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a b s t r a c t 

Flexible thermal power plants integrated with CO 2 capture systems can balance the intermittent power 

generation of renewable energy sources with low-carbon electricity. Among these power systems, natu- 

ral gas combined cycles will play a fundamental role because of their faster operation and higher effi- 

ciency. Optimisation-based control strategies can enhance the flexible power dispatch of these systems 

and improve their performance during transient operation. This work proposes a model predictive con- 

trol (MPC) strategy to stabilise these power plants with post-combustion CO 2 capture based on tem- 

perature swing chemical absorption and provide offset-free reference tracking. A delta-input formulation 

with disturbance modelling is proposed, as it provides more efficient computation with offset-free con- 

trol. Data-based models were developed to replicate the performance of the actual power and capture 

plants. Prediction of nonlinear behaviour was accomplished by creating a network of local linear models, 

which allowed the formulation of the dynamic optimisation program in the MPC strategy as a convex 

quadratic programming problem. A case study demonstrated the effectiveness of the proposed MPC to 

balance drastic changes on power demand and keep specified capture ratios. Furthermore, the reduced 

deviations achieved in the reboiler temperature suggest that the nominal value of this parameter could 

be increased to improve the desorption process without risks of reaching temperatures where the solvent 

would degradate. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Climate change mitigation requires a profound reduction of 

reenhouse gas emissions ( IPCC, 2014; 2018 ). By sector, power gen- 

ration is the main contributor to global CO 2 emissions because 

f its reliance on fossil fuels ( IEA, 2019 ). Deployment of intermit- 

ent renewable energy sources, mainly wind and solar, has concen- 

rated most of the effort s to decarbonise this sector ( IEA, 2019 ).

owever, a broader portfolio of technologies is necessary to meet 

he increasing power demand whilst ensuring a safe, efficient and 

ustainable electric market. In this context, the integration of flex- 

ble carbon capture and storage (CCS) with thermal power plants 

s expected to play a fundamental role in the reduction of the CO 2 

missions associated with the power sector ( IPCC, 2005; 2014 ). 

Thermal power plants, especially natural gas combined cycles 

NGCC), are recognised as a viable technology to accommodate the 

ntermittent power generation from renewable energy sources and 
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alance the electric grid ( Kondziella and Bruckner, 2016; Eser et al., 

017; González-Salazar et al., 2017 ). Flexible CCS may enhance this 

ispatchable nature of flexible thermal power plants by providing 

ow carbon electricity in a cost effective manner ( Montañés et al., 

016; Heuberger et al., 2016; 2017a; 2017b ). Post-combustion CO 2 

apture (PCC) based on liquid-absorbents is arguably the most ma- 

ure CCS technology, with two commercial-scale capture facilities 

ntegrated with coal power plants in operation ( Bui et al., 2018 ). 

evertheless, the deployment of this technology in power markets 

ominated by intermittent renewable energy sources requires the 

emonstration that integration of CCS and thermal power plants 

oes not inhibit flexible and efficient power generation, and stable 

O 2 capture. 

The dominant dynamics that govern the transient opera- 

ion of thermal power plants, CO 2 capture plants and systems 

ntegrated by both technologies were extensively analysed by 

úa et al. (2020b) . Two different dynamic behaviour define tran- 

ient operation of these technologies. Thermal power plants oper- 

te in short time-scales and are limited by the large heat capaci- 

ance of the steam generator, whereas post-combustion CO 2 cap- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.compchemeng.2020.107217
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.107217&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jairo.r.pazos@ntnu.no
mailto:lars.nord@ntnu.no
https://doi.org/10.1016/j.compchemeng.2020.107217
http://creativecommons.org/licenses/by/4.0/


J. Rúa, M. Hillestad and L.O. Nord Computers and Chemical Engineering 146 (2021) 107217 

t

s

o

d

n

t

d

a

p

t

c

v

i

o

t

i

a

h

(

p

b

t

N

c

2

g

o

p  

t

s

t

p

t

b

f

i

t

m

o

l

(

a

K

fl

c

p

p

c

m

Nomenclature 

Latin Symbols 
ˆ ˜ A State estimation ˜ A Delta-input state matrix 

A State matrix 

A (q −1 ) Polynomial ARX model 

A a Augmented state matrix 

a Coefficients simplified models ˜ B Delta-input input matrix 

B Input matrix 

B (q −1 ) Polynomial ARX model 

B a Augmented input matrix 

B d Disturbance input matrix 

b Coefficients simplified models ˜ C Delta-input output matrix 

C Output matrix 

c Centre validity function 

C a Augmented output matrix 

C d Disturbance output matrix 

�u Delta-input control vector 

δu Delta-input control action 

d Disturbance vector 

F MIMO delta-input penalty vector 

f Delta-input penalty vector 

G MIMO delta-input inequality matrix 

g Delta-input inequality matrix 

H Delta-input matrix output equation 

I Identity matrix 

J Objective function 

K Observer gain matrix 

K f Kalman filter 

M number local ARX models 

N Time horizon 

P MIMO delta-input inequality vector 

p Delta-input inequality vector 

Q Weight matrix 

q −1 Backwards shift operator 

Q p Process noise covariance 

R Penalty vector 

R 2 Coefficient of determination 

R m 

Measurement noise covariance 

t Time (s) 

u Manipulated variable 

w Width validity function ˜ x Delta-input state vector 

x State vector 

x a Augmented input state vector 

y Predicted variable, output vector 

Z Estimator covariance matrix 

Greek Symbols 

� Delta-input weight matrix 

γ Local operating point 

λ Weights objective function 

� MIMO delta-input weight matrix 

� Unit lower triangular matrix 

ξ Local validity function 

σ 2 Covariance 

ε Stochastic error 

Subscripts 

0 Initial conditions 

d Disturbance 
2

2 
n u Order ARX input 

n y Order ARX output 

pow Power 

ramp Ramping rate 

ref Reference trajectory 

u Inputs 

x States 

Superscripts 

- Previous estimation 

low Lower bound 

up Upper bound 

ure plants are characterised by slow responses and long time- 

cales owing to the large volumes of stored solvent, the impact 

f large vessels on residence time, and the transport delay intro- 

uced by some equipment. This different transient behaviour does 

ot limit power generation since variable steam extraction from 

he intermediate and low pressure cross-over of the steam turbine 

oes not significantly affect the steam cycle of the power plant, 

lbeit it has an impact on process variables of the CO 2 capture 

lant ( Rúa et al., 2020b ). Thus, control strategies must consider 

he different dynamic nature of thermal power plants and post- 

ombustion CO 2 capture plants to adequately stabilise the process 

ariable of each plant within their operation time-scales. 

Control of traditional thermal power plants refers to match- 

ng the power generation to the demand and the stabilisation 

f the steam cycle. Natural gas combined cycles utilise the gas 

urbine to control power generation owing to their fast dynam- 

cs ( Kehlhofer et al., 2009 ). Coal and biomass power plants must 

dapt the fuel and air injected in the boiler and throttle the super- 

eated and reheated steam flow at the inlet of the steam turbine 

 Alobaid et al., 2017 ). Power generation control in coal and biomass 

ower plants is hence dominated by the heat capacitance of the 

oiler. Therefore, the fast transient operation of gas turbines and 

heir capability to adapt the power output within seconds make 

GCCs more suitable for flexible operation and grid balance than 

oal and biomass power plants ( Hentschel et al., 2016; Eser et al., 

017 ). Furthermore, NGCCs can under- and over-shoot the power 

enerated by the gas turbine to compensate the slower transient 

f the steam cycle, enhancing the flexibility that this type of power 

lants provide to the grid ( Rúa et al., 2020a; Rúa and Nord, 2020 ).

Steam cycle control includes the regulation of the fluid inven- 

ory in the steam drums, deaerators, condensers, and storage ves- 

els; pressure control of the low-, medium- and high-pressure sec- 

ions of the steam cycle; and temperature limitation of the su- 

erheated and reheated steam to avoid damaging the pipe sys- 

em and the steam turbine. Inventory control refers to the sta- 

ilisation of the mass flows so the steady-state mass balances 

or each of the components and the overall power plant are sat- 

sfied ( Aske and Skogestad, 2009 ). Proportional-integral (PI) con- 

rollers are normally used for control of water levels since the 

ain objective of this control layer is to stabilise power plant 

peration, although three-element controllers where the drum 

evel, feedwater flow and live-steam flow are embedded in a PID 

proportional-integral-derivative) cascade controller are tradition- 

lly implemented in thermal power plants ( Mansour et al., 2003; 

ehlhofer et al., 2009 ). These controllers adjust the feedwater mass 

ow by changing the speed of the pumps or the opening of the 

ontrol valves, depending on the type and design of the power 

lant. Model predictive control (MPC) strategies lead to further im- 

rovements in the inventory control of traditional power plants be- 

ause of the dynamic optimisation carried out to determine the 

ost suitable control action ( Lu and Hogg, 1997; Prasad et al., 

0 0 0 ). 
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Pressure control is achieved by adjusting the feedwater mass 

ow rate and by valve throttling, specially in the lower-pressure 

ections of NGCCs where the pressure in the drum and deaerator 

ay be controlled ( Casella and Pretolani, 2006; Montañés et al., 

017c ). In the high-pressure section of the steam cycle, strategies 

uch partial arc and sliding pressure control lead to better part- 

oad performance ( Kehlhofer et al., 2009; Jonshagen and Genrup, 

010 ). Partial arc control regulates the steam admittance into the 

team turbine with several valves in the stator of the first stage. In 

ontrast, these valves are close to fully-open during sliding pres- 

ure operation to allow the variation of the high pressure and 

eep almost constant volumetric flow in the turbine, which re- 

ults in higher part-load isentropic efficiency ( Jonshagen and Gen- 

up, 2010 ). If the high pressure of the steam cycle is not allowed

o fluctuate, optimisation-based strategies lead to improved control 

f this pressure as they reduce the deviation from its set-point ( Lu 

nd Hogg, 1997; Prasad et al., 1998; 20 0 0; Peng et al., 2009 ) 

The temperature in the hot sections of the steam cycle, i.e. the 

utlet of the supeheater and reheater, must be controlled to avoid 

amaging the materials. Spray cooling is hence necessary to inject 

ressurised water in the steam flow and reduce its temperature. 

he opening of the attemperator valves regulating the flow of pres- 

urised water may be defined by PID controllers ( Alobaid et al., 

0 08; Kehlhofer et al., 20 09; Montañés et al., 2017c; Gar ðarsdóttir 

t al., 2017 ), adaptative controllers ( Matsumura et al., 1998 ), or 

ptimisation-based controllers ( Peng et al., 2009; Prasad et al., 

998, 20 0 0; Rúa et al., 2020a; Rúa and Nord, 2020 ). Among the

ifferent alternatives to regulate the maximum temperature in the 

team cycle, model predictive control shows the minimum offset 

rom the set-point and the fastest stabilisation time ( Rúa et al., 

020a; Rúa and Nord, 2020 ). 

In contrast to thermal power plants, control of post-combustion 

O 2 capture plants is not a mature field and most of the avail- 

ble knowledge comes from dynamic studies and test campaigns 

n pilot plants. Basic control of PCC plants reduces to stabilise 

iquid levels in sumps of absorber and stripper columns, reboiler 

nd condenser; regulate the temperature of lean solvent and con- 

enser; adapt the pressure of the reboiler and CO 2 product, and 

aintain a constant solvent composition ( Panahi and Skogestad, 

011; Schach et al., 2013; Flø et al., 2015; 2016; Walters et al., 

016; Montañés et al., 2017a; 2018; Wu et al., 2020 ). Temperature 

ontrol is achieved by heat exchangers where the mass flow rate 

f cooling water is the manipulated variable, whereas inventory 

ontrol requires several pumps to stabilise liquid levels in different 

quipment, although valves may also be used. Throttling regulates 

he pressure of product of CO 2 and the mass flow rate of make-up 

olvent, or water, needed for a constant composition. Control of all 

hese process variables may lead to over-constrained systems, and 

ome might be left uncontrolled. For instance, the level in the re- 

oiler is controlled and the sump level in the stripper varies freely 

n the Brindisi pilot plant ( Flø et al., 2016 ), whereas the opposite 

nventory control approach is implemented at Technology Centre 

ongstad (TCM) ( Montañés et al., 2017a; 2018 ). 

This basic control strategy aims at stabilising the main process 

ariables and ensuring safe operation of PCC plants. Therefore, PID 

ontrollers are normally implemented. This control layer is simi- 

ar among different pilot plants and dynamic process models (see 

.g. the reviews by Salvinder et al. (2019) and Wu et al. (2020) ).

he main difference in control strategies and performance of PCC 

lants lies on the pairings and methods used to control perfor- 

ance indicators, i.e. capture rate or CO 2 product, liquid solvent 

o gas (L/G) ratios, energy performance ratios, and reboiler per- 

ormance, where the latter may refer to outlet solvent tempera- 

ure, outlet lean loading or heat duty. The majority of pairings be- 

ween controlled and manipulated variables originate from insights 

btained during process dynamic simulations, albeit relative gain 
3 
rray (RGA) analyses and self-optimisation procedures have been 

roposed ( Panahi and Skogestad, 2011; 2012; Schach et al., 2013; 

ittaya et al., 2014; Sahraei and Ricardez-Sandoval, 2014; Luu et al., 

015; Manaf et al., 2016; Gaspar et al., 2016 ). Different control de- 

ign strategies may lead to distinct pairings with various perfor- 

ance, but none of the design methods have proved systematically 

uperior. 

Traditional PID controllers are able to reject disturbances and 

rack references of CO 2 capture rates by modifying the mass flow 

ate of lean/rich solvent at the inlet/outlet of the absorber column 

 Lawal et al., 2010; Nittaya et al., 2014; Gar ðarsdóttir et al., 2015;

uu et al., 2015; Manaf et al., 2016; Gaspar et al., 2016; Montañés 

t al., 2017a ), or the steam flow in the reboiler, i.e. the heat duty

 Panahi and Skogestad, 2011; Nittaya et al., 2014; Montañés et al., 

017a ). Similarly, PIDs can achieve close to contant reboiler tem- 

erature ( Lawal et al., 2010; Panahi and Skogestad, 2011; 2012; Nit- 

aya et al., 2014; Walters et al., 2016; Montañés et al., 2017a; 2018 ),

/G ratios ( Gar ðarsdóttir et al., 2015; Montañés et al., 2017a; 2018 ),

ean solvent loading ( Gar ðarsdóttir et al., 2015; Gaspar et al., 2016 )

r energy performance indicators ( Luu et al., 2015; Manaf et al., 

016 ) by manipulating the mass flow rate of solvent or the reboiler 

eat duty. These studies demonstrate PID controllers can stabilise 

CC plants subjected to large disturbances within reasonable pe- 

iods of time, albeit the lack of agreement on the most adequate 

airing for key process variables. 

Nevertheless, PID controllers may not be able to stabilise pro- 

ess variables within desirable bounds and can require excessively 

ong settling times if the tuning is not adequate or the distur- 

ance too drastic ( Luu et al., 2015 ). Model predictive control can 

ddress these challenges by computing the control input through a 

ynamic optimisation problem where constraints in the controlled 

nd manipulated variables ensure that process parameters remain 

ithin acceptable limits. MPC also originates less oscillations of 

maller amplitude than PIDs for a given disturbance ( Arce et al., 

012; Sahraei and Ricardez-Sandoval, 2014; Luu et al., 2015; Zhang 

t al., 2016; He et al., 2018; Li et al., 2018; Wu et al., 2018a; 2019a ).

his behaviour is due to the optimisation of predicted trajecto- 

ies over a time horizon, which leads to shorter settling times and 

ighter control of PCC plants. Hauger et al. (2019) demonstrated 

he tight control achieved by MPC strategies in different tests per- 

ormed in two pilot facilities (Tiller and TCM). 

Furthermore, economic criteria such as market prices or energy 

ost may be included in MPC formulations to reduce the penalty 

f CCS systems while keeping PCC plants stable ( Arce et al., 2012; 

ecardi-Nelson et al., 2018 ). This eases the integration of schedul- 

ng and control strategies since the outputs of the scheduling pro- 

ess may modify, in addition to the set-points of the controlled 

ariables, tuning parameters in the optimisation problem included 

n the MPC ( He et al., 2016 ). 

Whilst there are several studies analysing control strategies for 

hese different technologies operating independently, there are rel- 

tive few studies considering the control of thermal power plants 

ntegrated with post-combustion CO 2 capture plants ( Lawal et al., 

012; Mechleri et al., 2017; Gar ðarsdóttir et al., 2017; Montañés 

t al., 2017c; Marx-Schubach and Schmitz, 2019; Wu et al., 2019b; 

019c ). Decentralised PID controllers can stabilise these integrated 

ystems within their different time-scales, where the dominant dy- 

amics of each plant dictate the settling time. However, the inte- 

ration of CO 2 capture plants increases the settling time of pro- 

ess variables (e.g. steam pressure) in coal and natural gas ther- 

al power plants because of the long stabilisation periods of CO 2 

apture systems ( Lawal et al., 2012; Gar ðarsdóttir et al., 2017; 

ontañés et al., 2017c; Mechleri et al., 2017 ). Similarly to control 

trategies in individual PCC plants, pairing of controlled and ma- 

ipulated variables affects notably the performance of these de- 

entralised controllers, as it influences the amplitude of fluctua- 
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ion and settling time of different process variables in both plants 

 Gar ðarsdóttir et al., 2017; Montañés et al., 2017c; Mechleri et al., 

017 ). Moreover, PID controllers can also regulate the start-up of 

ntegrated systems and achieve desirable CO 2 capture rates and 

ower generation ( Marx-Schubach and Schmitz, 2019 ). 

Model predictive control can improve the control of thermal 

ower plants integrated with CO 2 capture systems and reduce 

he settling time of key performance variables ( Wu et al., 2019b; 

019c ). MPC also enables the definition of different operation 

odes, which allows prioritising power generation, grid balancing 

r CO 2 capture according to market conditions and current regu- 

ations ( Wu et al., 2019b; 2019c ). However, power generation from 

oal-fired power plants is still limited by the heat capacitance of 

he steam generator, and MPC strategies can only enhance their 

exible operation by reducing the steam extraction from the CO 2 

apture plant, which leads to momentarily decreases of carbon 

apture ( Wu et al., 2019b; 2019c ). Natural gas combined cycles reg- 

late their power generation through the gas turbine, and do not 

eed to modify the steam extraction from the capture plant to bal- 

nce the grid. Therefore, application of MPC strategies to NGCCs 

ntegrated with PCC plants can further enhance the flexible oper- 

tion of both systems while taking advantage of the fast transient 

peration of NGCCs to balance power generation and demand. 

This work demonstrates the application of model predictive 

ontrol strategies to full-scale natural gas combined cycles inte- 

rated with post-combustion CO 2 capture plants with the objec- 

ive of minimising the deviation of key process variables from 

heir set-points. Section 2 describes the dynamic, full-scale NGCC- 

CC model and the simplified models used in the MPC strategy, 

hile Section 3 discusses how to achieve offset-free MPC with 

hese simplified models and details its mathematical formulation. 

ection 4 demonstrates the fast control achieved by the proposed 

PC strategy through a case study where the integrated system 

eeds to balance a decrease in power demand. Final remarks and 

onclusions are included in Section 5 . 

. Modelling 

This section includes the different models developed to demon- 

trate the application of model predictive control strategies to 

atural gas combined cycles integrated with capture plants. 

ection 2.1 describes the high-fidelity model used to replicate the 

ehaviour of the NGCC-PCC system, whereas Section 2.2 presents 

he simplified models included in the dynamic optimisation prob- 

em to predict the future behaviour of the actual system. 

.1. Dynamic modelling of a NGCC-PCC system 

Natural gas combined cycles are expected to balance the in- 

ermittent power generation associated with renewable energy 

ources because of their fast and flexible operation. Moreover, 

riple-pressure NGCCs with reheating are the most efficient and 

ess polluting fossil-fuelled thermal power plants ( Kehlhofer et al., 

009; Alobaid et al., 2017 ). This study considers a full-scale 615 

We NGCC with this configuration. The design was carried out 

ith GT PRO ( Thermoflow, 2014 ) because it provides detailed de- 

criptions of the geometry of the equipment, off-design perfor- 

ance, and operation maps of pumps and gas turbines. This data 

as implemented in a high-fidelity dynamic model developed in 

odelica ( Modelica Association, 2019; Dassault Systemes, 2016 ) 

ith the specialized TPL library ( Modelon, 2015 ), which is based 

n conservation equations, detailed heat transfer and pressure 

rop correlations, and maps of performance for the turbomachin- 

ry components. 

This thermal power plant was integrated with a full-scale 30 

t% MEA-based post-combustion capture process, as this is the 
4 
ost mature CCS technology available. System integration occurred 

etween the intermediate- and low-pressure steam turbines of the 

GCC and the reboiler of the PCC plant, where steam extracted 

rom the steam cycle provides the energy to regenerate the solvent 

n the capture plant. The design of the low-pressure section of the 

team turbine was adapted to nominal operating conditions, i.e. 

team is extracted to achieve a 90% capture rate at 100% gas tur- 

ine load ( Jordal et al., 2012; Rezazadeh et al., 2015 ). Furthermore, 

he design of the PCC plant considered the nominal CO 2 capture 

ate, the exhaust gas CO 2 concentration and conditions (i.e. flow 

ate, temperature, pressure), the allowable pressure drops in the 

bsorber and stripper columns, column flooding limits and a rea- 

onable balance between capital and operational costs ( Jordal et al., 

012; Dutta et al., 2017 ). Because of the size of the NGCC and the

mount of flue gas generated, these requirements were met with a 

arallel configuration with two absorber columns and one stripper 

 Montañés et al., 2017c; Dutta et al., 2017 ). A detailed modelling 

escription and thorough validation results of these dynamic mod- 

ls can be found in the work by Montañés et al. (2017c) . Fig. 1

epresents the layout of the NGCC-PCC system. 

These plants exhibit different dynamic behaviour. Load changes 

n the gas turbine lead to immediate variations in the exhaust gas 

onditions. However, these changes affect progressively the steam 

ycle. Thus, the heat capacitance of the HRSG dominates the tran- 

ient performance of the NGCC. For thermal power plants of this 

ype and size, step changes in the exhaust gas conditions show 

ominant dynamics of approximately 10 min, with stabilisation 

imes of 20–25 min ( Hentschel et al., 2016; Montañés et al., 2017c ).

CC plants have slower transient performance because of the long 

esidence time of the solvent, the transport delay introduced by 

eat exchangers, and the large amount of solvent stored in ves- 

els and liquid hold-ups ( Rúa et al., 2020b ). Similarly, step changes 

n the exhaust gas conditions show that the dominant dynamics 

f PCC plants of this size occur in approximately 60 min with 

tabilisation times of several hours ( Lawal et al., 2010; 2012; Flø

t al., 2015; 2016; Gar ðarsdóttir et al., 2015; Montañés et al., 2017c; 

017b ). 

.2. System Identification 

The computational cost of simulating the high-fidelity dynamic 

odel of the NGCC-PCC system described in Section 2.1 inhibits its 

tilisation in optimisation-based control strategies. Therefore, sim- 

lified models that replicate the behaviour of specific thermody- 

amic variables (e.g. reboiler temperature, capture rate, mechani- 

al power generation) are required to predict the performance of 

he integrated system in the model predictive control strategy pro- 

osed in this work. 

System identification refers to the development of data-based 

ynamic models ( Ljung, 1987 ), and was utilised to develop auto- 

egressive models with exogenous variables (ARX) that predict the 

ynamic behaviour of variables of interest. Eq. (1) represents the 

eneral structure of an ARX model: 

 (q −1 ) y (t) = B (q −1 ) u (t) + ε(t) (1)

here y is the predicted and controlled variable, u is the manip- 

lated variable associated with it, A and B are polynomials in the 

ackwards shift operator q −1 of order n y and n u , respectively, and 

 ∈ N (0 , σ 2 ) . 

 (q −1 ) = 1 + a 1 q 
−1 + a 2 q 

−2 + · · · + a n y q 
−n y 

 (q −1 ) = b 1 q 
−1 + b 2 q 

−2 + · · · + b n u q 
−n u 

able 1 summarises the set of input-output pairs, i.e. the con- 

rolled variable and its associated manipulated variable, consid- 

red in this work to control the operation of the NGCC-PCC sys- 

em. These input-output pairs present nonlinear behaviour and 



J. Rúa, M. Hillestad and L.O. Nord Computers and Chemical Engineering 146 (2021) 107217 

Fig. 1. Process diagram of the natural gas combined cycle integrated with the post-combustion capture plant.The nomenclature is as follows. E: Economiser, B: Boiler, S: 

Superheater, R: Reheater P: Pressure, L: Low, I: Intermediate, H: High, FWC: Feed-water cooling, RS: Reheated steam, SS: Superheated steam, SE: steam extraction, DCC: 

Direct contact cooler, c.w.: cooling water. 
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ingle ARX models cannot predict them accurately in broad opera- 

ion ranges because of their linearity. Local model networks of lin- 

ar ARX models can overcome this limitation ( Johansen and Foss, 

993; Wu et al., 2018b; Jung et al., 2020 ). This modelling approach 

elies on the development of several linear ARX models at differ- 

nt operation points for each input-output pair. The overall pre- 

iction of a local model network is the result of interpolating the 

ndividual predictions of the local ARX models according to cur- 

ent operation point ( Johansen and Foss, 1993 ). Thus, local models 

eighbouring this operation condition contribute more to the over- 

ll prediction than locals models of regimes far from the operation 

oint. The output of a local model network is: 

 (t) = 

M ∑ 

i =1 

y i (t) ξi (γ ) (2) 

here M is the number of local models for each input-output pair, 

 i (t) represents the outputs of the local ARX models, ξ is the lo- 

al validity function that weights the contribution of each local 

RX model, and γ is the parameter defining the current operating 

oint. This is equivalent to first interpolating the parameters (a, b) 

f the local ARX models using the local validity function ξ and 

hen computing the output of the overall ARX model with these 

arameters. 

This work considered a Gaussian validity function because it 

atisfies a necessary condition to achieve arbitrarily good predic- 

ions with local model networks ( Johansen and Foss, 1993 ): 

i ( γ ) = 

exp 

(
− 1 

2 [ ( γ − c i ) /w i ] 
2 
)

∑ M 

j=1 exp 

(
− 1 

2 

[(
γ − c j 

)
/w j 

]2 
) (3) 

here c i and w i are, respectively, the centres and widths of the lo- 

al Gaussian interpolation functions. Table A.4 includes the number 
5 
f local models for each input-output pair, the parameters of each 

ocal ARX model, and the variables defining their validity functions. 

Data to generate these models was obtained from excitation of 

he high-fidelity model described in Section 2.1 at different oper- 

tion conditions. Therefore, each set of data was used to gener- 

te a single local ARX model for every input-output pair. Random 

aussian signals (RGS) were superimposed on the controllers of 

he NGCC-PCC system in closed-loop since this approach enhances 

he identification of ARX models ( Gevers and Ljung, 1986; Forssell 

nd Ljung, 1999; Gevers, 2005; Gevers et al., 2006; Miškovi ́c et al., 

008 ). In addition, an unique validation set of data covering the 

ntire operation range of the NGCC-PCC system was generated fol- 

owing the same approach. 

Table 1 summarises the prediction accuracy of the local model 

etwork for each input-output pair measured by the coefficient of 

etermination R 2 . The low R 2 of the simplified models for the su- 

erheating and reheating temperature originate from the nature 

f the validation data. The RGS signals superimposed on the con- 

rollers to generate the identification data fluctuated faster than 

he dominant dynamics of the steam cycle, which lead to dras- 

ic and fast changes in the controlled and manipulated variables 

f the NGCC. This created a challenging set of data that allowed 

esting whether the local model network could predict large and 

requent fluctuations. In contrast, the PCC data does not show this 

ehaviour because of the slower dominant dynamics of the cap- 

ure plant and its buffering effect, mainly through solvent ves- 

els and liquid hold-ups ( Rúa et al., 2020b ). This transient perfor- 

ance results in smoother and slower variations easier to predict 

hat lead to higher R 2 values. Fig. B.4 illustrates this different be- 

aviour between the NGCC and PCC plants for a small set of the 

alidation data, and how the ARX models of the NGCC adequately 

redict the trajectory of the output variables despite the lower R 2 

alues. 
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Table 1 

Input-output pairs with model order and coefficient of determination. 

Plant 
Input-output pair Order Nominal 

R 2 [%] 
Controlled variable ( y ) Manipulated variable ( u ) n y n u n y n u 

NGCC Power generation Gas turbine load 99.95 

Superheated steam temperature Opening attemperator valve 1 2 2 592.7 ◦C 0.02655 69.59 

Reheated steam temperature Opening attemperator valve 2 2 2 592.5 ◦C 0.07882 74.37 

PCC Capture rate Mass flow lean solvent 1 1 90 % 614 98.40 

Reboiler temperature Opening steam extraction valve 1 1 119.22 ◦C 0.69 99.09 
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In contrast to the other simplified models, the power generation 

f the NGCC was predicted using an unique polynomial over the 

ntire set of operating conditions. A simple representation for this 

ariable is possible owing to the linear relationship between the 

ower generation of the NGCC and the load of the gas turbine over 

 broad operating region. The structure of this model is: 

 (t) = a + b u (t) (4) 

ARX models are suitable for system identification procedures 

ecause the computation of their coefficients becomes a sim- 

le least-square problem or a convex optimisation, whereas other 

tructures may involve more complex, possibly non-convex, identi- 

cation problems ( Huusom et al., 2010 ). However, for analysis pur- 

oses, state-space forms of ARX models are preferred. The realisa- 

ion in observable form of the ARX model in Eq. (1) is: 

 k +1 = A x k + B u k (5a) 

 k = C x k (5b) 

ith 

A = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−a 1 1 0 · · · 0 

−a 2 0 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
−a n y −1 0 0 · · · 1 

−a n y 0 0 · · · 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

B = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

. . . 
b 1 
. . . 

b n u 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

C = [ 1 0 · · · 0 ] 
ig. 2. Diagram of the proposed MPC strategy with a Kalman filter. Expressions within t

GCC-PCC system is described in Section 2.1 . 

6 
here B has n y − n u zeros, and x ∈ R 

n y , u, y ∈ R , A ∈ R 

n y x n y , B ∈
 

n y x1 , and C ∈ R 

1x n y . This realisation is valid when the ARX model

eads to proper rational transfer functions, i.e. n y ≥ n u . The stochas- 

ic error term in Eq. (1) is not included because of the determinis- 

ic data used during system identification. 

. Model predictive control 

Control strategies based on MPC formulations require the devel- 

pment of different models and optimisation problems to ensure 

ptimal computation of control inputs, offset-free tracking of con- 

rolled variables and adequate estimation of states. Fig. 2 shows 

 diagram of the MPC strategy proposed in this work. The high- 

delity dynamic model of the NGCC-PCC system described in 

ection 2.1 replicates the behaviour of a real power plant with 

ost-combustion CO 2 capture. Measurements from this model al- 

ow the estimation of the states in the system. This estimator uses 

 Kalman filter to update the state estimations and correct possi- 

le mismatches between the predictions of the responses by the 

implified models and the measurements from the dynamic simu- 

ation of the NGCC-PCC plant. These estimates define the current 

tate, i.e. the initial conditions, from where the dynamic optimi- 

ation problem in the MPC strategy starts to compute the optimal 

equence of control inputs. The first element of this sequence is 

he control action imposed in the actual system. This process is 

epeated periodically, with a frequency dictated by the sampling 

ime, to stabilise the operation of the NGCC integrated with the 
he diagram are developed throughout Section 3 , while the dynamic model of the 
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CC plant. This MPC strategy includes all simplified models in a 

ingle controller as shown in Fig. 2 . 

This section describes different models and formulations of the 

PC strategy, and details how they are combined in the integrated 

ontrol structure represented in Fig. 2 . Section 3.1 discusses ref- 

rence tracking and offset-free MPC, and describes the formulation 

f this optimisation problem, whereas Section 3.2 builds up on this 

ormulation and defines a simpler dynamic optimisation problem, 

alled delta-input formulation, that only depends on the manip- 

lated variables. Section 3.3 describes the estimator that predicts 

he states on the actual NGCC-PCC systems and presents an algo- 

ithm to solve the MPC control problem. 

.1. Reference tracking and offset-free MPC 

Reference tracking is one of the main applications of model pre- 

ictive control. This control strategy minimises the difference be- 

ween outputs of a system and reference trajectories by computing 

ontrol inputs through dynamic optimisation problems and imple- 

enting the first element of the calculated control sequence. The 

eneral formulation of linear MPC problems for reference tracking 

s: 

min 

x,u 

N−1 ∑ 

k =0 

1 

2 

‖ Q (y k − y ref ) ‖ + ‖ R (u k − u k −1 ) ‖ (6a) 

.t. 

 k +1 = A x k + B u k (6b) 

 k = C x k (6c) 

 

low ≤ y k ≤ y up (6d) 

 

low ≤ u k ≤ u 

up (6e) 

here ‖ · ‖ represents the two-norm that leads to a quadratic pro- 

ramming (QP) optimisation problem. Eq. (6b) and (6c) ensure that 

he state-space realisation of the identified ARX models is satis- 

ed. Eqs. (6d) and (6e) limit the minimum and maximum values 

f the controlled and manipulated variables, respectively. The ob- 

ective function in Eq. (6a) minimises the difference between con- 

rolled variables and their references y ref and imposes a penalty in 

xcessive utilisation of control inputs. 

Nevertheless, reference tracking formulations of MPC strategies 

s in Eq. (6) can lead to offsets in the controlled variables due to 

nmeasured disturbances and plant-model mismatches. To over- 

ome this limitation and ensure zero offset, models representing 

ctual systems can be augmented with a disturbance model, which 

cts as an integrator driving the tracking error to zero. This al- 

ows finding the control inputs that minimise both the effect of the 

isturbance on the controlled variables and differences between 

odel and system ( Pannocchia and Rawlings, 2003; Borrelli and 

orari, 2007; Pannocchia, 2015; Rawlings et al., 2017 ). The state- 

pace model in Eq. (5) becomes: 

 a ,k +1 = A a x a ,k + B a u k (7a) 

 k = C a x a ,k (7b) 

here vectors and matrices are: 

x k +1 

d k +1 

]
= 

[
A B d 

0 I 

][
x k 
d k 

]
+ 

[
B 

0 

]
u k 

 k = 

[
C C d 

][
x k 
d k 

]

7 
his augmented model achieves offset-free tracking if the system 

s stabilisable, the pair (A, C) is observable, the number of distur- 

ances n d : 

 d = p = 1 

nd the following condition holds ( Pannocchia and Rawlings, 2003; 

orrelli and Morari, 2007; Pannocchia, 2015; Rawlings et al., 

017 ): 

ank 

[
A − I B d 

C C d 

]
= n y + n d 

ince the disturbance matrices B d ∈ R 

n y x n d and C d ∈ R 

1x n d can be 

hosen freely, the last condition holds if (A, C) is observable. In this 

ork, the state-space realisation of the identified ARX models was 

xpressed in observable form, and hence the pair (A, C) is always 

bservable ( Chen, 2013 ). Therefore, offset-free tracking reduces to 

he adequate selection of disturbance matrices B d and C d . 

The MPC formulation in Eq. (6) for the system augmented with 

 disturbance model becomes: 

min 

x,u 

N−1 ∑ 

k =0 

1 

2 

‖ Q (y k − y ref ) ‖ + ‖ R (u k − u k −1 ) ‖ (8a) 

.t. 

 a ,k +1 = A a x a ,k + B a u k (8b) 

 k = C a x a ,k (8c) 

 

low ≤ y k ≤ y up (8d) 

 

low ≤ u k ≤ u 

up (8e) 

.2. Delta-input formulation 

Delta-input formulations of the MPC described in Eq. (8) are 

ore suitable for reference tracking problems, as they penalise di- 

ectly the rate of change of the manipulated variables ( Borrelli and 

orari, 2007 ). Furthermore, it reduces the number of optimisa- 

ion variables and the computational cost of the dynamic optimi- 

ation. Section 3.2.1 describes the delta-input formulation of the 

PC problem in Eq. (8) , whereas Section 3.2.2 discusses how sev- 

ral state-space models can be merged into a common MPC prob- 

em. 

.2.1. Delta-input formulation for SISO systems 

Define the delta-input control action that determines the rate 

f change of a manipulated variable: 

u k := u k − u k −1 (9) 

nd augment the state-space equation in Eq. (7) with this new 

tate and control input: 

x a ,k +1 

u k 

]
= 

[
A a B a 

0 I 

][
x a ,k 
u k −1 

]
+ 

[
B a 

I 

]
δu k (10a) 

 k = [ C a 0 ] 

[
x a ,k 
u k −1 

]
(10b) 

hich can be written: 

 

 k +1 = ̃

 A ̃

 x k + ̃

 B δu k 

 k = ̃

 C ̃  x k 
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k 
efine the vectors of controlled and manipulated variables over a 

ime horizon N : 

u = [ δu 0 δu 1 . . . δu N−1 ] 
T 

 = [ y 1 y 2 . . . y N ] 
T 

nd eliminate the states in Eq. (10) . The output equation, over the 

ime horizon N , becomes: 

 = Hδu + A 0 ̃  x 0 (11) 

here 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

H 1 0 · · · · · · 0 

H 2 H 1 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . H 2 H 1 0 

H N · · · · · · H 2 H 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

A 0 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

˜ C ̃  A ˜ C ̃  A 

2 ˜ C ̃  A 

3 

. . . ˜ C ̃  A 

N 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

ith 

 i = ̃

 C ̃  A 

i −1 ˜ B i ∈ { 1 , 2 , . . . , N} 

 

 0 = ̃

 x [0] 

ith this reduced output equation, Eq. (11) , and the definition of 

he delta control input in Eq. (9) , the inequality constraints in the 

tandard MPC formulation, Eq. (8d) and Eq. (8e) , can be written as: 

 

 

 

−H 

H 

−�
�

⎤ ⎥ ⎦ 

δu ≤

⎡ ⎢ ⎣ 

−(y low − A 0 ̃  x 0 ) 
y up − A 0 ̃  x 0 

−(u 

low − u −1 ) 
u 

up − u −1 

⎤ ⎥ ⎦ 

(12) 

here u −1 was the control action in the previous sampling time, 

nd � is an unit lower triangular matrix: 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 · · · · · · 0 

1 1 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 1 0 

1 · · · · · · 1 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

ollowing the same approach, the objective function Eq. (8a) be- 

omes: 

 = 

1 

2 

( ‖ 

Q ( y − y ref ) ‖ 

+ ‖ Rδu ‖ ) 

= 

1 

2 

( ‖ 

Q ( Hδu + A 0 ̃  x 0 − y ref ) ‖ 

+ ‖ Rδu ‖ ) 

= 

1 

2 

[
δu 

T 
(
H 

T QH + R 

)
δu 

+2 ( A 0 ̃  x 0 − y ref ) QHδu 

+ ( A 0 ̃  x 0 − y ref ) 
T Q ( A 0 ̃  x 0 − y ref ) 

]
(13) 

here the last term may be dropped since is constant. 

Therefore, the MPC strategy can be expressed as the QP prob- 

em: 

min 

u ∈ R N 
1 

2 

δu 

T � δu + f T δu (14a) 

.t. 

 δu ≤ p (14b) 

ith the matrix and vector in Eq. (14b) defined in Eq. (12) , and: 

= H 

T QH + R 

f = ( A 0 ̃  x 0 − y ref ) QH 

he development of the MPC delta-input formulation for the poly- 

omial model in Eq. (4) follows the same approach and is summa- 

ized in Appendix C . 
8 
.2.2. Delta-input formulation for MIMO systems 

Systems generally require the control of several process vari- 

bles. Thus, the delta-input formulation of the MPC problem in 

q. (14) is expanded to consider multi-input multi-output (MIMO) 

ystems. Consider m single-input single-output (SISO) models with 

anipulated variables defined as delta-input control actions and 

rouped in a vector as: 

u := [ δu 1 δu 2 . . . δu m 

] T (15) 

here each component is a sequence of control actions over a time 

orizon N for a given manipulated variable: 

u j = [ δu j, 1 . . . δu j,N ] 
T j ∈ { 1 , . . . , m } 

he MPC delta-input formulation can be extended as: 

min 

u ∈ R (Nx m )x1 

1 

2 

�u 

T ��u + F T �u (16a) 

.t. 

 �u ≤ P (16b) 

here 

= 

⎡ ⎢ ⎢ ⎢ ⎣ 

�1 0 · · · 0 

0 �2 

. . . 
. . . 

. . . 
. . . 

. . . 0 

0 · · · 0 �m 

⎤ ⎥ ⎥ ⎥ ⎦ 

F = 

⎡ ⎢ ⎢ ⎣ 

f 1 
f 2 
. . . 

f m 

⎤ ⎥ ⎥ ⎦ 

 = 

⎡ ⎢ ⎢ ⎢ ⎣ 

g 1 0 · · · 0 

0 g 2 
. . . 

. . . 
. . . 

. . . 
. . . 0 

0 · · · 0 g m 

⎤ ⎥ ⎥ ⎥ ⎦ 

P = 

⎡ ⎢ ⎢ ⎣ 

p 1 
p 2 
. . . 

p m 

⎤ ⎥ ⎥ ⎦ 

.3. Estimator 

States and disturbances need to be estimated from the mea- 

urements of the actual system at each sampling time to obtain the 

urrent state of the NGCC-PCC plant. The estimator, or observer, 

omputes the augmented state at each discrete time k as a combi- 

ation of the current, or a priori, state prediction and a correction 

ased on the measured output y k : 

ˆ 
 

 k = ̃

 A ̂

 ˜ x k −1 + ̃

 B δu k −1 + K (y k − ˜ C ( ̃  A ̂

 ˜ x k −1 + ̃

 B δu k −1 )) (17) 

here ˆ · indicates estimated variables, and K ∈ R 

(n y + n d +1) x 1 is the 

bserver gain: 

 := 

[ 

K x 

K d 

K u 

] 

n which K x , K d , K u are the observer gains for the states, distur-

ances and control input, respectively. This observer gain K is cho- 

en so the observer is stable, i.e. the eigenvalues of the system 

 ̃

 A − K ̃

 C ̃  A ) lie inside the unit circle. 

Pole placement routines compute observer gain matrices that 

x the eigenvalues of a matrix pair in specific coordinates and 

ake the estimator stable (see, e.g. Pannocchia, 2015 ). How- 

ver, this work considers a Kalman filter as observer gain matrix 

 Kalman, 1960 ). Calculation of the Kalman filter matrix gain is a 

wo-step process. First, the a priori state ˆ ˜ x 
−
k −1 and covariance ma- 

rix Z −
k 

are computed from previous estimations: 

ˆ 
 

 

−
k = ̃

 A ̂

 ˜ x k −1 + ̃

 B δu k −1 (18a) 

 

− = ̃

 A Z k −1 ̃
 A 

T + Q p (18b) 
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Algorithm 1 MPC for NGCC-PCC systems 

Require: coefficients (a, b) in Table~A.4 , B d , C d , Q p , R m 

, Q , R , y ref , 

y low , y up , u low , u up , GT ramp , � , N 

Require: ˆ ˜ x k −1 , �u k −1 , y k , ˙ m exhaust , Z k −1 

Compute: interpolated coefficients (a, b) with Eqs.~2 , 3 

Compute: ˜ A , ˜ B , ˜ C in Eq.~10 

Compute: H, A 0 in Eq.~11 

Compute: ˆ ˜ x k , Z k in Eq.~18 

Set: ̃  x 0 := ˆ ˜ x k 
Compute: g, p in Eq.~12 

Compute: �, f in Eq.~14a 

Compute: G , P , �, F in Eq.~16 

Solve: 

min 

�u ∈ R (Nx m )x1 

1 

2 

�u 

T ��u + F T �u 

s.t. 

G �u ≤ P 

return �u k , ˆ ˜ x k , P k 
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Table 2 

Lower and upper bounds of the controlled and manipu- 

lated variables. 

Variable Lower Upper 

Power [MW] 450 615 

Gas turbine load [%] 60 100 

Superheating temperature [ ◦C] 587.7 597.7 

Attemperator valve 1 [-] 0.01 1 

Reheating temperature [ ◦C] 587.5 597.5 

Attemperator valve 2 [-] 0.01 1 

Capture ratio [-] 0.85 0.95 

Mass flow lean solvent [kg/s] 300 800 

Reboiler temperature [ ◦C] 115.22 120.22 

Steam extraction valve [-] 0.01 1 

Table 3 

Matrices and vectors defining the disturbance ( B d , C d ) and noise ( Q p , R m ) models; 

and weights for controlled variables ( λQ ) and penalties in movement of manipu- 

lated variables ( λR ). 

Variable B d C d Q p R m λQ λR 

Power - - - - 1 1 

Superheating temperature 

⎡ ⎣ 

0 

0 

0 . 01 

⎤ ⎦ 0 I 4x4 0.01 10 0.01 

Reheating temperature 

⎡ ⎣ 

0 

0 

0 . 01 

⎤ ⎦ 0 I 4x4 0.01 10 0.01 

Capture ratio 

[
0 . 1 

0 . 1 

]
0 I 3x3 0.1 50000 0.001 

Reboiler temperature 

[
0 . 01 

0 . 01 

]
0 I 3x3 0.1 100 10 
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ith Q p representing the covariance of the process noise w ∈ 

 (0 , Q p ) . Then, these a priori estimates are updated based on cur-

ent measurements: 

 f = 

Z −
k 

˜ C T 

˜ C Z −
k 

˜ C T + R m 

(18c) 

ˆ 
 

 k = 

ˆ ˜ x 
−
k + K f (y k − ˜ C ̂  ˜ x 

−
k ) (18d) 

 k = (I − K f ̃
 C ) Z −

k 
(18e) 

here R m 

is the covariance associated to the measurement noise 

 ∈ N (0 , R m 

) , and K f is the Kalman filter used to estimate the cur-

ent state ˆ ˜ x k and the covariance matrix Z k that will be used at the 

ext sampling time. 

Algorithm 1 summarises the sequence of computations needed 

o implement the MPC strategy at each sampling time. The first 

equire condition refers to the parameters, matrices and vectors 

rovided off-line, whilst the second require condition indicates the 

arameters that are updated every sampling time. The mass flow 

ate of exhaust gas ˙ m exhaust belongs to this second group as it is 

he parameter needed to interpolate the coefficients of the local 

RX models for the capture ratio and reboiler steam temperature 

see Table A.4 ). Moreover, note that the first element of each input 

ontrol sequence must be selected from �u k . 

. Dynamic operation of NGCC-PCC integrated systems 

A case study where the NGCC-PCC system needs to reduce its 

ower generation to balance the grid demonstrates the effective- 

ess of the proposed MPC strategy to respond to fast changes 

n power demand and stabilise the operation of the integrated 

lants. The dominant dynamics of the NGCC and PCC described 

n Section 2.1 occur within 10 and 60 min, respectively. Thus, the 

PC strategy considered a sampling time of 30 s in order to cap- 

ure the transient behaviour in the shortest time-scale, i.e. the dy- 

amic operation of the NGCC. A time horizon N = 20 was hence 

elected to consider the entire period of dominant dynamics in 

he NGCC. Table 2 includes the bounds for the controlled and 

anipulated variables considered during the dynamic simulations. 

able 3 summarises the matrices and vectors to create the aug- 

ented models, the estimator based on the Kalman filter, and the 

eights in the objective function for each input-output pair. These 
9 
eights aimed at compensating the different orders of magnitude 

etween controlled and manipulated variables and at prioritising 

he tracking of the process variables, albeit their tuning was out- 

ide of the scope of this work. 

A step change in the power demand drives the transient op- 

ration of the power plant, which adapts the gas turbine load to 

djust the net power output. Similarly, the change in exhaust gas 

onditions disturbs the operation of the capture plant. Fig. 3 shows 

ey process variables in the NGCC-PCC system during dynamic op- 

ration and demonstrates the effectiveness of the proposed MPC 

trategy to achieve optimal offset-free control. 

Process variables from the NGCC reach their set-point faster be- 

ause of the shorter dominant dynamics of the power plant com- 

ared to the capture system. Net power generation is the fastest 

ariable to meet its target owing to the fast dynamics of the gas 

urbine, which controls the overall power output of the NGCC and 

ompensates the slow dynamics of the steam cycle. Consequently, 

ower demand and supply are balanced within the dominant dy- 

amics of the NGCC. Temperature control in the superheating and 

eheating sections of the HRSG requires more time. Heat capaci- 

ance in the HRSG slows down the transient performance of the 

team cycle compared to the change in gas turbine load. The at- 

emperator valves need to compensate and anticipate these varia- 

ions in the operating conditions for a longer period of time. Nev- 

rtheless, the proposed MPC strategy limited the offset and drove 

oth temperatures to their set-point. 

Dynamics in the PCC plant are notably slower than in any type 

f thermal power plant ( Rúa et al., 2020a ). However, Fig. 3 illus-

rates how the MPC strategy controlled the capture ratio almost 

imultaneously to the temperature in the steam cycle of the NGCC. 

his behaviour originates from the use of optimisation-based con- 

rol strategies. MPC considers the dynamic operation of the cap- 

ure plant and computes optimal control actions that achieved bet- 

er and faster offset free in key process variables. Fig. 3 also il- 
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Fig. 3. Dynamic behaviour of process variables from the NGCC-PCC system with the proposed MPC strategy during a power demand reduction of 70 MW. 
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ustrates how traditional PID controllers require more time and 

ead to larger offsets than MPC, albeit offset-free control is also 

chieved because of their integral action ( Montañés et al., 2017c ). 

In contrast, the reboiler temperature needed more time to reach 

ts set-point. Control actions in the mass flow rate of lean solvent 

o stabilise the capture ratio modify the operation of the desor- 

er, which also affects the lean loading of the solvent at the outlet 

f this column and the temperature in the reboiler. These process 

hanges are characterised by slow dynamics because of the inter- 

ction between the absorber and stripper columns, large volumes 

f solvent and delays from piping and heat exchangers ( Rúa et al., 

020b ). Therefore, the MPC needs to adapt the steam extraction 

rom the NGCC to anticipate the interaction between both ab- 

orption and desorption sections and compensate these operation 

hanges. This leads to the saturation of the steam extraction valve 

n the first 20 min of transient performance of the CO 2 capture 

lant, which results from the combined effect of changing loading 

n the solvent, the MPC strategy trying to anticipate the dynamic 

ehaviour of the reboiler temperature and the slow dynamics of 
10 
he desorption section of the PCC plant. The steam cycle and cap- 

ure stabilise completely during this time and reduce hence the 

ariations in steam availability and fluctuation in the rich loading 

f the solvent. These steadier conditions ease the control of the re- 

oiler temperature and allow a more stable and prolonged move- 

ents of the steam extraction valve after this stabilisation period. 

Despite the saturation of the steam extraction valve, the pro- 

osed MPC strategy obtained smaller offsets than 0.15 ◦C and 

chieved offset free in an hour, which is better performance than 

sing PID controllers ( Montañés et al., 2017c ). This reduced offset 

chieved by the MPC strategy during drastic changes of load is spe- 

ially important in the reboiler temperature, as it could allow in- 

reasing its set-point, and hence the stripping efficiency, without 

eaching temperatures that lead to solvent degradation during the 

egeneration process. 

Tuning of the MPC was not the main objective of this study. 

mproved performance might be achieved with adequate weight 

alues in the objective function, λQ and λR , disturbance matrices 

nd vectors ( Pannocchia, 2003 ), B and C , and noise models for 
d d 
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he Kalman estimator, Q p and R m 

. However, the different orders of 

agnitude among controlled and manipulated variables suppose a 

hallenge to balance the values of these different tuning parame- 

ers. 

. Conclusions 

Flexible thermal power plants integrated with post-combustion 

apture systems will play a fundamental role balancing the in- 

ermittent power generation from renewable energy sources with 

ow-carbon electricity. The deployment of this technology requires, 

owever, the demonstration that this type of power systems can 

rovide fast changes of power output whilst capturing most of the 

roduced CO 2 . Optimisation-based control strategies can enhance 

he dynamic operation of these integrated systems and contribute 

o more efficient and stable power systems. Among the different 

vailable technologies to produce flexible, low-carbon power, natu- 

al gas combined cycles offer the fastest and most efficient perfor- 

ance. 

This work presents a linear model predictive control strat- 

gy applied to a modern NGCC integrated with a PCC plant. 

his method achieves offset-free control by augmenting the linear 

odel with a disturbance model that removes any deviation from 

he set-point. Furthermore, the proposed MPC strategy is formu- 

ated in delta-input form, since this form is easier to implement 

nd more computationally efficient due to the reduced amount of 

ptimisation variables. Linear, data-based models were developed 

nd implemented in the MPC strategy because of the excessive 

omputational cost of the high-fidelity dynamic models. System 

dentification allowed the development of several data-based, local 

RX models that were combined in a local model network capable 

f predicting nonlinear behaviour with a set of linear models. This 

pproach permitted the formulation of the dynamic optimisation 
Table A.4 

Coefficients of the simplified local ARX models composing the local model netwo

Controlled variable γ Lo

Net power generation - 

Supeheated steam temperature Gas turbine load 

Reheated steam temperature Gas turbine load 

Capture ratio Mass flow exhaust gas 

Reboiler steam temperature Mass flow exhaust gas 

11 
rogram in the MPC strategy as a convex quadratic programming 

QP) problem that leads to global optimal solutions. 

A case study where a NGCC integrated with a PCC plant needs 

o balance a step change in power demand demonstrated the effec- 

iveness of the proposed MPC strategy. The key process variables 

ontrolled by the MPC presented offset-free in shorter periods of 

ime than those observed with traditional PID controllers. More- 

ver, the deviations from the set-point during transient operation 

ere smaller. This dynamic behaviour with reduced offsets allows 

he approximation of nominal values of these parameters to their 

imits, which could potentially lead to improved performance, e.g. 

eboiler temperature closer to the degradation limit of the solvent. 

inear MPC also presents fast convergence time because of its con- 

exity and favourable numerical properties. Thus, better dynamic 

peration could be achieved by reducing the sampling time and 

ncreasing the predicting horizon. Adequate selection of weights in 

he objective function, disturbance matrices and vectors, and noise 

odels in the estimator could also lead to improvements in the 

ynamic performance of the NGCC-PCC system. This topic was not 

nalysed in this study, but it is considered as an interesting direc- 

ion for future research. 
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ppendix A 

Table A.4 summarises the coefficients of the local ARX models 

dentified in Section 2.2 . The combination of these parameters with 

 Gaussian validity function leads to the overall parameters that 

ompose the local model network at each sampling time. 
rks. 

cal model Centre 
Parameters 

a b 

- - 90 5.25 

1 100 -1.21, 0.21 -23.06, 23.15 

2 95 -1.50, 0.50 -21.34, 21.46 

3 90 -1.29, 0.29 -24.03, 24.00 

4 85 -1.32, 0.32 -22.74, 22.90 

5 80 -1.34, 0.34 -22.22, 22.34 

1 100 -1.06, 0.06 -14.58, 15.02 

2 95 -1.20, 0.20 -15.96, 16.09 

3 90 -1.17, 0.17 -15.10, 15.53 

4 85 -1.19, 0.19 -14.40, 15.08 

5 80 -1.21, 0.21 -14.37, 15.04 

1 436.5 -0.931 7.925e-5 

2 429 -0.938 7.543e-5 

3 412 -0.949 6.093e-5 

4 395 -0.978 2.156e-5 

5 379 -0.972 3.073e-5 

1 436.5 -0.992 0.166 

2 429 -0.981 0.225 

3 412 -0.997 0.219 

4 395 -0.993 0.089 

5 379 -0.996 0.110 
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Fig. B.4. Validation results of the simplified models described in Section 2.2 . These results only include a small set of the validation data to ease the visibility, whereas the 

R 2 values on Table 1 considered the entire set. 
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ppendix B 

Fig. B.4 illustrates a small set of the validation results compar- 

ng the predicting capability of the LMN of simplified ARX models 

nd the output of the dynamic high-fidelity model. 

ppendix C 

Consider the control input action defined in Eq. (9) and substi- 

ute it in the simplified polynomial model in Eq. (4) : 

 k = a + b (δu k + u k −1 ) (C.1) 

f the same sequences of outputs and control inputs over a time 

orizon N as in Section 3.1 are considered, this polynomial model 

an be expressed: 

 = a I + b � δu + b I u −1 (C.2) 

here I is the identity matrix and � was defined in Section 3.1 . 

nserting this vector equation and the delta-input definition on the 

nequality constraints of the standard MPC formulation: 

 pow 

δu ≤ f pow 

(C.3) 

here 

 pow 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−b�
b�
−�
�
−I 
I 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

f pow 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

−(y low − aI − bIu k −1 ) 
y up − aI − bIu k −1 

−(u 

low − u k −1 ) 
u 

up − u k −1 

GT ramp 

GT ramp 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

nd GT ramp limits the maximum ramping rate of the gas turbine. 

his work considers a 15%/min ramp rate, as indicated by most gas 

urbine manufacturers. 

Similarly, the objective function becomes: 

 pow 

= 

1 

2 

(‖ Q(y − y ref ) ‖ + ‖ Rδu ‖ 

)
= 

1 

2 

(‖ Q(aI + b�δu + bIu −1 − y ref ) ‖ + ‖ Rδu ‖ 

)
= 

1 

2 

[ 
δu 

T (b T �T Q�b + R ) δu 

+ 2(aI + bIu −1 − y ref ) 
T Q�bδu 

+ (aI + bIu −1 − y ref ) 
T Q(aI + bIu −1 − y ref ) 

] 
(C.4) 

hese inequality constraints and objective function, Eqs. (C.3) and 

C.4) respectively, define the MPC delta-input formulation in 
12 
q. (14) for the polynomial model in Eq. (4) . Thus, it may be eas-

ly combined with state-space models in the MIMO formulations 

escribed in Section 3.2.2 . 
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