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Abstract
The path-following scheme in Loisel and Maxwell (SIAM J Matrix Anal Appl
39(4):1726–1749, 2018) is adapted to efficiently calculate the dispersion relation curve
for linear surface waves on an arbitrary vertical shear current. This is equivalent to
solving the Rayleigh stability equation with linearized free-surface boundary condi-
tion for each sought point on the curve. Taking advantage of the analyticity of the
dispersion relation, a path-following or continuation approach is adopted. The prob-
lem is discretized using a collocation scheme, parametrized along either a radial or
angular path in the wave vector plane, and differentiated to yield a system of ODEs.
After an initial eigenproblem solve using QZ decomposition, numerical integration
proceeds along the curve using linear solves as the Runge–Kutta F(·) function; thus,
many QZ decompositions on a size 2N companion matrix are exchanged for one QZ
decomposition and a small number of linear solves on a size N matrix. A piecewise
interpolant provides dense output. The integration represents a nominal setup cost
whereafter very many points can be computed at negligible cost whilst preserving
high accuracy. Furthermore, a two-dimensional interpolant suitable for scattered data
query points in the wave vector plane is described. Finally, a comparison is made with
existing numerical methods for this problem, revealing that the path-following scheme
is the most competitive algorithm for this problem whenever calculating more than
circa 1,000 data points or relative normwise accuracy better than 10−4 is sought.
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1 Introduction

We develop a path-following method to numerically calculate the dispersion relation
curve for linear surface waves atop a horizontal current of arbitrary depth dependence,
an adaptation of the scheme developed by Loisel and Maxwell [29].

1.1 Background andMotivation

We consider a classical problem from the study of wave-current interactions [38–40],
[36, sec. IV], [12,34,35,43], that of linear surface waves upon a vertical shear current.
In other words, waves are considered as perturbations to first-order in wave steepness
ε = ka upon some zeroth-order depth-dependent horizontal background flow that, in
general, has non-constant vorticity. The problem geometry is shown in Fig. 1. Waves
in this regime are dispersive with their behaviour being entirely characterized by the
dispersion relation, i.e. the dependence of phase velocity c(k) on the wave vector k
whose modulus k is the wavenumber.

When a vertically varying shear current is present beneath a water surface, the dis-
persion of water waves riding atop it is affected in a complicated way. The well-known
expression for the phase velocity of a linear surface wave in inviscid, initially quies-
cent water of depth h, c0(k) = c0(k) = √

(g/k) tanh(kh), where g is gravitational
acceleration, does not hold when considering general horizontal depth-dependent cur-
rents of the form U(z) where z is the depth. In the general case, c(k) is an eigenvalue
of the boundary value problem formed by the Rayleigh stability equation (inviscid
Orr–Sommerfeld equation) with a bottom Dirichlet boundary condition and a free-
surface boundary condition. Only in the cases of quiescent water, uniform current,
and strictly linearly varying current is a closed-form expression for c(k) known for
all permissible values of k (and vice versa). Figure 2a, b illustrates quiescent water,

a b

Fig. 1 The problem setting. a An illustrative example of dispersive ring waves atop a shear current. An
example velocity profile is indicated with z-dependent arrows changing direction in the horizontal plane
and an example k vector as k0. b Two-dimensional geometry along x-axis (see also, ‘reduced problem’
defined in Sect. 2.4). Velocity profile shown is UT(z) as defined in Sect. 2.5
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a b

Fig. 2 a Plot and dispersion relations for quiescent water, linear velocity profile, and a general velocity
profile. Velocity profiles for quiescent water (no background current) in dotted magenta, a linearly varying
background current (constant vorticity) in dashed green, and a more general profile UT in solid blue.
b Dispersion relations c(k) corresponding to the three velocity profiles in (a)

a linear velocity profile, and a general velocity profile, along with the corresponding
dispersion relations.

In a theory setting, the typical situation is that c(k) is desired for a given k, such as
when initial value problems are solved via aFourier transformation in horizontal spatial
directions. In a laboratory setting, however, wave-makers operate at a given frequency
ω = kc, with k as the dependent parameter. Likewise, when a monochromatic wave
propagates in an environment of varying current and bathymetry, its frequency is the
conserved quantity whereas the wave vector k changes according to local conditions.
The former setting of determining c(k) from k, we refer to as the ‘forward problem’;
the latter, finding k(c), we refer to as the ‘backward problem’ (distinct from the ‘inverse
problem’ which aims to infer the current profile when c(k) is known). Our primary
interest in this paper is in the forward problem but, for purposes of completeness, we
also describe how to solve for k(c) using a collocation scheme.

1.2 ExistingMethods to Calculate the Dispersion Relation

Unsurprisingly, a number of approaches exist for determining c(k). The oldest
approach was to approximate a depth-varying unidirectional velocity profile U (z),
where z is the vertical coordinate, by a piecewise linear profile [13,38,39,50]. U (z)
could realistically be divided only into a small number of pieces before the formalism
would become impractical for manual calculation. The availability of modern comput-
ing permits extending the piecewise linear approximation to arbitrarily many pieces
[45,57]. Despite the procedure being physically transparent, it converges only as N−2

[57], where N is the number of pieces.
Another popular approach is integral approximation methods. An expression was

derived by Stewart and Joy [47] (infinite depth) and then generalized by Skop [44]
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(finite depth) and further extended by Kirby and Chen [26] (finite depth to second
order); these approaches are usually valid to within a few percent for typical oceano-
graphic current profiles. An alternative able to tackle cases with extreme shear was
presented recently by Ellingsen and Li [21].

Numerical techniques are applicable to the problem, for example, a shootingmethod
was used by Dong and Kirby [14]. The problem is also amenable to solution with
a naive shooting method using a Runge–Kutta numerical integrator and Newton’s
method. A recent addition is the so-called Direct Integration Method (DIM) due to
Li and Ellingsen [27] which is versatile and arguably the best available method when
not so many points are sought on the dispersion relation curve and only moderate
accuracy is required. There are various ways to apply spectral methods; example
usage of a collocation method is described later in Sect. 3.

It is also possible to calculate a high-order interpolant of the curve using the collo-
cationmethod for pointwise sampling; this is used as a comparison in our performance
tests in Sect. 7 using Chebfun [17] to construct the interpolant.

The path-following method presented in Sect. 4 calculates not only a piecewise
Hermite interpolant but also exploits the local analyticity by integrating along the
curve. This confers a significant efficiency advantage in most cases.

1.3 Methodology and Approach

Engineering and the natural sciences are replete with eigenproblems for ordinary
differential operators which depend on a finite set of parameters. We are interested in
problems which are parametrized by a single real variable.

The canonical solution approach involves conversion to an algebraic problem via
spatial discretization, which often leads to polynomial or even nonlinear eigenprob-
lems of potentially large dimension. These can be solved using classical techniques
for each sought parameter value. This strategy may become prohibitively expensive
when the computation must be repeated many times. It can also be difficult to take
advantage of the nearness of solutions for small parameter variations, forcing full cal-
culations for each point in the parameter space. An alternative approach is to solve the
discretized eigenproblem once for a fixed parameter value then use the local piecewise
analyticity of the eigenvalue and eigenvector [4,24,37] to calculate along the solution
curve using a path-following or numerical continuation algorithm.

In a more general setting, this comprises a numerical continuation method whereby
the parameter-dependent solution is calculated as an implicitly defined curve [3].
Homotopy methods have a similar philosophy but introduce an artificial parameter
to parametrize a convex homotopy to map from the solution of an ‘easy’ problem to
the solution of the actual problem [28]. These methods tend to use predictor–corrector
schemes such as pseudo-arclength continuation or similar approaches. Wemake refer-
ence to the homotopymethod in [30] and the invariant subspacemethods in [8], [10] as
relevant examples. For a recent approach that shares a strong philosophical similarity
with the material herein for working with time-varying matrix eigenproblems, albeit
using different techniques (look-ahead finite difference formulas), see [54] and [53].
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This paper is concerned with repurposing the path-following technique used in
[29] to solve for the dispersion relation associated with the geometry described in
Sect. 1.1. This problem is particularly suited as a motivating example of the technique:
it is conceptually simple, it has an eigenvalue-dependent boundary condition, it is
well known from both the waves literature and hydrodynamic stability, and there is a
practical requirement for efficient numerical solution.

We summarize our approach as follows. The original eigenproblem is spatially dis-
cretized using a collocation method, implicitly incorporating the boundary conditions,
to obtain a parameter-varying system of equations that are then differentiated to yield
an under-determined system of ODEs. An additional constraint is then included. After
performing an initial eigenproblem solve, numerical integration can proceed along the
solution curve using linear solves as the Runge–Kutta F(·) function. Specifically, the
Dormand–PrinceRK5(4)7Mmethod [15, p. 23], which incorporates adaptive step-size
control, is used. A piecewise polynomial interpolant provides dense output.

This approach is in contrast to standard predictor–corrector style numerical continu-
ation, see, for example, the description in [3]. Rather than applying a correction at each
step, reliance is placed entirely on the adaptive step-size control in theDormand–Prince
5th-order scheme to ensure that the error is maintained within the desired tolerance.
As demonstrated later in Sects. 5 and 7, this approach produces an algorithm that
efficiently computes the solution with high accuracy.

1.4 Outline of the Paper

We begin by formally describing the geometry of the physical problem and some
problem-specific background in Sect. 2. The collocation scheme used is briefly
described in Sect. 3. The path-following method is described in Sect. 4 along radial
and angular one-dimensional paths in the k wave vector plane, and also for general
scattered data points in the two-dimensional k plane. In Sect. 5, we provide numeri-
cal results to determine the expected accuracy of the collocation and path-following
methods. In Sect. 6, we describe an adaptive partition of unity method to address the
problem of the eigenvector becoming numerically singular at the surface with increas-
ing k. In Sect. 7, we evaluate the relative performance characteristics of the various
methods and in Sect. 8, we describe how to choose optimal parameters. Finally, in
Sect. 9, we provide some conclusions.

2 Preamble

2.1 Problem Description

Wave–current interaction problems are often studied by adopting a modal linear per-
turbative approach: waves are considered as first-order perturbations of a stationary,
incompressible, and inviscid bulk fluid flow. In this context, waves are dispersive with
the phase velocity of a wave dependent on the wave vector in a nonlinear manner.
The relationship between the wave vector, k, and the phase velocity, c, is termed the
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dispersion relation and is determined by factors such as water depth and background
current.

In our context of first-order free-surface waves atop a vertical shear flow, the
problem reduces to finding solutions of the eigenvalue problem formed from the
Rayleigh stability equation and appropriate boundary conditions. The Rayleigh equa-
tion is a second-order ODE that is equivalent to the Orr–Sommerfeld equation
when viscous effects are neglected. A solution to the eigenproblem will yield a
{k, c, w(z)} triplet where w(z) is the associated eigenfunction. The eigenfunction
can be used to reconstruct the velocity and pressure field for the corresponding
wave vector [27, sec. 4.4]. Notably, there is substantial overlap with the literature
on linear stability theory, e.g. [41, ch. 2] or [16], albeit with different boundary con-
ditions.

Closed-form expressions for the dispersion relation for free-surface waves exist
only in specific scenarios such as quiescent water [33], [48, ch. 1]; uniform current
[48, ch. 6]; or, a linear velocity profile (constant vorticity) [36, p. 78], [18, eqn. 3.8],
[19,20].

To make matters more concrete, we adopt the general approach used in [27,43] and
refer the reader to the derivations therein for full detail. For expediency, the approach
is only summarized here. The physical model is depicted in Fig. 1a. Dimensional
quantities are denoted with an acute accent, e.g. ḱ.

The background flow is specified by a velocity profile Ú(ź) = (Úx (ź), Úy(ź)): a
two-dimensional vector field describing the bulk fluid velocity in the horizontal plane
for a given ź ∈ [−h́, 0]where h́ is the constant fluid depth and the unperturbed surface
is at ź = 0. Let

Úm :=max

{
| sup
ź∈[−h́,0]

Úx (ź) − inf
ź∈[−h́,0]

Úx (ź)|, | sup
ź∈[−h́,0]

Úy(ź)− inf
ź∈[−h́,0]

Úy(ź)|
}

.

(1)

We use h́ as a characteristic length scale and Úm as a characteristic velocity, to
arrive at the following nondimensionalization:

U(z) = Ú(ź/h́)/Úm, z = ź/h́, k = ḱh́, c = ć/Úm, h = 1, (2)

so that a notional shear strength can be expressed with Froude number, F =
Úm/

√
gh́. The velocity profile must be suitably regular, so we impose that Ux ,Uy ∈

C2([−1, 0],R). We also require c parallel to k and we henceforth only refer to scalar
c = |c|. It is assumed that the current can influence the waves but not conversely
and, for clarity of exposition, we neglect surface tension. We adopt the Ansatz that
perturbations are plane waves proportional to exp[i(k · x − ωt)], where the (scalar)
wave angular frequency is ω = kc with k = |k|, and use a Fourier transform in the
horizontal plane (coordinate space quantities indicated with a tilde),

{ũ, ṽ, w̃, p̃} = 1

(2π)2

∫
R2

{u, v, w, p}ei(k·x−ωt) dk. (3)
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The velocity perturbations along the x , y, and z axes are, respectively, u = u(k, z),
v = v(k, z), and w = w(k, z), whilst the pressure is p = p(k, z). The governing
equations are the linearizedEuler equations and incompressibility condition, e.g. recall
[43]:

ikxu + ikyv + w′ = 0, i(k · U − ω)u +U ′
xw = −ikx p/ρ,

i(k · U − ω)w = −p′/ρ, i(k · U − ω)v +U ′
yw = −iky p/ρ,

using shorthand Ux = Ux (z), Uy = Uy(z). After rearranging, the Rayleigh equation
(4a) is obtained which we write along with the relevant free-surface condition Eq. (4b)
(combined kinematic and dynamic boundary condition) and Dirichlet boundary con-
dition for the fluid bottom Eq. (4c),

w′′ − k · U ′′

k · U − kc
w − μw = 0, z ∈ (−h, 0); (4a)

(k · U − kc)2w′ − [(k · U − kc)k · U ′ + F−2k2]w = 0, z = 0; (4b)

w = 0, z = −h; (4c)

forμ = k2. The velocity and pressure field for a specific wave vector can be recovered
by substituting the appropriate eigenpair into [27, sec. 4.4],

(k · U − ω)w′ − k · U ′w = ik2 p/ρ,

ikx [k · U ′w − (k · U − ω)w′] − ik2U ′
xw = k2(ω − k · U)u,

iky[k · U ′w − (k · U − ω)w′] − ik2U ′
yw = k2(ω − k · U)v.

(5)

Often, the physical problem is posed so that a scalar U (z) is aligned along the
x-axis as U(z) = (U (z), 0), with scalar k and c, see Fig. 1b. However, there is
no difficulty in solving with a general U(z) by simply projecting U(z) along k as
described in Sect. 2.4. Full three-dimensional considerations only come to the fore
when calculating the velocity and pressure field; the eigenvalue problem described by
Eq. (4) is always one-dimensional in the sense that the eigenfunctions are a function
of one variable, z. This is all straightforward but it is worth stating explicitly to avoid
the inherent ambiguities and possible confusion caused by ‘1d’ / ‘2d’ or ‘2d’ / ‘3d’
descriptions, e.g. [21, sec. 1.1]. In particular, we refer to the problem with scalarU (z)
as the reduced problem and with vector U(z) as the general problem. In Sect. 2.4, we
note that the reduced problem is equivalent to solving the general problem in a radial
‘slice’ at some fixed angle θ0.

So far, we have deliberately avoided specifying which variable is the sought eigen-
value in Eq. (4): it can be chosen as either μ or c, with its counterpart parametrizing
the problem and always chosen to be real valued, in a similar manner to [11, sec. 7.4].
Since we are always choosing the parameter to be real valued, we are concerned with
a subset of the parametrized spectrum in each case and can plot this arrangement as a
function of the parameter.
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a b

Fig. 3 Parametrized plots of the real spectrum for both the backward and forward problem. a μ(c) spectrum
for backward problem. Notice only one positive eigenvalue and series of negative eigenvalues distributed
∼ n2. b Plot showing the sought positive and also negative solution branches along with the essential
spectrum

• The spectrum forμ(c), for c in some suitable interval, is comprised of a countably
infinite set of eigenvalues. The dominant eigenvalue, μ1 = k2, in this case is
the only positive eigenvalue, and corresponds to a propagating wave (for±k). The
negative eigenvalues correspond to the countably infinite set of discrete k arranged
along the imaginary axis and are not mentioned further. See Fig. 3a.

• The spectrum for c(k), for k > 0, has both discrete and essential parts (c such
that U (z) − c = 0, regular singular points of the ODE). In particular, there are
two discrete eigenvalues usually labelled c+(k) and c−(k). Further discussion
is available in [16, p. 137]; in particular, our interest shall be in computing the
dominant ‘regular inviscid solution’, the smooth c+(k) curve. For some k, c+(k)
may be located within the same interval as the essential spectrum and, therefore,
can be difficult to identify within numerical solution sets, see Fig. 3b.

The c± exhibit odd symmetry with respect to k:−c+(k) = c−(−k); the associated
eigenfunctions are also odd symmetric, −w+(k, z) = w−(−k, z). Furthermore, it
should be noted that the one-sided limits limk→0+ c(k) and limk→0− c(k) exist but
depend on angle θ . So c±(k) is, in general, undefined at the origin.

2.2 ProblemTypes: Forward, Backward, and Inverse

We distinguish three types of problem.

1. For velocity profile, U (z), and collection of wavenumbers, {k( j)}Jj=1, calculate

associated velocities {c(k( j))}Jj=1. We denote this as the forward problem.

2. For velocity profile, U (z), and collection of velocities, {c( j)}Jj=1, calculate asso-

ciated wavenumbers {k(c( j))}Jj=1. We denote this as the backward problem.

3. For collectionofwavenumber andphase velocity pairs, {(k( j), c( j))}Jj=1, determine
velocity profile,U (z).We denote this as the inverse problem,which is of an entirely
different nature and herein not considered further.

Both the forward and backward problems usually amount to calculating sufficiently
many {k( j), c( j)} pairs as to adequately specify the full dispersion relation for a given
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velocity profile. For practical purposes, these problems are almost always posed as
Eq. (3) with exponent of the form i(kx − ω(k)t) (see [36, p. 77, eqn. 4.6], [26, eqn.
1], [43, eqn. 2.4], etc). This, by default, presupposes solving the forward problem.
Furthermore, handling of critical layers as in Sect. 3.4 is, from a numerical standpoint,
easier for the forward problem. Therefore, most of this paper concerns solution of the
forward problem. Unless otherwise specified, we shall compute c+ since c− follows
automatically from symmetry.

There are a few exceptions when solving the backward problem is more suitable
such as for wave problems with periodic or stationary time dependence, e.g. in ship
waves. Hence, for purposes of completeness, we also describe solving the backward
problem using a rudimentary collocation scheme and the basic properties of the spec-
trum.

2.3 Summary of Numerical Schemes

For ease of reference, we denote the various numerical schemes used or described in
this paper:

• CL-c Collocation scheme for the forward problem, see Sect. 3.3.
• CL-k Collocation scheme for the backward problem, see Sect. 3.2.
• PF-R-r-cA path-following schemewith dense output to solve the forward reduced
problem along a fixed angle θ0 in the k-plane, see Sect. 4.2.1.

• PF-R-a-cApath-following schemewith dense output to solve the forward reduced
problem for ck0(θ) along a fixed circle of radius k = k0 with varying θ in the k-
plane, which we term the angular solution, see Sect. 4.2.2.

• PFmp-R-{r,a}-c An illustrative scheme using a single high-precision QZ solve to
improve accuracy of PF-R-{r,a}-c, detailed in Sect. 4.2.5.

• PF-G-c A scheme which solves the forward general problem using PF-R-r-c and
PF-R-a-c to allow rapid interpolation with two-dimensional scattered data query
points in the k-plane, see Sect. 4.3.

The CL-c and CL-k schemes incur an eigenvalue calculation for each query point,
so the computational cost will increase linearly with the number of query points. The
arrangement of points in the k-plane for the CL-schemes can be random (scattered
data) without affecting computational cost.

The PF-R-r-c path-following algorithm is two staged: it first performs numerical
integration to calculate control points along a radial ‘slice’ at fixed angle θ0, which
incurs a nominal initial computational cost; query points on that slice are then calcu-
lated using a Hermite interpolant. Although the computational cost of interpolation is
linear in the number of query points, it is so lightweight as to be of almost negligible
cost in most situations: so after the initial computation, very many query points can be
calculated efficiently. The angular PF-R-a-c scheme is similar but instead calculates
along a circular path at a fixed radius k0.

The PF-G-c scheme is more involved because we accept query points in the k-
plane with no assumption on arrangement, i.e. scattered data. A naive approach would
incur a complete first stage calculation of PF-R-r-c for every query point, which is
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unacceptable. The PF-G-c scheme instead precalculates a two-dimensional polar grid
of suitable control points and then can interpolate for query points at negligible cost.

Note that all methods presented can also make available the eigenfunction w(z) so
that the velocity and pressure field can be reconstructed using Eq. (5).

2.4 General to Reduced Problem

The general problem Eq. (4) can be simplified to a reduced problem by projecting U
along k, see, for example, [36, p. 77], [43, p. 566]. Define the scalar velocity profile
for the reduced problem asUk(z) = (1/k)k ·U = cos(θ)Ux (z) + sin(θ)Uy(z) where
θ is taken to be the standard angular polar coordinate for k.

2.5 Velocity Profiles and Parameters Used

For later numerical tests, we define a test velocity profileUT for the reduced problem,
as shown in Fig. 1b,

UT(z) := γ

2
(1 + δz) cos(β(−z)α) + 1/2, α = 2, β = 4π, γ = 1, δ = 1/2. (6)

We choose the physical depth h́ = 20 and shear Froude number as F2 = 0.05. We
choose nondimensional k ∈ Ik := [ 0.025, 250]. This corresponds broadly to gravity
waves in the air–water interface regime [33, p. 4] with shortest period ≈ 0.2s. The
function is chosen as a suitable test candidate because it has several stationary points
and cannot be approximated exactly over a finite-dimensional polynomial basis.

For the figures produced from PF-G-c shown later in Fig. 7, we useUT(z) along the
x axis and an approximation of a flow in the Columbia River on the y axis, which we
denote UCR. UCR is defined by a sixth-degree polynomial as in [32]. For the plots in
Sect. 4.3,UCR is scaled to have F2 ≈ 0.01; it is also used in Sect. 3.4 with F2 = 0.05.

For use later, define

Umin := inf
z∈[−1,0]{U (z)} and Umax := sup

z∈[−1,0]
{U (z)}.

3 CollocationMethod for Solving the Dispersion Relation

3.1 Discretization of the Equations

We use sans serif notation to indicate matrices (uppercase) and vectors (lowercase),
e.g. U or w, to distinguish from their continuous counterparts.

Let ζ j = cos(( j − 1)π/Nz), j = 1 . . . Nz + 1 be the Chebyshev–Gauss–Lobatto
collocation points on [−1, 1] (second-kind points). We use the change of variable
z = (h/2)(ζ − 1) to map ζ j to z j ∈ [−1, 0] in nondimensional coordinates and let
z := [ z1, . . . , zNz+1 ]T be the associated column vector. Let D be a corresponding
square differentiation matrix (in practice, we calculate the first- and second-order
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differentiation matrices, D and D2, using poldif.m from the Weideman–Reddy
library [55] and then apply the ‘negative sum trick’ as detailed in [6]). We define
vector discretizations of the velocity profile,

u = [u1, . . . , uNz+1]T := [U (z1), . . . ,U (zNz+1)]T.

Quantitiesu′ andu′′ are similarly defined. Letw := w(z). Define the diagonalmatrices
U := diag(u), U′ := diag(u′), and U′′ := diag(u′′).

The problem is a two-point boundary value problem so is amenable to the stan-
dard ‘row-replacement’ strategy, see, for example, [52, ch. 7]. Specifically, we aim
to construct eigenvalue equations which discretize the governing equation Eq. (4a)
using the ‘interior’ rows 2 through Nz of the differentiation and coefficient matri-
ces. The free-surface boundary condition Eq. (4b) is incorporated in the first row
of the matrices. The bottom Dirichlet Eq. (4c) boundary condition is accounted for
by eliminating the last row and column in the matrices, as in [52, ch. 7]. For nota-
tional convenience, we define ‘interior’ differentiation and velocity profile matrices as
Dint = Dlm , Uint = Ulm , U′

int = U′
lm , and U′′

int = U′′
lm with l = 2 . . . Nz , m = 1 . . . Nz

(in other words, eliminating the first and last rows, and last column). We also define
a free-surface differentiation vector as the first row of D, df := D1m , m = 1 . . . Nz ,
again without the last column.

3.2 Backward Reduced Problem (CL-k)

Treating c as a parameter and k as the eigenvalue then using the projection from
Sect. 2.4, we obtain a regular Sturm–Liouville problem on z ∈ [−1, 0]with eigenvalue
μ = k2,

(
d2

dz2
− U ′′(z)

U (z) − c

)
w(z) = μw(z), z ∈ (−1, 0); (7a)

(U − c)2w′ − [(U − c)U ′ + F−2]w = 0, z = 0; (7b)

w = 0, z = −1. (7c)

Let q j := u′′
j/(u j − c), qint := [q2 . . . qNz ], and Qint = diag(qint). The discretiza-

tion of Eq. (7a) proceeds in an obvious manner,

μw = (D2
int − Qint)w = Rw, for R := D2

int − Qint. (8)

Discretizing Eq. (7b) into a row vector gives,

f := (u1 − c)2df − [ ((u1 − c)u′
1 + F−2), 0, . . . , 0 ]. (9)

Write

A =
[
f
R

]
, and B = diag(0, 1, . . . , 1), (10)
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to obtain the generalized eigenvalue problem,

Aw = μBw. (11)

Note that the only effect of B is to ensure that the row of A with the free-surface
boundary condition is set equal to zero and is not dependent on the eigenvalue. Equa-
tion (11) can be solved in several ways, e.g. using MATLAB’s implementation of QZ
as eig(A,B).

For a given c, the solution of Eq. (11) yields the greatest Nz eigenvalues from the
countably infinite set of discrete μ j eigenvalues, ordered μ1 > μ2 > . . ., associated
with the infinite-dimensional operator. The only positive eigenvalue is μ1. Since k =√

μ, μ1 gives the only real k. Our interest is in propagating waves; therefore, k± =
±√

μ1 is the sought solution. This is shown in Fig. 3a.

3.3 Forward Reduced Problem (CL-c)

Now, treating k as a parameter and c as the eigenvalue, we rewrite the reduced problem
Eq. (7) to emphasize the quadratic eigenvalue dependence in the free-surface boundary
condition,

(
U

(
d2

dz2
− k2

)
−U ′′ − c

(
d2

dz2
− k2

))
w = 0, z ∈ (−1, 0);

(12a)

c2w′ + c(−2Uw′ +U ′w) + (U 2w′ −UU ′w − F−2w) = 0, z = 0;
(12b)

w = 0, z = −1.
(12c)

We initially discretize Eq. (12a) as

(Uint(D
2
int − k2I) − U′′

int − c(D2
int − k2I))w = 0. (13)

We proceed by expressing the free-surface condition as coefficients of the powers of
c,

f2 = df (14a)

f1 = −2u1df + [ u′
1, 0, . . . , 0 ] (14b)

f0 = u21df − [ u′
1u1 + F−2, 0, . . . , 0 ]. (14c)

In the same manner, we now separate Eq. (13) into powers of c,

R2 = 0 (15a)

R1 = −(D2
int − k2I) (15b)
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R0 = Uint(D
2
int − k2I) − U′′

int. (15c)

Define

A2 =
[
f2
R2

]
, A1 =

[
f1
R1

]
, and A0 =

[
f0
R0

]
. (16)

To obtain the sought solution, we solve the quadratic eigenproblem,

(c2A2 + cA1 + A0)w = 0. (17)

There are several techniques to solve the quadratic eigenvalue problem. A lin-
earization and then using a QZ decomposition works well in this setting. MATLAB’s
polyeig(A2,A1,A0) implements such a linearization although some care must
be taken. In particular, the A2 matrix is badly rank-deficient. As a consequence, the
QZ algorithm will return infinite and large-but-finite eigenvalues which are merely
artefacts of the numerical method and must be removed.

From the solution of Eq. (17), it is the c+ eigenvalue that is sought. The result set
will also include an eigenvalue for c− and other finite eigenvalues that are regular
singular points of the underlying ODE. These regular singular points, or critical layer
points, are sampled from the essential spectrum: c such that U (z) − c = 0 for some
z ∈ [−1, 0], see [16] and Fig. 3b.

Let α j for j = 1, . . . , N j ≤ 2Nz be the eigenvalues obtained from the solution
of Eq. (17) and w j be the corresponding eigenvectors. The infinite and very large in
magnitude α j are discarded. The solution is found by determining the j such that
α j = c+ can be identified (to within numerical error). There are two possible cases,
either

(i) c+ is the greatest element of α j such that c+ /∈ [Umin,Umax], or
(ii) c+ ∈ [Umin,Umax] (a critical layer has been encountered).

The former case is trivial: merely pick the largest eigenvalue that is not in
[Umin,Umax]. The latter case may be handled using the methodology described in
Sect. 3.4 below.

Although the collocation method converges exponentially fast with respect to
increasing Nz , the effects of roundoff error and ill-conditioning in the differentiation
matrices soon start to dominate [11]. As shown later in Sect. 5, in double precision,
the relative error in calculated c is at best around 10−10 for this problem. Techniques
such as domain decomposition may be used to reduce the error further but since these
techniques are relatively well known, implementation details have been omitted.

3.4 Solving with Critical Layers in the Forward Problem

In most cases, one of the α j corresponds to c+ and another to c−. The remaining α j

eigenvalues are sampled from the essential spectrum and shall be described as spuri-
ous eigenvalues to match the terminology used in [11, ch. 7] and [45]. The underlying
eigenvalue problem is quadratic and, as might be expected, the spurious eigenvalues
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occasionally manifest as complex conjugate pairs due to collisions with other spuri-
ous eigenvalues. In pathological situations, an eigenvalue collision between c+ and
a spurious eigenvalue will create a complex conjugate pair causing the sought c+ to
disappear from the solution set. This is dealt with in more detail in Sects. 3.4.1 and
3.4.2 below.

A similar approach to filtering of spurious eigenvalues by looking for singular
behaviour in the eigenfunction away from the endpoints was used in [45]. However, it
does not perform robustly when the order of discretization is too large or if the sought
c+ is too close to a spurious eigenvalue.

3.4.1 Eigenvector Filtering

The sought α j is usually within a good error margin of the exact c+ but identifying
this from the spurious eigenvalues is nontrivial. The eigenvectors corresponding to
these spurious eigenvalues tend to exhibit features that permit identification aside
from singular behaviour in the interior of the interval. These include

1. nonzero near z = −h;
2. nonzero imaginary component;
3. for suitably large k, the decay near the surface is not sufficiently ‘fast’;
4. dependence on the order of discretization; and,
5. singular behaviour in the interior of the domain (detected using MATLAB’s

findpeaks()).

The approach taken is to successively eliminate eigenvectors from the set {w j } j
until the only eigenvectors remaining are those corresponding to the sought α j . Com-
putationally cheap methods are used as a first-pass filter (everything in the above list
except peak-finding). If there are still spurious eigenvalues remaining then the using
the peak-finding strategy will give the sought solution.

This process is demonstrated using the negative of the Columbia River profile,
−UCR and Nz = 80: Fig. 4a shows an example of the full set of eigenvectors for all
finite eigenvalues at a fixed k; Fig. 4b shows the remaining eigenvectors after the initial
filtering step; finally, Fig. 4c shows the sought eigenvector after all filtering steps are
completed.

3.4.2 Eigenvalue Collisions

Although the spurious eigenvalues are sampled from the essential spectrum, when
solving the finite-dimensional Eq. (17), this distinction is essentially lost. Eigenvalues
can collide forming complex conjugate pairs. In particular, the sought c+ eigenvalue
may collide with a spurious eigenvalue causing c+ to disappear from the result set
and so the method in Sect. 3.4.1 would be ineffectual. By detecting these points and
temporarily adjusting the size of the discretization so that the spurious eigenvalues
are shifted, the sought eigenvalue reappears (similar in spirit to [11, sec. 7.5]). The
detection is done by looking for complex conjugate pairs and matching-up against the
eigenvector filtering, i.e. there should be an eigenvector corresponding to c+, if it is
missing then a collision should be expected. This is demonstrated in Fig. 5.
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a

b

c

Fig. 4 Eigenvector filtering for −UCR profile at k ≈ 85. a Eigenvectors for all finite eigenvalues.
b Eigenvectors remaining after first-pass filtering. c Eigenvectors after filtering using peak-detection
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Fig. 5 −UCR profile. a Parametrised finite-dimensional spectrum indicating discrete c± in solid blue lines.
The grey dots are spurious ‘eigenvalues’ that really belong to the essential spectrum. The red dots indicate
complex conjugate pairs (only real part shown). The purple circles indicate detected collisions (when the
eigenvector corresponding to c+ has disappeared). b Zoomed-in plot of eigenvalue paths. Red indicates
complex conjugate pair (only real part shown). c Zoomed-in plot of a collision where the eigenvector
corresponding to c+ eigenvalue disappears from the solution set
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4 Path-FollowingMethod for Calculating the Dispersion Relation
Curve

4.1 Review of Loisel–Maxwell Path-FollowingMethod for the Field of Values

In [29], the authors describe a path-following method to calculate the field of values
boundary of a matrix, which we now briefly summarize. It concerns the solution of a
parametrized Hermitian eigenvalue problem (which bounds the projection of the field
of values onto the real axis),

H(eiτA)u(τ ) = λ(τ)u(τ ) for A ∈ C
n×n, 0 	= u ∈ C

n, λ ∈ R, τ ∈ [0, 2π), (18)

taking (λ(τ ), u(τ )) as the dominant eigenpair, where H(A) := (1/2)(A + A∗) is the
Hermitian part, S(A) := (1/2)(A−A∗) is the skew-Hermitian part of the given matrix
A, and A∗ is the conjugate-transpose. Here, and in the remainder of the paper, the
overdot notation is used to indicate derivatives with respect to the problem parameter.
This is to emphasize the parameter-varying or “time-varying” nature of the problems.

Note that Eq. (18) is well-defined except perhaps for a finite number of τ j due to
elementwise analyticity of the elements of H(eiτA) and the analyticity, up to ordering,
of the eigenvalue and eigenvectors. Differentiating Eq. (18) gives

H(eiτA)u̇(τ ) − λ̇(τ )u(τ ) − λ(τ)u̇(τ ) = −iS(eiτA)u(τ ). (19)

Since the system is under-determined, an additional constraint that u(τ ) must be
perpendicular to its (elementwise) derivative is included: u(τ )∗u̇(τ ) = 0. In [29], this
was derived by differentiating the algebraic normalization constraint u(τ )∗u(τ ) =
1 and fixing the ‘phase-factor’. In retrospect, this appears to have been the same
rationale applied in [49, p. 57] and similar to the normalization considerations in [9].
However, the normalization constraint is violated in the numerical integration and
must be manually enforced at each step. In this sense, the derivation of the constraint
does not offer a satisfactory explanation of its action.

An anonymous referee points out that upon application of the Fredholm alternative,
it is possible to express the derivative of the eigenvalue as

λ̇(τ ) = i
u(τ )∗S(eiτA)u(τ )

u(τ )∗u(τ )
= i

(u(τ ), S(eiτA)u(τ ))

(u(τ ), u(τ ))
, (20)

where (·, ·) is the usual inner product. Note that this expression is none other than the
Hadamard first variation formula from [49, p. 57, eqn. 1.72].

Including the constraint gives the fully determined system,

{
H(eiτA)u̇(τ ) − λ̇(τ )u(τ ) − λ(τ)u̇(τ ) = −iS(eiτA)u(τ )

u(τ )∗u̇(τ ) = 0,
(21)
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which can be rewritten in matrix form,

[
H(eiτA) − λ(τ)I −u(τ )

−u(τ )∗ 0

] [
u̇(τ )

λ̇(τ )

]
=

[−iS(eiτA)u(τ )

0

]
. (22)

The system described by Eq. (22) can be solved for [ u̇(τ )∗ λ̇(τ )∗ ]∗ using a linear
solver and used as the F(·) function for a Runge–Kutta numerical integrator, which
then generates control points along the curve. The authors use the Dormand–Prince
RK5(4)7M method [15, p. 23] and interpolation method of Shampine [42, p. 148].
The near-interpolant solution from this method is 5th-order accurate. There is com-
prehensive discussion presented of sharp points and flat segments on the boundary,
and relevant event processing to detect these exceptional points in the path-following
algorithm.

4.2 Path-FollowingMethod for Forward Reduced Problem

Wenowextend the sameprocess to the quadratic eigenvalue problemposed inSect. 3.3.
Recall Eq. (17),

(
c2(k)A2(k) + c(k)A1(k) + A0(k)

)
w(k) = 0, (23)

which upon differentiation (indicated with overdot) with respect to k gives

(
c2(k)Ȧ2(k) + c(k)Ȧ1(k) + Ȧ0(k) + 2c(k)ċ(k)A2(k) + ċ(k)A1(k)

)
w(k)

+
(
c2(k)A2(k) + c(k)A1(k) + A0(k)

)
ẇ(k) = 0. (24)

We further impose that w(k)∗ẇ(k) = 0. Writing in matrix form,

[(
c2(k)A2(k) + c(k)A1(k) + A0(k)

) (
2c(k)A2(k) + A1(k)

)
w(k)

w(k)∗ 0

]
︸ ︷︷ ︸

M

[
ẇ(k)
ċ(k)

]

=
[
−

(
c2(k)Ȧ2(k) + c(k)Ȧ1(k) + Ȧ0(k)

)
w(k)

0

]
. (25)

This is the general form in which the structure is clear. In the subsections below, we
perform the same derivation but include the specific expressions for the radial and
angular paths including boundary conditions.

The computational approach taken is analogous to [29]: an initial eigenpair {c0,w0}
is calculated using CL-c. Then using Eq. (25) to solve for [ ẇ(k)∗ ċ(k)∗ ]∗, numerical
integration can proceed along the curve in both directions. Hermite interpolation can
then be used to query at arbitrary k.
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Care must be taken to ensure thatM remains nonsingular throughout the parameter
ranges required. This may be done computationally at each Runge–Kutta step by,
for example, checking the reciprocal condition number. Due to the bordered matrix
structure, M only becomes singular under certain degenerate circumstances such as
encountering nonsimple eigenvalues. For background on use of bordered matrices in
numerical continuation, see, for example, [25] or [10]. Fromknowledge of the problem
at hand, we know that the only region in which there may be nonsimple eigenvalues is
for k such that c(k) ∈ [Umin,Umax] (whereupon a critical layer is encountered). This
is discussed further in Sect. 4.2.4. For other problems, more careful handling of points
of higher algebraic multiplicity would likely be required.

4.2.1 System of Equations Along Radial Slice at Fixed� (PF-R-r-c)

For PF-R-r-c, we fix angle θ = θ0 and parametrize by k. Thus, we are in the setting
of the reduced problem with the constant velocity profile being the relevant reduced
velocity profile, Uk(z). Writing Eq. (7a) in matrix form with c as eigenvalue and
explicit dependence on parameter k,

(
Uint − c(k)Iint

)
D2
intw(k) − U′′

intw(k) = k2
(
Uint − c(k)Iint

)
w(k). (26)

For notational succinctness, we use the shorthand c = c(k) and w = w(k). Differen-
tiating Eq. (26) with respect to k (indicated by an overdot) gives

(Uint−cIint)D
2
intẇ−ċD2

intw−U′′
intẇ = 2k(Uint − cIint)w − ċk2w + k2(Uint − cIint)ẇ.

(27)

The free-surface condition can be written as

(u1 − c)2dfw + [ (−u1u
′
1 + cu′

1 − F−2), 0, . . . , 0 ]w = 0. (28)

Differentiating Eq. (28) with respect to k,

−2ċ(u1 − c)dfw + (u1 − c)2dfẇ

+[ (ċu′
1), 0, . . . , 0 ]w + [ −(u′

1(u1 − c) + F−2), 0, . . . , 0 ]ẇ = 0.

(29)

Upon rearranging terms, we define the block matrices:

P(k, c) :=
[
(u1 − c)2df + [ −(u′

1(u1 − c) + F−2), 0, . . . , 0 ]
(Uint − cIint)D2

int − U′′
int − k2(Uint − cIint)

]
, (30a)

Q(k, c) :=
[−2(u1 − c)df + [ (u′

1), 0, . . . , 0 ]
−D2

int + k2Iint

]
, and (30b)

R(k, c) :=
[

0
2k(Uint − cIint)

]
, (30c)
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so that the system of ODEs can now be written in matrix form as

[
P(k, c) Q(k, c)w(k)
−w(k)∗ 0

]
︸ ︷︷ ︸

M(k,c,w)

[
ẇ(k)
ċ(k)

]
︸ ︷︷ ︸

v̇(k)

=
[
R(k, c)w(k)

0

]
︸ ︷︷ ︸

b(k,c,w)

. (31)

In the same manner as in Sect. 3.1, the bottom boundary condition is imposed by
eliminating the corresponding row and columns [52, ch. 7], only the free-surface is
included explicitly.

4.2.2 System of Equations Along Angular Circle at Fixed k (PF-R-a-c)

For PF-R-r-c, the angle θ and hence the velocity profile was held constant. For PF-R-
a-c, we instead hold k constant and seek to use a θ angular dependence. Therefore,
we must also specify the parametrization of the velocity profile.

U (θ, z) = cos(θ)Ux (z) + sin(θ)Uy(z).

So that in matrix form

U(θ) = cos(θ)Ux + sin(θ)Uy,

and, upon differentiation with respect to θ (indicated with an overdot),

U̇(θ) = − sin(θ)Ux + cos(θ)Uy.

Our starting point is the same, we use Eq. (26) but instead hold k constant and
take the derivative with respect to θ . Temporarily adopting the abbreviated notation
Uint = Uint(θ), w = w(θ), and c = c(θ):

(U̇int − ċIint)D
2
intw + (Uint − cIint)D

2
intẇ − U̇

′′
intw − U′′

intẇ

= k2((U̇int − ċIint)w + (Uint − cIint)ẇ). (32)

As before, the free-surface condition is Eq. (28), which we take the derivative of with
respect to θ using the shorthand u̇1 = u̇1(θ),

2(u1 − c)(u̇1 − ċ)dfw + (u1 − c)2dfẇ

+[ −(u̇′
1(u1 − c) + u′

1(u̇1 − ċ)), 0, . . . , 0 ]w
+[ −(u′

1(u1 − c) + F−2), 0, . . . , 0 ]ẇ = 0. (33)

In a similar manner as before, we define the block matrices:

P(θ, c) :=
[
(u1 − c)2df + [ −(u′

1(u1 − c) + F−2), 0, . . . , 0 ]
(Uint − cIint)D2

int − U′′
int − k2(Uint − cIint)

]
, (34a)
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Q(θ, c) :=
[−2(u1 − c)df + [ (u′

1), 0, . . . , 0 ]
−D2

int + k2Iint

]
, and (34b)

R(θ, c) :=
[−2(u1 − c)u̇1df + [ (u̇1u′

1 + u̇′
1(u1 − c)), 0, . . . , 0 ]

−U̇intD2
int + U̇

′′
int + k2U̇int

]
, (34c)

so that the system of ODEs can now be written in matrix form as

[
P(θ, c) Q(θ, c)w(θ)

−w(θ)∗ 0

]
︸ ︷︷ ︸

M(θ,c,w)

[
ẇ(θ)

ċ(θ)

]
︸ ︷︷ ︸

v̇(θ)

=
[
R(θ, c)w(θ)

0

]
︸ ︷︷ ︸

b(θ,c,w)

. (35)

Note that the P and Q matrix have the same structure as in Eq. (31), it is R that
changes.

4.2.3 Path-Following Algorithm Specification for Reduced Problem

We describe the algorithm for PF-R-r-c, the algorithm for PF-R-a-c follows in the
obvious manner. Using the definitions of P,Q, R from Eq. (30a,30b,30c) define matrix
and vector functions,

M(k, c,w) :=
[
P(k, c) Q(k, c)w(k)
−w(k)∗ 0

]
, b(k, c,w) :=

[
R(k, c)w(k)

0

]
. (36)

Given a candidate v(k) := [ w(k)∗ c(k)∗ ]∗, define the Runge–Kutta F(·) function as

F

(
k,

[
w(k)
c(k)

])
=

[
ẇ(k)
ċ(k)

]
= M(k, c,w)−1 b(k, c,w). (37)

F(·) can be easily obtained using a linear solver such as LU decomposition. The
inverse M−1 is never calculated explicitly.

The algorithm requires an initial v0 = v(k0) calculated using CL-c. As in [29], the
Dormand–Prince RK5(4)7Mmethod [15, p. 23] and Hermite interpolation strategy of
Shampine [42, p. 148] are used. We use automatic step-size control as described in
[22, p. 167]. For an interval [k( j), k( j+1)]with midpoint k(mid), the integrator produces
control points {v( j), v̇( j), v( j+1/2), v( j+1), v̇( j+1)}where v( j) = v(k( j)) and v( j+1/2) =
v(k(mid)). Thus, after numerical integration, a solution set of v( j), v̇( j), and v( j+1/2) is
obtained upon which piecewise Hermite interpolation can be performed. If both c(k)
and the eigenvector w(k) is required then interpolation is over Nz length vectors; if
only c(k) is required then interpolation is only one-dimensional. Example output is
shown in Fig. 6 (one-dimensional output).

4.2.4 Nonsimple Eigenvalues and Critical Layer Processing for PF-R-{r,a}-c

As alluded to in Sect. 4.2, for c /∈ [Umin,Umax] then we know that for this problem
the eigenvalues remain simple. However, there is essential spectrum in the interval
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a b

Fig. 6 Numerical integration of dispersion relation curve for velocity profile UT. Tolerance for integrator
was 10−6. a Dormand-Prince control points indicated by blue circles. To make the plot slightly clearer,
an interval k ∈ [0, 200] was used instead of k ∈ Ik = [0.025, 250] as stipulated earlier in Sect. 2.5.
b Zoomed-in. Sample interpolant query points shown with red asterisks

[Umin,Umax], and so if the sought discrete c is in that interval then it poses practical
difficulties. This was addressed for the collocation method in Sect. 3.4.

For the path-following method, if c ∈ [Umin,Umax] then M may be become nearly
singular and it is possible to encounter nonsimple eigenvalues. Furthermore, the eigen-
values in this interval are sampled from the essential spectrum so they can be located
very closely together; standard techniques to reliably process through this regionwould
require a very small step-size indeed. Therefore, if within an integration step it is found
that c ∈ [Umin,Umax] then the path-following algorithm uses CL-c with the critical
layer filtering described in Sect. 3.4 to calculate v(k) at each stage of the Runge–Kutta
integration and then a linear solve to calculate the derivative as usual. This is obvi-
ously slower but a large step-size may be used and it ensures that the path-following
algorithm tracks the sought c+(k) curve.

4.2.5 PFmp-R-{r,a}-c: Improving Accuracy for PF-R-{r,a}-c

As shall be described in Sect. 5, the error in the CL- methods is determined almost
entirely by roundoff error incurred during the solution of the quadratic eigenvalue
problem in double precision. In our numerical tests, the path-following algorithm
essentially maintains the same error as is present in the initial v0. By calculating v(k0)
in high-precision arithmetic then executing the path-following schemes in double
precision as normal, an improvement in accuracy of two to three orders of magnitude
is obtained. This is discussed further in Sect. 5.1.

4.3 Path-FollowingMethod for Forward General Problem (PF-G-c)

ThePF-R-r-c andPF-R-a-c algorithms can be combined to create an efficient algorithm
that can process scattered data query points, which we describe below.

(i) First, PF-R-a-c is executed at some nominal k = k0 and interpolation points at
angles {θ( j)}Jj=1 are calculated. See Fig. 7a, b.
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a

c

e

b

d

f

Fig. 7 Steps of PF-G. Intervals for kx and ky were chosen for purposes for visual clarity only; in practice,
these are chosen as is appropriate for the problem. a Planar plot of PF-R-a used at radius k0, interpolated at
angles θ( j). Blue circles are control points, red asterisks are interpolation points. Angles indicated in dotted
grey. b 3d plot as panel (a). c Planar plot of PF-R-r used along each θ( j). Blue circles are control points,
red asterisks are interpolation points (the k(i)). d 3d plot as panel (c). e Planar plot showing interpolation of
query point. Magenta crosses indicate the kq radius on each radial slice at angles θ(l), θ(l+1). Red asterisk
indicates the query point (kq , θq ). f 3d plot as panel (e)
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(ii) The results from step i. are used as the initial v0 values for PF-R-r-c calculating
radially along each θ( j). The curve on each radial slice is then interpolated at
predefined {k(i)}Ii=1 points. The control points for each radial slice are then replaced
with the control points at these fixed k(i) (we do not calculate newmidpoint values).
So there is now a two-dimensional polar grid at angles θ( j) and radii k(i). See
arrangement in Fig. 7c, d.

(iii) For an arbitrary query point (kq , θq), the nearest angles θ(l), θ(l+1) and radii k(m),
k(m+1) are identified. The interpolant on radial slices at angles θ(l), θ(l+1) are cal-
culated at radius kq . Equation (35) is then used to calculate the angular derivatives.
Finally, (cubic) interpolation is performed in an angular direction for angle θq to
obtain the solution. See Fig. 7e, f.

Note that after steps i. and ii. are calculated once, only step iii. needs to be performed
for further query points, in a similar manner as PF-R-{r,a}-c.

There is a loss in accuracy because of the required use of cubic interpolation—due
to not having themidpoint—rather than the 4th-order interpolation used in PF-R-{r,a}-
c. However, for these purposes, it is not particularly significant. For clarity, we omit
further analysis of PF-G: it is broadly similar to PF-R-r-c and does not add anything
to the discussion.

5 Convergence and Error Estimates

It is well known that for sufficiently smooth solutions, spectral methods converge
exponentially fast or with ‘spectral accuracy’ [11, ch. 1,2]. However, roundoff error
poses a significant challenge for collocation methods due to the interaction of ill-
conditioned matrices with commonly used double precision calculations [6,11]. We
adopt a heuristic strategy to estimate the accuracy of each algorithm.

5.1 Dependence of Eigenvalue Accuracy on Order Nz

To determine accuracy depending on Nz , we first calculate a reference dispersion
relation Rref = {(k(i)

ref, c
(i)
ref)}Ii=1 for the k

(i)
ref values distributed along the test interval Ik .

This is done in high-precision arithmetic, using the Advanpix library [1], for Nref =
384; this size of matrix exceeds what would be used in practice.

We calculate the relative normwise error in a candidate dispersion relation Rcand

(with k(i)
cand = k(i)

ref ) as

ε := ‖[ c(1)
cand − c(1)

ref , . . . , c(J )
cand − c(J )

ref ]‖∞
‖[ c(1)

ref , . . . , c(J )
ref ]‖∞

. (38)

This is done for for the UT velocity profile using the CL-c, PF-R-r-c, PFmp-R-r-c,
andDIM algorithms. The CL and PFmethods reduce error with spectral accuracy until
roundoff error starts to dominate. The high-precision initial calculation for the PFmp
algorithm avoids this roundoff error and it can be seen that the path-following method
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a b

Fig. 8 Plots of error in eigenvalue computations and backwards error+ condition number estimates. a Log-
log plot of normwise relative error in candidate algorithms depending on Nz . The collocation method and
path-following algorithm reduce error with spectral accuracy until roundoff error starts to dominate around
Nz ≈ 65. Path following+MP which uses a high-precision initial result maintains broadly the same low
error despite the actual path-following calculations being performed in double precision (as is expected,
the tolerance for the adaptive step-size control in the Dormand–Prince integration had to be set to around
10−15 to achieve this). DIM reduces error as predicted, as O(N−2

z ). b Backwards error, condition number,
and error estimate (backwards error × condition number). The time series for the quadratic eigenproblem
solves for CL shown in blue, the linear solves for PF in magenta. From the condition numbers, shown with
dotted lines, it can be seen that CL solves are of the same order of magnitude. The backwards error, shown
in dashed lines, shows the linear solves in PF are appreciably more backwards stable. The error estimate
clearly favours PF

itself retains this improved accuracy even in double precision. DIM is included for
indicative purposes. See Fig. 8a.

A possible explanation for this can be found in comparison of the backwards error
and conditioning of the quadratic eigenvalue solve used for the CL-schemes compared
to the linear solves predominantly used in PF-schemes. Although it is not a direct
comparison—the linear solves are used to calculate a derivative, not the value itself—
it may lend some insight. The backward error for the linear solve can be calculated
with [23, eqn. 1.2] and the condition number in the usual manner:

ηL = ‖b − Mx‖2
‖M‖2‖v‖2 + ‖b‖2 , κL = ‖M−1‖2‖M‖2. (39)

The backward error for the quadratic eigenproblem solve can be calculated using [51,
thm. 1, eqn. 2.3] and the condition number using [51, thm. 5, eqn. 2.15]:

ηQ = ‖(A2c2 + A1c + A0)w‖2
(‖A2‖2|c|2 + ‖A1‖2|c| + ‖A0‖2)‖w‖2 , (40a)

κQ = (‖A2‖2|c|2 + ‖A1‖2|c| + ‖A0‖2)‖wl‖2‖w‖2
|c||w∗

l (2A2c + A1)w| , (40b)

where wl is a corresponding left-eigenvector. Noting the usual inequality [51, eqn.
1.3],

forward error ≤ condition number × backward error. (41)
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a b

Fig. 9 Plot of eigenvectors for various k and convergence properties. a Eigenvector plot for k =
{0.025, 0.25, 2.5, 25, 250}. As k increases, the solution becomes numerically singular near z = 0. bLin-log
plot showing required Nz for Chebyshev series to converge depending on k. The increasingly numerically
singular behaviour of the eigenvector requires much larger Nz to reach convergence

For a range of Nz , we calculate the ‖·‖∞ of the backwards errors ηL, ηQ and
condition numbers κL, κQ over the k vector. This then permits calculating the product
from Eq. (41). This is shown in Fig. 8b. The condition numbers are of the same
magnitude, κL ≈ κQ, but the backwards error for the linear solves in PF-R-r-c clearly
smaller, ηL 
 ηQ. Although a direct comparison cannot be made, this suggests the
path-following method has favourable numerical properties.

5.2 k-Dependent Convergence

As can be seen from Fig. 9a, the eigenvectors become numerically singular at the
surface as k increases, implying that increasingly many basis polynomials are required
to approximate the solution. This can be tested using a similar algorithm as in [5] to
determine when the Chebyshev series has converged. Specifically, we calculate an
envelope then use a histogram to locate the plateau convergence region. We then
determine the required Nz to reach convergence for a range of k values, as shown in
Fig. 9b. For shorter wavelengths, much higher Nz is required to reach convergence and
so requiring more computational resources. This problem can be entirely ameliorated,
as described in Sect. 6.

6 Adaptive Depth and Partition of Unity

It is clear from the results in Sect. 5.2 that as k increases, the required Nz becomes
infeasibly large due to the singular behaviour of the eigenfunction. This can be avoided
by using a smaller h so that h 
 1 for higher k, on the following rationale. We expect
that the eigenfunction decays roughly as ekz . Therefore, we can estimate the depth
below which the eigenfunction is effectively zero, for numerical purposes. Let δ be
the tolerance below which numerical values are considered zero, e.g. the “machine
epsilon”. Let hδ(k) := min{1,− log(δ)/k} be an estimate of the depth, taking into
account the finite depth, at which the eigenfunction decays below tolerance δ for a
given k.
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Fig. 10 Partition of unity method for dispersion relation

The CL-r scheme can be adapted for each calculated k. For a given k, we can set h =
hδ(k). The calculated eigenvalue for the phase velocity will be correct automatically.
The eigenvector may be mapped back onto the original interval on any suitably large
set of z points chosen on the [−1, 0] interval using barycentric interpolation [7]; the
eigenvector will be zero for z < −hδ(k).

This procedure becomes less obvious when considering the PF-r scheme because it
would require mapping the entire system at each Runge–Kutta step. To avoid this, we
instead split the k domain into several, partially overlapping, subintervals for which
the chosen depth is suitable for all k in that subinterval. The path-following algorithm
is then used on each subinterval independently with the appropriate depth. To combine
the subintervals and avoid loss of smoothness in the computed dispersion relation, a
partition of unity method is used on the overlaps.

We seek a scheme to choose subintervals I ( j)
k = [k( j)

a , k( j)
b ] and corresponding

depths h( j) that is both simple and easy to implement. For some k( j) ∈ I ( j)
k , we

seek that h( j)
min ≤ hδ(k( j)) ≤ h( j)

max for h( j)
min = Cminh( j) and h( j)

max = Cmaxh( j),
where Cmin,Cmax are constants controlling the proportion of the [−h( j), 0] interval
that −hδ(k( j)) should be within. In our computations, we found that Cmin = 0.3 and
Cmax = 0.8 worked well. The subintervals and associated depths are then calculated
as

I (0)
k =

[
0,

log(δ)

Cmax

]
, h(0) = 1,

I ( j)
k =

⎡
⎣ log(δ)

C j−1
min

,
log(δ)(

C j
minCmax

)
⎤
⎦ , h( j) = min

{
1,

1

2

(
C j−1
min + C j

minCmax

)}
.

This generates intervals I ( j)
k in such a manner that k( j)

b > k( j+1)
a , i.e. there is some

overlap in the intervals. We use the partition of unity method described in [2] to join
the subintervals. This is demonstrated in Fig. 10.
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7 Performance Analysis

We compare the performance of the path-following algorithm against the collocation
scheme CL-c from Sect. 3.3 and also some methods that were referenced in Sect. 1.2:
DIM [27], the naive shooting method (SH), and the high-order interpolant method
(CHEB) using Chebfun [17] with collocation for pointwise sampling.

7.1 Asymptotic Performance Analysis

There are two variables which control the expected computation time for the candidate
algorithms: the number of z evaluation points, Nz , and the number of query points
Nq . Since Nz determines accuracy and is dependent on algorithm choice, we assume
Nz is set appropriately for each algorithm to achieve similar accuracy. Therefore, our
primary concern shall be how the algorithms scale with Nq .

DIM will incur a fixed per-point computational cost that depends on Nz , which we
denote σDIM(Nz). So, the expected cost isO(σDIM(Nz)Nq). Similarly, the collocation
algorithm incurs a fixed per-point computational cost which also depends on Nz ,
σCL(Nz). So, the expected cost is O(σCL(Nz)Nq). A naive shooting method would
also have an expected cost of the form O(σSH(Nz)Nq). These estimates are valid for
both the reduced and general problems.

In contrast, the reduced path-following algorithm incurs an initial computational
cost dependent on Nz , σPF-NI(Nz), whereafter there is a very light-weight per-
point cost, σPF-Q 
 σPF-NI(Nz). Therefore, the expected computational cost is
O(σPF-NI(Nz)+ σPF-QNq). The general path-following algorithm is similar with only
the coefficients changed.

Finally, constructing a high-order interpolant using Chebfun with the collocation
method as the pointwise sampling would incur an initial setup cost dependent on both
Nz and required number of sampling points Ns , σCHEB-S(Nz, Ns); thereafter, there is
a very low per-point cost, σCHEB-Q 
 σCHEB-S(Nz, Ns). So the expected computation
cost is O(σCHEB-S(Nz, Ns) + σCHEB-QNq).

This is summarized in the following table, assuming the eigenvector output is not
required:

Algorithm Computational Cost

DIM O(σDIM(Nz)Nq )

CL-c & CL-G-c O(σCL(Nz)Nq )

SH (Shooting) O(σSH(Nz)Nq )

PF-R-r-c O(σPF-NI(Nz) + σPF-QNq )

CHEB (Chebfun + CL-c) O(σCHEB-S(Nz , Ns ) + σCHEB-QNq )

It immediately becomes clear that if σPF-NI(Nz) is not too large and σPF-Q is suffi-
ciently small then as Nq increases, the path-following algorithms are themost efficient.
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Analogous behaviour can be expected from the high-order interpolant with Cheb-
fun but numerical experiments show that the initial setup cost σCHEB-S(Nz, Ns) is
prohibitively high. This is discussed at further length in Sect. 7.2 below.

7.2 Numerical Experiments to Determine Algorithm Performance

The asymptotic complexity claims are confirmed by practical testing. For clarity, we
only test with the reduced problem. By measuring the time taken for each algorithm to
compute the dispersion relation for differing Nq , we can determine the computational
complexity in relation to Nq as shown in the log–log plot, Fig. 11. Each algorithm
can be executed with different parameter choices that influence accuracy. As such,
we calibrated algorithms to produce output at three different accuracies (measured
as relative normwise error using Eq. (38)): ε ≈ 10−4 (‘low’ accuracy), ε ≈ 10−7

(‘medium’ accuracy), and ε ≈ 10−10 (‘high’ accuracy). The naive shooting algorithm
(SH) is tested only at the medium and high accuracy levels. The high-order interpolant
method (CHEB) is only performed for the high accuracy level.

As seen in the results, the path-following algorithm is asymptotically at least two
orders of magnitude faster than DIM, SH, and the collocation scheme. The break-
even point in Nq at which the path-following scheme becomes faster than DIM is
Nq ≈ 1000 for the low accuracy solution; for the medium and high accuracy levels,
the path-following method is always faster.

Comparing the path-following algorithm against the only other scheme that uses
interpolation, CHEB, it can be seen that they share similar characteristics. However,
the initial setup cost for the path-following scheme is much lower than for the high-
order interpolant scheme. This is because, in this setup, a quadratic eigenvalue problem
must be solved for each point on the curve used to construct the high-order interpolant.
Each quadratic eigenproblem solve incurs a QZ decomposition on a size 2Nz matrix.
The path-following algorithm avoids most of this cost by swapping the eigenproblem
solves for linear solves on size Nz matrices, which is considerably faster.

There is an issue with the interpolation for the path-following scheme that can be
seen after around 105 points: the computation time starts to increase linearly. This is
due to having to determine what the relevant control points are to use for the Hermite
interpolation for a given query point. In the implementation used, this was done using
MATLAB’s histcounts() function. If some ordering of the query points were
assumed, this cost could be eliminated but we do not assume order in the query points.

8 Guidance on Optimal Parameter Choices

Optimal parameter choices are predicated on two key properties: the required accuracy
and the anticipated number of query points.

As can be observed from Fig. 11, the path-following algorithm is most effective
when higher accuracy and at least a moderate number of query points are required. The
nominal setup cost caused by the initial quadratic eigenproblem solve and numerical
integration is dependent on the order of differentiation matrix used, Nz . So this should
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Fig. 11 Performance plot for reduced problem: log–log plot of computational time against number of query
points. The algorithms were tested at various relative normwise accuracies: ε ≈ 10−4 (‘low’ accuracy),
ε ≈ 10−7 (‘medium’ accuracy), and ε ≈ 10−10 (‘high’ accuracy). Note that the DIM, shooting (SH), and
collocation algorithms are clearly linear in complexity with respect to Nq . The high-order interpolant using
Chebfun with collocation sampling (CHEB) is almost constant time but has a large initial computational
cost. The path-following algorithm is also almost constant time but has a much lower initial computational
cost due to swapping quadratic eigenproblem solves for linear solves

be kept at the lowest value possible that maintains required accuracy. We found Nz

between 48 and 64 is optimal for the cases we tested. Furthermore, using Nz too high
risks roundoff error causing deleterious effects, cf. Fig. 8a.

The Dormand–Prince integrator requires a tolerance for the adaptive step-size con-
trol. We suggest that 10−11 is the smallest value to use when the initial eigenproblem
solve is performed in double precision. If the initial eigenvalue solve can be per-
formed more accurately, for example in high-precision arithmetic, then the tolerance
can be set around 10−15. In any case, if using a smaller Nz then the tolerance should
be adjusted to match the accuracy from the collocation solution.

9 Conclusions

By considering the boundary value eigenproblem posed by the Rayleigh stability
equation with linearized free-surface boundary condition as parameterized by wave
number k, we can adapt the path-following scheme in [29] to efficiently calculate the
dispersion relation at high accuracy. This efficiency is achieved by first exchanging
many expensive QZ decompositions on a size 2N matrix for one QZ decomposition
and some linear solves on a size N matrix; second, we ‘front load’ the computational



Path-Following Methods for Surface Wave Dispersion Relations 411

Fig. 12 Example initial value problem: propagation of surface waves from initial Gaussian disturbance atop
fluid with velocity profile U(z) = (UT (z), 0). Note that the background vorticity causes visible anisotropy
in the ring waves

cost into the numerical integration with light-weight Hermite interpolation being used
to compute the sought solution points.

The accuracy tests in Sect. 5 suggest that the path-following algorithm canmaintain
the accuracy of the initial eigenpair v0 and appears to be numerically more stable than
the QZ decomposition used to obtain the initial eigenpair.

The algorithm is extended to permit calculation in the two-dimensional k-plane
with scattered data. A method for processing through critical layers is given.

In other tests, not included here, it is clear the same approach works well for
other problems from physics and engineering, assuming the problem is parametrized
by a real scalar. Additional difficulties arise when there are exceptional points or
bifurcations in the solution curve, or if the ODEs become stiff. These challenges may
form the basis of future work.

The MATLAB library used to perform the calculations used in this paper is main-
tained at [31].

9.1 Example Usage

To demonstrate a possible use of the path-following algorithm, we calculate the result
of a simple initial value problem of the form in [56, sec. 11.2] using the shear profile
U(z) = (UT (z), 0)with F2 = 0.15.Upon a sheared current, the anisotropic dispersion



412 P. Maxwell, S. Å. Ellingsen

relation results in a ringwave patternwhich is visibly asymmetric, predicted for a linear
current [19] and recently observed experimentally for the first time [46].

Following from Eq. (3), the general solution can be written as

ζ̃ = 1

(2π)2

∫
R2

ζ+ei(k·x−ω+(k)t) dk + 1

(2π)2

∫
R2

ζ−ei(k·x−ω−(k)t) dk. (42)

This requires two initial conditions, which are imposed as ζ̃ (x, t)|t=0 = ζ̃0(x) and
˙̃
ζ(x, t)|t=0 = ˙̃

ζ0(x) and their Fourier transformed counterparts ζ0(k) and ζ̇0(k).
Solving for ζ+ and ζ−:

ζ+(k) = ω−(k)ζ0(k) − i ζ̇0(k)
ω−(k) − ω+(k)

, ζ−(k) = ω+(k)ζ0(k) − i ζ̇0(k)
ω+(k) − ω−(k)

. (43)

In our example, we impose an initial Gaussian of the form ζ̃0(x) = e− x2

2σ2
− y2

2σ2

and ˙̃
ζ0(x) = 0. Specifically, we choose σ 2 ≈ 5/2 and plot for t = 16; this is

shown in Fig. 12. The dispersion relation,ω±(k) is calculated using the path-following
algorithm, which allows us to pick a large number of grid points in x coordinates and
still compute the result quickly.

Acknowledgements OpenAccess funding provided by NTNUNorwegian University of Science and Tech-
nology (incl St. Olavs Hospital - Trondheim University Hospital).

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Advanpix LLC.: Advanpix: Multiprecision computing toolbox for MATLAB. https://www.advanpix.
com/

2. Aiton, K., Driscoll, T.: An adaptive partition of unity method for Chebyshev polynomial interpolation.
SIAM J. Sci. Comp. 40(1), A251–A265 (2018). https://doi.org/10.1137/17M112052X

3. Allgower, E., Georg, K.: Introduction to numerical continuationmethods. Soc. Ind. Appl.Math. (2003).
https://doi.org/10.1137/1.9780898719154

4. Andrew, A., Chu, K., Lancaster, P.: Derivatives of eigenvalues and eigenvectors of matrix functions.
SIAM J. Matrix Anal. Appl. 14(4), 903–926 (1993). https://doi.org/10.1137/0614061

5. Aurentz, J.L., Trefethen, L.N.: Chopping a Chebyshev series. ACM Trans. Math. Softw. 43(4), 33:1–
33:21 (2017). https://doi.org/10.1145/2998442

http://creativecommons.org/licenses/by/4.0/
https://www.advanpix.com/
https://www.advanpix.com/
https://doi.org/10.1137/17M112052X
https://doi.org/10.1137/1.9780898719154
https://doi.org/10.1137/0614061
https://doi.org/10.1145/2998442


Path-Following Methods for Surface Wave Dispersion Relations 413

6. Baltensperger, R., Trummer, M.R.: Spectral differencing with a twist. SIAM J. Sci. Comput. 24(5),
1465–1487 (2003). https://doi.org/10.1137/S1064827501388182

7. Berrut, J., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004).
https://doi.org/10.1137/S0036144502417715

8. Beyn,W.J., Thümmler, V.: Continuation of invariant subspaces for parameterized quadratic eigenvalue
problems. SIAM J. Matrix Anal. Appl. 31(3), 1361–1381 (2010). https://doi.org/10.1137/080723107

9. Beyn,W.J.,Kleß,W., Thümmler,V.:Continuation of low-dimensional invariant subspaces in dynamical
systems of large dimension. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation
of Dynamical Systems, pp. 47–72. Springer, Berlin (2001)

10. Beyn, W.J., Effenberger, C., Kressner, D.: Continuation of eigenvalues and invariant pairs for param-
eterized nonlinear eigenvalue problems. Numer. Math. 119(3), 489 (2011). https://doi.org/10.1007/
s00211-011-0392-1

11. Boyd, J.: Chebyshev and Fourier Spectral Methods: Second Edition. Dover Books on Mathematics,
Revised edn. Dover Publications, New York (2001)

12. Craik, A.D.D.:Wave Interactions and Fluid Flows. CambridgeMonographs onMechanics. Cambridge
University Press (1986). https://doi.org/10.1017/CBO9780511569548

13. Dalrymple, R.: Water waves on a bilinear shear current. In: Proc. 14th Intl. Conf. Coastal Engn., pp.
24–28. Am. Soc. Civil Engineers (1974)

14. Dong, Z., Kirby, J.: Theoretical and numerical study of wave-current interaction in strongly-sheared
flows. Coast. Eng. J. 1(33), 2 (2012). https://doi.org/10.9753/icce.v33.waves.2

15. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math.
6(1), 19–26 (1980). https://doi.org/10.1016/0771-050X(80)90013-3

16. Drazin, P.G., Reid, W.H.: Parallel Shear Flows, 2 edn. Cambridge Mathematical Library. Cambridge
University Press, pp. 124–250 (2004). https://doi.org/10.1017/CBO9780511616938.006

17. Driscoll, T.A., Hale, N., Trefethen, L.N.: Chebfun guide (2014). http://www.chebfun.org/docs/guide/.
(Also see Chebfun GitHub repository at https://github.com/chebfun/chebfun)

18. Ehrnström, M., Villari, G.: Linear water waves with vorticity: rotational features and particle paths. J.
Differ. Equ. 244(8), 1888–1909 (2008). https://doi.org/10.1016/j.jde.2008.01.012

19. Ellingsen, S.Å.: Initial surface disturbance on a shear current: the Cauchy-Poisson problem with a
twist. Phys. Fluids 26(8), 082104 (2014). https://doi.org/10.1063/1.4891640

20. Ellingsen, S.Å.: Ship waves in the presence of uniform vorticity. J. Fluid Mech. (2014). https://doi.
org/10.1017/jfm.2014.28

21. Ellingsen, S.Å., Li, Y.: Approximate dispersion relations forwaves on arbitrary shear flows. J. Geophys.
Res. 122(12), 9889–9905 (2017). https://doi.org/10.1002/2017JC012994

22. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations, Nonstiff Problems I,
2nd edn. Springer, Berlin (1993)

23. Higham, D., Higham, N.: Backward error and condition of structured linear systems. SIAM J. Matrix
Anal. Appl. 13(1), 162–175 (1992). https://doi.org/10.1137/0613014

24. Kato, T.: Perturbation theory for linear operators. In: Classics in Mathematics. In: Springer, Berlin
(1995). https://doi.org/10.1007/978-3-642-66282-9

25. Keller, H.B.: Numerical methods in bifurcation problems. Lectures on Mathematics and Physics, Tata
Institute of Fundamental Research (Bombay), 1987 (1987). https://ci.nii.ac.jp/naid/10026075958/en/

26. Kirby, J.T., Chen, T.M.: Surface waves on vertically sheared flows: approximate dispersion relations.
J. Geophys. Res. Oceans 94(C1), 1013–1027 (1989). https://doi.org/10.1029/JC094iC01p01013

27. Li, Y., Ellingsen, S.Å.: A framework for modelling linear surface waves on shear currents in slowly
varying waters. J. Geophys. Res. Oceans (2019). https://doi.org/10.1029/2018JC014390

28. Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Modern Mechanics
and Mathematics. Taylor & Francis, Oxford (2003)

29. Loisel, S., Maxwell, P.: Path-following method to determine the field of values of a matrix with high
accuracy. SIAM J.Matrix Anal. Appl. 39(4), 1726–1749 (2018). https://doi.org/10.1137/17M1148608

30. Lui, S., Keller, H., Kwok, T.: Homotopy method for the large, sparse, real nonsymmetric eigen-
value problem. SIAM J. Matrix Anal. Appl. 18(2), 312–333 (1997). https://doi.org/10.1137/
S0895479894273900

31. Maxwell, P.: Nessie Water Waves Library. https://github.com/PeterMaxwell/nessie-water-waves
32. Maxwell, P., Smeltzer, B.K., Ellingsen, S.Å.: The error in predicted phase velocity of surfacewaves atop

a shear current with uncertainty. Water Waves (2019). https://doi.org/10.1007/s42286-019-00012-x

https://doi.org/10.1137/S1064827501388182
https://doi.org/10.1137/S0036144502417715
https://doi.org/10.1137/080723107
https://doi.org/10.1007/s00211-011-0392-1
https://doi.org/10.1007/s00211-011-0392-1
https://doi.org/10.1017/CBO9780511569548
https://doi.org/10.9753/icce.v33.waves.2
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1017/CBO9780511616938.006
http://www.chebfun.org/docs/guide/
https://github.com/chebfun/chebfun
https://doi.org/10.1016/j.jde.2008.01.012
https://doi.org/10.1063/1.4891640
https://doi.org/10.1017/jfm.2014.28
https://doi.org/10.1017/jfm.2014.28
https://doi.org/10.1002/2017JC012994
https://doi.org/10.1137/0613014
https://doi.org/10.1007/978-3-642-66282-9
https://ci.nii.ac.jp/naid/10026075958/en/
https://doi.org/10.1029/JC094iC01p01013
https://doi.org/10.1029/2018JC014390
https://doi.org/10.1137/17M1148608
https://doi.org/10.1137/S0895479894273900
https://doi.org/10.1137/S0895479894273900
https://github.com/PeterMaxwell/nessie-water-waves
https://doi.org/10.1007/s42286-019-00012-x


414 P. Maxwell, S. Å. Ellingsen

33. Mei, C., Stiassnie, M., Yue, D.: Theory and Applications of Ocean Surface Waves: Linear aspects.
Advanced series on ocean engineering. World Scientific, Pennslyvania (2005)

34. Miles, J.: Gravity waves on shear flows. J. Fluid Mech. 443, 293–299 (2001). https://doi.org/10.1017/
S0022112001005043

35. Miles, J.: A note on surface waves generated by shear-flow instability. J. Fluid Mech. 447, 173–177
(2001). https://doi.org/10.1017/S0022112001005833

36. Peregrine, D.H.: Interaction of water waves and currents. Adv. Appl. Mech. 16, 9–117 (1976)
37. Qian, J., Chu, D., Tan, R.: Analyticity of semisimple eigenvalues and corresponding eigenvectors of

matrix-valued functions. SIAM J. Matrix Anal. Appl. 36(4), 1542–1566 (2015). https://doi.org/10.
1137/151003799

38. Rayleigh, Lord: On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. s1–
11(1), 57–72 (1879). https://doi.org/10.1112/plms/s1-11.1.57

39. Rayleigh, Lord: On the stability or instability of certain fluid motions, II. Proc. Lond. Math. Soc.
s1–19(1), 67–75 (1887). https://doi.org/10.1112/plms/s1-19.1.67

40. Rayleigh, Lord: On the stability or instability of certain fluid motions III. Proc. Lond. Math. Soc.
s1–27(1), 5–12 (1895). https://doi.org/10.1112/plms/s1-27.1.5

41. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Applied Mathematical Sci-
ences, vol. 142. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0185-1

42. Shampine, L.F.: Some practical Runge–Kutta formulas. Math. Comput. 46, 135–150 (1986). https://
doi.org/10.2307/2008219

43. Shrira, V.I.: Surface waves on shear currents: solution of the boundary-value problem. J. Fluid Mech.
252, 565–584 (1993). https://doi.org/10.1017/S002211209300388X

44. Skop, R.A.: Approximate dispersion relation for wave-current interactions. J. Waterw. Port Coast
113(2), 187–195 (1987). https://doi.org/10.1061/(ASCE)0733-950X(1987)113:2(187)

45. Smeltzer, B.K., Ellingsen, S.Å.: Surface waves on currents with arbitrary vertical shear. Phys. Fluids
29(4), 047102 (2017). https://doi.org/10.1063/1.4979254

46. Smeltzer,B.K.,Æsøy,E., Ellingsen, S.Å.:Observation of surfacewavepatternsmodifiedby sub-surface
shear currents. J. Fluid Mech. 873, 508–530 (2019). https://doi.org/10.1017/jfm.2019.424

47. Stewart, R.H., Joy, J.W.: HF radio measurements of surface currents. Deep-Sea Res. Oceanogr. Abstr.
21(12), 1039–1049 (1974). https://doi.org/10.1016/0011-7471(74)90066-7

48. Stoker, J.J.: Water Waves: The Mathematical Theory with Applications. Wiley Clas-
sics Library Edition. Wiley. (1992 [1958]). https://www.wiley.com/en-us/Water+Waves
%3A+The+Mathematical+Theory+with+Applications-p-9780471570349

49. Tao, T.: Topics in Random Matrix Theory, Graduate Studies in Mathematics, vol. 132. American
Mathematical Society (2012). https://terrytao.files.wordpress.com/2011/02/matrix-book.pdf

50. Taylor, G.: The action of a surface current used as a breakwater. Proc. R. Soc. Lond. A 231, 466–478
(1955)

51. Tisseur, F.: Backward error and condition of polynomial eigenvalue problems. Linear Algebra Appl.
309(1), 339–361 (2000). https://doi.org/10.1016/S0024-3795(99)00063-4

52. Trefethen, L.N.: Spectral methods in MATLAB. Software, environments, and tools. Soc. Ind. Appl.
Math. (2000). https://doi.org/10.1137/1.9780898719598

53. Uhlig, F.: Zhang neural networks for fast and accurate computations of the field of values. Linear and
Multilinear Algebra pp. 1–17 (2019). https://doi.org/10.1080/03081087.2019.1648375

54. Uhlig, F., Zhang, Y.: Time-varying matrix eigenanalyses via Zhang neural networks and look-ahead
finite difference equations. Linear Algebra Appl. 580, 417–435 (2019). https://doi.org/10.1016/j.laa.
2019.06.028

55. Weideman, J.A., Reddy, S.C.: A MATLAB Differentiation Matrix Suite. ACM Trans. Math. Softw.
26(4), 465–519 (2000). https://doi.org/10.1145/365723.365727

56. Whitham, G.B.: Linear and nonlinear waves. Wiley, Oxford. (1999 [1974]). https://doi.org/10.1002/
9781118032954

57. Zhang, X.: Short surface waves on surface shear. J. Fluid Mech. 541, 345–370 (2005). https://doi.org/
10.1017/S0022112005006063

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1017/S0022112001005043
https://doi.org/10.1017/S0022112001005043
https://doi.org/10.1017/S0022112001005833
https://doi.org/10.1137/151003799
https://doi.org/10.1137/151003799
https://doi.org/10.1112/plms/s1-11.1.57
https://doi.org/10.1112/plms/s1-19.1.67
https://doi.org/10.1112/plms/s1-27.1.5
https://doi.org/10.1007/978-1-4613-0185-1
https://doi.org/10.2307/2008219
https://doi.org/10.2307/2008219
https://doi.org/10.1017/S002211209300388X
https://doi.org/10.1061/(ASCE)0733-950X(1987)113:2(187)
https://doi.org/10.1063/1.4979254
https://doi.org/10.1017/jfm.2019.424
https://doi.org/10.1016/0011-7471(74)90066-7
https://www.wiley.com/en-us/Water+Waves%3A+The+Mathematical+Theory+with+Applications-p-9780471570349
https://www.wiley.com/en-us/Water+Waves%3A+The+Mathematical+Theory+with+Applications-p-9780471570349
https://terrytao.files.wordpress.com/2011/02/matrix-book.pdf
https://doi.org/10.1016/S0024-3795(99)00063-4
https://doi.org/10.1137/1.9780898719598
https://doi.org/10.1080/03081087.2019.1648375
https://doi.org/10.1016/j.laa.2019.06.028
https://doi.org/10.1016/j.laa.2019.06.028
https://doi.org/10.1145/365723.365727
https://doi.org/10.1002/9781118032954
https://doi.org/10.1002/9781118032954
https://doi.org/10.1017/S0022112005006063
https://doi.org/10.1017/S0022112005006063

	Path-Following Methods for Calculating Linear Surface Wave Dispersion Relations on Vertical Shear Flows
	Abstract
	1 Introduction
	1.1 Background and Motivation
	1.2 Existing Methods to Calculate the Dispersion Relation
	1.3 Methodology and Approach
	1.4 Outline of the Paper

	2 Preamble
	2.1 Problem Description
	2.2 Problem Types: Forward, Backward, and Inverse
	2.3 Summary of Numerical Schemes
	2.4 General to Reduced Problem
	2.5 Velocity Profiles and Parameters Used

	3 Collocation Method for Solving the Dispersion Relation
	3.1 Discretization of the Equations
	3.2 Backward Reduced Problem (CL-k)
	3.3 Forward Reduced Problem (CL-c)
	3.4 Solving with Critical Layers in the Forward Problem
	3.4.1 Eigenvector Filtering
	3.4.2 Eigenvalue Collisions


	4 Path-Following Method for Calculating the Dispersion Relation Curve
	4.1 Review of Loisel–Maxwell Path-Following Method for the Field of Values
	4.2 Path-Following Method for Forward Reduced Problem
	4.2.1 System of Equations Along Radial Slice at Fixed θ (PF-R-r-c)
	4.2.2 System of Equations Along Angular Circle at Fixed k (PF-R-a-c)
	4.2.3 Path-Following Algorithm Specification for Reduced Problem
	4.2.4 Nonsimple Eigenvalues and Critical Layer Processing for PF-R-{r,a}-c
	4.2.5 PFmp-R-{r,a}-c: Improving Accuracy for PF-R-{r,a}-c

	4.3 Path-Following Method for Forward General Problem (PF-G-c)

	5 Convergence and Error Estimates
	5.1 Dependence of Eigenvalue Accuracy on Order Nz
	5.2 k-Dependent Convergence

	6 Adaptive Depth and Partition of Unity
	7 Performance Analysis
	7.1 Asymptotic Performance Analysis
	7.2 Numerical Experiments to Determine Algorithm Performance

	8 Guidance on Optimal Parameter Choices
	9 Conclusions
	9.1 Example Usage

	Acknowledgements
	References




