [LT18] is built from (public-key) ElGa-
mal encryption, which only uses the public key in the update token. The se-
curity of RISE is based on the DDH assumption. Klooß et al. [KLR19] pro-
vided two generic constructions, based on encrypt-and-MAC (E&M) and
the Naor-Yung paradigm (NYUE and NYUAE). The security of E&M is
based on the DDH assumption, and the security of NYUE and NYUAE are
based on the SXDH assumption. Boyd et al. [BDGJ20] constructed three
permutation-based UE schemes, SHINE, which achieves strong security no-
tions based on DDH.

Post-Quantum Secure Schemes. In the past decade, much work has been
done on constructing lattice-based post-quantum secure PKE schemes, specif-
ically the NIST Post-Quantum Standardization Project, round 2, submis-
sions: CRYSTALS-KYBER [ABD+b], FrodoKEM [ABD+a], LAC [LLJ+],
Round5 [OZS+], SABER [DKRV18], NewHope [ADPS16], NTRU [CDH+,
BCLvV17] and Three Bears [Ham]. A natural question is if we can turn a
PKE scheme into a UE scheme, where the security of the UE follows from
the PKE. We provide a specific UE scheme that is built form an LWE-based

The Direction of Updatable Encryption 213

PKE scheme, and prove the security. The LWE-based scheme we use is in
some sense very similar to RISE (which is based on ElGamal), however, as
with most lattice-based constructions, there are significant technical prob-
lems in turning it into a UE scheme (see Section 5.2). Our LWE-based UE
construction suggests that there is a limit to how generic any efficient con-
struction can be, a generic construction that abstracts both our construction
and RISE remains to be done.

1.2 Our Contributions

Our first contribution is defining six variants of security notions (a com-
bination of three versions of key updates and two versions of ciphertext
updates) for updatable encryption and analyzing the relations among these
six variants of the same notion.

Our main result is that we demonstrate that our security notions with
uni- and bi-directional updates are equivalent. When we analyze the se-
curity, we can treat UE schemes with uni-directional updates as with bi-
directional updates, the security will not be influenced by the update di-
rection. This means that UE schemes with uni-directional updates will not
provide more security than UE schemes with bi-directional updates. This
is a surprising result.1 This result implies that the search for uni-directional
updatable encryption scheme seems less important.

Furthermore, we show that security notions with no-directional key up-
dates are strictly stronger than uni- and bi- directional update variants of
the corresponding notions. Finding UE schemes with no-directional key
updates would be good, but it is much more challenge than finding UE
schemes with uni-directional key updates (which is already believed to be

1It is possible to construct a scenario where this result will not be true. Let’s assume there
exists a UE scheme with a leakage function that helps the adversary win the security game.
This leakage function could, for example, give the adversary information about plaintexts
when it knows enough keys. In this scenario, a UE scheme with uni-directional updates
has better security than a UE scheme with bi-directional updates. Because the scheme with
uni-directional updates has less key leakage and the leakage function provides less data to
the adversary. However, this and similar constructions cannot capture the security we wish
to have for UE schemes. In terms of the security expectation of key rotation, the keys used
in the past should not reveal any data.

For constructions that do follow the security model and update mechanism for UE
schemes, we have this surprising result.

214 Y. Jiang

difficult). We leave this as an open problem.
Our second major contribution is constructing an efficient post-quantum

secure UE scheme. We analyze how to construct LWE-based updatable
encryption schemes and provide one construction. Our construction follows
the re-randomization idea of RISE, using public key in the update token to
update ciphertexts. We build a suitable post-quantum secure PKE scheme
to construct our UE scheme so that the encryption and update algorithms
can use a public key as input instead of the secret key. We also show the
difficulties of turning a PKE scheme into a UE scheme.

We show that our LWE-based updatable encryption scheme achieves
randIND-UE-CPA secure under the DLWE assumption. In the random-
ized update setting, we show the difference between previous work (RISE,
NYUE,NYUAE) and our scheme, and state that the method used in proving
the security of LWE-based updatable encryption scheme is different from
the previous approach.

1.3 Open Problems

Ideally we want UE schemes with no-directional key updates, no such UE
schemes have been constructed so far. Whether such UE schemes exist and
how to construct such UE schemes are still open problems.

Furthermore, not that many efficient UE schemes with strong security
exist so far. It remains an open challenge to construct UE schemes with
chosen ciphertext2 post-quantum security.

1.4 Organization

We provide the background of updatable encryption in Section 2. In Sec-
tion 3 we define the six variants of security notions for UE schemes and
prove the relations among the six variants of security notions.

In Section 4 we construct an LWE-based PKE scheme LWEPKE and
prove that it is secure, this PKE scheme will be used to construct a UE
scheme. We then construct an LWE-based UE scheme LWEUE in Section 5,

2It is ideal to achieve detIND-UE-CCA security for UE schemes with deterministic up-
dates and to achieve INT-PTXT and randIND-UE-CCA security for UE schemes with ran-
domized updates.

The Direction of Updatable Encryption 215

and include the restrictions we encountered when constructing a secure UE
scheme from a PKE scheme.

2 Preliminaries

In this section we describe the notation used in this paper and present the
necessary background material of updatable encryption. In Appendix A, we
provide the background of hard lattice problems.

2.1 Notations

Let λ be the security parameter throughout the paper. Let negl denote as a
negligible function. The notation X

s≈ Y (X
c≈ Y , resp.) means X is statis-

tically indistinguishable (computationally indistinguishable, resp.) from Y .
Let U(S) denote the uniform distribution over set S.

2.2 Security Notions for Encryption Schemes

We describe the real or random variant of indistinguishability under chosen-
plaintext attack (IND$-CPA) for public key encryption (PKE) and symmet-
ric key encryption (SKE). Note that IND$-CPA implies IND-CPA.

Definition 1. [The IND$-CPA notion for PKE] Let PKE = (PKE.KG,
PKE.Enc, PKE.Dec) be a public key encryption scheme. The IND$-CPA
advantage of any adversary A against PKE is

AdvIND$-CPA
PKE, A (1λ) =

∣∣∣Pr[ExpIND$-CPA-1
PKE, A = 1]−Pr[ExpIND$-CPA-0

PKE, A = 1]
∣∣∣ ,

where the experiment ExpIND$-CPA-b
PKE, A is given in Figure 1.

Definition 2. [The IND$-CPA notion for SKE] Let SKE = (SKE.KG,
SKE.Enc, SKE.Dec) be a symmetric key encryption scheme. The IND$-CPA
advantage of any adversary A against SKE is

AdvIND$-CPA
SKE, A (1λ) =

∣∣∣Pr[ExpIND$-CPA-1
SKE, A = 1]−Pr[ExpIND$-CPA-0

SKE, A = 1]
∣∣∣ ,

where the experiment ExpIND$-CPA-b
SKE, A is given in Figure 2.

216 Y. Jiang

ExpIND$-CPA-b
PKE, A :

(s,p)← PKE.KG
(m, state)← A(p)
if b = 0 then
c← PKE.Enc(p,m)

else
c

$←− CS
b′ ← A(state, c)
return b′

Figure 1: The experiment
ExpIND$-CPA-b

PKE, A for a PKE scheme
PKE.

ExpIND$-CPA-b
SKE, A :

s← SKE.KG
(m, state)← A(1λ)
if b = 0 then
c← SKE.Enc(s,m)

else
c

$←− CS
b′ ← A(state, c)
return b′

Figure 2: The experiment
ExpIND$-CPA-b

SKE, A for a SKE scheme
SKE.

Definition 3. [Correctness of a PKE] Let PKE = (PKE.KG, PKE.Enc,
PKE.Dec) be a public key encryption scheme. We say PKE has (1 − ε)-
correctness if: for any message m, any key (s,p)← PKE.KG

Pr[PKE.Dec(s,PKE.Enc(p,m)) = m] ≥ 1− ε.

2.3 Updatable Encryption

Updatable encryption (UE) scheme is parameterized by a tuple of algo-
rithms {UE.KG,UE.TG,UE.Enc, UE.Dec,UE.Upd} that operate in epochs,
the epoch starts at 0. The key generation algorithm UE.KG outputs an epoch
key ke. The token generation algorithm UE.TG takes as input two epoch
keys ke and ke+1 and outputs an update token ∆e+1, the update token can
be used to move ciphertexts from epoch e to e + 1. The encryption algo-
rithm UE.Enc takes as input an epoch key ke and a message m and out-
puts a ciphertext ce. The decryption algorithm UE.Dec takes as input an
epoch key ke and a ciphertext ce and outputs a message m′. The update
algorithm UE.Upd takes as input an update token ∆e+1 and a ciphertext
ce from epoch e and outputs an updated ciphertext ce+1. We stress that
an update token can be computed via two consecutive epoch keys by token
generation algorithm in this paper.

In the updatable encryption setting, the total number of epoch will be
a comparatively small integer in practice, we consider the total number of

The Direction of Updatable Encryption 217

epoch to be bounded in this paper. In particular, we denote l as an upper
bound on the last epoch.

Definition 4 (Correctness of a UE). Let UE = {UE.KG,UE.TG,UE.Enc,
UE.Dec,UE.Upd} be an updatable encryption scheme. We say UE has (1−
ε)-correctness if: for any message m and any epochs e1 ≤ e2 ≤ l, we have

Pr[UE.Dec(ke2 , ce2) = m] ≥ 1− ε,

where ke1 , ...,ke2
$←− UE.KG(1λ), ce1

$←− UE.Enc(ke1 ,m), and

∆j ← UE.TG(kj−1,kj), cj ← UE.Upd(∆j , cj−1), for j ∈ {e1+1, ..., e2}.

2.4 Existing Security Notions for Updatable Encryption

Klooß et al. [KLR19] and Boyd et al. [BDGJ20] defined the confidentiality
and the integrity notions for updatable encryption schemes using experi-
ments that are running between an adversary and a challenger. In each
experiment, the adversary may send a number of oracle queries. The main
differences between an experiment running the confidentiality game and
one running the integrity game are the challenge and win condition. In the
confidentiality game, the adversary tries to distinguish a fresh encryption
from an updated ciphertext. In the integrity game, the adversary attempts to
provide a valid forgery. At the end of an experiment the challenger evaluates
whether or not the adversary wins, if a trivial win condition was triggered
the adversary will always lose.

We follow the notation of security notions from Boyd et al. [BDGJ20].
An overview of the oracles the adversary has access to in each security game
is given in Fig. 3. A generic description of all confidentiality experiments
and integrity experiments described in this paper is detailed in Fig. 4 and
Fig. 5, resp.. Our oracle algorithms, see Fig. 6, are stated differently than
in [BDGJ20] and [KLR19], however, conceptually they are the same. The
oracles we use in our security games are as follows, encryptO.Enc, decrypt
O.Dec, move to the next epoch O.Next, update ciphertext O.Upd, corrupt
key or token O.Corr, ask for the challenge ciphertext O.Chall, get an up-
dated version of the challenge ciphertext O.UpdC̃, or test if a ciphertext is
a valid forgery O.Try. The detailed discussion of trivial win conditions are
discussed in Section 2.7.

218 Y. Jiang

Notions

O.
E
nc

O.
D
ec

O.
N
ex
t

O.
U
pd

O.
C
or
r

O.
C
ha
ll

O.
U
pd
C̃

O.
T
ry

detIND-UE-CPA X × X X X X X ×
randIND-UE-CPA X × X X X X X ×
detIND-UE-CCA X X X X X X X ×
randIND-UE-CCA X X X X X X X ×
INT-CTXT X × X X X × × X
INT-PTXT X × X X X × × X

Figure 3: Oracles given to the adversary in different security games for
updatable encryption schemes. × indicates the adversary does not have
access to the corresponding oracle, X indicates the adversary has access to
the corresponding oracle.

ExpxxIND-UE-atk-b
UE, A :

do Setup; phase← 0
b′ ← Aoracles(1λ)

if
(

(K∗ ∩ C∗ 6= ∅) or
(
xx=det and

(ẽ∈T ∗ or O.Upd(c̄) is queried)
))

then
twf ← 1

if twf = 1 then
b′ $←− {0, 1}

return b′

Figure 4: Generic description of the confidentiality experiment
ExpxxIND-UE-atk-b

UE, A for updatable encryption scheme UE and adversary A,
for xx ∈ {det, rand} and atk ∈ {CPA,CCA}. The flag phase tracks
whether or not A has queried the O.Chall oracle, ẽ denotes the epoch in
which the O.Chall oracle happens, and twf tracks if the trivial win condi-
tions are triggered. Fig. 3 shows the oracles the adversary have access to in
a specific security game. How to compute the leakage sets K∗, T ∗, C∗ are
discussed in Section 2.6.

The Direction of Updatable Encryption 219

ExpINT-atk
UE, A

do Setup; win← 0
Aoracles(1λ)
if twf = 1 then
win← 0

return win

Figure 5: Generic description of the integrity experiment ExpINT-atk
UE, A

for updatable encryption scheme UE and adversary A, for atk ∈
{CTXT,PTXT}. The flag win tracks whether or not the adversary pro-
vided a valid forgery and twf tracks if the trivial win conditions are trig-
gered. Fig. 3 shows the oracles the adversary have access to in a specific
security game.

For the confidentiality game we have the following additional defini-
tions that we will frequently use. While the security game is running, the
adversary may query O.Enc or O.Upd oracles or corrupt tokens to know
some (updated) versions of ciphertexts, we call them non-challenge cipher-
texts. In addition, the adversary may query O.Chall or O.UpdC̃ oracles or
corrupt tokens to infer some (updated) versions of the challenge ciphertext,
we call them challenge-equal ciphertexts.

Definition 5. Let UE = {UE.KG, UE.TG,UE.Enc, UE.Dec,UE.Upd} be
a UE scheme. Then the notion advantage, for notion∈{detIND-UE-CPA,
randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, of an adversary
A against UE is defined as

Advnotion
UE, A(1λ) =

∣∣∣Pr[Expnotion-1
UE, A = 1]−Pr[Expnotion-0

UE, A = 1]
∣∣∣,

where the experiment Expnotion-b
UE, A is given in Fig. 4 and Fig. 6.

Definition 6. Let UE = {UE.KG, UE.TG, UE.Enc, UE.Dec,UE.Upd} be
an updatable encryption scheme. Then the notion advantage, for notion ∈
{INT-CTXT, INT-PTXT}, of an adversary A against UE is defined as

Advnotion
UE, A(1λ) = Pr[Expnotion

UE, A = 1],

where the experiment Expnotion
UE, A is given in Fig. 5 and Fig. 6.

220 Y. Jiang

Setup(1λ)

k0
$←− UE.KG(1λ)

∆0 ←⊥; e, c, twf ← 0
L, L̃, C,K, T ← ∅
O.Enc(m) :

c← c + 1

c
$←− UE.Enc(ke,m)

L←L∪{(c, c, e;m)}
return c
O.Dec(c) :
m′ or ⊥ ← UE.Dec(ke, c)

if
(
(xx=det and (c, e)∈L̃∗) or

(xx= randand(m′, e)∈Q̃∗)
)

then
twf ← 1 return m′ or ⊥

O.Next() :
e← e + 1

ke
$←− UE.KG(1n)

∆e←UE.TG(ke-1,ke)
if phase = 1 then
c̃e ← UE.Upd(∆e, c̃e-1)

O.Upd(ce−1) :
if (j, ce−1, e− 1;m) /∈ L then

return ⊥
ce ← UE.Upd(∆e, ce−1)
L ← L ∪ {(j, ce, e;m)}
return ce
O.Corr(inp, ê) :

if ê > e then
return ⊥

if inp = key then
K ← K ∪ {ê}
return kê

O.Corr(inp, ê) continue :
if inp = token then
T ← T ∪ {ê}
return ∆ê

O.Chall(m̄, c̄) :
if phase = 1 then

return ⊥
phase← 1; ẽ← e
if (·, c̄, ẽ− 1; m̄1) /∈ L then

return ⊥
if b = 0 then
c̃ẽ ← UE.Enc(kẽ, m̄)

else
c̃ẽ ← UE.Upd(∆ẽ, c̄)
C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ
O.UpdC̃ :

if phase 6= 1 then
return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e
O.Try(c̃) :
m′ or ⊥ ← UE.Dec(ke, c̃)

if
(
e ∈ K∗ or (atk = CTXT and
(c̃, e) ∈ L∗) or (atk = PTXT

and (m′, e) ∈ Q∗)
)

then
twf ← 1 if m′ 6= ⊥ then
win← 1

Figure 6: Oracles in security games for updatable encryption. How to
compute the leakage sets K∗, T ∗, C∗, L̃∗, Q̃∗,L∗,Q∗ are discussed in Sec-
tion 2.6 and Section 2.7.

The Direction of Updatable Encryption 221

2.5 Notations of the Leakage Sets

In this section, we describe the definition of leakage sets given by [LT18]
and [KLR19], these sets will later be used to check whether the leaked infor-
mation will allow the adversary trivially win the security game. We analyze
some properties of leakage sets and trivial win conditions in Section 3.1.

Epoch Leakage Sets. We use the following sets that track epochs in which
the adversary corrupted a key or a token, or learned a version of challenge-
ciphertext.

• K: Set of epochs in which the adversary corrupted the epoch key
(from O.Corr).

• T : Set of epochs in which the adversary corrupted the update token
(from O.Corr).

• C: Set of epochs in which the adversary learned a challenge-equal
ciphertext (from O.Chall or O.UpdC̃).

We use K∗, T ∗ and C∗ as the extended sets of K, T and C in which
the adversary has learned or inferred information via its known tokens. We
show how to compute K∗, T ∗ and C∗ in Section 2.6.

Information Leakage Sets. We use the following sets to track ciphertexts
and their updates that can be known to the adversary.

• L: Set of non-challenge ciphertexts (c, c, e;m), where query iden-
tifier c is a counter incremented with each new O.Enc query. The
adversary learned these ciphertexts from O.Enc or O.Upd.

• L̃: Set of challenge-equal ciphertexts (c̃e, e). The adversary learned
these ciphertexts from O.Chall or O.UpdC̃.

In the deterministic update setting, we use L∗ and L̃∗ as the extended
(ciphertext) sets of L and L̃ in which the adversary has learned or inferred
ciphertexts via its known tokens. In particular, we only use partial infor-
mation of L∗: the ciphertext and the epoch. Hence, we only track the set
L∗ = {(c, e)}.

222 Y. Jiang

In the randomized update setting, we use Q∗ and Q̃∗ as the extended
(plaintext) sets of L and L̃, that contain messages that the adversary can
provide a ciphertext of - i.e. a forgery. Similarly, only partial information
is needed: the plaintext and the epoch. Hence, we track sets Q∗ and Q̃∗ as
follows.

• Q∗: Set of plaintexts (m, e). The adversary learned or was able to
create a ciphertext in epoch e with the underlying message m.

• Q̃∗: Set of challenge plaintexts {(m̄, e), (m̄1, e)}, where (m̄, c̄) is
the input of challenge query O.Chall and m̄1 is the underlying mes-
sage of c̄. The adversary learned or was able to create a challenge-
equal ciphertext in epoch e with the underlying message m̄ or m̄1.

Remark 2.1. Based on the definition of these sets, we observe that

a. (c̃e, e) ∈ L̃ ⇐⇒ e ∈ C,

b. (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗ ⇐⇒ (m̄, e), (m̄1, e) ∈ Q̃∗.

We will use this remark to discuss how to compute L∗, L̃∗, Q∗ and Q̃∗
in Section 2.7.

2.6 Epoch Leakage Sets of Keys, Tokens and Ciphertexts

We follow the bookkeeping techniques and base our notations of the work of
Lehmann and Tackmann [LT18], where we further analyze the epoch leak-
age sets. Specifically, we add a no-directional key update setting. Suppose
a security game ends at epoch l, then, for any sets K, T , C ⊆ {0, ..., l}, the
following algorithms show how to compute the extended sets K∗, T ∗ and
C∗ in different update settings.

Key Leakage. The adversary learned all keys in epochs in K. In the no-
directional key update setting, the adversary does not have more informa-
tion about keys except for this set. In the uni-directional key update setting,
if the adversary knows a key ke and an update token ∆e+1 then it can infer
the next key ke+1. In the bi-directional key update setting, the adversary
can additionally downgrade a key by a known token. In the kk-directional

The Direction of Updatable Encryption 223

key update setting, for kk ∈ {no, uni, bi}, denote the setK∗kk as the extended
set of corrupted key epochs. We compute these sets as follows.

No-directional key updates: K∗no = K.
Uni-directional key updates:

K∗uni ← {e ∈ {0, ..., l}|CorrK(e) = true}
true← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T). (1)

Bi-directional key updates:

K∗bi ← {e ∈ {0, ..., l}|CorrK(e) = true}
true← CorrK(e) ⇐⇒

(e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T) ∨ (CorrK(e+1) ∧ e+1 ∈ T). (2)

Token Leakage. A token is known to the adversary is either a corrupted
token or a token inferred from two consecutive epoch keys, so the extended
set of corrupted token epochs is computed by information in set T and set
K∗kk. The set K∗kk is computed as above depending on the key updates is
no- or uni- or bi-directional. Hence, we denote T ∗kk as the extended set of
corrupted token epochs.

T ∗kk ← {e ∈ {0, ..., l}|(e ∈ T) ∨ (e ∈ K∗kk ∧ e-1 ∈ K∗kk)}. (3)

Challenge-Equal Ciphertext Leakage. The adversary directly learned
all challenge-equal ciphertexts in epochs in C. Additionally, the adversary
can infer challenge-equal ciphertexts via tokens. In the uni-directional ci-
phertext update setting, the adversary can upgrade ciphertexts. In the bi-
directional ciphertext update setting, the adversary can additionally down-
grade ciphertexts.

We compute the extended set of challenge-equal epochs using the infor-
mation contained in C and T ∗kk. The set T ∗kk is computed as above depending
on the key updates is no- or uni- or bi-directional. In the cc-directional
ciphertext update setting, for cc ∈ {uni, bi}, denote the set C∗kk,cc as the
extended set of challenge-equal epochs. We compute these sets as follows.

Uni-directional ciphertext updates:

C∗kk,uni ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗kk). (4)

224 Y. Jiang

Bi-directional ciphertext updates:

C∗kk,bi ← {e ∈ {0, ..., l}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒

(e ∈ C)∨(ChallEq(e-1)∧e ∈ T ∗kk)∨(ChallEq(e+1)∧e+1 ∈ T ∗kk). (5)

2.7 Trivial Win Conditions

The main benefit of using ciphertext-independent UE scheme is that it offers
an efficient way for key rotation, where a single token can be used to update
all ciphertexts. However, this property provides the adversary more power,
the tokens can be used to gain more information, and gives the adversary
more chances to win the security games. We again follow the trivial win
analysis in [LT18, KLR19, BDGJ20] and exclude these trivial win condi-
tions in the security games for UE. An overview of the trivial win conditions
the challenger will check in each security game is given in Fig. 7 and Fig. 8.

Notions “K
∗ ∩
C∗
6=
∅"

“ẽ
∈T
∗ or

O.
U
pd

(c̄
)

is
qu

er
ie

d"

“(
c,
e)
∈
L̃
∗ "

“(
m
′ , e

)
∈
Q̃
∗ "

detIND-UE-CPA X X × ×
randIND-UE-CPA X × × ×
detIND-UE-CCA X X X ×
randIND-UE-CCA X × × X

Figure 7: Trivial win conditions considered in different confidentiality
games for updatable encryption schemes. × indicates the confidentiality no-
tion does not consider the corresponding trivial win condition, X indicates
the confidentiality notion considers the corresponding trivial win condition.

The Direction of Updatable Encryption 225

Notions “e ∈ K∗" “(c̃, e) ∈ L∗" “(m′, e) ∈ Q∗”
INT-CTXT X X ×
INT-PTXT X × X

Figure 8: Trivial win conditions considered in different integrity games for
updatable encryption schemes. × indicates the integrity notion does not
consider the corresponding trivial win condition, X indicates the integrity
notion considers the corresponding trivial win condition.

2.7.1 Checking Trivial Win Conditions at the End of a Game

Trivial Wins via Keys and Ciphertexts. The following is used for ana-
lyzing all confidentiality games. If there exists an epoch e ∈ K∗ ∩ C∗ in
which the adversary knows the epoch key ke and a valid update of the chal-
lenge ciphertext c̃e, then the adversary can use this epoch key to decrypt the
challenge-equal ciphertext and know the underlying challenge plaintext to
win the confidentiality game. The trivial win condition “K∗ ∩ C∗ 6= ∅” is
checked in the end of a confidentiality game.

Trivial Wins via Direct Updates. The following is used for analyzing all
confidentiality games with deterministic updates. If the adversary knows
the update token ∆ẽ in the challenge epoch ẽ or the adversary queried an
update oracle on the challenge input ciphertext O.Upd(c̄) in epoch ẽ, then
it knows the updated ciphertext of c̄ in epoch ẽ and it can compare the
updated ciphertext with the challenge ciphertext to win the confidentiality
game. The trivial win condition “ẽ∈T ∗ orO.Upd(c̄) is queried” is checked
in the end of a confidentiality game.

2.7.2 Checking Trivial Win Conditions while Running a Game

The following overview of trivial win conditions are checked by an oracle.
The sets L̃∗, Q̃∗,K∗,L∗ and Q∗ are defined in Section 2.5.

• “(c, e)∈ L̃∗” are checked by O.Dec oracles in the detIND-UE-CCA
game,

• “(m′, e)∈Q̃∗” are checked byO.Dec oracles in the randIND-UE-CCA
game,

226 Y. Jiang

• “e ∈ K∗” are checked by O.Try oracles in the INT-CTXT game or
the INT-PTXT game,

• “(c, e) ∈ L∗” are checked by O.Try oracles in the INT-CTXT game

• “(m′, e) ∈ Q∗” are checked by O.Try oracles in the INT-PTXT
game.

General Idea. At the moment when the adversary queries a decryption
query O.Dec or a try query O.Try, the challenger computes the knowledge
the adversary currently has, which is used to check if the adversary can triv-
ially win a security game. More precisely, the challenger uses information
in the setsL, L̃, C,K, T to compute the leakage sets L̃∗, Q̃∗,K∗,L∗ andQ∗.
Note that the sets L, L̃, C,K, T contains information the adversary learns at
such a moment.

Trivial Wins via Decryptions in the Deterministic Update Setting. The
following is used for analyzing the detIND-UE-CCA security notion. In
the deterministic update setting, if the adversary knows a challenge-equal
ciphertext (c̃e0 , e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then the
adversary can compute the updated challenge-equal ciphertext c̃e and send
it to the decryption oracle to get the underlying message. Eventually, the
adversary compares the received message with the challenge plaintexts to
trivially win the security game.

We use the set L̃∗ to check this trivial win condition, recall that L̃∗ in-
cludes all challenge-equal ciphertexts the adversary has learned or inferred.
Suppose the adversary queries a decryption oracle O.Dec(c) in epoch e, if
(c, e) ∈ L̃∗ then the response of the decryption oracle leads to a trivial win
to the adversary, hence, the challenger will set the trivial win flag to be 1.

By Remark 2.1, we have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗, using this method
we can easily compute the set L̃∗. In Fig. 9 we show how the set L̃∗ is
computed, where the set C∗ is computed by the algorithms discussed in
Section 2.6.

Trivial Wins via Decryptions in the Randomized Update Setting. The
following is used for analyzing the randIND-UE-CCA security notion. In
the randomized update setting, if the adversary knows a challenge-equal

The Direction of Updatable Encryption 227

ciphertext (c̃e0 , e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then
the adversary can create arbitrary number of ciphertexts by updating c̃e0
from epoch e0 to epoch e. Let ce denote a ciphertext generated in such
a way. Notice that the ciphertext ce has the same underlying message as
the challenge-equal ciphertext c̃e0 . The adversary can send the computed
ciphertext ce to the decryption oracle to get the underlying message and
trivially win the security game.

We use the set Q̃∗ to check this trivial win condition, recall that Q̃∗ in-
cludes information about challenge plaintexts that the adversary has learned
or can create challenge-equal ciphertexts of. Suppose the adversary queries
a decryption oracle O.Dec(c) in epoch e, if UE.Dec(ke, c) = m′ and
(m′, e) ∈ Q̃∗ then the response of the decryption oracle leads to a triv-
ial win to the adversary, hence, the challenger will set the trivial win flag to
be 1.

By Remark 2.1, we have (m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗, using this method
we can easily compute the set Q̃∗. Suppose the challenge input is (m̄, c̄)
and the underlying message of c̄ is m̄1. In Fig. 10 we show how the set Q̃∗
is computed.

Remark 2.2. Our definition of this trivial win restriction is more generous
than that of [KLR19], they disallow the decryption of any ciphertext that
decrypts to either of the two challenge plaintexts. We allow the decryption
of a ciphertext that decrypts to a challenge plaintext as long as the adver-
sary cannot learn (from O.Chall or O.UpdC̃) or infer (from tokens) a valid
ciphertext of challenge plaintext in that epoch.

for i ∈ {0, ..., e} do
if i ∈ C∗kk,cc then
L̃∗kk,cc ← L̃∗kk,cc ∪ {(c̃i, i)}

Figure 9: Algorithm for com-
puting the set L̃∗kk,cc, where
kk ∈ {no, uni, bi} and cc ∈
{uni, bi}.

for i ∈ {0, ..., e} do
if i ∈ C∗kk,cc then
Q̃∗kk,cc←Q̃∗kk,cc∪{(m̄, i)}∪{(m̄1, i)}

Figure 10: Algorithm for computing the
set Q̃∗kk,cc, where kk ∈ {no, uni, bi} and
cc ∈ {uni, bi}.

Trivial Forgeries by Keys. The following is used for analyzing all in-
tegrity games. If the adversary knows an epoch key ke, then the adversary

228 Y. Jiang

can create arbitrary number of valid forgeries of arbitrary messages under
this epoch key ke.

We use the set K∗ to check this trivial win condition, recall that K∗
includes all epochs the adversary learned or inferred an epoch key. Suppose
the adversary queries a try oracle O.Try(c) in epoch e, if e ∈ K∗ then the
challenger will set the trivial win flag to be 1. We use algorithms discussed
in Section 2.6 to compute the set K∗.

Trivial Ciphertext Forgeries by Tokens. The following is used for ana-
lyzing the INT-CTXT security notion. From [KLR19] we know that only
UE schemes with deterministic updates can possibly achieve INT-CTXT
security. In the deterministic update setting, if the adversary knows a ci-
phertext (c, c, e0;m) ∈ L and tokens from epoch e0+1 to epoch e, then the
adversary can create a valid updated ciphertext by updating c from epoch
e0 to epoch e.

We use the set L∗ to check this trivial win condition, recall that L∗
includes all ciphertexts that can be known or inferred to the adversary. Sup-
pose the adversary queries a try oracle O.Try(c) in epoch e, if (c, e) ∈ L∗
then the challenger will set the trivial win flag to be 1. In Fig. 11 we show
how the set L∗ is computed.

for i ∈ {0, ..., e} do
for (·, c, i; ·) ∈ L do
L∗kk,cc ← L∗kk,cc ∪ {(c, i)}

if i ∈ T ∗kk then
for (ci−1, i− 1) ∈ L∗kk,cc do
ci ← UE.Upd(∆i, ci−1)
L∗kk,cc ← L∗kk,cc ∪ {(ci, i)}

if cc = bi then
for (ci, i) ∈ L∗kk,cc do
ci−1←UE.Upd−1(∆i, ci)
L∗kk,cc←L∗kk,cc∪{(ci−1, i− 1)}

Figure 11: Algorithm for computing
the set L∗kk,cc, where kk ∈ {no, uni,
bi} and cc ∈ {uni, bi}.

for i ∈ {0, ..., e} do
for (·, ·, i;m) ∈ L do
Q∗kk,cc ← Q∗kk,cc ∪ {(m, i)}

if i ∈ T ∗kk then
for (m, i− 1) ∈ Q∗kk,cc do
Q∗kk,cc ← Q∗kk,cc ∪ {(m, i)}

if cc = bi then
for (m, i) ∈ Q∗kk,cc do
Q∗kk,cc←Q∗kk,cc∪{(m, i− 1)}

Figure 12: Algorithm for computing
the set Q∗kk,cc, where kk ∈ {no, uni,
bi} and cc ∈ {uni, bi}.

The Direction of Updatable Encryption 229

Trivial Plaintext Forgeries by Tokens. The following is used for ana-
lyzing the INT-PTXT security notion. In the randomized update setting, if
the adversary knows a ciphertext (c, c, e0;m) ∈ L and tokens from epoch
e0 + 1 to epoch e, then the adversary can create arbitrary number of valid
forgeries of message m by updating c from epoch e0 to epoch e.

We use the set Q∗ to check this trivial win condition, recall that Q∗
includes information about plaintexts that the adversary has learned or can
create ciphertexts of. Suppose the adversary queries a try oracle O.Try(c)
in epoch e, if UE.Dec(ke, c) = m′ and (m′, e) ∈ Q∗ then the challenger
will set the trivial win flag to be 1. In Fig. 12 we show how the set Q∗ is
computed.

3 Six Variants of Security Notions

In this section we first define six variants of security notions for updatable
encryption schemes. In the end of this section, we compare the relationship
among all these variants of each security notion.

For kk ∈ {no, uni, bi} and cc ∈ {uni, bi}, we define (kk, cc)- variants
of security notions, where kk refers to UE schemes with kk-directional key
updates and cc to cc-directional ciphertext updates.

Definition 7 (The (kk, cc)- variant of confidentiality notions). Let UE =
{UE.KG, UE.TG,UE.Enc, UE.Dec,UE.Upd} be an updatable encryption
scheme. Then the (kk, cc)-notion advantage, for notion∈{detIND-UE-CPA,
randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}, kk ∈ {no, uni,
bi} and cc ∈ {uni, bi}, of an adversary A against UE is defined as

Adv
(kk,cc)-notion
UE, A (1λ) =
∣∣∣Pr[Exp

(kk,cc)-notion-1
UE, A = 1]−Pr[Exp

(kk,cc)-notion-0
UE, A = 1]

∣∣∣,

where the experiment Exp
(kk,cc)-notion-b
UE, A is the same as the experiment

Expnotion-b
UE, A (see Fig. 4 and Fig. 6) except for all leakage sets are both in

the kk-directional key update setting and cc-directional ciphertext update
setting.

230 Y. Jiang

Remark 3.1. Recall that we compute all leakage sets with kk-directional
key updates and cc-directional ciphertext updates in Section 2.6 and Sec-
tion 2.7.

Remark 3.2. Note that the security notion RCCA, which we denote as
randIND-UE-CCA, is from [KLR19]. In our definition of this notion is
stronger - the adversary has fewer trivial win restrictions - we discuss this
difference in Remark 2.2.

Definition 8 (The (kk, cc)- variant of integrity notions). Let UE = {UE.KG,
UE.TG, UE.Enc, UE.Dec, UE.Upd} be an updatable encryption scheme.
Then the (kk, cc)-notion advantage, for kk ∈ {no, uni, bi}, cc ∈ {uni, bi}
and notion ∈ {INT-CTXT, INT-PTXT}, of an adversary A against UE is
defined as

Adv
(kk,cc)-notion
UE, A (1λ) = Pr[Exp

(kk,cc)-notion
UE, A = 1],

where the experiment Exp
(kk,cc)-notion
UE, A is the same as Expnotion

UE, A (see Fig. 5
and Fig. 6) except for all leakage sets are both in the kk-directional key
update setting and cc-directional ciphertext update setting.

3.1 Properties of Leakage Sets and Trivial Win Conditions

In this section, we prove some essential properties of key leakage, which
will be used to analyze the trivial win conditions. We will use these trivial
win properties to prove the relations among six variants of the same security
notion in Section 3.2.

3.1.1 Properties of Key Updates

In this section, we look at some properties of setsK, T ,K∗ and T ∗ in terms
of uni- and bi-directional key updates.

Firewall and Insulated Region. We first describe the definition of fire-
wall and insulated region, which will be widely used in this paper. Firewall
technique (see [LT18, KLR19, BDGJ20]) is used for doing cryptographic
seperation. We follow the firewall definition in [BDGJ20] and use firewall
set FW (defined in [BDGJ20]) to track each insulated region and its fire-
walls.

The Direction of Updatable Encryption 231

Definition 9. An insulated region with firewalls fwl and fwr is a consecutive
sequence of epochs (fwl, . . . , fwr) for which:

• no key in the sequence of epochs (fwl, . . . , fwr) is corrupted, i.e.
{fwl, . . . , fwr} ∩ K = ∅;

• the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist), i.e. fwl,
fwr + 1 /∈ T ;

• all tokens (∆fwl+1, ...,∆fwr) are corrupted, i.e.{fwl+1, ..., fwr}⊆T .

Remark 3.3. Based on Definition 9, we notice that all firewalls or all insu-
lated regions (in other words, set FW) are uniquely determined by K and
T . In particular, we denote the union of all insulated regions as set IR, i.e.
IR = ∪(fwl,fwr)∈FW{fwl, ..., fwr}.

Then we look at the structure of the set IR. Lemma 3.1 states that
IR is the complementary set of K∗bi. Furthermore, Lemma 3.3 shows that
the complementary set of IR is the union of two types of epoch sets (see
Definition 10 and Definition 11).

Lemma 3.1. For any setsK, T ⊆ {0, ..., l}, we haveK∗bi = {0, ..., l}\IR.

Proof. Note that ∆0 and ∆l+1 do not exist, however, 0 and l can possibly
be firewalls. For convenience, we just assume ∆0 and ∆l+1 exist and the
adversary is not allowed to corrupt these two tokens. Thus the set of epochs
in which the adversary never corrupted the update token is: {0, ..., l+ 1} \
T = {ē0 := 0, ē1, ..., ēt, ēt+1 := l + 1}, where t ≥ 0.

In the bi-directional key update setting, if the adversary has corrupted
a key in an epoch e, where e ∈ {ēi−1, ..., ēi − 1}, then the adversary can
infer all keys from epoch ēi−1 to epoch ēi − 1, that is {ēi−1, ..., ēi − 1} ⊆
K∗bi, because all tokens from epoch ēi−1 + 1 to epoch ēi − 1 are corrupted.
Otherwise, when no key in the sequence of epochs {ēi−1, ..., ēi − 1} is
corrupted, then {ēi−1, ..., ēi− 1} is an insulated region . Therefore, for any
i, {ēi−1, ..., ēi − 1} is either an insulated region or a subset of K∗bi.

232 Y. Jiang

Epoch {0} 1 2 3 {4 5} 6 7 8
K × × X × × × X X ×
T × × X X × X × × X ×
K∗bi × X X X × × X X X
T ∗bi × × X X × X × X X ×

Figure 13: An example of Lemma 3.1, where K = {2, 6, 7} and T =
{2, 3, 5, 8}. So {0, ..., l + 1} \ T = {0, 1, 4, 6, 7, 9}, insulated regions are
{0} and {4, 5}. IR = {0, 4, 5} and K∗bi = {1, 2, 3, 6, 7, 8}. × indicates the
keys/tokens are not revealed to the adversary, X indicates the keys/tokens
are revealed to the adversary.

We define two types of epoch sets in Definition 10 and Definition 11,
which will later be used to analyze the structure of IR. An overview of the
corruption model of these two epoch sets are shown in Fig. 14.

Definition 10. A set of type1 epochs is a consecutive sequence of epochs
(estart, . . . , eend) for which:

• no key in the sequence of epochs {estart, . . . , eend − 1} is corrupted,
i.e.{estart, . . . , eend − 1} ∩ K = ∅;

• the key in epoch eend is corrupted, i.e.eend ∈ K;

• all tokens {∆estart+1, . . . ,∆eend} are corrupted, i.e. {estart + 1, . . . ,
eend} ⊆ T .

Definition 11. A set of type2 epochs is a consecutive sequence of epochs
(estart, . . . , eend) for which:

• {estart, . . . , eend} ⊆ K∗uni;

• {estart + 1, . . . , eend} ⊆ T ∗uni.

The following lemma demonstrates that if a key is revealed in the bi-
directional key update setting but not in the uni-directional key update set-
ting then the revealed key epoch can stretch to a type 1 epoch set. We use
this property to prove Lemma 3.3.

The Direction of Updatable Encryption 233

Epoch estart estart+1 ... eend−1 eend
K × × ... × X
T X X ... X X

(a) Type 1 set of epochs
Epoch estart estart+1 ... eend
K∗uni X X ... X
T ∗uni X X ... X

(b) Type 2 set of epochs

Figure 14: × indicates the keys/tokens are not revealed to the adversary, X
indicates the keys/tokens are revealed to the adversary.

Lemma 3.2. If e ∈ K∗bi \ K∗uni, then there exists an epoch (say eu) after e
such that eu ∈ K, {e, . . . , eu − 1} ∩ K = ∅ and {e + 1, ..., eu} ⊆ T .

Proof. As the assumption and Equations (1, 2), we have e ∈ K∗bi is inferred
from the next epoch key ke+1 via token ∆e+1. That is e + 1 ∈ K∗bi and
e+ 1 ∈ T . If e+ 1 6∈ K∗uni, then e+ 2 ∈ K∗bi and e+ 2 ∈ T . Iteratively, we
know that there exists an epoch after e, say eu, such that {e, . . . , eu − 1} ∩
K∗uni = ∅, eu ∈ K∗uni and e + 1, ..., eu ∈ T . Hence, {e, . . . , eu − 1} ∩ K ⊆
{e, . . . , eu − 1} ∩ K∗uni = ∅. In particular, we know that eu ∈ K since
eu − 1 6∈ K∗uni.

Lemma 3.3. For any sets K, T ⊆ {0, ..., l}, we have {0, ..., l} \ IR =
(∪type 1{estart, ..., eend}) ∪ (∪type 2{estart, ..., eend}), where the two types
of epoch sets are defined in Definition 10 and Definition 11.

Proof. Suppose e ∈ {0, ..., l} \ IR, by Lemma 3.1, we have e ∈ K∗bi. If
e 6∈ K∗uni, we can apply Lemma 3.2 and have a set of type 1 epochs, assume
{e, ..., eu}. For all e ∈ K∗bi\K∗uni, we can find a set of type 1 epochs. Hence,
the rest epochs are in the type 2 epoch sets.

Remark 3.4. As a conclusion of Lemma 3.1 and Lemma 3.3, we have the
sequence of all epochs are a union of three types of epoch sets, that are insu-
lated regions, type 1 epochs and type 2 epochs. {0, ..., l} = (∪(fwl,fwr)∈FW
{fwl, ..., fwr}) ∪ (∪type 1{estart, ..., eend}) ∪ (∪type 2{estart, ..., eend}).

234 Y. Jiang

3.1.2 Trivial Win Equivalences in the Uni- and Bi-Directional Update
Setting

In this section we prove seven equivalences of the trivial win conditions.
As a result, we have that in any security game if the trivial win conditions
in the bi-directional update setting are triggered then the same trivial win
conditions in the uni-directional update setting would be triggered. We will
use these trivial win equivalences to prove the relation between uni- and
bi-directional variants of security notions in Theorem 3.1.

The following two lemmas show that UE schemes with uni-directional
updates has less leakage than UE schemes with bi-directional updates.

Lemma 3.4. For any setsK, T , C and any kk ∈ {uni, bi}, we have C∗kk,uni ⊆
C∗kk,bi, L̃∗kk,uni ⊆ L̃∗kk,bi, Q̃∗kk,uni ⊆ Q̃∗kk,bi, L∗kk,uni ⊆ L∗kk,bi, and Q∗kk,uni ⊆
Q∗kk,bi.

Proof. For any fixed kk-directional key updates, uni-directional ciphertext
updates has less leakage than bi-directional ciphertext updates. More pre-
cisely, for any K, T , C and a fixed kk, we compute K∗kk, T ∗kk, C∗kk,uni and
C∗kk,bi using Equations (1, 2, 3, 4, 5). Then we have C∗kk,uni ⊆ C∗kk,bi.
Furthermore, we use algorithms discussed in Section 2.7.2 to compute ci-
phertext/message leakage sets L̃∗, Q̃∗,L∗,Q∗. Similarly we get L̃∗kk,uni ⊆
L̃∗kk,bi, Q̃∗kk,uni ⊆ Q̃∗kk,bi, L∗kk,uni ⊆ L∗kk,bi, and Q∗kk,uni ⊆ Q∗kk,bi.

Lemma 3.5. For any sets K, T , C and any cc ∈ {uni, bi}, we have K∗uni ⊆
K∗bi, T ∗uni ⊆ T ∗bi , C∗uni,cc ⊆ C∗bi,cc, L̃∗uni,cc ⊆ L̃∗bi,cc, Q̃∗uni,cc ⊆ Q̃∗bi,cc, L∗uni,cc ⊆
L∗bi,cc and Q∗uni,cc ⊆ Q∗bi,cc.

Proof. The proof is similar to the proof of Lemma 3.4. For any fixed cc-
directional ciphertext updates, uni-directional key updates has less leak-
age than bi-directional key updates. More precisely, for any K, T , C and
a fixed cc, we compute K∗uni, K∗bi, T ∗uni, T ∗bi , C∗uni,cc and C∗bi,cc using Equa-
tions (1, 2, 3, 4, 5). Then we have K∗uni ⊆ K∗bi, T ∗uni ⊆ T ∗bi , and there-
fore C∗uni,cc ⊆ C∗bi,cc. Furthermore, we use algorithms discussed in Sec-
tion 2.7.2 to compute ciphertext/message leakage sets L̃∗, Q̃∗,L∗,Q∗. Sim-
ilarly we get L̃∗uni,cc ⊆ L̃∗bi,cc, Q̃∗uni,cc ⊆ Q̃∗bi,cc, L∗uni,cc ⊆ L∗bi,cc and
Q∗uni,cc ⊆ Q∗bi,cc.

The Direction of Updatable Encryption 235

Equivalence for Trivial Win Condition “ K∗ ∩ C∗ 6= ∅”.

Lemma 3.6. For any sets K, T , C ⊆ {0, ..., l}, we have K∗uni ∩ C∗uni,uni 6=
∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅.

Proof. For anyK, T , C, we computeK∗uni, C∗uni,uni,K∗bi and C∗bi,bi using Equa-
tions (1, 2, 4, 5).

Note that K∗uni ⊆ K∗bi and C∗uni,uni ⊆ C∗bi,bi, so K∗uni ∩ C∗uni,uni ⊆ K∗bi ∩
C∗bi,bi. It suffices to prove

K∗bi ∩ C∗bi,bi 6= ∅ =⇒ K∗uni ∩ C∗uni,uni 6= ∅.

Suppose K∗bi ∩ C∗bi,bi 6= ∅. We know that firewalls provide crypto-
graphic separation, which make sure insulated regions are isolated from
other insulated regions and the complementary set of all insulated regions.
If the adversary never asks for any challenge-equal ciphertext in an epoch
in the set {0, ..., l} \ IR, then the adversary cannot infer any challenge-
equal ciphertext in this set even in the bi-directional update setting. That is,
C∗bi,bi ∩ ({0, ..., l} \ IR) = ∅. However, {0, ..., l} \ IR Lemma 3.1

= K∗bi, then
K∗bi ∩ C∗bi,bi = ∅, which contradicts with the assumption. Therefore, there
exists an epoch e′ ∈ {0, ..., l} \ IR such that the adversary has asked for a
challenge-equal ciphertext in this epoch, that is e′ ∈ C.

By Lemma 3.3, we know that e′ is located in an epoch set which is
either type 1 or type 2. Suppose e′ ∈ {estart, ..., eend}, we know that the
epoch key keend is known to the adversary even in the uni-directional key
update setting, i.e. eend ∈ K∗uni. Furthermore, all tokens ∆e′+1, ...,∆eend

are known to the adversary even in the uni-directional key update setting.
Hence, the adversary can update the challenge-equal ciphertext c̃e′ from
epoch e′ to epoch eend to know c̃eend . Which means eend ∈ K∗uni ∩ C∗uni,uni,
we have K∗uni ∩ C∗uni,uni 6= ∅.

As a corollary of Lemma 3.4 to 3.6, we have the following equivalence.
We only provide Corollary 3.1 with a fully detailed proof, since we will use
similar proof techniques for Corollary 3.2 to 3.5.

Corollary 3.1. For any sets K, T , C ⊆ {0, ..., l}, we have K∗uni ∩C∗uni,uni 6=
∅ ⇐⇒ K∗uni ∩ C∗uni,bi 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,uni 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅.

236 Y. Jiang

Proof. By Lemma 3.4, we have C∗uni,uni ⊆ C∗uni,bi. By Lemma 3.5, we have
C∗uni,bi ⊆ C∗bi,bi. Hence, K∗uni ∩ C∗uni,uni ⊆ K∗uni ∩ C∗uni,bi ⊆ K∗bi ∩ C∗bi,bi. By
Lemma 3.6, we have K∗uni ∩ C∗uni,uni 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅ ⇐⇒
K∗uni ∩ C∗uni,bi 6= ∅.

Similarly, we have K∗uni ∩ C∗uni,uni
Lemma 3.5
⊆ K∗bi ∩ C∗bi,uni

Lemma 3.4
⊆ K∗bi ∩

C∗bi,bi and therefore K∗uni ∩ C∗uni,uni 6= ∅ ⇐⇒ K∗bi ∩ C∗bi,bi 6= ∅ ⇐⇒
K∗bi ∩ C∗bi,uni 6= ∅.

Remark 3.5. If the trivial win condition “K∗ ∩ C∗ 6= ∅” is never triggered
in the uni- or bi-directional update setting, then by Corollary 3.1 we have
K∗bi∩C∗bi,bi = ∅. By Lemma 3.1, we have {0, ..., l}\K∗bi = IR. Therefore,
C∗uni,uni ⊆ C∗bi,bi ⊆ {0, ..., l} \ K∗bi = IR. The relationship among the sets
C∗uni,uni, C∗bi,bi, IR,K∗uni,K∗bi is shown in Fig. 15.

K∗bi IRK∗uni C∗bi,biC∗uni,uni

Figure 15: The relationship among the sets C∗uni,uni, C∗bi,bi, IR,K∗uni,K∗bi if
the trivial win condition “K∗kk ∩ C∗kk,cc 6= ∅” is never triggered for any
kk, cc ∈ {uni, bi}.

Equivalence for Trivial Win Condition “ ẽ∈T ∗ or O.Upd(c̄) is queried”.
The event “O.Upd(c̄) is queried” is independent of the key and ciphertext
updates, so this trivial win condition is either triggered or not triggered in
all variants of a security notion. The following Lemma shows that if the
challenge token is known to the adversary in the bi-directional key update
setting, then it is also known to the adversary in the uni-directional key
update setting.

Lemma 3.7. For any K, T , C. Suppose K∗kk ∩ C∗kk,cc = ∅, where kk, cc ∈
{uni, bi}, then ẽ∈T ∗no ⇐⇒ ẽ∈T ∗uni ⇐⇒ ẽ∈T ∗bi
Proof. We know that the challenge epoch ẽ ∈ C, so ẽ 6∈ K∗kk for any kk-key
updates, where kk ∈ {uni, bi}. Since the adversary does not know the key
kẽ, which is needed to infer the update token ∆ẽ, so token ∆ẽ cannot be

The Direction of Updatable Encryption 237

inferred by the adversary. Therefore, ẽ ∈ T ∗kk if and only if ẽ ∈ T . Hence
ẽ ∈ T ⇐⇒ ẽ∈T ∗no ⇐⇒ ẽ∈T ∗uni ⇐⇒ ẽ∈T ∗bi .

From now on until the end of this section, we assume the adversary
queries a decryption oracle O.Dec(c) or a try oracle O.Try(c) in epoch e.
We consider trivial win conditions which are checked in these oracles.

Equivalence for Trivial Win Condition “ (c, e) ∈ L̃∗”.

Lemma 3.8. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅,
then (c, e) ∈ L̃∗uni,uni ⇐⇒ (c, e) ∈ L̃∗bi,bi.
Proof. By Remark 3.5 we have C∗uni,uni ⊆ C∗bi,bi ⊆ IR. By Remark 2.1 we
have (c̃e, e) ∈ L̃∗ ⇐⇒ e ∈ C∗. Therefore, if (c, e) ∈ L̃∗uni,uni we have
e ∈ C∗uni,uni ⊆ C∗bi,bi and (c, e) ∈ L̃∗bi,bi.

If (c, e) ∈ L̃∗bi,bi, then e ∈ C∗bi,bi ⊆ IR. Suppose {fwl, ..., e} is the
last insulated region. If the adversary never asks for any challenge-equal
ciphertext in this region, then {fwl, ..., e} ∩ C∗bi,bi = ∅, which contradicts
with e ∈ C∗bi,bi∩{fwl, ..., e}. Hence, {fwl, ..., e}∩C 6= ∅, and we can assume
e′ ∈ {fwl, ..., e} ∩ C. By the definition of insulated region we have {fwl +
1, ..., e} ⊆ T , and the adversary can update the challenge-equal ciphertext
c̃e′ from epoch e′ to epoch e to know c̃e, i.e. e ∈ C∗uni,uni. Therefore,
(c, e) ∈ L̃∗uni,uni as well.

As a corollary of Lemma 3.4, Lemma 3.5 and Lemma 3.8, we have the
following result. The proof is similar to the proof of Corollary 3.1.

Corollary 3.2. For any setsK, T , C ⊆ {0, ..., e}. SupposeK∗bi∩C∗bi,bi = ∅,
then (c, e) ∈ L̃∗uni,uni ⇐⇒ (c, e) ∈ L̃∗uni,bi ⇐⇒ (c, e) ∈ L̃∗bi,uni ⇐⇒
(c, e) ∈ L̃∗bi,bi.

Equivalence for Trivial Win Condition “ (m′, e) ∈ Q̃∗”.

Lemma 3.9. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅,
then (m′, e) ∈ Q̃∗uni,uni ⇐⇒ (m′, e) ∈ Q̃∗bi,bi.
Proof. The proof is similar to the proof of Lemma 3.8. We use the property
that (m′, e) ∈ Q̃∗ ⇐⇒ e ∈ C∗.

238 Y. Jiang

As a corollary of Lemma 3.4, Lemma 3.5 and Lemma 3.9, we have the
following result. The proof is similar to the proof of Corollary 3.1.

Corollary 3.3. For any setsK, T , C ⊆ {0, ..., e}. SupposeK∗bi∩C∗bi,bi = ∅,
then (m′, e)∈ Q̃∗uni,uni ⇐⇒ (m′, e)∈ Q̃∗uni,bi ⇐⇒ (m′, e)∈ Q̃∗bi,uni ⇐⇒
(m′, e)∈Q̃∗bi,bi.

Equivalence for Trivial Win Condition “ e ∈ K∗”.

Lemma 3.10. For any sets K, T , C ⊆ {0, ..., e}, we have e ∈ K∗uni ⇐⇒
e ∈ K∗bi.

Proof. The adversary never knows any information in the future, that is, the
adversary does not know a key in an epoch ê > e. If the adversary knows
the current epoch key ke, then it is either a corrupted key or a key inferred
from prior epoch key, thus e ∈ K∗uni ⇐⇒ e ∈ K∗bi.

Equivalence for Trivial Win Condition “ (c, e) ∈ L∗”.

Lemma 3.11. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then
(c, e) ∈ L∗uni,uni ⇐⇒ (c, e) ∈ L∗bi,bi.

Proof. By assumption and Lemma 3.10 the current epoch e 6∈ K∗kk for any
kk ∈ {uni, bi}. We know that, by Remark 3.4, e is located in an insulated
region, assume it is in {fwl, ..., e}. Thus tokens ∆fwl+1, ...,∆e are known
to the adversary in any update setting, that is, {fwl+1, ..., e} ⊆ T ⊆ T ∗uni ⊆
T ∗bi . If the adversary never asks for any ciphertext in this region, then there
is no ciphertext in epoch e located in the set L∗kk,cc for any (kk, cc). For
all ciphertexts the adversary learns in an epoch i with i ∈ {fwl, ..., e},
the adversary can update them to epoch e using tokens. Hence, we have
(c, e) ∈ L∗uni,uni ⇐⇒ (c, e) ∈ L∗bi,bi.

As a corollary of Lemma 3.4, Lemma 3.5 and Lemma 3.11, we have the
following result. The proof is similar to the proof of Corollary 3.1.

Corollary 3.4. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then
(c, e) ∈ L∗uni,uni ⇐⇒ (c, e) ∈ L∗uni,bi ⇐⇒ (c, e) ∈ L∗bi,uni ⇐⇒
(c, e) ∈ L∗bi,bi.

The Direction of Updatable Encryption 239

Equivalence for Trivial Win Condition “ (m′, e) ∈ Q∗”.

Lemma 3.12. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then
(m′, e) ∈ Q∗uni,uni ⇐⇒ (m′, e) ∈ Q∗bi,bi.
Proof. The proof is similar to the proof of Lemma 3.11. As e 6∈ K∗kk for any
kk ∈ {uni, bi}, we know that e is located in an insulated region. Assume it is
in {fwl, ..., e}, then the adversary has corrupted the tokens ∆fwl+1, ...,∆e.
If the adversary never asks for any ciphertext with the underlying message
m′ in this region, then (m′, e) 6∈ Q∗kk,cc for any (kk, cc). Otherwise, sup-
pose (·, ci, i;m′) ∈ L with i ∈ {fwl, ..., e}, then the adversary can update
ci, via tokens ∆i+1, ...,∆e, to a ciphertext in epoch e with the underlying
message m′ and we have (m′, e) ∈ Q∗kk,cc for any (kk, cc).

As a corollary of Lemma 3.4, Lemma 3.5 and Lemma 3.12, we have the
following result. The proof is similar to the proof of Corollary 3.1.

Corollary 3.5. For any sets K, T , C ⊆ {0, ..., e}. Suppose e 6∈ K∗bi, then
(m′, e) ∈ Q∗uni,uni ⇐⇒ (m′, e) ∈ Q∗uni,bi ⇐⇒ (m′, e) ∈ Q∗bi,uni ⇐⇒
(m′, e) ∈ Q∗bi,bi.

3.2 Relations among Security Notions

In Fig. 16, Fig. 17 and Fig. 18, we show the relationship among six variants
of the same security notion for UE schemes.

Fig. 16 demonstrates that the uni- and bi-directional update variants
of the same security notion are equivalent, which means that the security
notions (confidentiality and integrity) in the uni-directional update setting
are not strictly stronger than the corresponding security notions in the bi-
directional update setting. Hence, the security of a UE scheme is not influ-
enced if the update setting is uni- or bi-directional. In terms of confiden-
tiality and integrity, when we analyze the security of a UE scheme we can
analyze the security based on the UE scheme with bi-directional updates.

The six variants of confidentiality notions have the relationship shown
in Fig. 17, where we present that the (no, uni)- variant of any confidentiality
notion is strictly stronger than the other five variants of the corresponding
confidentiality notion.

The six variants of integrity notions have the relationship shown in
Fig. 18. No-directional key update variants of the same integrity notion

240 Y. Jiang

is strictly stronger than the uni- or bi-directional key update variants. How-
ever, the two variants of no-directional key update notions are equivalent,
that is, for the integrity notions uni- or bi-directional ciphertext update set-
ting (with no-directional key updates) does not matter much.

It is ideal to construct an efficient UE scheme with no-directional key
updates and uni-directional ciphertext updates. However, whether such a
scheme exists is an open problem.

(bi, bi)-notion (bi, uni)-notion (uni, bi)-notion (uni, uni)-notion
3.1 3.13.1

Figure 16: Relations among the uni- and bi-directional update vari-
ants of the same security notion, where notion ∈ {detIND-UE-CPA,
randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA, INT-CTXT,
INT-PTXT}.

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
3.13

3.2

3.14

\

3.3

Figure 17: Relations among the six variants of the same confiden-
tiality notion, where notion ∈ {detIND-UE-CPA, randIND-UE-CPA,
detIND-UE-CCA, randIND-UE-CCA} and kk, cc ∈ {uni, bi}.

(no, uni)-notion (no, bi)-notion (kk, cc)-notion
3.14

3.4

3.13

\

3.5

Figure 18: Relations among the six variants of the same integrity notion,
where notion ∈ {INT-CTXT, INT-PTXT} and kk, cc ∈ {uni, bi}.

Remark 3.6 (Informal intuition of these relations). Consider the following
confidentiality game, where we have an adversary against some variant of
the confidentiality game for a UE scheme. The adversary corrupts a key
k1 and a token ∆2, and asks for a challenge ciphertext in epoch 2. For
both uni- and bi-directional key update settings, the adversary can move

The Direction of Updatable Encryption 241

the key k1 to epoch 2 and decrypt the challenge ciphertext to trivially win
the confidentiality game. If the UE scheme has no-directional key updates
and bi-directional ciphertext updates, the adversary can move the challenge
ciphertext back to epoch 1 and decrypt it to trivially win the confidential-
ity game. However, if the UE scheme has no-directional key updates and
uni-directional ciphertext updates, the adversary cannot trivially win the
confidentiality game in this action.

Similarly, we consider the following integrity game, where we have an
adversary against some variant of the integrity game for a UE scheme. The
adversary corrupts a key k1 and a token ∆2, and queries a try oracle in
epoch 2. For both uni- and bi-directional key update settings, the adversary
can move the key k1 to epoch 2 and provide forgeries in epoch 2 to triv-
ially win the integrity game. However, if the UE scheme has no-directional
key updates the adversary does not know k2, and cannot trivially win the
integrity game.

Remark 3.7. We can define six variants of the IND-ENC and the IND-UPD
notions3 and can extend the result in Fig. 16 and Fig. 17 for notion ∈
{IND-ENC, IND-UPD}.

3.2.1 Relations between the Uni- and Bi-Directional Update Variants
of Security Notions

We will only provide Theorem 3.1 with a fully detailed proof, since we will
use similar proof techniques for Lemmas 3.13, 3.14 and Theorems 3.2, 3.4.

The following Theorem shows that for any kk, cc, kk′, cc′ ∈ {uni, bi},
(kk′, cc′)-notion implies (kk, cc)-notion. Consequently, all four uni- and
bi-directional update variants of the same notion are equivalent.

Theorem 3.1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme and notion ∈ {INT-CTXT, INT-PTXT,
detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}.
For any kk, cc, kk′, cc′ ∈ {uni, bi} and any (kk, cc)-notion adversary A
against UE, there exists a (kk′, cc′)-notion adversary B3.1 against UE such
that

Adv
(kk,cc)-notion
UE, A (1λ) = Adv

(kk′,cc′)-notion
UE, B3.1 (1λ).

3Note that IND-ENC and IND-UPD are introduced in [LT18]

242 Y. Jiang

Proof. We construct a reduction B3.1 running the (kk′, cc′)-notion experi-
ment which simulates the responses of queries made by the (kk, cc)-notion
adversary A. The reduction will send all queries received from A to its
(kk′, cc′)-notion challenger, and forwarding the responses to A. Eventu-
ally, the reduction receives a guess from A and forwards it to its own chal-
lenger. In the end, the (kk′, cc′)-notion challenger evaluates whether or not
the reduction wins, if a trivial win condition was triggered the reduction is
considered as losing the game. This final win evaluation will be passed to
the adversary A.

By the analysis of trivial win equivalences in Section 3.1.2 (Corol-
lary 3.1 to 3.5, Lemma 3.7 and Lemma 3.10), we have that if A does not
trigger the trivial win conditions in the (kk, cc)-notion game, then the re-
duction will not trigger the trivial win conditions in the (kk′, cc′)-notion
game either. Similarly, if A does trigger the trivial win conditions in the
(kk, cc)-notion game, then the reduction will also trigger the trivial win
conditions in the (kk′, cc′)-notion game. Hence, the reduction perfectly
simulates the (kk, cc)-notion game to adversary A. And we have

Adv
(kk′,cc′)-notion
UE, B3.1 (1λ) = Adv

(kk,cc)-notion
UE, A (1λ).

Remark 3.8. For any security notion notion ∈ {INT-CTXT, INT-PTXT,
detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA},
all four uni- and bi-directional update variants of the same notion are equiv-
alent. We will use the (bi, bi)-notion variant to prove notion security for a
specific UE scheme. For simplicity, we will denote the notion (bi, bi)-notion
as notion.

3.2.2 Relations between the No-Directional and the Directional Vari-
ants of Security Notions

General Relations. We prove (no, bi)-notion implies (bi, bi)-notion in
Lemma 3.13, combining this result with Theorem 3.1 we have that (no, bi)-
notion implies any (kk, cc)-notion, where kk, cc ∈ {uni, bi}.

Lemma 3.13. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme and notion ∈ {INT-CTXT, INT-PTXT,
detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}.

The Direction of Updatable Encryption 243

For any (bi, bi)-notion adversaryA against UE, there exists a (no, bi)-notion
adversary B3.13 against UE such that

Adv
(bi,bi)-notion
UE, A (1λ) ≤ Adv

(no,bi)-notion
UE, B3.13 (1λ).

Proof. The proof is similar to the proof of Theorem 3.1, we construct a
reduction B3.13 running the (no, bi)-notion experiment which will simulate
the responses of queries made by the (bi, bi)-notion adversary A. Consider
the leakage sets. For bi-directional ciphertext updates, no-directional key
updates has less leakage than bi-directional key updates.

If A does not trigger the trivial win conditions in the (bi, bi)-notion
game, then the reduction will not trigger the trivial win conditions in the
(no, bi)-notion game. Hence the reduction has as least Adv

(bi,bi)-notion
UE, A (1λ)

advantage to win its (no, bi)-notion game.

The following lemma shows that (no, uni)-notion implies (no, bi)-notion.

Lemma 3.14. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme and notion ∈ {INT-CTXT, INT-PTXT,
detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}.
For any (no, bi)-notion adversary A against UE, there exists an (no, uni)-
notion adversary B3.14 against UE such that

Adv
(no,bi)-notion
UE, A (1λ) ≤ Adv

(no,uni)-notion
UE, B3.14 (1λ).

Proof. The proof is similar to the proof of Theorem 3.1, we construct a re-
duction B3.14 running the (no, uni)-notion experiment which will simulate
the responses of queries made by the (no, bi)-notion adversaryA. Consider
the leakage sets. For no-directional key updates, uni-directional ciphertext
updates has less leakage than bi-directional ciphertext updates.

If A does not trigger the trivial win conditions in the (no, bi)-notion
game, then the reduction will not trigger the trivial win conditions in the
(no, uni)-notion game. Hence the reduction has as least Adv

(no,bi)-notion
UE, A (1λ)

advantage to win its (no, uni)-notion game.

Relations among Confidentiality Notions. Before we start to prove any
relation in this section, we consider the equivalences for the following trivial
win conditions “ K∗ ∩C∗ 6= ∅”, “ ẽ∈T ∗ or O.Upd(c̄) is queried” (already

244 Y. Jiang

discussed on page), “ (c, e) ∈ L̃∗” and “ (m′, e) ∈ Q̃∗”. These results will
be used to prove Theorem 3.2.

Lemma 3.15. For any sets K, T , C ⊆ {0, ..., l}, we have K∗no ∩ C∗no,bi 6=
∅ ⇐⇒ K∗uni ∩ C∗uni,bi 6= ∅.

Proof. Similar to the proof of Lemma 3.6, it suffices to prove

K∗uni ∩ C∗uni,bi 6= ∅ =⇒ K∗no ∩ C∗no,bi 6= ∅.

SupposeK∗uni∩C∗uni,bi 6= ∅, as the analysis of Lemma 3.6, there exists an
epoch e′ ∈ {0, ..., l}\IR such that the adversary has asked for a challenge-
equal ciphertext in this epoch, that is e′ ∈ C. By Lemma 3.3, we know that
e′ is located in an epoch set which is either type 1 or type 2. Suppose
e′ ∈ {estart, ..., eend} is the biggest such set around epoch e′.

If e′ is located in a type 1 epoch set, then keend and ∆e′+1, ...,∆eend are
corrupted. Hence, the adversary can update the challenge-equal ciphertext
c̃e′ from epoch e′ to epoch eend to know c̃eend . Which means eend ∈ K∗no ∩
C∗no,bi.

If e′ is located in a type 2 epoch set, we claim that any epoch e ∈
{estart, ..., eend} is either in K or T or both, because revealed epoch keys in
the uni-directional update setting is either a corrupted key or a key inferred
from prior epoch via a corrupted update token. Furthermore, we claim that
estart ∈ K. Otherwise, we have estart ∈ T and estart − 1 ∈ K∗uni (in this
situation, kestart is inferred from kestart−1) and find a bigger type 2 set, which
is contradict with the assumption that {estart, ..., eend} is the biggest type 2
set around epoch e′. Then we discuss the joint set K∗no ∩ C∗no,bi. If e′ ∈ K,
then we have e′ ∈ K∗no ∩ C∗no,bi. If e′ 6∈ K, then e′ ∈ T . Iteratively, we
can find an epoch es < e′ such that es ∈ K and es + 1, ..., e′ ∈ T . Hence,
the adversary can reversely update the challenge-equal ciphertext c̃e′ from
epoch e′ to epoch es to know c̃es . Then we have es ∈ K∗no ∩ C∗no,bi.

The proof of the following lemma is similar to the proof of Lemma 3.8.

Lemma 3.16. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅,
then (c, e) ∈ L̃∗uni,bi ⇐⇒ (c, e) ∈ L̃∗no,bi.

The proof of the following lemma is similar to the proof of Lemma 3.9.

The Direction of Updatable Encryption 245

Lemma 3.17. For any sets K, T , C ⊆ {0, ..., e}. Suppose K∗bi ∩ C∗bi,bi = ∅,
then (m′, e) ∈ Q̃∗uni,bi ⇐⇒ (m′, e) ∈ Q̃∗no,bi.

The following theorem shows that the (uni, bi)- variant of confidential-
ity notions implies the (no, bi)- variant of the corresponding confidentiality
notions. Combining this result with Theorem 3.1 we have that any (kk, cc)-
variant of confidentiality notions implies the (no, bi)- variant of the corre-
sponding confidentiality notions, where kk, cc ∈ {uni, bi}.

Theorem 3.2. Let UE be an updatable encryption scheme and notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}
For any (no, bi)-notion adversaryA against UE, there exists a (uni, bi)-notion
adversary B3.2 against UE such that

Adv
(no,bi)-notion
UE, A (1λ) = Adv

(uni,bi)-notion
UE, B3.2 (1λ).

Proof. The proof is similar to the proof of Theorem 3.1, we construct a
reduction B3.2 running the (uni, bi)-notion experiment which will simulate
the responses of queries made by the (no, bi)-notion adversary A.

By the analysis of trivial win equivalences (Lemmas 3.15, 3.7, 3.16
and 3.17), we have that the trivial win results are the same in both the
(no, bi)-notion game and the (uni, bi)-notion game. Hence, the reduction
perfectly simulates the (no, bi)-notion game to adversary A. And we have
Adv

(no,bi)-notion
UE, A (1λ) = Adv

(uni,bi)-notion
UE, B3.2 (1λ).

The following Theorem states that the (no, bi)- variant of confidentiality
notions do not imply the (no, uni)- variant of the corresponding confiden-
tiality notions.

Theorem 3.3. Let UE be an updatable encryption scheme and notion ∈
{detIND-UE-CPA, randIND-UE-CPA, detIND-UE-CCA, randIND-UE-CCA}.
Let αnotion be the (no, bi)-notion advantage of an adversary A against UE,
Then there exists a modified scheme UEnew

1 , detailed in Fig. 19, such that the
(no, bi)-notion advantage of A against UEnew

1 is αnotion + lAdvIND$-CPA
SKE ,

and there exists an (no, uni)-notion adversary B3.3 against UEnew
1 that wins

with probability 1.

246 Y. Jiang

Proof technique of Theorem 3.3. For a confidentiality notion notion, we
use a (no, bi)-notion secure UE scheme UE to construct a new UE scheme
UEnew

1 , which is still (no, bi)-notion secure but not (no, uni)-notion secure.
As a result, (no, uni)-notion is strictly stronger than (no, bi)-notion.

UEnew
1 .KG(1λ) :

k
$←− UE.KG(1λ)

return k

UEnew
1 .TG(ke,ke+1) :

∆1
e+1 ← UE.TG(ke,ke+1)

ske+1
$←− SKE.KG

return (∆1
e+1, ske+1)

UEnew
1 .Enc(ke,m) :

c1e
$←− UE.Enc(ke,m)

c2e
$←− CS

return (c1e , c
2
e)

UEnew
1 .Dec(ke, ce) :

parse ce = (c1e , c
2
e)

m′ or ⊥ ← UE.Dec(ke, c
1
e)

return m′

UEnew
1 .Upd((∆1

e+1, ske+1), ce) :

parse ce = (c1e , c
2
e)

c1e+1 ← UE.Upd(∆1
e+1, c

1
e)

c2e+1 ← SKE.Enc(ske+1, c
1
e)

return (c1e+1, c
2
e+1)

Figure 19: Updatable encryption scheme UEnew
1 for proof of Theorem 3.3,

built from IND$-CPA-secure SKE SKE and updatable encryption scheme
UE.

Proof. UEnew
1 is not (no, uni)-notion secure. If a challenge-equal ciphertext

c̃e+1 and the corresponding epoch update token (∆1
e+1, ske+1) are cor-

rupted then the adversary can compute the prior challenge-equal ciphertext
c̃1e by using ske+1 to decrypt c̃2e+1. Then the adversary can corrupt a key ke

to win the (no, uni)-notion game without trigger the trivial win conditions.
UEnew

1 is (no, bi)-notion secure. All algorithms for UEnew
1 are the same

as for UE, except for the encryption algorithm UEnew
1 .Enc and the update al-

gorithm UEnew
1 .Upd, where we use a SKE scheme SKE to make the UEnew

1

scheme has bi-directional ciphertext updates. This does not affect an ad-
versary’s ability to win the (no, bi)-notion game. The additional advantage
term lAdvIND$-CPA

SKE is because if the adversary knows a challenge-equal ci-
phertext, but not a token, then the second challenge-equal ciphertext term

The Direction of Updatable Encryption 247

will not leak the prior challenge-equal ciphertext.

Relations among Integrity Notions. The following Theorem states that
the (no, bi)- variant of an integrity notion implies the (no, uni)- variant of
the same integrity notion.

Theorem 3.4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme. For any (no, uni)-notion adversary A
against UE, where notion ∈ {INT-CTXT, INT-PTXT}, there exists an
(no, bi)-notion adversary B3.4 against UE such that

Adv
(no,uni)-notion
UE, A (1λ) ≤ Adv

(no,bi)-notion
UE, B3.4 (1λ).

Proof. In the no-directional key update setting, K∗no = K. The proof is
similar to the proof of Theorem 3.1, we construct a reduction B3.4 running
the (no, bi)-notion experiment which will simulate the responses of queries
made by the (no, uni)-notion adversary A. Suppose A queries a O.Try
oracle in epoch e. Notice that for any sets K, T , C ⊆ {0, ..., e}, (c, e) ∈
L∗no,uni ⇐⇒ (c, e) ∈ L∗no,bi and (m′, e) ∈ Q∗no,uni ⇐⇒ (m′, e) ∈
Q∗no,bi, because such ciphertexts or plaintexts cannot be inferred from future
ciphertexts or plaintexts. Hence, the trivial win results are the same in both
the the (no, uni)-notion game and the (no, bi)-notion game.

However, (uni, bi)- variant of integrity notions do not imply the (no, bi)-
variant of the corresponding integrity notions. Combining this result with
Theorem 3.1 we have that the (no, bi)- variant of integrity notions are strictly
stronger than any (kk, cc)- variant of the corresponding integrity notions,
where kk, cc ∈ {uni, bi}.

Theorem 3.5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be
an updatable encryption scheme and notion ∈ {INT-CTXT, INT-PTXT}.
Let αnotion be the (uni, bi)-notion advantage of an adversary A against UE,
then there exists a modified scheme UEnew

2 , detailed in Fig. 20, such that the
(uni, bi)-notion advantage of A against UEnew

2 is αnotion + lAdvIND$-CPA
SKE ,

and there exists an (no, bi)-notion adversary B3.5 against UEnew
2 that wins

with probability 1.

248 Y. Jiang

Proof technique of Theorem 3.2. We use a (uni, bi)-notion secure updat-
able encryption scheme UE to construct a new updatable encryption scheme
UEnew

2 , which is still (uni, bi)-notion secure but not (no, bi)-notion secure.
As a result, (no, bi)-notion notion is strictly stronger than (uni, bi)-notion
notion.

UEnew
2 .KG(1λ) :

k
$←− UE.KG(1λ)

return k

UEnew
2 .TG(ke,ke+1) :

∆t
e+1 ← UE.TG(ke,ke+1)

∆c
e+1 ← SKE.Enc(ke,ke+1)

∆e+1 ← (∆t
e+1,∆

c
e+1)

return ∆e+1

UEnew
2 .Enc(ke,m) :

ce
$←− UE.Enc(ke,m)

return ce

UEnew
2 .Dec(ke, ce) :

m′ or ⊥ ← UE.Dec(ke, ce)
return m′

UEnew
2 .Upd(∆e+1, ce) :

parse ∆e+1 = (∆t
e+1,∆

c
e+1)

ce+1 ← UE.Upd(∆t
e+1, ce)

return ce+1

Figure 20: Updatable encryption scheme UEnew
2 for proof of Theorem 3.5,

built from IND$-CPA-secure symmetric key encryption (SKE) scheme SKE
and updatable encryption scheme UE.

Proof. UEnew
2 is not (no, bi)-notion secure. If a key ke and the next epoch

update token ∆e+1 are corrupted then the adversary can compute the next
epoch key ke+1 by decrypting ∆c

e+1 using ke. The adversary can compute
a forgery ce+1 in an integrity game to win the security game (no, bi)-notion
without trigger the trivial win conditions.

UEnew
2 is (uni, bi)-notion secure. All algorithms for UEnew

2 are the same
as for UE, except for the token generation algorithm UEnew

2 .TG, where we
use a SKE scheme SKE to make the UEnew

2 scheme has uni-directional key
updates. This does not affect an adversary’s ability to win the (uni, bi)-notion
game. The additional advantage term lAdvIND$-CPA

SKE is because if the ad-
versary knows a token, but not the prior epoch key, then the second token
value ∆c

e+1 is computationally indistinguishable from a random element.

The Direction of Updatable Encryption 249

Which makes sure that the second token term will not leak information that
would help the adversary win this security game.

4 LWE-based PKE Scheme

In this section, we look at an LWE-based PKE scheme LWEPKE, which
is detailed in Fig. 21. We prove that LWEPKE is IND$-CPA-secure, if the
underlying LWE problem is hard. We will later use this PKE scheme to
construct an updatable encryption scheme in Section 5.

LWEPKE.Setup(1λ) :

A
$←− Zm×nq

LWEPKE.KG(1λ) :
s← U(Znq)
e← Dm

Z,α
p← A · s + e mod q
return (s,p)

LWEPKE.Enc(p,m) :

R← Dtr
e′ ← D1×t

Z,β
C1 ← Aᵀ ·R
c2 ← pᵀ ·R + e′ + q

2m mod q
return (C1, c2)

LWEPKE.Dec(s, c) :
parse c = (C1, c2)
d← c2 − sᵀ ·C1

parse d = (d1, ..., dt)
for i ∈ {1, 2, ..., t} do

if di ∈ (3q8 ,
5q
8) then

m′i ← 1
else if di ∈ (− q

8 ,
q
8) then

m′i ← 0
else

return ⊥
m′ ← (m′1, ...,m′t)
return m′

Figure 21: The algorithms of the LWE-based LWEPKE scheme. The ran-
domness distribution Dr is defined over Zmq . DZ,α, DZ,β are discrete Gaus-
sian distributions. The message m lies in {0, 1}1×t.

4.1 PKE Construction

In the setup phase, the scheme LWEPKE randomly chooses a matrix A
$←−

Zm×nq . The key generation algorithm samples a secret s from the uniform
distribution U(Znq) and computes p = A ·s+e, where the error e is chosen
from the discrete Gaussian distribution Dm

Z,α. The matrix A and the vector

250 Y. Jiang

p form the public key. Encryption takes a bit string m ∈ {0, 1}1×t as input,
and outputs a ciphertext (Aᵀ ·R,pᵀ ·R + e′ + q

2m mod q). Decryption
is performed by computing d = c2 − sᵀ · C1. For each entry di of d, the
decryption algorithm outputs 0 if di is close to 0 mod q, and outputs 1 if
di is close to q

2 mod q.

Parameter Setting. The parameter setting of the scheme LWEPKE is as
follows:

• n = λ is the security parameter,

• q = q(n) ≥ 2 be a prime,

• m = poly(n) and t = poly(n) be two integers,

• Dr be a distribution over Zmq with min-entropy k such that n ≤ (k −
2 log(1/ε)−O(1))/ log(q) for negligible ε > 0, the infinite norm of
the vector outputted by this distribution is at most B = poly(n) with
overwhelming probability,

• α, β > 0 be two numbers such that β ≤ q
8 and αB/β = negl(n).

• DZ,α and DZ,β be two discrete Gaussian distributions.

Remark 4.1. We specify that all operations in this paper are done in field
Zq, and stop writing mod q for the rest of this paper.

4.2 Correctness and Security

Correctness. We claim that LWEPKE.Dec decrypts correctly with over-
whelming probability. The decryption algorithm computes d = c2 − sᵀ ·
C1 = eᵀ ·R + e′ + q

2m, and outputs m if eᵀ ·R + e′ has distance at most
q
8 from 0 mod q.

Let R = [r1, ..., rt]. By Lemma A.1, we have that each entry of e
have size at most α with overwhelming probability. As each entry of R
has size at most B, then each entry of eᵀ · R has size at most α · B with
overwhelming probability. That is, for all 1 ≤ j ≤ t, |eᵀ · rj | ≤ α · B.
Hence, |eᵀ · rj |/β ≤ α · B/β = negl(n) is negligible, and by Lemma A.2
we have thatDZ,β andDZ,β+eᵀ · rj are statistically close. Therefore,D1×t

Z,β

The Direction of Updatable Encryption 251

is statistically close toD1×t
Z,β +eᵀ ·R, so eᵀ ·R+e′

s≈ e′. By Lemma A.1, we
have that each entry of e′ has size at most β with overwhelming probability.
Since β ≤ q

8 , we have the desired result.

Security. We now show that LWEPKE is IND$-CPA-secure under the as-
sumption that the DLWEn,q,α problem is hard.

Theorem 4.1. Let LWEPKE be the public key encryption described in
Fig. 21, using the parameter setting described in Section 4.1. Then for
any adversary IND$-CPA A against LWEPKE, there exists an adversary B
against DLWEn,q,α such that

AdvIND$-CPA
LWEPKE, A(1λ) ≤ tε+ AdvDLWE

n,q,α (B) + negl(n).

Proof. The proof of theorem 4.1 consists of a sequence of games. Denote
Ei be the event that the adversary’s guess b′ = 1 in game i.

Game 0

The first game is the experiment ExpIND$-CPA-0
LWEPKE, A , given in Fig. 1. Then we

have

Pr[E0] = Pr[ExpIND$-CPA-0
LWEPKE, A = 1].

Game 1

We consider a modified game, which is the same as Game 0 except for the
second component of the challenge ciphertext (c2) is generated as sᵀ ·C1 +
e′ + q

2m instead of pᵀ ·R + e′ + q
2m.

In game 0, c2 − q
2m = pᵀ · R + e′ = (A · s + e)ᵀ · R + e′ =

sᵀ·Aᵀ·R+eᵀ·R+e′ = sᵀ·Aᵀ·R+eᵀ·R+e′ = sᵀ·C1+eᵀ·R+e′. Similar
to the correctness analysis, we know by Lemma A.1 and Lemma A.2 that
eᵀ ·R + e′

s≈ e′. Thus,

|Pr[E0]−Pr[E1]| ≤ negl(n).

252 Y. Jiang

Game 2

We consider a modified game that is the same as Game 1, except that the first
component of the challenge ciphertext (C1) is sampled from the uniform
distribution over Zn×tq .

From the leftover hash lemma (Lemma. A.6) we know that the joint dis-
tribution of (A,Aᵀ ·R) is tε-close to the uniform distribution over Zm×nq ×
Zn×tq , since the min-entropy of ri is at least n log(q) + 2 log(1/ε) + O(1).

That is, (A,C1)
c≈ (A,U1), for a uniformly random matrix U1, and we

have

|Pr[E1]−Pr[E2]| ≤ tε.

Game 3

We consider a modified game that is the same as Game 2, except that the
second component of the ciphertext (c2) is sampled from the uniform dis-
tribution over Z1×t

q .
Since the DLWEn,q,α problem is hard, the DLWEn,q,β problem is also

hard by Lemma A.4. Therefore, the joint distribution of (C1, s
ᵀ · C1 +

e′) is computationally indistinguishable from the uniform distribution over
Zn×tq ×Z1×t

q , under the DLWEn,q,β problem is hard. That is, (C1, s
ᵀ ·C1 +

e′)
c≈ (C1,u2), for a uniformly random vector u2, and we have

|Pr[E2]−Pr[E3]| ≤ AdvDLWE
n,q,α (B) + negl(n).

We know that Pr[E3] = Pr[ExpIND$-CPA-1
LWEPKE, A = 1]. By Definition 1,

we have AdvIND$-CPA
LWEPKE, A(1λ) = |Pr[E3]− Pr[E0]|, which concludes the

proof.

5 LWE-based Updatable Encryption Scheme

We construct an LWE-based updatable encryption scheme LWEUE and prove
that it is randIND-UE-CPA secure if the underlying LWE problem is hard.

The Direction of Updatable Encryption 253

5.1 UE Construction

We now introduce our updatable encryption scheme LWEUE, which is pa-
rameterized by an LWE-based PKE scheme LWEPKE (see Fig. 21). LWEUE
uses algorithms from LWEPKE to do key generation, encryption and de-
cryption. To generate a new key from an old key in the next algorithm, our
UE scheme uses the homomorphic property of the LWE pairs. In particular,
suppose the old key is (se,pe), LWEUE.KG samples a new pair of LWE
pairs (∆s

e+1,∆
p
e+1) and sets (se + ∆s

e+1,pe + ∆p
e+1) as the new epoch

key, where (∆s
e+1,pe + ∆p

e+1) is the update token. To update ciphertexts,
LWEUE uses the re-randomization idea that was similar to the idea from
RISE in the work by Lehmann and Tackmann [LT18]. As the ciphertext can
be re-randomized by the update token, the update algorithm uses the update
token to update ciphertext from an old one to a new one. More precisely,
the scheme LWEUE is described in Fig. 22.

Parameter Setting. We use the parameter setting of the scheme LWEPKE,
described in Section 4.1. Additionally, we require β ≤ q

8
√
l
, where l =

poly(n) is an upper bound on the last epoch.

5.2 Construction Challenges in LWE-based UE Schemes

In this section, we discuss leakage from tokens due to bad UE construction
and show how to solve this leakage problems.

Secret Key Distribution. We first state that a binary secret does not work
in the UE scheme, as an update token might reveal the secret information.
Suppose an entry of the update token ∆s

e+1(= se+1 − se) is -1 (1, resp.),
then we can conclude the corresponding entry of the previous secret se is 1
(0, resp.) and the corresponding entry of the new secret se+1 is 0 (1, resp.).

We choose that secret keys and update tokens are sampled from the
uniform distribution over Znq , which ensures that any corrupted token will
not reveal any information about the relevant secret keys.

Epoch Key Generation. Intuitively, it is natural to consider generating
the epoch keys by sampling a secret si ← U(Znq) and setting the public key

254 Y. Jiang

Setup(1λ) :

A← LWEPKE.Setup(1λ)

LWEUE.KG(1λ) :
if e = 0 then

(s0,p0)← LWEPKE.KG(1λ)
else

parse ke−1 = (se−1,pe−1)
(∆s

e,∆
p
e)← LWEPKE.KG(1λ)

se ← se−1 + ∆s
e

pe ← pe−1 + ∆p
e

ke ← (se,pe)
return ke

LWEUE.TG(ke,ke+1) :
parse ke = (se,pe)
parse ke+1 = (se+1,pe+1)
∆s

e+1 ← se+1 − se
∆e+1 ← (∆s

e+1,pe+1)
return ∆e+1

LWEUE.Enc(ke,m) :
parse ke = (se,pe)
ce ← LWEPKE.Enc(pe,m)
return ce

LWEUE.Dec(ke, ce) :
parse ke = (se,pe)
m′ ← LWEPKE.Dec(se, ce)
return m′

LWEUE.Upd(∆e+1, ce) :
parse ∆e+1 = (∆s

e+1,pe+1)
parse ce = (C1

e , c
2
e)

(C1, c2)
$←−LWEPKE.Enc(pe+1,0)

C1
e+1 ← C1

e + C1

c2e+1 ← c2e + (∆s
e+1)

ᵀ ·C1
e + c2

ce+1 ← (C1
e+1, c

2
e+1)

return ce+1

Figure 22: The algorithms of LWE-based updatable encryption scheme
LWEUE, which is parameterized by an LWE-based PKE scheme LWEPKE.

to be pi = A · si + ei, where ei ← Dm
Z,α. Then the update token is set as

∆i = (si − si−1,pi).

In a confidentiality game for such UE schemes, suppose the adver-
sary knows two consecutive tokens ∆i−1 and ∆i. Using these tokens the
adversary can compute pi − pi−1 − A · ∆s

i = ei − ei−1, and knows
ei − ei−1. Which means if the adversary knows a set of consecutive tokens
∆i,∆i+1, ...,∆i+j then it will also knows {ei+1−ei, ei+2−ei, ..., ei+j−
ei}, the values in this set are sampled from a discrete Gaussian distribution
centered at ei. Through evaluating these errors the adversary can possibly
find the error value ei and therefore knows the secret value si. Furthermore,
the adversary is allowed to ask for a challenge-equal ciphertext in epoch i,
which will not trigger the trivial win condition, and can therefore break this

The Direction of Updatable Encryption 255

confidentiality game. The above attack shows that this epoch key generation
approach is not safe, it might leak the secret epoch key information.

We choose to generate a fresh pair (∆s
e+1,∆

p
e+1) to compute the new

epoch key and the update token, which makes sure the update token ∆e+1 =
(∆s

e+1,pe+1) is independent from the previous epoch key. Additionally,
this pair is computationally indistinguishable from a uniformly random pair
as long as the underlying LWE problem is hard.

5.3 Correctness

Errors in updated ciphertexts increase when they are updated. Since the
total number of epoch is bounded with a comparatively small integer l, the
UE scheme supports a limited number of ciphertext updates. As a result,
errors in updated ciphertexts will not grow too big and the decryption will
be correct with overwhelming probability for some parameter setting.

Following the correctness analysis of the underlying PKE scheme, en-
crypted ciphertexts decrypt to the correct message with overwhelming prob-
ability. So, we only need to consider if updated ciphertexts will decrypt to
the correct message.

First, assume a ciphertext is encrypted in epoch e and that it will be
updated from epoch e to epoch e + 1. For any m ∈ M, suppose pe =
A · se +

∑e
i=0 ei, pe+1 = A · se+1 +

∑e+1
i=0 ei, (C1

e , c
2
e) = (Aᵀ ·Re,p

ᵀ
e ·

Re + e′e + q
2m) and (C1, c2) = (Aᵀ ·Re+1,p

ᵀ
e+1 ·Re+1 + e′e+1). Then

C1
e+1 = C1

e + C1 (6)

= Aᵀ · (Re + Re+1),

and

c2e+1 = c2e+(∆s
e+1)

ᵀ ·C1
e+c2

= pᵀ
e ·Re+pᵀ

e+1 ·Re+1+(se+1−se)ᵀ ·Aᵀ ·Re+e′e+e′e+1+
q

2
m

= pᵀ
e+1 · (Re+1+Re)−eᵀe+1 ·Re+e′e+e′e+1+

q

2
m

s≈ pᵀ
e+1 · (Re+1+Re)+(e′e+e′e+1)+

q

2
m (7)

= (pᵀ
e+1 ·Re+e′e)+c2+

q

2
m. (8)

256 Y. Jiang

Note that by Lemma A.1 and Lemma A.2, Equation (7) holds. Notice that
the updated ciphertext is of the same shape as the encrypted ciphertext with
the new randomness (Re+Re+1) and new error (e′e+e′e+1). Which means
when we update a ciphertext multiple times the updated ciphertext will keep
the same shape as well, only with a bigger randomness and bigger error.

Iteratively, we consider ciphertext ce′ to be an updated ciphertext up-
dated from epoch e to epoch e′, where 0 ≤ e′ − e < l. Assume ce is the
original encryption. For 0 ≤ i ≤ e′− e, let the re-randomization performed
in epoch e + i outputs (Aᵀ ·Re+i,p

ᵀ
e+1 ·Re+i + e′e+i). Then

C1
e′ = Aᵀ ·

e′−e∑

i=0

Re+i,

and

c2e′ = pᵀ
e′ ·

e′−e∑

i=0

Re+i +
e′−e∑

i=0

e′e+i +
q

2
m− (

e′−e∑

i=1

eᵀe+i · (
i−1∑

j=0

Re+j))

s≈ pᵀ
e′ ·

e′−e∑

i=0

Re+i +
e′−e∑

i=0

e′e+i +
q

2
m. (9)

By Lemma A.1 and Lemma A.2, Equation (9) holds. Then we have
c2e′−s

ᵀ
e′ ·C1

e′
s≈∑e′

i=0 e
ᵀ
i ·
∑e′−e

i=0 Re+i+
∑e′−e

i=0 e′e+i+
q
2m

s≈∑e′−e
i=0 e′e+i+

q
2m. By Lemma A.3, each entry of

∑e′−e
i=0 e′e+i is of the size at most√

e′ − e · β with overwhelming probability, which has distance at most q
8

from 0 mod q because β ≤ q

8
√
l

and e′ − e < l. In summary, LWEUE.Dec

decrypts correctly with overwhelming probability.

5.4 Challenges of the Security Proof in LWE-based UE Schemes

In this section we highlight the difficulties when proving that LWEUE is a
secure UE scheme, specifically, our UE scheme has a randomized update
algorithm. Lehmann and Tackmann [LT18] and Klooß et al. [KLR19] both
described a method, similar to each other, to prove that updatable encryption
schemes with randomized update algorithms are secure. Their technique
can be seen when they prove that RISE and NYUE (NYUAE) are secure,
resp. However, this method can not be directly used to prove that LWEUE

The Direction of Updatable Encryption 257

is secure. The method introduced requires that UE schemes have perfect
re-encryption, which means the distribution of updated ciphertexts has the
same distribution as fresh encryptions. In their proof, they replace updated
ciphertexts by fresh encryptions of the underlying messages. However, in
the LWEUE scheme, we cannot simply replace updated ciphertexts by a
fresh encryption because the randomness terms and the error terms grow
while updating and an updated ciphertext does not have the same distribu-
tion as a fresh encryption.

5.5 Security

If LWEPKE is IND$-CPA-secure then the output of the encryption algo-
rithm is computationally indistinguishable from a pair of uniformly random
elements. Hence, the fresh encryption in the LWEUE scheme is computa-
tionally indistinguishable from a pair of uniformly random elements as well.
Furthermore, the update algorithm LWEUE.Upd runs the encryption algo-
rithm of LWEPKE to re-randomize the old ciphertext to a new ciphertext,
therefore, the updated ciphertext is also computationally indistinguishable
from a pair of uniformly random elements. So, a fresh encryption is com-
putationally indistinguishable from an updated ciphertext and LWEUE is
randIND-UE-CPA secure (see Definition 5). This provides the underlying
intuition for the security proof.

5.5.1 Technical Simulations in the Proof

Simulate Public Keys. Suppose p0 = A · s0 + e0 and (∆s
i ,∆

p
i) =

(∆s
i ,A · ∆s

i + ei) for i > 0, where s0,∆
s
i ← U(Znq) and ei ← Dm

Z,α.
Then

pe = pe−1 + A ·∆s
e + ee

= pj + A · (
e∑

i=j+1

∆s
i) +

e∑

i=j+1

ei (10)

= A · se +
e∑

i=0

ei. (11)

Equation (10) shows that any public key can be simulated by any other
public key and tokens. Equation (11) shows that any public key can be

258 Y. Jiang

simulated by the corresponding secret key.

Simulate Updated Ciphertexts. Then we consider how to simulate up-
dated ciphertexts by only using public keys. We will have a bookkeeping
in set L to track the randomness R and the big error e′. Specifically, we
record L as L ← L ∪ {(c, ce, e;Re, e

′
e,m)}.

To simulate an updated ciphertext from epoch e to epoch e+ 1, suppose
(c, ce, e;Re, e

′
e,m) ∈ L, and the new public key is pe+1. We use the new

public key to perform the re-randomization, to produce (C1, c2). Suppose
(C1, c2) = (Aᵀ · R,pᵀ

e+1 · R + e′), then we use Equations (6) and (8)
to simulate the updated ciphertext ce+1 = (C1

e+1, c
2
e+1), where C1

e+1 =
C1

e +C1 and c2e+1 = (pᵀ
e+1 ·Re+e′e+ q

2m)+c2. After simulation, the set
Lwill store the updated ciphertext with the updated randomness Re+R and
the updated error e′e+e′, i.e. L ← L∪{(c, ce+1, e+1;Re+R, e′e+e′,m)}.
We use the re-randomization algorithm reR described in Fig. 23 to simulate
updated ciphertexts.

reR(pe+1, ce = (C1
e , c

2
e);Re, e

′
e,m) :

R← Dtr
e′ ← D1×t

Z,β
C1 ← Aᵀ ·R
c2 ← pᵀ

e+1 ·R + e′

C1
e+1 ← C1

e + C1

c2e+1 ← (pᵀ
e+1 ·Re + e′e + q

2m) + c2

Re+1 ← Re + R
e′e+1 ← e′e + e′

return (ce+1;Re+1, e
′
e+1)

Figure 23: Algorithm reR, used to simulate updated ciphertexts.

5.5.2 LWEUE is randIND-UE-CPA

Theorem 5.1 (LWEUE is randIND-UE-CPA). Let LWEUE be the updatable
encryption scheme described in Fig. 22, using parameter setting described
in Section 5.1. For any randIND-UE-CPA adversary A against LWEUE,

The Direction of Updatable Encryption 259

there exists an adversary B5.1 against DLWEn,q,α such that

AdvrandIND-UE-CPA
LWEUE, A (1λ) ≤ 2(l+ 1)3 ·

(
tε+ 3AdvDLWE

n,q,α (B5.1) + negl(n)
)
.

Overview of the Security Proof. We now explain how we bound the ad-
vantage of any adversary playing the randIND-UE-CPA game for LWEUE
by the DLWE advantage.

To prove the security, we play a hybrid game over epochs, where the
reduction constructs one hybrid for each epoch. In hybrid i, to the left of
epoch i the game returns real challenge-equal ciphertexts, to the right of
epoch i the game returns random ciphertexts. This means we have one
hybrid for each epoch, moving real-to-random across the epoch space.

In each hybrid, we play an intermediate sequence of games. In the first
game, we apply the firewall technique to set up a modified hybrid game.
This modification ensures that the reduction (we will construct this reduc-
tion later) can simulate the modified hybrid game because it can provide
valid keys and tokens to the adversary and easily check the trivial win con-
ditions. In the second game, we change how the update algorithm runs by
only using the public key without the update token (see the technique in
Section 5.5.1), which helps the reduction to simulate updated ciphertexts.
It is impossible to simulate updated ciphertext across firewalls, if the token
is needed when updating, as the reduction does not know tokens in both
firewalls. Our scheme makes it possible to generate updated ciphertexts
using only the public key. In the third game, we change how public keys
are generated, which makes sure that the reduction can simulate valid pub-
lic keys. Eventually, we construct a reduction playing the IND$-CPA (the
IND$-CPA advantage is upper bounded by the DLWE advantage) game by
simulating the third game to an adversary. The IND$-CPA game moves the
real challenge-equal ciphertext in epoch i to a random ciphertext, which
means the fresh encryption is computationally indistinguishable from the
updated ciphertext.

Proof. In this proof, we use three steps to reach our desired goal. In the first
step, we use a sequence of hybrid gamesHi to bound the randIND-UE-CPA
advantage. In the second step, we bound the advantage of each hybrid game
to the advantage of a modified hybrid game Gi. In the third step, we bound

260 Y. Jiang

the advantage of the modified hybrid game Gi to the DLWE advantage, using
an intermediate sequence of games.

Step 1. For b ∈ {0, 1}, we construct a sequence of hybrid games Hb
0 , ...,

Hb
l+1. In game Hb

i , if the adversary asks for a challenge-equal ciphertext
by the O.Chall query or a O.UpdC̃ query, with challenge input (m̄, c̄), in
epoch j:

• if j < i, then return a real challenge-equal ciphertext, which is (up-
dated from) the encryption of m̄ if b = 0 or an updated ciphertext of
c̄ if b = 1,

• if j ≥ i, return a random ciphertext.

Thus Hb
l+1, i = l + 1, is ExprandIND-UE-CPA-b

LWEUE,A , i.e. all challenge re-
sponses are real challenge-equal ciphertexts. Notice that H0

0 = H1
0 , i = 0,

because all challenge responses are random ciphertexts. We have

AdvrandIND-UE-CPA
LWEUE, A (1λ) =

∣∣Pr[H1
l+1 = 1]−Pr[H0

l+1 = 1]
∣∣

≤
l+1∑

i=1

|Pr[H1
i = 1]−Pr[H1

i−1 = 1]|

+
l+1∑

i=1

|Pr[H0
i = 1]−Pr[H0

i−1 = 1]|.

Step 2. In Hybrid i, for b ∈ {0, 1}, letA′i be an adversary trying to distin-
guish game Hb

i from game Hb
i−1. For all queries concerning epochs other

than i the responses will be equal in either game, so we assume that A′i
asks for a challenge-equal ciphertext in epoch i, therefore there exist two
epochs4 (denote fwl, fwr) around the epoch i such that no key in the se-
quence of epochs (fwl, ..., fwr) and no token in epochs fwl and fwr + 1 are
corrupted.

4This observation was introduced in the work of Lehmann and Tackmann [LT18], Klooß
et al. [KLR19] provided an extended description of this key insulation technique, and Boyd
et al. [BDGJ20] formally defined it as firewall technique.

The Direction of Updatable Encryption 261

Furthermore,Hb
j = Hb

0 , for all j < ẽ, since the adversary never asks for
a challenge-equal ciphertext before the challenge epoch (ẽ). So we assume
i ≥ ẽ.

Define a new game Gbi that is the same as game Hb
i , except for the

game randomly picks two numbers fwl, fwr $←− {0, ..., l}. If the adversary
corrupts a key in the sequence of epochs (fwl, ..., fwr) or a token in epochs
fwl and fwr + 1, the game aborts. This loss is upper bounded by (l + 1)2.
Then we have

|Pr[Hb
i = 1]−Pr[Hb

i−1 = 1]| ≤ (l + 1)2|Pr[Gbi = 1]−Pr[Gbi−1 = 1]|.

Step 3. In this step, we will prove that |Pr[Gbi = 1] − Pr[Gbi−1 = 1]| is
upper bounded by the DLWE advantage.

Claim 5.1.1. For any b ∈ {0, 1}, there exists an adversary B5.1 against
DLWEn,q,α such that

|Pr[Gbi = 1]−Pr[Gbi−1 = 1]| ≤ tε+ 3AdvDLWE
n,q,α (B5.1) + negl(n).

Proof of Claim 5.1.1. AssumeAi is an adversary trying to distinguish Gbi
from Gbi−1, and Ai asks for a challenge-equal ciphertext in epoch i (i ≥ ẽ).
The proof of Claim 5.1.1 consists of the following sequence of games.

Game 0

The game flips a coin d $←− {0, 1}, if d = 0 it plays game Gbi−1 (responses a
real challenge-equal ciphertext in epoch i) to Ai, if d = 1 it plays game Gbi
(responses a random ciphertext in epoch i) to Ai. Denote Ei be the event
that the adversary succeeds in guessing d in game i.

Then we have

Pr[E0] = |Pr[Gbi = 1]−Pr[Gbi−1 = 1]|.

Game 1

We consider a modified game that is the same as Game 0, except for the
updated ciphertext is generated by using only public key without the secret
token. More precisely, the game running the update algorithm as follows.

262 Y. Jiang

O.Upd(ce−1) :
if (·, ce−1, e− 1;Re−1, e′e−1,m) 6∈ L then

return ⊥
(ce;Re, e

′
e)← reR(pe, ce−1;Re−1, e′e−1,m)

L ← L ∪ {(·, ce, e;Re, e
′
e,m)}

return ce

The re-randomization algorithm reR is described in Fig. 23. By the
analysis in Section 5.5.1, we have

|Pr[E1]−Pr[E0]| ≤ negl(n).

Game 2

We consider a modified game that is the same as Game 1, except for the
public key in epoch fwl is generated with one additional error and the pub-
lic key in epoch fwr + 1 is generated with one error less. In particular, let
∆s

fwl,∆
s
fwr+1 ← U(Znq) and efwl, e ← Dm

Z,α, these public keys are gener-
ated as follows.

pfwl = pfwl−1 + A ·∆s
fwl + efwl + e,

pfwr+1 = pfwr + A ·∆s
fwr+1 − e.

We claim that, in Game 2, all public key distributions except for pfwl are
equal to the corresponding real public key distributions. Furthermore, the
public key pfwl produced in Game 2 is computationally indistinguishable
from the real public key pfwl.

Any public key that is in an epoch smaller than fwl, or greater than
fwr+ 1, are generated by algorithm LWEUE.KG in both games. So we only
consider public keys from epoch fwl to epoch fwr+1. In Game 2, the public
keys from epoch fwl to epoch fwr + 1 are computed as follows.

pfwl = pfwl−1 + A ·∆s
fwl + efwl + e, (12)

...

pi = pi−1 + A ·∆s
i + ei, (13)

...

pfwr = pfwr−1 + A ·∆s
fwr + efwr, (14)

pfwr+1 = pfwr + A ·∆s
fwr+1 − e. (15)

The Direction of Updatable Encryption 263

Based on Equation (13), (14), and (15), we know that public keys pfwl+1,
..., pfwr,pfwr+1 are generated as real public keys by running algorithm
LWEUE.KG. Furthermore, note that A · ∆s

fwl + efwl is computationally
indistinguishable from a uniform random element in Zmq . Therefore, the
public value pfwl in both games are computationally indistinguishable from
a uniform random element in Zmq , under the DLWEn,q,α problem. Then we
have

|Pr[E2]−Pr[E1]| ≤ 2 ·AdvDLWE
n,q,α .

Now we are almost finished, all we need to prove now is that Pr[E2] ≤
AdvIND$-CPA

LWEPKE, B̃5.1
(1λ) + negl(n), which we claim is true in Claim 5.1.2.

Finally, by Theorem 4.1, we get Pr[E2] ≤ tε + AdvDLWE
n,q,α + negl(n),

which concludes the proof of Claim 5.1.1.

Claim 5.1.2. Pr[E2] ≤ AdvIND$-CPA
LWEPKE, B̃5.1

(1λ) + negl(n).

Proof of Claim 5.1.2. Before we start constructing a reduction to simulate
Game 2 we need the following equations, describing the public key in an
epoch j:

• For fwl < j ≤ fwr, we have

pj = pj−1 + A ·∆s
j + ej

= pfwl + A · (
j∑

k=fwl+1

∆s
k) +

j∑

k=fwl+1

ek

= (pfwl−1 + A ·∆s
fwl + efwl + e) + A · (

j∑

k=fwl+1

∆s
k) +

j∑

k=fwl+1

ek

= e + A · (s0 +

j∑

k=1

∆s
k) +

j∑

k=0

ek

= (A · sj + e) +

j∑

k=0

ek, (16)

Equation (16) also holds for j = fwl, it follows from Equation (11)
and (12). This equation will be used to simulate the public key in
epoch i.

264 Y. Jiang

• For i < j ≤ fwr, we have

pj = pi +
(
A · (

j∑

k=i+1

∆s
k) +

j∑

k=i+1

ek
)
. (17)

• Similarly, for fwl ≤ j < i, we have

pj = pi −
(
A · (

i∑

k=j+1

∆s
k) +

i∑

k=j+1

ek
)
. (18)

• For j = fwr + 1, we have

pfwr+1 = pfwr + A ·∆s
fwr+1 − e

= (A · sfwr + e +
fwr∑

k=0

ek) + A ·∆s
fwr+1 − e

= A · sfwr+1 +
fwr∑

j=0

ej . (19)

We construct a reduction B̃5.1, detailed in Fig. 24, that is playing the
IND$-CPA game and will simulate the responses of queries made by adver-
sary Ai in game 2. Initially, the reduction guesses two numbers fwl, fwr. If
Ai corrupts kfwl, ...,kfwr, ∆fwl, or ∆fwr+1 the reduction aborts the game.

A summary of the technical simulations are as follows.

• In the setup phrase,

– B̃5.1 samples errors and tokens as follows.

∗ For j ∈ {0, ..., fwr} ∪ {fwr + 2, ..., n}, B̃5.1 samples each
error as ej ← Dm

Z,α,

∗ For j ∈ {fwl + 1, ..., fwr}, B̃5.1 samples each token as
∆s
j ← U(Znq).

– B̃5.1 generates all keys and tokens, except for kfwl, ...,kfwr,
∆fwl, ∆fwr+1, as follows.

The Direction of Updatable Encryption 265

For b ∈ {0, 1}, B̃5.1 plays
IND$-CPA game by running Ai :

receive (A,p)
do Setup
b′ ← Aoraclesi (1λ)
if ABORT occurred or C∗ ∩ K∗ 6= ∅
or i /∈{fwl,..., fwr} or i < ẽ then
b′ $←− {0, 1}
return b′

if b′ = b then
return 0

else
return 1

Setup(1λ)
∆0 ←⊥; e← 0; phase, twf ← 0;
L, L̃, C,K, T ← ∅
fwl, fwr

$←− {0, ..., l}
for j ∈ {0, ..., n}†† do
ej ← Dm

Z,α
for j ∈ {fwl+1, ..., fwr} do

∆s
j ← U(Znq)

for j∈{0,..., fwl-1}
or j∈{fwr+1,..., n} do
sj ← U(Znq); ∆s

j ← sj-s
†
j-1;

pj ← A · sj+
∑j

k=0 e
††
k

pi ← p+
∑i

k=0 ek
for j∈{fwl, ..., i-1} do
pj←p-A

∑i
k=j+1 ∆s

k+
∑j

k=0 ek
for j∈{i+1, ..., fwr} do
pj←p+A

∑j
k=i+1 ∆s

k+
∑j

k=0 ek

O.Enc(m) :
c← c+1
ce ← LWEUE.Enc(pe,m)
L ← L ∪ {(c, ce, e;Re, e

′
e,m)}

return ce

O.Next :
e← e+1

O.Corr(inp, ê) :
if ê > e then

return ⊥
if inp = key then

if ê ∈ {fwl, ..., fwr} then
ABORT

else
K ← K ∪ {ê}
return kê

if inp = token then
if ê ∈ {fwl, fwr+1} then
ABORT

else
T ← T ∪ {ê}
return ∆ê

O.UpdC̃ :
if phase 6= 1 then

return ⊥
C ← C ∪ {e}
L̃ ← L̃ ∪ {(c̃e, e)}
return c̃e

Figure 24: Part 1. Reduction B̃5.1 for proof of Claim 5.1.2. † indicates ∆0

and ∆fwr+1 are skipped in the computation. †† indicates efwr+1 is skipped
in the computation.

266 Y. Jiang

O.Upd(ce-1) :
if (·, ce-1, e-1;Re-1, e′e-1,m) 6∈L then

return ⊥
(ce;Re, e

′
e)← reR(pe, ce-1;Re-1, e′e-1,m)

L ← L ∪ {(·, ce, e;Re, e
′
e,m)}

return ce

O.Chall(m̄0, c̄) :
if phase = 1 then

return ⊥
phase← 1; ẽ← e
if (·, c̄=(C̄1, c̄2), ẽ-1;Rẽ-1, e′ẽ-1, m̄1) 6∈L then

return ⊥
Send m̄b to the IND$-CPA challenger, get (X,y)
if ẽ = i then

if b = 0 then
c̃ẽ ← (X,y)

else
c̃ẽ ← (X+C̄1,y+pᵀ

ẽ ·Rẽ-1+e′ẽ-1)
else

if b = 0 then
c̃ẽ ← LWEUE.Enc(pẽ, m̄0)

else
(c̃ẽ;Rẽ, e

′
ẽ)← reR(pẽ, c̄;Rẽ-1, e′ẽ-1, m̄1)

for j ∈ {ẽ+1, ..., i-1} do
(c̃j ;Rj , e

′
j)← reR(pj , c̃j-1;Rj-1, e′j-1, m̄b)

c̃i ← (X+C̃1
i-1,y+pᵀ

i ·Ri-1+e′i-1)
for j ∈ {i+1, ..., n} do
c̃j

$←− CS
C ← C ∪ {ẽ}
L̃ ← L̃ ∪ {(c̃ẽ, ẽ)}
return c̃ẽ

Figure 24: Part 2. Reduction B̃5.1 for proof of Claim 5.1.2.

The Direction of Updatable Encryption 267

∗ B̃5.1 generates the initial key by running the key generation
algorithm. In particular, k0 ← LWEUE.KG(1λ) is com-
puted as: randomly sample a secret key s0 ← U(Znq), set
k0 ← (s0,A · s0 + e0).
∗ For j ∈ {1, ..., fwl− 1} ∪ {fwr + 2, ..., n}, B̃5.1 generates

the epoch key and update token by running the key genera-
tion algorithm and the token generation algorithm. In par-
ticular, kj←LWEUE.KG(1λ) and ∆j←LWEUE.TG(kj−1,
kj) are computed as: randomly sample a secret key sj ←
U(Znq), set token ∆s

j ← sj − sj−1 and public key pj ←
A · sj +

∑j
k=0 ek

5.

∗ B̃5.1 generates kfwr+1 by using Equation (19): randomly
sample a secret key sfwr+1 ← U(Znq), set public key pfwr+1

← A · sfwr+1 +
∑fwr

k=0 ek.

– B̃5.1 generates public keys pfwl, ...,pfwr as follows.

∗ B̃5.1 generates pi by using Equation (16): embed the public
key p received from its IND$-CPA challenger to pi, set
pi ← p +

∑i
k=0 ek

6.
∗ For fwl ≤ j < i, pj is generated by using Equations

(16,18): set public key pj ← p − A · ∑i
k=j+1 ∆s

j +∑j
k=0 ek.

∗ For i < j ≤ fwr, pj is generated by using Equations
(16,17): set public key pj ← p + A · ∑j

k=i+1 ∆s
j +∑j

k=0 ek.

• To simulate non-challenge ciphertexts: B̃5.1 uses public keys to simu-
late encrypted ciphertexts and updated ciphertexts. In particular, B̃5.1
runs the re-randomization algorithm reR to simulate updated cipher-
texts.

• To simulate challenge-equal ciphertexts in an epoch that is:

5If j > fwr + 1, skip efwr+1 in the computation. This computation is based on Equa-
tions (11,19)

6set A · si + e← p

268 Y. Jiang

– to the left of epoch i: B̃5.1 uses public keys to simulate encryp-
tion and updating. When B̃5.1 runs update algorithm, it per-
forms re-randomization using algorithm reR, which is described
in Fig. 23.

– epoch i: B̃5.1 embeds the challenge ciphertext (X,y) received
from its IND$-CPA challenger to the challenge-equal ciphertext
in epoch i. Using (X,y) as the re-randomization component
or the random encryption component. More precisely, suppose
B̃5.1 receives a challenge query O.Chall with input (m̄0, c̄) in
challenge epoch ẽ, where the underlying message of c̄ is m̄1.
B̃5.1 sends m̄b to its IND$-CPA challenger and obtains (X,y).
Hence, (X,y) is either an output of LWEPKE.Enc(p, m̄b)7 or
a random ciphertext.
For b = 1. In the former case, based on Equations (6, 8), we
know that (C̃1

i , c̃
2
i) = (C̃1

i−1 +X, (pᵀ
i ·Ri−1 +e′i−1) +y) is a

valid simulation of the challenge-equal ciphertext in epoch i. In
the latter case, (C̃1

i , c̃
2
i) = (C̃1

i−1 +X, (pᵀ
i ·Ri−1 +e′i−1)+y)

is a random ciphertext.
For b = 0. The analysis is similar to the discussion when b = 1.

– to the right of epoch i: B̃5.1 samples a random ciphertext.

Eventually, B̃5.1 receives the output bit fromAi. IfAi guesses that it re-
ceives a real challenge-equal ciphertext in epoch i, then B̃5.1 guesses that it
has seen the real encryption (returns 0 to its IND$-CPA challenger). Other-
wise, B̃5.1 guess it has seen a random ciphertext (returns 1 to its IND$-CPA
challenger).

Note that B̃5.1 perfectly simulates the responses of queries made by
adversary Ai in game 2 except for a negligible probability. Then we have
that Pr[E2] ≤ AdvIND$-CPA

LWEPKE, B̃5.1
(1λ) + negl(n).

Remark 5.1. Klooß et al. [KLR19] introduced a generic construction of
transforming CPA-secure UE schemes to UE schemes with PTXT and RCCA
security. The main idea is to use the extended Naor-Yung (NY) CCA-
transform [NY90] (for public-key schemes). The NY approach is to encrypt
a message under two (public) keys of a CPA-secure encryption scheme. The

7y is statistically close to the second component of LWEPKE.Enc(pi, m̄b) in this case.

The Direction of Updatable Encryption 269

extended NY approach additionally includes a proof that shows the owner
knows a valid signature that contains the NY ciphertext pair and the under-
lying message. A potential future work would be to incorporate LWEUE to
their construction to create a UE scheme that achieves PTXT and RCCA
security.

Acknowledgements. We would like to thank Gareth T. Davies, Herman
Galteland and Kristian Gjøsteen for fruitful discussions, and the anonymous
reviewers for a number of valuable suggestions.

References

[ABD+a] Erdem Alkim, Joppe W. Bos, Léo Ducas, Karen East-
erbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov,
Valeria Nikolaenko, Chris Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM: Learning With Errors
Key Encapsulation. https://frodokem.org/files/
FrodoKEM-specification-20190330.pdf. Sub-
mission to the NIST Post-Quantum Standardization project,
round 2.

[ABD+b] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike
Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber (version 2.0).
https://pq-crystals.org/kyber/data/
kyber-specification-round2.pdf. Submis-
sion to the NIST Post-Quantum Standardization project,
round 2.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter
Schwabe. Post-quantum Key Exchange - A New Hope. In
USENIX Security Symposium, pages 327–343. USENIX As-
sociation, 2016.

[BCLvV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja
Lange, and Christine van Vredendaal. NTRU Prime: Re-

270 Y. Jiang

ducing attack surface at low cost. In SAC, volume 10719 of
Lecture Notes in Computer Science, pages 235–260. Springer,
2017.

[BDGJ20] Colin Boyd, Gareth T. Davies, Kristian Gjøsteen, and Yao
Jiang. Fast and secure updatable encryption. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part I, volume 12170 of Lecture
Notes in Computer Science, pages 464–493. Springer, 2020.

[BEKS20] Dan Boneh, Saba Eskandarian, Sam Kim, and Maurice
Shih. Improving Speed and Security in Updatable Encryption
Schemes. IACR Cryptology ePrint Archive, 2020:222, 2020.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and
Ananth Raghunathan. Key homomorphic prfs and their appli-
cations. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 18-22, 2013. Pro-
ceedings, Part I, volume 8042 of Lecture Notes in Computer
Science, pages 410–428. Springer, 2013.

[BLMR15] Dan Boneh, Kevin Lewi, Hart William Montgomery, and
Ananth Raghunathan. Key homomorphic PRFs and their ap-
plications. IACR Cryptology ePrint Archive, 2015:220, 2015.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomor-
phic Encryption from Ring-LWE and Security for Key Depen-
dent Messages. In Phillip Rogaway, editor, Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings,
volume 6841 of Lecture Notes in Computer Science, pages
505–524. Springer, 2011.

[CDH+] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas
Hülsing, Joost Rijneveld, John M. Schanck, Peter Schwabe,
William Whyte, and Zhenfei Zhang. NTRU. https://

The Direction of Updatable Encryption 271

ntru.org/f/ntru-20190330.pdf. Submission to the
NIST Post-Quantum Standardization project, round 2.

[DKRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha
Roy, and Frederik Vercauteren. Saber: Module-lwr based key
exchange, cpa-secure encryption and cca-secure KEM. In An-
toine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, ed-
itors, Progress in Cryptology - AFRICACRYPT 2018 - 10th
International Conference on Cryptology in Africa, Marrakesh,
Morocco, May 7-9, 2018, Proceedings, volume 10831 of Lec-
ture Notes in Computer Science, pages 282–305. Springer,
2018.

[EPRS17] Adam Everspaugh, Kenneth G. Paterson, Thomas Ristenpart,
and Samuel Scott. Key rotation for authenticated encryption.
In Proceedings of CRYPTO 2017 III, volume 10403 of LNCS,
pages 98–129. Springer, 2017.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD
thesis, Stanford, CA, USA, 2009. AAI3382729.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and
Vinod Vaikuntanathan. Robustness of the learning with errors
assumption. In Andrew Chi-Chih Yao, editor, Innovations in
Computer Science - ICS 2010, Tsinghua University, Beijing,
China, January 5-7, 2010. Proceedings, pages 230–240. Ts-
inghua University Press, 2010.

[Ham] Mike Hamburg. Three Bears. https://sourceforge.
net/projects/threebears/. Submission to the NIST
Post-Quantum Standardization project, round 2.

[KLR19] Michael Klooß, Anja Lehmann, and Andy Rupp. (R)CCA se-
cure updatable encryption with integrity protection. In Pro-
ceedings of EUROCRYPT 2019 I, volume 11476 of LNCS,
pages 68–99. Springer, 2019.

[LLJ+] Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan
He, Zhenfei Zhang, Zhe Liu, Hao Yang, Bao Li, and Kunpeng

272 Y. Jiang

Wang. LAC Lattice-based Cryptosystems. Submission to the
NIST Post-Quantum Standardization project, round 2.

[LT18] Anja Lehmann and Björn Tackmann. Updatable encryption
with post-compromise security. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III,
volume 10822 of Lecture Notes in Computer Science, pages
685–716. Springer, 2018.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems prov-
ably secure against chosen ciphertext attacks. In Harriet Or-
tiz, editor, Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Mary-
land, USA, pages 427–437. ACM, 1990.

[OZS+] Garcia-Morchon Oscar, Zhang Zhenfei, Bhattacharya Sauvik,
Rietman Ronald, Tolhuizen Ludo, Torre-Arce Jose-Luis, Baan
Hayo, Saarinen Markku-Juhani O., Fluhrer Scott, Laarhoven
Thijs, Player Rachel, Cheon Jung, Hee, and Son Yongha.
Round5. https://round5.org. Submission to the NIST
Post-Quantum Standardization project, round 2.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.
A framework for efficient and composable oblivious trans-
fer. In David A. Wagner, editor, Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 17-21, 2008. Pro-
ceedings, volume 5157 of Lecture Notes in Computer Science,
pages 554–571. Springer, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. In Harold N. Gabow and Ronald Fa-
gin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24,
2005, pages 84–93. ACM, 2005.

The Direction of Updatable Encryption 273

A Lattice Background

A.1 Hardness Assumptions – Learning With Errors

Regev [Reg05] introduced the learning with error (LWE) problem, where is
as follows. For a secret element s and an error distribution X , the problem
is to distinguishm pairs (ai,ai ·s+ei) from uniformly random pairs, where
ai are uniformly random elements and the eis are sampled from the error
distribution X .

Definition 12. [Learning With Errors] Let n, q = q(n) ≥ 2, m = poly(n)
be positive integers, X = X (n) be an error distribution over Z. The de-
cision learning with errors problem DLWEn,q,X is to distinguish between
the following pairs of distributions: {A,A · s + e mod q} and {A,u},
where A

$←− Zm×nq , s $←− Znq , e ← Xm and u
$←− Zmq . The advantage of an

adversary A against DLWEn,q,X is defined as

AdvDLWE
n,q,X (A) =

∣∣Pr[s
$←− Znq ,A

$←− Zm×nq , e← Xm : A(A,A · s + e mod q) = 1]

−Pr[A
$←− Zm×nq ,u

$←− Zmq : A(A,u) = 1]
∣∣.

We say that the DLWEn,q,X problem is hard if AdvDLWE
n,q,X (A) is negligible

for any PPT adversary A.

Regev [Reg05] showed that, for some parameter setting, LWE problem
is as hard as some hard lattice problem, namely the worst-case SIVP and
GapSVP, under a quantum reduction.

Another variant of the LWE problem is described in the work of Peikert
et al. [PVW08], where secret key s is not a vector but a randomly chosen

matrix. Specifically, A $←− Zm×nq , S $←− Zn×lq and E← Xm×l, the problem

is to distinguish {A,A · S + E} from {A,U}, where U
$←− Zm×lq . We

denote this problem as DLWEn,l,q,X . Peikert et al. [PVW08, Lemma 7.3]
proved that DLWEn,l,q,X is hard if DLWEn,q,X is hard.

Gaussian Distribution. LetDZn,α denote the n-dimensional discrete Gaus-
sian distribution with standard deviation α. We let DLWEn,q,α denote the

274 Y. Jiang

LWE problem DLWEn,q,DZn,α using a (discrete) Gaussian distribution as
the error distribution.

The following three lemmas regarding discrete Gaussian distribution
we will frequently use in this paper. The first lemma states that the discrete
Gaussian distribution is spherical. The second lemma shows the discrete
Gaussian distribution is statistical close to its (short distance) translated dis-
crete Gaussian distribution. The third lemma describes the sum of two dis-
crete Gaussian distributions is statistical close to another discrete Gaussian
distribution.

Lemma A.1. [Brakerski and Vaikuntanathan [BV11]] Let n ∈ N. For any
real number α = ω(

√
log n), we have Pr[‖x‖ > α · √n | x ← DZn,α] ≤

2−n+1.

Lemma A.2. [Brakerski and Vaikuntanathan [BV11]] Let n ∈ N. For any
real number α = ω(

√
log n), any c ∈ Zn, then the statistical distance

between DZn,α and DZn,α,c is at most ‖c‖/α.

Lemma A.3. [Gentry [Gen09]] Let n ∈ N. For any real number α, β > 0
satisfies (αβ)/

√
α2 + β2 = ω(

√
log n), thenDZn,α+DZn,β (andDZn,α−

DZn,β) is statistical to DZn,
√
α2+β2 .

Next we show a lemma that states that if an LWE problem with small
standard deviation is hard, then the corresponding LWE with a big standard
deviation is hard.

Lemma A.4. Let n ∈ N. For any real number α, β > 0 satisfies α/β =
negl(n) then for any adversary A against DLWEn,q,β , there exists an adver-
sary B against DLWEn,q,α such that

AdvDLWE
n,q,β (A) ≤ AdvDLWE

n,q,α (B) + negl(n).

Proof. We construct a reduction B plays DLWEn,q,α game by running ad-
versary A. When the reduction receives a DLWEn,q,α pair (A,p), it sam-
ples a big error e′ ← Dm

Z,β and sends (A,p+e′ mod q) toA. If (A,p) is a
real DLWEn,q,α sample, by Lemma A.2, we have (A,p+e′ mod q) is sta-
tistical close to a real DLWEn,q,β sample. If (A,p) is a random DLWEn,q,α
sample, then (A,p + e′ mod q) is a random DLWEn,q,β sample as well.
So the reduction B perfectly simulate DLWEn,q,β game to A except for a
negligible probability.

The Direction of Updatable Encryption 275

A.2 Leftover Hash Lemma

We use a variant of Leftover Hash Lemma [GKPV10]. We use this lemma
to prove our LWE-based PKE scheme is IND$-CPA-secure in Section 4.

Lemma A.5. [Leftover Hash Lemma] Let D be a distribution over Znq with
min-entropy k. For any ε > 0 and l ≤ (k − 2 log(1/ε) − O(1))/ log(q),
the joint distribution of (C,Cs) is ε-close to the uniform distribution over

Zl×nq × Zlq, where C
$←− Zl×nq and s← D.

We prove that when we reuse C to generate t samples, the above result
is still hold.

Lemma A.6. [Matrix Variant of Leftover Hash Lemma] Let D be a distri-
bution over Znq with min-entropy k. For any ε > 0 and l ≤ (k−2 log(1/ε)−
O(1))/ log(q), the joint distribution of (C,C ·S) is tε-close to the uniform

distribution over Zl×nq × Zl×tq , where C
$←− Zl×nq and S← Dt.

Proof. The proof method is the same as the proof of Lemma 7.3 stated by
Peikert et al. [PVW08]. Consider hybrid distributions H0, H1, ..., Ht for
the pair (C,B): in Hi the entire matrix C and the first i columns of B are
all uniformly random. Then H0 is the joint distribution of (C,C · S), Ht is
the uniform distribution over Zl×nq × Zl×tq .

Hence,
∣∣Pr[(C,B)← H0 : A(C,B) = 1]−Pr[(C,B)← Ht : A(C,B) = 1]

∣∣

≤
∑

1≤i≤t

∣∣Pr[(C,B)←Hi−1 :A(C,B)=1]−Pr[(C,B)←Hi :A(C,B)=1]|.

We construct a reduction B trying to simulate distribution Hi−1 or Hi

by contacting with an oracle O. The oracle O returns a sample either from
the distribution of (C,C · s) or the uniform distribution over Zl×nq × Zlq,
where s is chosen from D. B simulates a distribution in the following way:

1. B queries oracle O to obtain a sample (C,p), sets pi ← p.

2. For j > i, B samples sj ← D and computes pj ← C · sj .

3. For j < i, B samples pj
$←− Zlq.

276 Y. Jiang

4. B sets pj as the j-th column of B.

5. B outputs (C,B).

Note that B can perfectly simulate the distribution Hi−1 if it receives
a sample from the distribution of (C,C · s), that is Pr[(C,B) ← Hi−1 :
A(C,B) = 1] = Pr[(C,C · s) ← O : B(C,C · s) = 1]. Otherwise,
B can perfectly simulate the distribution Hi, that is Pr[(C,B) ← Hi :
A(C,B) = 1] = Pr[(C,u)← O : B(C,u) = 1].

The Direction of Updatable Encryption 277

