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Abstract

A Lagrangian approach for the coupled numerical simulation of fixed net structures and fluid
flow is derived. The model is based on solving the Reynolds-averaged Navier-Stokes equations
in a Eulerian fluid domain. The equations include disturbances to account for the presence
of the net. For this purpose, forces on the net are calculated using a screen force model and
are distributed on Lagrangian points to represent the geometry of the net. In comparison
to previous approaches based on porous media representations, the new model includes a
more physical derivation and simplifies the necessary numerical procedure. Hence, it is also
suitable for arbitrary geometries and large scale simulations. An extensive validation section
provides insight into the performance of the new model. It includes the simulation of steady
currents through single and multiple fixed net panels and cages, and wave propagation through
a net panel. Different solidities, inflow velocities and angles of attack are considered. The
comparison of loads on and velocity reductions behind the net with available measurements
indicates superior performance of the proposed model over existing approaches for a wide
range of applications.

Keywords: Hydroelasticity, Net structure, Fluid-structure interaction, CFD, Drag forces

1 Introduction

Aquaculture has seen strong growth recently due to its potential for covering the rising global
food demand. Offshore fish production becomes relevant as the size of the structures increases
and greater concerns about the environmental impact on the nearshore zone arise. In the
open sea, severe environmental loadings from high energy sea states necessitate the accurate
analysis of motion and fatigue for the design of reliable and economical fish farm structures.

∗Corresponding author, tobias.martin@ntnu.no

1



Martin, T. et al., 2020

The enclosure of a fish cage consists of a large number of square or rhombic meshes forming
a flexible or stiff net cylinder or panel. Patursson et al. [29] performed measurements of drag
and lift forces on a fixed net panel and the velocity reduction behind the net for different inflow
velocities and angles of attack. They observed that the force coefficients are more dependent
on the angle of attack than on the Reynolds number and that the velocity reduction is less
dependent on the angle of attack. Similarly, Bi et al. [5] conducted experiments on the velocity
profile behind multiple net panels in a current tank. Their results indicate that the velocity
reduction behind the net is a function of the net solidity due to a changing shielding effect. In
[6], an experimental study on the deformation of a net wall in different current velocities was
presented. Lader and Enerhaug [21] analysed the forces and deformation of a complete net
cage in a current. They found a strong coupling between occurring forces and deformation
and concluded that existing simple drag formulae for stiff net panels are not suitable for
calculating the forces on flexible cage structures. Less research is focused on experiments
including waves. Lader et al. [23, 24] studied wave forces on net panels in a small wave
flume and compared the results with different wave force models. They showed the increasing
influence of the net on the wave forces with increasing wave steepness. A complete study of
a net cage in current and waves including an elastic floater, mooring and net was presented
in [19], where the authors investigated the validity of different rational hydrodynamic load
models for more complex wave situations.

Besides experimental studies, numerical simulations using computational fluid dynamics
(CFD) can be applied to understand the structural and environmental challenges in the op-
eration of the whole structure. It allows for the investigation of the forces on and the fluid
dynamics in and around the cage. Mostly separate numerical studies on either the motion of
the structure or the fluid around the structure were performed in the past [15, 22, 36]. How-
ever, a segregated approach is not valid for offshore conditions due to the strong non-linear
fluid-structure interaction. Resolving a physical net in a computational domain which also
covers the surrounding ocean is not feasible considering the significant difference in length
scales and the available computational power. One possibility to overcome this limitation is
the application of the potential theory which is based on disproportional assumptions [19].
The introduction of an advanced procedure which decouples the resolution dependence of
the fluid from the net representation is eventually the more elaborated and efficient solution.
Here, the introduction of an appropriate coupling model is the main issue of concern.

Yao et al. [38] presented a hybrid finite volume method to incorporate the fluid-structure
coupling into their CFD solver. The resistance forces of the net were distributed by assigning
them to cells containing portions of the numerical net. The net was represented by a lumped
mass method consisting of knots and bars in between. The distribution process requires the
calculation of the intersection of each bar with each cell of the fluid grid and is thus com-
putationally expensive. This drawback is amplified for rectilinear grids and polyhedral cell
shapes where intersections can only be found by comparison to each cell face. They also
introduced the idea of choosing the unknown force coefficients by fitting them with experi-
mental data. Details about the fitting process and fitting results for the drag coefficients were
not presented. In contrast, the most dominant approach is based on the work of Patursson
et al. [29]. They incorporated a stiff net sheet as a porous medium in the fluid domain. The
governing volume- and Reynolds-averaged Navier-Stokes equations are solved using a finite
volume method. The research was mostly focused on the correct determination of the porous
resistance coefficients, which were approximated from available experimental data. Bi et al.
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[6] and Zhao et al. [40] followed the same approach but used a theoretical force model for
determining the coefficients. Chen and Christensen [11, 12] extended the general idea for
complete net cages and included a more comprehensive determination of these coefficients.
They provided an extensive validation of their approach for stiff net walls and cages in both
current and waves. A Morison type force model which neglects important dependencies on
the angle of attack in their derivations was utilised.

The usage of a porous medium model for incorporating the interaction of fluid and net into
a CFD solver comes with several drawbacks which will be presented in section 2. This leads
to the proposition of a new coupling model which is the subject of this paper. The new model
utilises a screen force model to calculate the forces on the net accurately and distributes their
influence on the fluid using Lagrangian points. Section 3 introduces the governing equations
and the applied numerical solver. Details about the net and hydrodynamic force model which
are necessary for the further understanding of the proposed model are also presented. The
derivation of the new coupling methodology can be found in section 4. In section 5, a discussion
of the overall numerical model is presented, while section 6 is devoted to several validation
cases of fixed net walls and cages in varying wave and current conditions. Conclusions arising
from the previous sections are given in section 7.

2 Review of the porous medium approach for coupling net and
fluid in CFD solvers

The porous medium model is considered as a surrogate sharing similar physical properties as
the original interaction process, but it does not imply any physical connection. This is illus-
trated by the necessity of arbitrarily [12] defining the added mass coefficient, originating from
the derivation of the volume- and Reynolds-averaged Navier-Stokes (VRANS) equations, or
neglecting it [29]. The closure model for the VRANS equations is usually based on the Darcy-
Forchheimer law and requires the predefinition of several coefficients which are dependent on
fluid properties. Previous research [12, 40] neglected these dependencies and rather used the
free coefficients for incorporating the disturbances of the net on the fluid. As pointed out by
Chen and Christensen [12], it is challenging to incorporate all aspects of properties influencing
the forces on a net into the calculation of these coefficients. Therefore, they defined them
as normal and tangential constants throughout the porous medium. This leads to a zone of
constant pressure loss rather than a thin sheet where the pressure drops immediately as in
reality.

Another challenge of porous medium models occurs for net cages and deformed nets in
general. In [11], the utilisation of a porous medium for these cases is investigated where the
authors proposed defining zones of certain thickness around each macro element of the net.
The resulting prism volumes represent a continuous porous medium. This procedure might
be interpreted as a type of overset grid. Besides the high computational cost of generating
and parallelising this generally three-dimensional grid, a more severe problem occurs in the
case of deformed elements. As shown in Fig. 1, overlapping regions and gaps can occur at
possible intersections of zones. So far, this issue has not been addressed.
In order to keep the validity of the porous medium model, a solution of this geometrical
problem is sought in preparation of the current paper. The idea was based on defining a point
cloud of certain distance to the net elements. A Delaunay triangulation was then applied
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Figure 1: Two-dimensional illustration of the challenges in constructing a discrete porous zone
(blue shaded) around a net wall (thick black lines and points) as proposed in [11]. Overlapping
regions are indicated in hatched red; Holes are indicated as red triangles.

for generating a continuous volume enclosing the original net, and a level set function was
defined around the volume and used for calculating normal vectors. These could be utilised for
the calculation of the resistance coefficients in arbitrary directions. As a consequence of the
Delaunay triangulation, concave shapes which occur inside a circular cage cannot be handled
properly. This demonstrates the non-applicability of this approach in practice. Further, the
triangulation process is computationally very demanding and challenging to parallelise. The
correct assignment of the porous media closure terms to the surrounding grid cells is another
unsolved problem arising in porous medium models, i.e. how to determine the portion of a
particular porous zone in a fluid cell.

These drawbacks of the porous medium approach indicate theoretical, physical and com-
putational limitations, and the necessity for an alternative coupling model arises. Therefore,
a new coupling model based on Lagrangian-Eulerian considerations is proposed in this paper.
The new approach avoids demanding volume handling and is straightforward to be paral-
lelised. It also incorporates more advanced hydrodynamic force calculations. This increases
the actual physical information contained in the coupling process and, eventually, improves
numerical tools for modelling this type of fluid-structure interaction.

3 Numerical model

3.1 Fluid model

The basis of the new development in this paper is the open-source CFD solver REEF3D
[7, 8]. It solves the continuity and Reynolds-averaged Navier-Stokes (RANS) equations for
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incompressible fluids which can be written in indices notation as

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν

(
∂ui
∂xj

+
∂uj
∂xi

))
+ gi, (2)

with ui the velocity components, p representing the pressure and gi the gravity acceleration
vector. The kinematic viscosity ν contains the turbulent viscosity which is calculated from
turbulent properties using the Boussinesq approximation. If the free surface is considered,
the density ρ and ν have to be distinguished in the two phases. Following the ideas in [9], the
material properties at any location are defined as

ρ = ρwH(φ) + ρa(1−H(φ)), (3)

ν = νwH(φ) + νa(1−H(φ)), (4)

with w indicating water and a air properties. φ defines a signed distance function introduced
below. H presents a smoothed Heaviside step function chosen as

H(φ) =


0 if φ < −ε
1
2

(
1 + φ

ε + 1
πsin(πφε )

)
if |φ| ≤ ε

1 if φ > ε,

(5)

with ε = 2.1∆x and ∆x the characteristic length scale of the discrete domain.
The location of the free water surface is represented implicitly by the zero level set of

a smooth signed distance function φ [28]. The gradients of φ satisfy the Eikonal equation
|∇φ| = 1. The motion of the free surface is captured by solving the linear advection equation
with the fluid velocities ui convecting φ. A reinitialisation step has to be incorporated after
each time step to preserve the Eikonal equation. In the given framework, the reinitialization
equation of Sussman et al. [35] is solved with an artificial time-stepping for this purpose.

Numerical solutions of the equations are sought using finite difference methods on rectilin-
ear grids. The coupling of pressure and velocity during the solution of the system (1) and (2)
is ensured by staggering the locations of velocity and pressure information. A fifth-order ac-
curate weighted essentially non-oscillatory (WENO) scheme [16, 17] adapted to non-uniform
cell sizes is applied to convection terms. Diffusion terms are discretised using second-order
accurate central finite differences. The solution process follows the projection method for in-
compressible flows of Chorin [13]. In a first step, the momentum equations without pressure

gradients are solved for predicting the velocities u
(∗)
i :

u
(∗)
i − u

(n)
i

∆t
= −uj

∂ui
∂xj

+
∂

∂xj

(
ν ·
(
∂ui
∂xj

+
∂uj
∂xi

))
+ gi. (6)

In this study, the third-order accurate TVD Runge-Kutta scheme [34]

u
(1)
i = u

(n)
i + ∆t L

(
u
(n)
i

)
,

u
(2)
i =

3

4
u
(n)
i +

1

4
u
(1)
i +

1

4
∆t L

(
u
(1)
i

)
,

u
(∗)
i =

1

3
u
(n)
i +

2

3
u
(2)
i +

2

3
∆t L

(
u
(2)
i

)
, (7)
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is applied for solving Eq. (6) in time. In a second step, a Poisson equation is defined for the
pressure:

∂

∂xi

(
1

ρ

∂p(n+1)

∂xi

)
=

1

∆t

∂u
(∗)
i

∂xi
. (8)

It is solved using the fully parallelized BiCGStab solver with geometric multigrid precondi-
tioning of the HYPRE library [37]. Adaptive time stepping controls the time steps according
to the required CFL condition. A divergence free velocity field is finally found by correcting
the predicted velocities in accordance with

u
(n+1)
i = u

(∗)
i −

∆t

ρ

∂p(n+1)

∂xi
. (9)

An n-halo domain decomposition strategy is implemented in the CFD solver. Here, the
domain is split into several subdomains, and data is transferred to neighbouring subdomains
using several layers of ghost cells. Convection term containing equations require three layers
due to the application of the fifth-order accurate WENO scheme. Otherwise, one layer is
sufficient because at most second-order accurate spatial discretization schemes are applied.
High-performance computation is enabled by using the message passing interface (MPI) for
inter-processor communication.

3.2 Net model

The development of the quasi-static net model implemented in the fluid solver is thoroughly
described in [26]. The initialisation process of the net model is applied in this study to
calculate hydrodynamic forces on the fixed net. Thus, a discrete representation of the net
is assumed. It consists of several knots connected with elastic bars. Each macro element is
defined by four knots and four bars. It can represent several meshes depending on the solidity
of the net. Assuming square meshes, the solidity S can be approximated as in [15]:

S =
2dt
lt
−
(
dt
lt

)2

, (10)

with dt the diameter and lt the length of each twine. An example of a discrete net is shown
in Fig. 2.
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Figure 2: Illustration of a discrete representation of a physical net (thin lines): black dots
represent knots, thick black lines represent bars. Dashed lines show the distribution of the
screens for the force calculation. For example, the blue areas correspond to the blue knot.

3.3 Hydrodynamic force model

In contrast to previous research on this subject, the proposed model includes the dependency
on all important properties for calculating hydrodynamic forces. Following the screen force
model of Kristiansen and Faltinsen [20], the net area is distributed on adjoint knots as in-
dicated in Fig. 2. Thus, the contributions of up to four panel parts (screens) add up to the
hydrodynamic forces corresponding to a single knot. The surface integral of each screen is
approximated by a second-order accurate quadrature rule using its geometrical centre as the
integration point. On each screen, two force vectors ~FD and ~FL are defined in the normal
and tangential direction to the inflow velocity vector, which can be identified as drag and lift
force directions ~nd and ~nl:

~FD =
ρ

2
CDAu

2
rel~nd, (11)

~FL =
ρ

2
CLAu

2
rel~nl, . (12)

Here, A is the area of the screen given as

A =
l1l2
4
· |~b1 ×~b2|, (13)

with indices 1 and 2 referring to the two bars spanning the area and ~b the unit bar vectors.
Further, urel represents the magnitude of the relative velocity vector ~urel between the inflow
velocity u∞ and the velocity of the panel which is zero in this paper. The two necessary
directions are determined as follows

~nd =
~urel
|~urel|

, (14)

~nl =
(~urel × ~ns)× ~ns
|(~urel × ~ns)× ~ns|

, (15)
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where ~ns is the unit normal vector of the screen pointing in the same direction as ~urel. The
unknown force coefficients CD and CL are calculated from a truncated Fourier series expanded
for their dependency on the angle of attack α

CD(α) = CD,0

∞∑
n=1

a2n−1 cos ((2n− 1)α) , (16)

CL(α) = CL,π
4

∞∑
n=1

b2n cos (2nα) . (17)

In [20], details about the calculation of the constants CD,0 in Eq. (16) and CL,π
4

in Eq. (17)
are given. However, they kept the determination of the Fourier coefficients a and b open for
discussion. In accordance with the idea of Yao et al. [38], optimum coefficients are found
by fitting them to experimental data. Currently, the available amount of measurements for
drag and lift forces on nets is rather small and specific for nets with low solidity. High
solidity measurements as provided in [4] are important contributions for future adjustments,
in particular with regards to bio-fouled nets.

The chosen fitting data is taken from the measurements and data provided by Patursson
et al. [29]. Additionally, data from Zhan et al. [39] is included for the drag force prediction.
In total, the data set spans solidities between 0.128 and 0.317 and inflow velocities between
0.159 m/s and 1.0 m/s. It also includes the whole range of possible angles of attack (0◦−90◦).
Non-linear fitting is accomplished using the downhill simplex method [27] with constraints
to keep the results physically bounded and fulfil the condition CD(α = 0) = CD,0. Solidity,
twine diameter, inflow velocity and angle of attack are defined as fitting parameters. The
optimum is sought and compared for up to four Fourier coefficients for CD and three Fourier
coefficients for CL. Tab. 1 shows the resulting coefficients for the best fit. The mean absolute
percentage error (MAPE) for the CD fitting problem is 17.3%, 8.5% and 35.1% for the two
data sets in [29] and the data in [39] if three coefficients are used. However, the fit would
be just slightly worse if just two coefficients, as proposed in [20], are used. For CL, the best
MAPE is 20.9% and 14.2% for the data in [29] if the series is truncated after two coefficients.
As indicated in [38], a better fit can be achieved if b2 is set larger than one. Thus, the applied
Fourier series is

CD(α) = CD,0 · [0.9725 cos (α) + 0.0139 cos (3α) + 0.0136 cos (5α)] , (18)

CL(α) = CL,π
4
· [1.2291 cos (2α) + 0.1116 cos (4α)] . (19)

Table 1: Calculated Fourier coefficients using a multidimensional optimisation method with
bounded constraints.

a1 a3 a5 a7 b2 b4 b6
0.9725 0.0139 0.0136 0.0 1.2291 0.1116 0.0

4 New Lagrangian-Eulerian coupling algorithm

A new methodology for modelling the interaction of net and fluid is proposed in this section.
This method aims to provide better physical representation, higher modelling flexibility and
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lower computational cost in comparison to porous media representations. It is based on a
Lagrangian-Eulerian approach as it is originally developed for impermeable membranes [30]
and applied to e.g. parachute modelling [3]. In section 4.1, a Lagrangian model to represent the
net is described, followed by the coupling process to the fluid in section 4.2. A general problem
from this coupling is the modified velocity near the net. In contrast to previous research, this
paper proposes a physical correction for this problem in section 4.3. The resulting model
creates a free parameter which is used for adapting the correct velocity reduction behind the
net. Section 4.4 is devoted to provide details about it.

4.1 Lagrangian representation of the net

A Lagrangian representation of the net is found as a first step. In order to keep flexibility, no
assumption about the ratio between the Eulerian cell size of the fluid and the macro element
size representing the net is stated. The disturbance of the fluid by the net should be nearly
equally distributed over the area of the net. Hence, the distance between Lagrangian points
is connected to the cell size of the surrounding Eulerian grid. In case the grid is rather coarse,
the numerical representation of the net as macro elements is sufficient. However, the macro
elements should be refined if the grid is refined. The most efficient way of automating this
process is to divide the net elements into triangles and compare their average length with
a reference cell size (see Fig. 3). If the length exceeds the reference length, the triangle is
split into four smaller triangles using the centre of each side as an additional vertex. Further
iterations are executed until the criterium is fulfilled. The Lagrangian points are then set in
the geometrical centre of each triangle.

Figure 3: Illustration of the procedure for obtaining a Lagrangian representation of one half
of a net element (thick lines and points) in a Eulerian fluid domain (thin grey lines). Red
lines and dots indicate the triangles after the first triangulation loop, green lines and dots
result from the second loop. The resulting Lagrangian points are shown in blue.
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4.2 Coupling process

A coupling condition can be enforced starting from the Eulerian grid for the fluid and the
Lagrangian points representing the net. Conservation of momentum is assumed for any control
volume enclosing the net. It results in the condition that the energy transfer from the fluid
to the net corresponds to the loss of the fluid momentum due to the disturbance of the net.
This momentum loss can be physically identified as a pressure jump over an infinitesimally
small distance through the net. Looking into the procedure of the projection method from
above, a modification of Eq. (8) can incorporate this change. It leads to the updated Poisson
equation

∂

∂xi

(
1

ρ

∂p(n+1)

∂xi

)
=

1

∆t

∂

∂xi

(
u
(∗)
i − Fi

)
, (20)

and the new velocity correction step

u
(n+1)
i = u

(∗)
i − Fi −

∆t

ρ

∂p(n+1)

∂xi
, (21)

with Fi = F (~xe)i being one component of the momentum loss vector due to the presence of
the net at point ~xe of the Eulerian grid. Following the idea of Peskin [30], it can be calculated
from

F (~xe)i =
L∑
l=1

D(~xe, ~xl) · f(~xl)i, (22)

where f(~xl)i is the i-th component of the hydrodynamic screen force vector at the Lagrangian
point ~xl and L is the number of Lagrangian points within a defined Kernel D around ~xe. A
modification of Eq. (22) is proposed to have a more flexible choice for the diameter of the
kernel. For this purpose, F (~xe)i is calculated using the inverse distance weighting

F (~xe)i =

∑L
l=1we,l · f(~xl)i∑L

l=1we,l
, (23)

with the dimensionless weights

we,l =
1

|~xe − ~xl|2
. (24)

The chosen distribution of F over a certain volume of the fluid grid is illustrated in 2D in
Fig. 4. Special attention has to be given to the staggered grid arrangement. For example, the
x-component of the force is distributed only on the grid of the x-velocity component.

Finally, the forces at each Lagrangian point ~f(~xl) in the principal direction of the Eulerian
grid are calculated. By comparing to the described screen forces in Eq. (11) and Eq. (12),
they can be expressed as the integrand of the surface integral:

f(~xl)i = FD,i(~xl) + FL,i(~xl) =
ρ

2
u2rel · (CDnd,i + CLnl,i) . (25)
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A dimensional analysis of Eq. (23), Eq. (25) and Eq. (20) shows equality only if ~f(~xl) is divided
by a length. The necessary parameter κ with dimension [1/m] arises from the transition from
a surface force to a volume force and is the diameter of the influence sphere of each Lagrangian
point. In subsection 4.4, κ is determined to represent the correct velocity reduction behind
the net. The momentum loss vector is finally calculated as

F (~xe)i =
1

κ
·
∑L

l=1we,l · f(~xl)i∑L
l=1we,l

. (26)

It is noticed that the new coupling algorithm theoretically does not fulfil the law of mo-
mentum conservation because the net forces are calculated on the original macro elements but
the disturbances on the fluid are determined from a usually finer triangulated surface. This
choice is made for efficiency reasons and motivated by the valid assumption of small velocity
changes within one net screen. It is in particular reasonable if in both steps the velocities are
interpolated using the same inverse distance weighting algorithm.

~xl

Figure 4: Distribution of the force ~F (~xl) of point ~xl (blue) on the Eulerian grid points (white
dots and rectangles). Blue shading illustrates inverse weighting for surrounding fluid points.
The influenced velocity nodes are coloured in grey.

4.3 Improving the velocity prediction

A challenge arising from the numerical representation of the net within the fluid domain is
the disturbed velocity field around the net. As shown in Fig. 5, the velocity at the net differs
from the undisturbed inflow velocity due to the discrete interpolation (Eq. (23)). In previous
research [29], this was overcome by fitting the porous medium coefficients numerically which
implicitly respects this difference in velocity. In the current model, the force coefficients are
determined based on the assumption of undisturbed velocities in front of the net in accordance
with most force models. Thus, a relationship between the numerically interpolated velocity
at the net and the undisturbed inflow velocity has to be derived.
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uw = u∞ − uind,w

u∞

us = u∞ − uind,s

Figure 5: Illustration of velocity definitions in front and behind the net. Cross section shows
the x-velocity distribution with velocity reduction behind the net.

One possibility is the approach of Løland [25] which is based on the linearised turbulent
wake equations of Schlichting [33]. A more proven concept is based on Froude’s momentum
theory [10]. In the research area of hydrodynamics, it is applied to include the discrete
disturbance of a propeller disk in a fluid domain. Here, the balance of momentum before
and behind an infinitesimally thin rotating screen has to be calculated. In the following, this
approach is elaborated for net applications. Besides the assumptions valid for potential flows,
it is assumed that the induced velocities from the screen uind,s and in the wake uind,w are
much smaller than the inflow velocity u∞ and no rotational velocities are induced (see Fig. 5
for definitions). Then, two Bernoulli equations can be stated:

p∞ +
ρ

2
u2∞ = ps,1 +

ρ

2
(u∞ − uind,s)2, (27)

ps,2 +
ρ

2
(u∞ − uind,s)2 = pw +

ρ

2
(u∞ − uind,w)2. (28)

Eq. (27) is valid in front of the screen and Eq. (28) describes the fluid behind the screen. By
combining these equations, the pressure jump at the screen is defined as

∆p = ps,2 − ps,1 = pw − p∞ + ρ uind,w ·
(
−u∞ +

uind,w
2

)
. (29)

It can be assumed that pw = p∞ if start and end point are far away from the disturbance.
Thus, Eq. (29) expresses the pressure jump in terms of inflow and induced velocities. Lineari-
sation of the equation yields

∆p ≈ −ρ uind,w u∞. (30)

In addition, Eq. (27) can be used to approximate the pressure jump in front of the screen.
The linearised expression is

ps,1 − p∞ = ρ u∞ uind,s. (31)
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Froude’s hypothesis arises from Eq. (31) if the assumption is made that half of the pressure
jump is in front and the other half behind the screen,

uind,w = 2uind,s, (32)

i.e. the velocity at the screen is half the velocity between inflow and wake velocity (see Fig. 6).
By inserting this result in Eq. (30) and using the definition of the screen velocity, it yields a
new formula for us:

us = u∞ −
∆p

2ρu∞
. (33)

The pressure jump ∆p is due to the disturbance forces from Eq. (25) normal to the screen.
Using the fluid velocity at the screen and the inflow velocity for the coefficient calculation,
the jump can be expressed as

∆p =
ρ

2
CD(u∞)u2s. (34)

In combination with Eq. (33), the inflow velocity can finally be approximated from the known
screen velocity as

u∞ =
CD(u∞)

2 ·
(√

1 + CD(u∞)− 1
) · us. (35)

In the later validation process, Eq. (35) is solved using the Newton-Raphson method with
u∞ = us as an initial guess.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
distance [m]

Screen

u

Pressure Velocity

Figure 6: Illustration of velocity and pressure distribution in front and behind the net.

4.4 Estimating the velocity reduction through the net

The derivation of the new coupling algorithm in section 4.2 leads to a free parameter κ to fulfil
dimensional equality. It arises numerically with the transition from the hydrodynamic surface
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force at the screens to a volume force representation in the Eulerian grid. The parameter
corresponds physically to the influence range of the net disturbance on the fluid and is linked
to the deceleration of the flow behind the net. In porous medium models, the parameter
was determined implicitly through coupling it to the resistance coefficients. Thus, a single
fitting was used for both, the velocity reduction and the force calculation. In the new proposed
model, these two effects can be investigated separately through the introduction of the velocity
reduction correction in the previous section.

A physical determination of κ for approximating the correct velocity reduction behind nets
is preferable. However, the available measurements are not sufficient for conclusions at this
stage of research. Rudi et al. [32] performed measurements of the velocity reduction behind
vertical net sheets, but the data is not publicly available. Patursson et al. [29] measured the
same effect but only for a single net solidity. Their results indicate that the dependency of
the reduction on the inflow velocity is marginal. The dependency on the angle of attack is
also less significant for angles larger than 30◦. For smaller angles, the frame of the net wall
modifies the solidity of the actual sheet, and the reduction increases disproportionally. The
highest influence is expected due to changing net solidity, but more numerical and physical
experiments have to be conducted to find correlations. In general, the velocity reduction is
documented using the velocity reduction factor Ur which is given as

Ur = 1.0− uw
u∞

. (36)

As pointed out by Løland [25], this parameter is very sensitive with respect to the measured
wake velocity. This further complicates the accurate prediction of the velocity reduction
numerically. As a starting point and unless stated otherwise, the validation cases are computed
using κ = 0.07 which is determined from comparing Ur with the data in [29].

5 Summary of the proposed model

A flowchart illustrating the proposed Lagrangian-Eulerian fluid-structure interaction (FSI)
algorithm is provided in Fig. 7. Three steps are executed in addition to the original fluid
solution algorithm [8]. Each time step starts with the calculation of the free surface using the
level set method, and material properties are updated as given in Eq. (3) - Eq. (5). These
steps can be omitted in a one-phase simulation. The projection method initially performs
the predictor step (Eq. (6)) for the velocities. The hydrodynamic loads on the discrete net
structure are computed using Eq. (11) and Eq. (12). In case of a moving net algorithm, the net
is then advanced in time. Based on the new position of the net, the position of the Lagrangian
points describing the net in the fluid are corrected, and disturbances are distributed on the
Eulerian grid by applying Eq. (23). Finally, the modified Poisson equation (20) is solved, and
the velocity field is corrected to be divergence-free.

The choice of the kernel radius remains from the previous sections. In the given implemen-
tation, it has a minor influence on the results as long as the recommended distance between
the Lagrangian points is used. In case of a ghost cell approach as described above, the given
number of additional cell layers needed for solving the RANS equations is adequate to store all
information needed for the local kernel interpolations. Thus, the only inter-processor commu-
nication is the distribution of the disturbance field before the solution of the Poisson equation.
This reduces the computational costs significantly and simplifies the parallelisation process.
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Update free surface location

Update material properties with (3) - (5)

Predictor step (6) for fluid velocities

Calculate net drag and lift forces with (11) and (12)

Determine Lagrangian point locations

Distribute disturbances on Eulerian grid using (23)

Solving (20) for pressure

Correct velocity field with (21)

Advance in time

Figure 7: Flowchart of the presented Lagrangian-Eulerian FSI algorithm.

Regarding turbulence modelling, the proposed model consisting of macro elements pre-
vents the resolution of turbulence interactions between net and fluid. Chen and Christensen
[12] hypothesised that vortices smaller than the mesh size convect freely through the net,
whereas larger vortices are split. Simultaneously, the wake of the individual twines and knots
is characterised by separated vortices and strong interaction between them. It is in the in-
terest of the research community to investigate these effects more thoroughly [23] because
the turbulence influences the flow transported to the back part of the net cage and the fish
inside the cage. The most promising approach for incorporating these effects into a RANS
model is their expression as additional generation and dissipation terms in the equation for
the turbulent kinetic energy (TKE). This requires an extensive study on TKE changes due
to inflow turbulence intensity, angles of attack and net geometry, and is not restricted only
to numerical investigations since experimental validation data has to be available as well. It
exceeds the scope of this paper to include such investigations. Instead, the indications in [12],
that the turbulence might have minor effects on integral quantities like the total load on a
net in practice, are taken into account. Further, the incorporation of experimental data into
the derivation of the numerical model presumably includes the influence of turbulent effects
for the loads. Hence, turbulence modelling is neglected in the following validation section.

6 Validation process

Results from the new solver are compared to available experimental data for total forces on
fixed net sheets and cages. The numerical forces on the net are determined by integrating the
discrete forces from Eq. (11) and Eq. (12) over the whole net area. The quantitative validation
of the results is performed by calculating the percent deviation between the numerical result

15



Martin, T. et al., 2020

Φnum and the measured value Φexp:

Deviation =
Φexp − Φnum

Φexp
· 100. (37)

The sign of the deviation is kept for analysing the over- and under-predictions of the model.

6.1 Forces and velocity reduction for a fixed net panel in steady current
flow

A fixed net panel is compared to the experimental data of Patursson et al. [29] in a steady
current of different velocities and under several angles of attack α. Here, the drag and lift force
coefficients and the velocity reduction factor behind the net as given in Eq. (36) are considered.
For the latter, the wake velocity is measured 2.5 m behind the net. The comparability of the
velocity at that specific point is not valid because of the continuous numerical representation
of the net in the fluid domain. Therefore, velocity probes are arranged in the form of a disc
around the measured point and the average value is compared with that from the experiment.
This should provide a better impression of the numerical accuracy because it takes the discrete
approach of macro elements into account.

4.5m

3.66m
1m

1.5m x
y

2.44m
1m

x
z

Figure 8: Computational domain for the simulation of a fixed net panel in steady current
flow. Top view is shown on the left, side view is shown on the right.

The net is fixed in a frame of 1.0 m × 1.0 m and has a solidity of 0.184. The frame
is not considered in this study due to missing geometrical data. This is in accordance with
previous calculations [12, 29]. Four different angles of attack, i.e. α = 15◦, 30◦, 45◦, 90◦ and
four different inflow velocities between 0.125 m/s and 0.75 m/s are investigated. Here, 90◦

corresponds to perpendicular inflow conditions. The computational domain is 4.5 m × 3.66 m
× 2.44 m, and the geometrical centre of the net is kept at (1.5 m, 1.83 m, 1.22 m) for all angles
of attack (see also Fig. 8).

A spatial convergence test is conducted for the configuration α = 45◦ and u∞ = 0.5 m/s.
The validation process as given in [31] is applied to check convergence. For this purpose,
three grids with 0.423 million, 1.22 million and 3.45 million cells with a gradual refinement
towards the net are considered. The deviation for CD and CL are oscillatory converging, and
the deviation of Ur is monotonically converging. As can be seen in Tab. 2, the differences
between the results on the different grids are generally small. Therefore, it is decided to utilise
the coarsest grid for the following computations. Temporal convergence is not investigated
because the simulations result in steady-state conditions.

A slice of the domain through the middle plane is shown for α = 45◦ and 90◦ and u∞ =
0.5 m/s in Fig. 9. The wake of the net is visible and has approximately the same width as
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Table 2: Convergence test for the fixed net wall in steady current flow. Table shows the
deviations [%] for the drag and lift coefficients and the velocity reduction for the three different
grids.

Coarse Medium Fine

CD −6.48 −4.90 −6.41

CL −17.16 −14.52 −15.57

Ur 7.64 7.09 6.86

the net panel. The fluid is accelerated around the panel. As the angle of attack increases,
the fluid slows down in front of the net which leads to a decreasing velocity at the net itself.
Behind the net, a nearly steady velocity field can be observed for both angles of attack.

(a) α = 45◦. (b) α = 90◦.

Figure 9: Velocity field for the fixed net panel in steady current flow of u∞ = 0.5 m/s.

Fig. 10 presents the numerical and experimental force coefficients for the different inflow
velocities as a function of α. The computed drag coefficients (Fig. 10a) increase with de-
creasing inflow velocity and increasing angle of attack. This agrees qualitatively with the
measurements. The predicted lift coefficients in Fig. 10b indicate maximum lift forces for
α = 45◦. At larger angles of attack, the flow separates at the frame, and the lift forces reduce.
In general, the lift forces are smaller than the drag forces. The velocity reduction behind the
net is predicted well by the numerical model for α ≥ 30◦ as can be seen in Fig. 10c. At smaller
angles of attack, the deviations are as expected due to the choice of κ in section 4.4.
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(c) Velocity reduction factor Ur.

Figure 10: Comparison of the numerical and experimental results for the fixed net panel in
steady current flow.

The quantitative determination of the numerical results is presented in the Tabs. 3, 4 and
5. They present the deviations for all three properties at different fluid velocities and angles
of attack. The maximum deviation in computing CD is 25% for α = 15◦ which might be
due to neglecting the influence of the frame. For larger angles, the maximum deviation is
reduced to 15%. The L2 norms of the deviation for the four different inflow velocities are
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0.05, 0.04, 0.02 and 0.03, which indicates a good approximation of the model over the whole
range of Reynolds numbers. Similar behaviour can be seen for CL, where the L2 norms of
deviation are 0.01, 0.02, 0.02 and 0.02. However, the deviations are slightly larger than for the
prediction for CD with a maximum derivation of 27% for angles larger than 15◦. These results
describe an improvement over existing porous medium models [12] where deviations larger
than 50% for CL were reported. The maximum deviations for Ur are in a similar range as the
deviations for CL. The chosen constant κ seems to approximate the velocity reduction well
over the considered range of angles of attack and Reynolds numbers. A tendency to better
agreement to experiments can be observed for the larger angles of attack which coincides with
the comments in section 4.4.

Table 3: Deviations [%] for the drag force coefficients between numerical simulation and
experimental data of Patursson et al. [29].

α [◦]
u∞ [m/s]

0.125 0.25 0.5 0.75

15 16.53 21.40 25.09 6.49

30 9.39 −5.52 −4.60 −15.46

45 −11.76 −8.79 −2.71 −2.18

60 −7.06 −12.34 2.42 0.59

90 −15.47 −0.98 3.44 9.41

Table 4: Deviations [%] for the lift force coefficients between numerical simulation and exper-
imental data of Patursson et al. [29].

α [◦]
u∞ [m/s]

0.125 0.25 0.5 0.75

15 −0.36 3.38 30.11 36.95

30 0.23 19.22 26.92 25.13

45 1.35 13.0 14.20 −12.33

60 12.63 −19.22 3.05 −3.61

Table 5: Deviations [%] for the velocity reduction factors between numerical simulation and
experimental data of Patursson et al. [29].

α [◦]
u∞ [m/s]

0.125 0.25 0.5 0.75

15 56.32 57.16 61.55 60.04

30 5.63 18.18 27.16 22.65

45 −3.45 20.49 24.43 11.45

60 −16.87 15.05 24.45 15.75

90 −17.30 −12.20 0.34 −8.59
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6.2 Drag forces on a fixed net panel in steady current flows

Further experiments on fixed net panels in current are presented by Zhan et al. [39]. Several
net geometries with square meshes are investigated. This gives a better understanding of the
proposed model for a variety of net solidities.

The net panel has a width of 1.3 m and a height of 0.7 m. Three angles of attack,
i.e. α = 30◦, 60◦, 90◦ and four different inflow velocities between 0.25 m/s and 1.0 m/s are
considered. The solidities of the net Sn are 0.128, 0.215 and 0.223. The same computational
domain, net position and grid as given in section 6.1 is used for the simulations.

The measurements are limited to drag forces. Fig. 11 presents the numerical and experi-
mental drag force coefficients as a function of α. As observed before, the forces increase with
decreasing inflow velocity and increasing angle of attack. The forces also rise with increasing
solidity due to a growing number of twines or increase of twine diameter. The quantification
of the results are presented in the Tabs. 6, 7 and 8. The largest deviations are calculated for
α = 30◦ irrespective of the solidity and for all angles at u∞ = 0.25 m/s, with a maximum de-
viation of 31%. A general trend of under- or over-prediction cannot be stated. This indicates
the appropriate capturing of the physics by the proposed approach in the applied range of
Reynolds numbers, angles of attack and net geometries. This impression is strengthened by
considering the similarity of the L2 norms of the deviation, which are 0.12, 0.09 and 0.10.
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(c) Sn = 0.223.

Figure 11: Comparison of numerical and experimental drag coefficients for the fixed net panel
in steady current flow.
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Table 6: Deviations [%] for the drag force coefficients between numerical simulation and
experimental data of Zhan et al. [39] for a net wall with Sn = 0.128.

α [◦]
u∞ [m/s]

0.25 0.5 0.75 1.0

30 23.40 −20.32 −1.57 15.35

60 26.39 −13.35 −23.32 0.66

90 31.02 −4.33 0.67 5.25

Table 7: Deviations [%] for the drag force coefficients between numerical simulation and
experimental data of Zhan et al. [39] for a net wall with Sn = 0.215.

α [◦]
u∞ [m/s]

0.25 0.5 0.75 1.0

30 −18.34 −26.54 22.81 5.43

60 6.23 −16.91 −22.91 −4.49

90 2.10 −7.24 −6.83 −2.11

Table 8: Deviations [%] for the drag force coefficients between numerical simulation and
experimental data of Zhan et al. [39] for a net wall with Sn = 0.223.

α [◦]
u∞ [m/s]

0.25 0.5 0.75 1.0

30 21.06 14.77 22.81 27.29

60 8.84 1.10 −2.43 4.97

90 11.04 2.64 5.43 6.06

6.3 Drag forces on a fixed net cage in steady current flows

A validation case with more complicated geometry is conducted in this section. In [39], the
drag forces on fully submerged fixed circular net structures are measured for different inflow
velocities and net geometries. The cage has a height of 0.7 m and a diameter of 0.414 m. The
inflow velocities vary from 0.25 m/s to 1.0 m/s, and solidities of 0.128, 0.215 and 0.223 are
considered. The dimensions of the computational domain are illustrated in Fig. 12.

4.5m

3.0m0.414m

1.0m
x

y

1.4m

0.7m
x

z

Figure 12: Computational domain for the simulation of a fixed net cage in steady current
flow. The top view is shown on the left, the side view is shown on the right.
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The predicted drag forces are compared to the experimental results in Fig. 13 and Tab. 9.
In the experiments, the forces increase with the solidity and inflow velocity. In contrast, the
numerical model computes slightly larger drag forces for Sn = 0.215 than for Sn = 0.223.
The difference in solidity between the two nets seems to be small. However, the net with
Sn = 0.215 contains meshes with half the length and half the diameter compared to the
net with Sn = 0.223. Thus, the interaction between the twines increases for the net with
Sn = 0.215. This effect is apparently not captured well by the screen force model because
the deviations to the experiments are the largest for this net (up to 23% in deviation). The
other net configurations are modelled within a range of a 20% deviation band, and the L2

norms of deviation are 1.94 N and 3.15 N. This indicates a good capturing of the physics for
the investigated range of inflow velocities and improvement over the results reported in [12].
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Figure 13: Comparison of the numerical and experimental drag forces on fixed net cage in
steady current flow.

Table 9: Deviations [%] for the drag forces between numerical simulation and experimental
data of Zhan et al. [39] for a net cage in current.

Sn
u∞ [m/s]

0.25 0.5 0.75 1.0

0.128 −19.54 −14.68 −4.24 −0.94

0.215 −16.10 −21.14 −23.50 −20.58

0.223 16.86 −0.42 −1.54 −4.06

The considered experiments do not include measurements of the velocity reduction in and
behind the cage. A typical velocity distribution is shown in Fig. 14 for Sn = 0.128 and
u∞ = 0.5 m/s. A gradual deceleration of the flow through the net cage is observed, whereas
parts of the flow are accelerated along the sides of the cylindrical structure which leads to
larger velocities than the inflow velocity outside the wake of the net cage.
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Figure 14: Numerical result for the x-velocity profile in the middle slice for the fixed net cage
with Sn = 0.128 in steady current flow of u∞ = 0.5 m/s.

6.4 Drag forces on a fixed net panel in regular waves

Lader et al. [24] presented an experimental study on the interaction of regular waves and net
panels of different geometries. This allows testing of the proposed model in a space- and time-
varying velocity field including a free surface. As pointed out by Kristiansen and Faltinsen
[20], the screen force model is also applicable to wave cases because the KC number is large,
i.e. quasi-steady flow conditions.

3.5
m

1 m

0.5 m

6.5
m

2.1m

Figure 15: Computational domain for the simulation of a fixed net panel in regular waves.
Colours show velocities in x-direction.

Table 10: Wave input parameters for the simulation of fixed net panels in waves (taken from
[24]).

Wave case 1 2 3 4 5

Wave frequency f [Hz] 1.42 1.42 1.42 1.25 1.0

Wave height H [m] 0.045 0.064 0.084 0.104 0.167
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The numerical wave tank is defined as shown in Fig. 15. It has a length of 10 m, a height
of 1.0 m and a width of 0.5 m. The water depth is set to 0.62 m. The tank is shortened in
comparison to the experimental wave flume to save computational time. A two wavelength
long numerical beach is placed at the end of the tank to absorb the wave energy. A wave
relaxation zone of one wavelength is defined at the inlet to generate waves. The numerical
wave tank was thoroughly described in [8] and successfully validated for regular [18], irregular
[2] and breaking waves [1]. In the experiments, five different regular waves of different length,
height and steepness are generated using a vertical piston wavemaker. Fifth-order Stokes
wave theory is used to model these waves because the wavemaker signal is not available and
the Ursell numbers are small. The input wave frequencies and heights are given in Tab. 10.
The investigated net panels have the same width and height as the tank and solidities of
0.095, 0.22 and 0.288. They are referred as net case 1-3 in the following. The panel is placed
3.5 m in the tank. The time series for the drag forces and the wave elevation 1.4 m in front of
the net are recorded for further analyses. A section of the series is compared to the measured
time series in the Figs. 16 - 20.
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(d) Drag force for net case 3.

Figure 16: Numerical and experimental time series of surface elevation η and drag forces for
wave case 1 with f = 1.42 Hz and H = 0.045 m.
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(d) Drag force for net case 3.

Figure 17: Numerical and experimental time series of surface elevation η and drag forces for
wave case 2 with f = 1.42 Hz and H = 0.064 m.
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(d) Drag force for net case 3.

Figure 18: Numerical and experimental time series of surface elevation η and drag forces for
wave case 3 with f = 1.42 Hz and H = 0.084 m.
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Figure 19: Numerical and experimental time series of surface elevation η and drag forces for
wave case 4 with f = 1.25 Hz and H = 0.104 m.
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Figure 20: Numerical and experimental time series of surface elevation η and drag forces for
wave case 5 with f = 1.0 Hz and H = 0.167 m.

In general, the numerically predicted wave propagation matches well with the experiments
(Figs. 16a - 20a). Lader et al. [24] suggest evaluating the wave energy by calculating the zeroth-
order moment of the power spectrum due to the non-linearity of the wave. Fig. 21 shows the
amplitude spectra of the five simulated wave signals into their frequency components. They
indicate the adequate representation of the low-order component (Stokes drift) and several
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high-order components with multiple times the leading wave frequency. However, all these
amplitude components are at most 1/5 of the leading wave frequency component. Thus, their
contribution to the total wave energy is of minor interest, and it is justified to simplify the
analysis to a comparison of the wave amplitudes. Following Lader et al. [24], a distinction
between positive and negative amplitudes is made because of the asymmetry of the waves
with higher crests and shallower troughs. As illustrated in Fig. 22b, the higher wave crests
result in higher particle velocities and larger submerged net area. This corresponds to larger
drag forces on the net in the wave propagation direction. In contrast, the load changes sign
in a wave trough situation (Fig. 22a), and a smaller net area is wetted.

The most important components of the total wave forces act on the net with the regular
wave frequency as shown in the Figs. 23a - 23e. Therefore, it is sufficient to compare the
drag force amplitudes when the total wave forces are of interest. It is also noticed from these
figures that the magnitude of the forces increases with the net solidity and wave amplitude.
Both phenomena are expected from the validation cases.
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Figure 21: Amplitude spectra of the numerical wave elevation time series for the five different
wave cases.
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(a) Wave trough situation. (b) Wave crest situation.

Figure 22: Distribution of the drag force magnitudes on net panel with Sn = 0.288 in wave
5.
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(b) Wave 2.
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(c) Wave 3.
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Figure 23: Amplitude spectra of the numerical drag force time series for the five different
wave cases.

The quantification of the predicted wave and force amplitudes is performed considering the
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deviation for the positive and negative side separately. For the wave propagation, this corre-
sponds to values of less than 13% for all wave crest amplitudes and less than 12% for all wave
trough amplitudes. The deviations for the drag forces are presented in Tab. 11. The forces
are mostly under-predicted by up to 25% for the first net with Sn = 0.095. In comparison,
the model over-predicts the forces for the nets with higher solidities. The positive forces on
the net with the highest solidity are generally predicted with high accuracy (12% and less)
whereas the negative forces show larger discrepancies (up to 30%). The intermediate solidity
is generally predicted the least accurate with most deviations between 20% and 40%. Chen
and Christensen [12] noticed similar challenges with their porous medium model and pointed
to uncertainties in the experimental data. In addition, it is noticeable that the second net
geometry consists of the shortest twines. This confirms the observation in section 6.3 where
the net cage in steady current with the shortest twines was most challenging for the model.

Table 11: Deviations [%] between numerical simulation and experimental data of Lader et al.
[24] for the averaged positive (+) and negative (−) drag force amplitudes.

Sn
Wave case

1 2 3 4 5
+ - + - + - + - + -

0.095 11.4 19.1 25.1 −17.6 23.2 1.9 10.9 21.7 17.9 0.5

0.22 −80.5 −21.4 −31.2 −30.6 −29.2 −49.1 −59.8 −29.2 −41.1 −21.7

0.288 −12.4 −30.3 −3.2 −9.8 −3.2 −20.2 4.3 −30.4 −3.2 −55.8

6.5 Velocity reduction behind multiple net panels in steady current flows

A final validation case is the comparison to the experiments of Bi et al. [5]. They conducted
PIV measurements of the fluid around a single and multiple fixed net panels in varying
currents. They were carried out in a wave-current flume at the State Key Laboratory of
Coastal and Offshore Engineering at the Dalian University of Technology, China. The flume
has the dimensions 22 m × 0.45 m × 0.6 m and a water depth of 0.4 m. The net panel is
L = 0.3 m long and wide. It is placed in the centre of the flume normal to the flow direction.
A knotless net with square meshes and Sn = 0.243 is used. The inflow velocities u∞ are
0.056 m/s, 0.113 m/s, 0.17 m/s and 0.226 m/s. In a first measurement series, up to three
additional panels of the same size and geometry are placed in the wake of the first panel.
The distance between each panel is one panel length. The velocity is measured one panel
length behind the last panel for each configuration. In a second series, the wake velocities are
measured at different locations between and behind up to N = 4 net panels for u∞ = 0.17 m/s.
An illustration of the computational domain is shown in Fig. 24. The length of the domain
is 3.8 m which is long enough to avoid eventual reflections from the outlet. All probe points
are taken from the experiment at which the origin is located in the middle of the first panel.
The same argument as given in section 6.1 is used for the calculation of the wake velocity.
Therefore, several probes with the same x location are computed, averaged and compared to
the experiment. In contrast to the previous cases, κ = 0.05 is applied. Thus, the influence of
the net is higher than in section 6.1 which is physically linked to a higher solidity. As the main
results, Fig. 25 and the Tabs. 12 and 13 show the qualitative and quantitative comparisons
for the velocity reduction factor Ur with the experiments. Further, the variation of the drag
forces on the different net panels for different inflow velocities is provided in Fig. 26.
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Figure 24: Computational domain for the simulation of multiple fixed net panels in steady
current flow. Top view is shown on the left, side view is shown on the right. Origin of the
coordinate system is on the intersection of the middle line and the first panel.
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(b) Distribution of Ur over x/L for u∞ = 0.17 m/s.

Figure 25: Comparison of the numerical and experimental velocity reduction factors for N
fixed net panels in steady current flow.

As can be seen in Fig. 25a, the velocity reduction increases with the number of panels due
to an increased resistance over the same distance. At the same time, Ur tends to decrease
slightly if the inflow velocity is increased as can also be seen in the previous results (Fig. 10c).
The quantitative analysis in Tab. 12 indicates a maximum deviation of 27%, but most devi-
ations are well below 10%. Generally, the deviations are the largest for the single net case.
However, N = 1 also results in the smallest reduction factors which correspond to the highest
sensitivity to errors. If the L2 norms of deviation, which are 0.033, 0.044, 0.044 and 0.026 for
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N = 1− 4, are considered, it can be seen that the modelling deviation is similar for all cases.
A further explanation can be obtained from Fig. 25b which presents the Ur distribution over
x/L = 0 to x/L = 4 for u∞ = 0.17 m/s and N = 1− 4. In comparison to the velocity in the
vicinity of the net, Ur slightly decreases over x. This effect implies an acceleration of the fluid
which might be due to enhanced turbulence in the wake-field. In the numerical model, this
would have to be incorporated by increasing the turbulence production through the net in the
turbulence model. If multiple panels are arranged in such a way that the wake cannot evolve
freely, as given in these computations, an increase of Ur can be observed (see also Fig. 27).
As reported in [5], downstream panels slightly influence the flow through upstream panels
which is also captured by the numerical model. This is confirmed by reporting the deviations
in Tab. 13. All deviations are within a 10% deviation band for N > 1, and the L2 norms of
deviations are 0.034, 0.008, 0.003 and 0.022 for N = 1− 4.
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Figure 26: Numerical drag forces on four fixed net panels for varying steady inflow velocities.

The numerically predicted drag forces on the panels for different u∞ and N = 4 are shown
in Fig. 26. No measurements are available for comparison. The forces increase quadratically
as a function of u∞ for all nets as expected. Further, they decrease with the position of the
corresponding net because of a decreased inflow velocity. It is also interesting to note that the
difference in the calculated FD between the first and the last net increases with u∞. Thus,
the importance of incorporating the velocity reduction behind a net increases with the inflow
velocity.

Table 12: Deviations [%] for the velocity reduction factors measured 1.0 L behind the last
net for different inflow velocities and varying number of panels N . The numerical results are
compared to the experimental data of Bi et al. [5].

N
u∞ [m/s]

0.058 0.113 0.17 0.226

1 −19.19 −19.94 −19.01 −9.71

2 −4.21 −26.90 −0.75 −3.10

3 12.41 3.97 1.18 −5.26

4 6.53 0.65 2.76 −0.88
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Figure 27: Numerical result for the x-velocity profile in the middle slice for 4 nets with
Sn = 0.243 in steady current flow of u∞ = 0.17 m/s.

Table 13: Deviations [%] for the velocity reduction factors at different x/L positions and
varying number of panels N . The numerical results are compared to the experimental data
of Bi et al. [5].

N
x/L [−]

0.5 1.0 1.5 2.0 2.5 3.0 4.0

1 3.80 −19.01 - −39.47 - - -

2 6.75 - - −0.75 - - -

3 0.29 - −0.29 - - 1.18 -

4 0.29 - 9.60 - 1.04 - 2.76

7 Conclusions

The presented paper introduces a new method for modelling the flow through fish nets. The
new approach is based on momentum disturbances incorporated into the Reynolds-averaged
Navier-Stokes equations. The procedure is derived and discussed extensively. All necessary
forces are calculated using the screen force model for plane net panels. This model has advan-
tages over Morison type force models due to the incorporation of the angle between fluid and
net into its formulation. The unknown force coefficients are determined from experimental
data and a non-linear fitting algorithm. The new method represents the net as Lagrangian
points in a Eulerian fluid domain. This simplifies the overall numerical procedure in compar-
ison to porous medium models. Further, the disturbances are extrapolated on surrounding
fluid cells but their origins are kept at the net itself. This is in contrast to a porous medium
representation where the net is non-physically thickened. The transition from a surface force
to a volume force leads to the introduction of a new parameter which has to be determined to
account for the correct velocity reduction behind the net. The issue of transferring existing
force models to coupled numerical simulations is discussed for the first time. The coupling
process influences the flow velocity at the net which has to be corrected to match the undis-
turbed velocity used for computing force coefficients. An intrinsic formula is derived to couple
these velocities using Froude’s momentum theory. The numerical model is extensively vali-
dated against existing experiments for fixed net panels, multiple panels and cages with varying
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geometries and solidities in current and regular waves. For all cases, both a qualitative and
quantitative analysis is performed. Overall, the proposed model performs reasonably for all
presented cases because deviation bands of less than 10% can be achieved regularly and phys-
ical explanations can be given elsewhere. This is true for both force coefficients and the
velocity reductions in the wake.

The validation process indicates a possible limitation of the screen force model for nets
with small twine lengths due to its assumptions. In particular, the applicability of the strip
theory on each twine and the derived formula for the characteristic cross-flow velocity at
the twines (see [14]) might have a constraint which is not discussed so far. Further, the
presented computations indicate a dependency of κ on the net solidity but a low influence
from varying inflow velocities or angles of attack. This simplifies the future work of finding
a generally applicable formula for this parameter. The neglect of turbulence throughout
the validation process indicates that this effect is not important for the correct modelling of
loads. However, it plays a crucial role for investigations of the flow within net cages including
fish and, therefore, turbulence modelling should be considered in the future. Besides, more
validation for complex wave and current-wave conditions and the inclusion of net deformation
will be considered.
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