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ABSTRACT

Popular approaches in learner modeling explore response-time as

observational data supplemental to response correctness, to enrich

the predictive models of learner knowledge. It has been argued that

the relationship between response-time and knowledge mastery

is non-linear. Determining the degree of association (dependence

structure) between those two observations is an open question. To

address this objective, we propose an approach based on copulas,

i.e., a statistical tool suitable for capturing dependence structure

between two variables. All of the information about the dependence

structures can be estimated by copula models separately, allowing

for the construction of more flexible joint distributions than existing

multivariate distributions. This paper puts into practice a two-step

pipeline for building the analytical models. Specifically, we propose

a flexible copula-based approach that describes the dependence

structure between students’ response-time and mastery, in learning

and testing contexts, and apply the methodology on four datasets.

The two datasets are coming from Intelligent Tutoring Systems and

are shared via an online repository, and the other two were col-

lected during the validation of an (adaptive) assessment system. The

results reveal five generic patterns of associations across-datasets,

for various types of activities, domains and learner characteristics

(i.e., not across-contexts). We elaborate on those findings and on

the implications of our approach for adaptive systems.

KEYWORDS

Copula Theory; dependence structure; tail dependence; response-

time; knowledge mastery; learner models

ACM Reference Format:

Zacharoula Papamitsiou, Kshitij Sharma, and Michail N. Giannakos. 2020.

On the Dependence Structure between Learners’ Response-time and Knowl-

edge Mastery: If Not-linear, then What?. In Proceedings of the 28th ACM

Conference on User Modeling, Adaptation and Personalization (UMAP ’20),

July 14ś17, 2020, Genoa, Italy. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3340631.3394865

∗All authors contributed equally to the paper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UMAP ’20, July 14ś17, 2020, Genoa, Italy

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6861-2/20/07.
https://doi.org/10.1145/3340631.3394865

1 INTRODUCTION

Adaptivity and adaptive learning environments are in the epicen-

tre of the technology enhanced learning research community. The

2019 NMC Horizon Report characterized adaptive learning as a

łbreakthrough teaching model of the futurež that needs to be scaled

to its potential [1]. The tailored support provided by those systems

is usually delivered as adaptive course content or activities [46], as

individualized (or group) recommendations [10, 36], as insightful

analytics dashboards and open learner models [2, 37], or by adjust-

ing the learning design to meet the learners’ abilities [47, 55]. In

all cases, in order to adaptively scaffold the learners throughout

the learning process, it is a prerequisite for the learning systems

to deeper łlearnž and łunderstandž the learners [5], i.e., to make

decisions by considering the learner models. Essentially, the learner

models are estimations of learners’ current states and approxima-

tions of next states, based on the available observational data from

their activity and behaviour within a learning environment.

Learner modeling involves diverse aspects and decisions ranging

fromwhat to model (e.g., knowledge, behaviour, affects), to whether

it concerns learning or assessment processes, to what data to include

in the models, and to how exactly to model them [12, 16, 43].

Regarding modeling learner knowledge in particular, i.e., a latent

construct that we try to quantify based on available observational

data, the integration of different types of observational data is an

open question, among others [43]. For instance, if the model is

used for mastery detection, it is more important what data are used

for modeling than the exact details of models, e.g., the impact of

incorporating response-times to mastery criteria is higher than

using a different model of learning [43]. Across numerous studies,

researchers have explored the use of response-time (as a task at-

tribute and an indicator of learners’ engagement and mastery) as

supplemental information to usual correctness of answer, targeting

to enrich and improve their models [11, 26, 29, 44, 62]. In many

cases, it was shown that incorporating students’ response-time out-

performed the original learner knowledge models [11, 29], while

in others, the results could not demonstrate a clear trend between

response-time and correctness or mastery [8, 62], or concluded

that response-time does not always predict performance per step

[26]. Overall, prior studies suggest that the relationship between

those two variables is non-linear [3, 9, 11, 23], attempt to model

it using parametric approaches [11, 29, 30, 56] or non-parametric

approaches [4, 9, 25], and argue that using response-time as a pre-

dictor for success is a challenging open question [3, 9, 11].

A step towards that direction is to determine the nature of the

relation between response-time and mastery, i.e., the dependence

structure between those two variables. Learning more about the
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shape of this relationship, allows one to study in more detail the

impact that the time-spent on the response has on the response

accuracy and performance, which, in turn, can be informative for

the possible underlying processes. However, determining the de-

pendence structure between response-time and correctness of re-

sponses is not a trivial task. That is because contemporary analytical

modeling techniques (either parametric, e.g., quadratic, log-normal,

polynomial, or non-parametric, e.g., Generalized Additive Models

- GAM) have specific limitations. On the one hand, the common

parametric approaches are not data-driven, having underlying as-

sumptions on the distributions (e.g., log-normal assumes that ln(x)
is normally distributed; polynomial has assumption on the degree),

while the data-driven non-parametric ones have overfitting prob-

lems [33, 49], describing random error rather than a true underlying

relationship. Although modeling approaches are powerful, they

may not give a full and detailed view of the relationship and cannot

always handle the full complexity of empirical relationships. This

paper contributes to the field in two ways: (a) it proposes a flexible

approach based on copulas, i.e., a parametric, yet data-driven ap-

proach with no assumptions about the distributions [17, 31]; and

(b) it identifies five generic patterns of dependence structures by ap-

plying this methodology on four datasets, two from two Intelligent

Tutoring Systems and two from an (adaptive) assessment system.

2 RELATEDWORK

In this section, first we provide a generic overview of models for

learners’ knowledge mastery, next we explain the approaches on

modeling the relation between response-times and mastery, and we

end-up with the motivation of the research and research question.

2.1 Modeling learners’ knowledge mastery: a
brief overview and approaches

The basic goal of modeling learners’ mastery in knowledge or ability

(the two terms will be used interchangeably in this paper) is to

estimate the current knowledge state and to predict future mastery

based on past observational data. The literature distinguishes two

contexts of learner knowledge modeling, i.e., the learning and the

testing/assessment contexts. In the first case, the learner models

are used to capture changes in knowledge and skills and predict the

next learner states per task, where the tasks are directly relevant

with each other (e.g., they are sub-components of the same skill).

In the second case, where knowledge and skills are not expected to

change during a test, the learner models are used to estimate the

learners’ overall ability by continually re-calibrating it based on

learners’ responses. As such, here we present related work on the

approaches for both contexts in parallel (i.e., not across-contexts).

The prevailing approaches for modeling learner knowledge mas-

tery can be distinguished in two generic families, i.e., knowledge

tracing, and logistic models [43]. The knowledge tracing approaches

ś popular in learning contexts ś either model learners’ knowledge

as a binary hidden state with a level of uncertainty attached to

it (e.g., Bayesian Knowledge Tracing - BKT [13]) or model learn-

ers’ knowledge with distributed continuous hidden states that are

updated in non-linear, deterministic ways (e.g., Deep Knowledge

Tracing - DKT [45]). The other family of methods for modeling

learners’ knowledge mastery, i.e., logistics models, typically include

an item difficulty parameter and a logistic function for mapping

a difference between a skill and an item difficulty into the proba-

bility of a correct response. Such models are intensively used in

Item Response Theory (IRT - [58]), popular approach in testing

settings, whereas logistic models commonly employed in learning

settings include the Performance Factor Analysis (PFA)[41], the

Additive Factors Model (AFM) [7], and the Elo Rating System [42].

For comprehensive reviews of those methods, please see [15, 43].

2.2 Utilizing response-time to improve the
models

In the łThe measurement of intelligencež, it is stated that łother

things being equal, if intellect A can do at each level the same number

of tasks as intellect B, but in a less time, intellect A is betterž [54,

p.33]. This statement synopsizes that in any ability or mastery mea-

sure, both the result of interacting with a task and how long it took

to reach the result need to be considered, i.e., observed response

and response-time jointly affect mastery. The idea of incorporating

response-time as supplemental observational information to im-

prove the accuracy of the learner models is not new. A wide range

of approaches have been suggested to conceptualize and model the

latent structure underlying mastery (or ability) and response-times

both in the field of Intelligent Tutoring Systems (ITS) and learning

and in the field of Psychometrics and testing (e.g., [4, 11, 26, 57]).

In learning settings (e.g., ITS), most of the approaches combine

response accuracy and response-time into a single knowledge mas-

tery measure, aiming to improve the accuracy of the learner models

(e.g., [26, 48, 60]), without, exploring their between dependence

structure. For instance, BKT was extended by adding a binary vari-

able (łquick/slowž) to describe the learner’s response-time, depend-

ing on whether it is below or above the median response-time [26].

It was found that response-time can be a good predictor of post-test

scores, but it does not always predict mastery in individual steps.

Instead of binary values, first response-time data were discretized

into four categories to predict students’ correctness of the next re-

sponse [60]. The categories were defined based on assumptions on

what the response-times might indicate with respect to knowledge

mastery; next, the authors computed the percentage of students

who answered the current question correct, when the previous

response fell into the corresponding category, and utilized a linear

regression model to extent the existing knowledge tracing model.

The early attempts to study the relation between response-time

and knowledge mastery in learning settings, utilized students’ pre-

vious response-times for directly predicting the correctness of

their next actions. For instance, the z-scored response-time was

used to identify where the predictive power of response-time may

come from and where the variance lies, but no clear trend between

response-time and correctness was identified [62]. The Elo function

was also used to estimate ability, utilizing response accuracy and

response-times data based on the High Speed High Stakes rule, i.e.,

for both correct and incorrect answers, increasing response-time

results in the score going towards zero [23]. The idea was grounded

on the hierarchical framework from educational measurement [57]

(discussed later here). In another approach, the authors’ hypothesis

that rapid responses on easy items may imply fluent knowledge

was implemented by utilizing a log function of response-times for

correctly answered items (response-times for wrong answers were

not considered meaningful) [29]. In a recent approach, the use of
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response-time as a predictor of student mastery was explored in

two ways: by modeling response-time as a linear parameter and

by modeling response-time as a quadratic parameter [11]. The au-

thors found that including response-time as a quadratic parameter

improves the model’s performance both with respect to goodness-

of-fit and with respect to predictive accuracy on unseen steps.

In educational measurement (i.e., testing), one of the most popu-

lar approaches for the joint modeling of item response-accuracy and

response-time is the hierarchical framework [57]. The assumption

in thismodel is that response-times follow a log-normal distribution,

and as such, they are incorporated as a log-normal transformation

of the original values. A major assumption of the model is the condi-

tional independence of response accuracy and response-time, given

the overall speed and ability. Although the correlation between

response-time and ability can be interpreted within a test-taker (or

item), however, the assumption of conditional independence might

be violated in the correlation between responses and response-times

across test takers (or items). To address this issue, it has been pro-

posed to explicitly model the residual dependence between time and

accuracy by incorporating the effects of the residual response-time

[3]. Another, purely data-driven approach explored the residual

relationship of response-time and accuracy using plots of resid-

ual log-transformed response-times against proportions of correct

responses [9]. The exploratory findings from this study revealed

a curvilinear dependence, further confirmed in a fine-grained ap-

proach [4], and that there is a very stable relationship between

response-time and accuracy when the residual dependencies are

considered. However, this approach appears to have overfitting

problems, describing random error rather than a true underlying re-

lationship. Furthermore, the residual dependency between accuracy

and response-time has been found to be negative for most items in

both approaches [4, 9]. Yet, the rapid guessing mixture model can-

not explain these results because it implies a positive dependency

(slower responses are more correct) [61]. Moreover, a generalized

linear modeling framework has been proposed to model differences

in different forms of cross-relations linking separate measurement

models for item responses and response times [30]. However, this

approach is a parametric approach in the sense that it requires an

assumption about the distribution of the response-times.

Overall, previous works converge on the fact that the dependence

structure between response-time and knowledge mastery needs to

be determined, since it can be utilized for predicting one variable

from the other. The literature strongly indicated that this relation is

non-linear [4, 9, 11]. Yet, the popular approaches in literature either

were non data-driven, employing analytical methods with inherent

assumptions on the distributions (e.g., parametric models), or were

suffering from overfitting issues (e.g., non-parametric models).

2.3 Motivation of the Research and Research
Objective

The current research clearly demonstrates that response-times are

a useful source of information. Learning more about the shape of

the dependence structure between response-time and knowledge

mastery, allows one to study in depth the impact of response-time

on the response accuracy (correctness), and the possible underlying

processes. Determining the nature of this relationship and precisely

how this is to be exploited, awaits further research. In line with

the above, the objective of this study is to explore the degree of

association between those two observations, in learning and in

assessment settings. Thus, the research question is as follows:

Research Question (RQ): Of what kind is the relationship be-

tween learners’ response-time and knowledge mastery?

We propose an approach based on copulas, i.e., a statistical tool

suitable for capturing dependence structure between two variables.

All of the information about the dependence structures can be esti-

mated by copula models separately, allowing for the construction of

more flexible joint distributions than existing multivariate distribu-

tions. This paper puts into practice a two-step pipeline for building

the analytical models, and applies the methodology on four datasets:

the two datasets are coming from an Intelligent Tutoring System

and are shared via an online repository, and the other two were

collected during the validation of an adaptive assessment system.

3 THE COPULA-BASED APPROACH

3.1 Copulas: definitions and families

The dependence between two random variables X1 and X2 is con-

tained in their joint distribution, and its study needs to go beyond

common measures of linear dependence [18]. For instance, one

drawback of the Pearson’s correlation is that it depends on the

marginal distributions F1 and F2 of the two random variables X1

and X2. This explains why it is not invariant on monotonic increas-

ing transformations of X1 and X2, an undesirable property for a

dependence measure [34]. Copulas model the dependence structure

independently of the marginal distributions; from a distributional

viewpoint, copulas can be utilized to identify a dependence struc-

ture capturing scale invariant dependencies not affected by the

marginal behaviours of the considered variables. The idea behind

the concept of copulas is to separate a joint distribution function

into the dependence structure and the marginal behaviour [31].

Decomposing the multivariate distribution into marginal distri-

butions and a copula, allows for the construction of better models

of the individual variables than if only explicit multivariate distri-

butions were considered. Copulas allow the construction of joint

distributions with arbitrary margins and address the dependence

structure of multidimensional random variables; they are functions

that łcouplež the marginal distributions to the corresponding joint

distribution functions [31], i.e., a copula is a multivariate distribu-

tion function C : [0, 1]d → [0, 1] with standard uniform margins

[22, 31]. Any multivariate distribution function can serve as a cop-

ula. The theoretical foundation for the application of copulas is

provided in Sklar’s theorem [51]. In brief, Sklar’s theorem claims

that any multivariate joint distribution can be written in terms

of univariate marginal distribution functions and a copula func-

tion that describes the dependence structure between the variables.

In this paper, considering only two variables, i.e., response-time

and knowledge mastery, we restrict ourselves to the bivariate case

(d = 2). In this case, Sklar’s theorem is written as follows:

Sklar’s Theorem: Let F be a joint distribution function withmargins

F1, F2. There exists a copula such that for all x1, x2 in [−∞,∞]
F (x1, x2) = C{F1(x1), F2(x2)}

If the margins are continuous, then C is unique. Conversely, if C is a

copula and F1, F2 are univariate distribution functions, then F defined

above is a bivariate distribution function with margins F1, F2.
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Most of the copulas are parametric and there are basically two

types; the copulas of normalmixture distributions and theArchimedean

copulas. The first type refers to implicit copulas (elliptical), such

as the Gaussian copula and the Student’s t copula (for simplicity,

t copula), which are implicit in well-known multivariate distribu-

tions; the Gaussian copula supposes (X1,X2) being the standard

bivariate normal with correlation matrix Σ and is defined as:

CGa

Σ
(u1,u2) = {X1 ≤ Φ

−1(u1),X2 ≤ Φ
−1(u2)}. (1)

The t copula, with ν degrees of freedom, is implicitly built as:

C t

Σ,ν (u1,u2) = {X1 ≤ t−1ν (u1),X2 ≤ t−1ν (u2)}. (2)

In (1) and (2), the Φ−1(·) and t−1ν (·) are the inverse of the standard
univariate Gaussian distribution function and the standard univari-

ate student-t-distribution with ν degrees of freedom, respectively.

Another type of parametric copulas is the Archimedean family,

in which copulas have simple closed forms. The Gumbel copula is

CGu
β

(u1,u2) = exp

[

−
{

(− logu1)β + (− logu2)β
}1/β ]

, (3)

with β ≥ 1. When β = 1, we get independence and β → ∞
provides perfect positive dependence.

Another Archimedean copula is the Clayton copula

CCl
β
(u1,u2) =

(

u
−β
1 + u

−β
2 − 1

)−1/β
, (4)

with β > 0.When β → 0, it tends to independence, whereas β → ∞
gives perfect positive dependence. Other Archimedean copulas and

other families of copulas exist as in [28] and the references therein.

This study, the selection of the specific copulas was grounded on the

following facets: (a) they are the most commonly met in datasets,

and (b) they are found to be the most robust for modeling both

the positive and negative dependencies in bivariate distributions

[6, 40]. More details on Copula theory can be found in [20, 32, 52].

3.2 Copula-based dependence measures

If the joint distribution of the random variables is well represented

by an elliptical distribution, e.g., Gaussian or t , their dependence

structure is linear, and Pearson’s correlation coefficient is a mean-

ingful measure of dependence. However, as it has been argued,

between response-time and knowledge mastery there is a non-

linear dependence. Outside the world of elliptical distributions, the

use of the linear correlation coefficient may induce misleading con-

clusions about the dependence. There exist standard and useful

dependence measures solely related to the copula and not to the

margins. These are, for instance, rank correlations like Kendall’s

tau τ (X1,X2) and Spearman’s rho ρS (X1,X2) or tail dependence co-
efficients. The tail dependence coefficients are measures of extremal

dependence that quantify the dependence in the upper and lower

tails of a bivariate distribution of two random variables X1 and X2

with continuous marginal distributions F1 and F2. The coefficients

are defined in terms of quantile exceedences, and when the limit

exists, the coefficient of upper tail dependence is

λu (X1,X2) = lim
q→1

{X2 > F−12 (q) | X1 > F−11 (q)}. (5)

Analogously, the coefficient of lower tail dependence is

λℓ(X1,X2) = lim
q→0

{X2 ≤ F−12 (q) | X1 ≤ F−11 (q)}. (6)

Convenient mappings between such measures and the parame-

ters of common copulas often exist, using for instance Kendall’s tau

and Spearman’s rho. In that terms, the tail-dependence coefficients

(5) and (6) are conveniently functions of the copula. More precisely,

λu = lim
q→1

1 − 2q +C(q,q)
1 − q

,

λℓ = lim
q→0

C(q,q)
q
.

Therefore, λu ∈ [0, 1] and λℓ ∈ [0, 1]. When λu > 0, we get upper

tail dependence. If λu = 0, we get asymptotic independence in

the upper tail. When λℓ > 0, we reach lower tail dependence

and if λℓ = 0 we obtain asymptotic independence in the lower

tail. For elliptical copulas, λu = λℓ and the Gaussian copula is

asymptotically independent for |ρ | < 1, so that for the Gaussian

copula λu = λℓ = 0. When the copula shows tail dependence (lower

or upper or both), the tail dependence can be explicitly mapped to

the copula parameters (β). Let us denote the mapping

λ = д(β). (7)

The t copula is tail dependent when ρ > −1 and the mapping is

λ = 2tν+1

(√
ν + 1

√

1 − ρ/
√

1 + ρ
)

, (8)

where t denotes the survival of the t distribution and ν its degrees

of freedom. The Gumbel copula is upper tail dependent for β > 1

and the Clayton is lower tail dependent for β > 0, with mappings:

λu = 2 − 21/β . (9)

and

λℓ = 2−1/β . (10)

The Gumbel and Clayton copulas can only capture one side of the

tail dependence, and cannot display negative tail dependence; once

the dependence between the variables is negative, these copulas

would not fit. Therefore, these copulas can be łrotatedž (90 degrees,

180 degrees [i.e., survival], 270 degrees) and applied again (Fig. 1).

Figure 1: (from left to right) Top: Clayton ś normal, survival,

rotated 90 degrees, rotated 270 degrees. Bottom: Gumbel ś

normal, survival, rotated 90 degrees, rotated 270 degrees.

Although some of the pairs across the two generic families in

Figure 1 look similar, Clayton family is still characterised by λl (10)

and Gumbel family is still characterised by λu (9). The parameters

of the rotated copulas correspond to Kendall’s tau τ value 0.5 for

positive dependence and -0.5 for negative dependence.
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In the next section, we put into practice the copula-based ap-

proach for determining the dependence structure (i.e., what kind is

the relationship) between response-time and knowledge mastery,

in learning and assessment (testing) settings. The approach pre-

sented here is not an alternative for modeling, i.e., the aim is not

methodological. Instead, we utilize a purely data-driven method, as

a means to empirically explore the relationship between these two

observations in an exploratory way that can lead to newmodels. We

use this method to address the open problem: to both characterise

the nature of the relation between these two variables (i.e., the

copula) and to measure its strength (i.e., the correlation coefficient).

4 EMPIRICAL STUDY

In this section, first we describe the details of the datasets and the

pre-processing applied on them to prepare them for analysis, and

next we explain the empirical study setup, i.e., the copula-based

pipeline, along with the measures computed at each step.

4.1 Datasets

To illustrate how the dependence between response-time and knowl-

edge mastery can be investigated using the copula-based approach,

we applied the method to four datasets, two from Intelligent Tutor-

ing Systems (referred to as łlearning dataž from this point on), and

two from an adaptive assessment system (referred to as łassess-

ment dataž from this point on). The four datasets contain learners’

interaction logs in various types of activities and disciplines.

The learning data are shared via an online repository [24]. In

particular, we used the following datasets:

• łAlgebra 2005-2006ž (or łAlgebraž) collectedwith the Carnegie

Learning Algebra System; this dataset has been used in sev-

eral educational datamining analyses/studentmodeling stud-

ies (e.g., [14, 27]) and contained 813,661 steps of 575 students;

• ‘‘Bridge to Algebra 2008-2009ž (or łBridgež) collected with

the Carnegie Bridge to Algebra system; this dataset was also

used in previous student modeling studies (e.g., [53, 63]) and

had 20,012,499 steps of 6,043 students.

From these datasets, we only used steps that had information

about the learners’ response-times (duration) and were identified as

correct or incorrect (i.e., we excluded hints and unidentified steps).

The assessment data were collected with a widely used assess-

ment system that supports both fixed and adaptive assessment

procedures, as multiple-choice quizzes, for different disciplines and

courses [35]. Specifically, here, we used the following datasets:

• łComputers II 2014ž (or łComputers IIž); this dataset con-

tained 2,397 steps of 259 students;

• ‘‘Microeconomics II 2016ž (or łMicro IIž); this dataset had

7,654 steps of 452 students.

The aformentioned datasets have been used in former studies

(e.g., [38, 39]). Here, to identify the kind of the relationship between

response-time and mastery, we used the correctness of response

(knowledge mastery) and response-times from all the participants

on the those datasets. Note that, in this study, we put in practice

the copula-based approach across-datasets, i.e., not across-contexts.

4.2 Study setup

4.2.1 Pre-processing: We initially plotted all original datasets

to depict the obtained response-times (y-axis) in relation to the

respective knowledge mastery (x-axis), in order to explore the data

and gain an intuitive insight about the observations, their distribu-

tion, and the existence of extreme values (outliers). In this study,

in the pre-processing of the datasets (explained above), we did not

consider the difficulty of the tasks/items in terms of a baseline

response-time they might required on average to read and under-

stand. As a result, the observed response-times and mastery may

have been induced by the students’ individual differences or by the

tasks’/items’ difficulty, or possibly by both. To address this issue,

for each dataset, we divided the student populations into smaller

datasets of sub-populations (i.e., łblocksž), in order to łdive-intož the

data-points and explore the bivariate dependence structure for each

sub-population separately. In this study, we sliced the data using

the 25 and 10 percentiles of both the response-time and knowledge

mastery, but any other fine-grained splitting can be utilized. Note

that, in the joint model, response-time is treated as a continuous

variable, so as there is no loss of information in the measurement.

4.2.2 Two-steps pipeline and measures: Modeling the bivariate

dependence involves quantifying dependence and correlation. For

the first one, the copula family needs to be decided upon a goodness-

of-fit criterion (e.g., Akaike information criterion - AIC), and for the

second one, the tail-dependence coefficients need to be computed

to show the strength of the relationship. Accordingly, for each

block, we fitted the ten theoretical models (i.e., four Clayton, four

Gumbel, Gaussian, and t - explained in Section 3.1), and concluded

to the empirical models, choosing the ones with the lowest AIC,

in a purely data-driven fashion. Furthermore, the strength of the

copula between the two variables is measured by the respective

tail-dependence coefficient, i.e., λu for Clayton types, λl for Gumbel

types, Kendall’s τ for Gaussian, and ρS for t .

The bivariate dependence between the variables of interest (i.e.,

response-time and knowledgemastery) as a function that best fit the

original data, and the observed data, were also graphically displayed

using Contour plots, for the copulas detected in the datasets. These

plots show explicitly how the copula, as a function of the two

variables, fits the original data, with respect to tail dependence, in

a bivariate łloss functionž manner, for each sub-population (block).

It should be noted that, for the analysis, none of the response-

time outliers were removed. In the copula-based models, the tail

dependence describes the concordance between extreme values of

random variables X1 and X2, and the tail-dependence coefficient is

a measure of the extremal dependence between the variables [19].

5 RESULTS

5.1 Plotting of the datasets

The results from the exploratory scatter plots of the datasets are

illustrated in Figures 2 and 3 for the learning data and the assess-

ment data respectively. These results show that, in each context (i.e.,

pairs of plots), the structures of the joint distributions look different,

but they share similar characteristics in the shape, with the exis-

tence of outliers/extremes in all cases. As such, it is expected that

generic patterns of the dependence structure between response-time

and mastery exist, and need to be identified, isolated and explained.

5.2 Dependence ś Selection of copulas

To better and deeper explore the nature of the underlying relation-

ship between response-time and mastery, we performed an analysis
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Figure 2: Plots of the original datasets for learning data
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Figure 3: Plots of the original datasets for assessment data.
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Figure 4: Block-based Copula families for the learning

data.In all figures: 2śsurvival Clayton; 6śsurvival Gumbel;

7śrotated Gumbel (90); 8śrotated Gumbel (270); 9śGaussian.

based on 25-percentiles of the population and a more granular anal-

ysis based on 10-percentiles. We investigated the potential to fit

the theoretical copula models on each of the sub-populations, and

studied each block separately, as explained in the previous section.

Figures 4 and 5 depict the fitting result for all datasets. For con-

cluding to the empirical (i.e., data-driven) copula family for each

block, we employed the lowest AIC value. In the figures, each color

corresponds to one of the detected copula families.
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Figure 5: Block-based Copula families for the assessment

data. In all figures: 2śsurvival Clayton; 6śsurvival Gumbel;

8śrotated Gumbel (270); 9śGaussian.

Overall, out of the ten (10) theoretical copulas, five (5) of them

were empirically detected across datasets. From the elliptical copu-

las (that imply a linear dependence structure), the t is not detected

in the data and the Gaussian is detected in specific blocks (i.e., high

response-time ś low knowledge mastery; low response-time ś high

knowledge mastery). Hence, the nature of the underlying relation

between the variables of interest is non-linear, but some linearity is

detected, as blocks in specific percentiles follow linear behaviour.

Furthermore, as it can be observed from the figures, the empirical

copulas follow generic patterns for each context separately. For the

learning data, the overlap of the detected copulas across datasets

is 93.8% for the 25 percentile and 91% for the 10 percentile, when

we only consider the generic copula family, and 68.8% for the 25

percentile and 68% for the 10 percentile, when we take into account

both the direction of the dependence and copula family. The respec-

tive overlap for the assessment data is 62.5% for the 25 percentile

and 49% for the 10 percentile, despite the dependence direction.

This finding indicates that the generic patterns of associations across-

datasets exist, confirming the initial exploratory insights from the

scatter plots regarding the shared similarities of the distributions.

In the rest of the paper, we explain the results for the 25 per-

centiles, yet, the results are similar for the 10 percentiles. The

method can be scaled-up for finer-grained splitting, if the sub-

populations (blocks) sizes allow for the copula estimation.
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5.3 Strength of relations

Table 1 summarizes the results for the tail-dependence coefficients

for each block for all datasets in the 25 percentile. In addition, in this

table, the number of students in each block is included to showcase

that even for smaller partitions of learners, the copula-basedmethod

can map a bivatiate function for the joint dependence between

response-time and knowledge mastery. It can be observed that for

most of the learning data, the detected copula reveals a strong or

moderate dependence structure, i.e., the tail-dependence coefficient

is above 0.5; for the assessment data, most of the dependencies are

moderate. An advantage of the method is that it can detect the

dependence structure even for extreme values in the dataset.

Table 1: The tail-dependence coefficients and the number of

students in each sub-population (block) in the 25 percentile.

Tail-dependence Coefficient (# of students)

Block1 Algebra Bridge Computers II Micro II

1-1 0.97 (110) 0.45 (1320) 0.81 (54) 0.78 (53)
1-2 0.96 (24) 0.44 (170) 0.45 (30) 0.81 (44)
1-3 0.74 (6) 0.37 (11) 0.48 (22) 0.17 (29)
1-4 0.21 (4) 0.15 (8) 0.30 (20) 0.28 (28)
2-1 0.89 (24) 0.55 (176) 0.49 (33) 0.96 (51)
2-2 0.71 (80) 0.49 (1050) 0.03 (34) 0.13 (46)
2-3 0.72 (30) 0.46 (270) 0.07 (35) 0.46 (38)
2-4 0.17 (6) 0.47 (9) 0.32 (36) 0.41 (42)
3-1 0.43 (6) 0.09 (5) 0.23 (8) 0.03 (48)
3-2 0.77 (34) 0.47 (277) 0.10 (20) 0.01 (45)
3-3 0.52 (94) 0.44 (981) 0.68 (23) 0.18 (50)
3-4 0.70 (15) 0.45 (250) 0.09 (21) 0.07 (47)
4-1 0.32 (7) 0.17 (4) 0.30 (12) 0.21 (26)
4-2 0.43 (8) 0.44 (5) 0.13 (36) 0.12 (45)
4-3 0.78 (10) 0.41 (260) 0.49 (44) 0.11 (56)
4-4 0.77 (120) 0.63 (1251) 0.15 (46) 0.40 (56)

[1] The blocks correspond to the respective ones in Figures 4 and 5, from
bottom-up and left-to-right, e.g., Block 1-1 corresponds to łLow response-time
ś Low knowledge masteryž and Block 4-4 corresponds to łHigh response-time
ś High knowledge masteryž. The in-between states are marked as łModerate
High/Moderate Lowž both for response-time and mastery.

5.4 Goodness-of-fit

If no prior knowledge about the dependency structure, e.g., preva-

lence of asymptotic or tail dependencies, is available, it is common

to employ goodness-of-fit tests or measures of tail dependency in

order to choose an appropriate model. Fitting the detected copulas

to the datasets can be visualized using contour plots. For instance,

Figure 6 illustrates how the detected copulas change as a function

of the response-times and knowledge mastery, for the different

partitions of the populations (blocks) in which they are detected,

in the Algebra dataset. The contour plots show how well the cop-

ulas fit the existing data-points. In the figures, the inner rounded

curves indicate stronger relation between response-time and mas-

tery captured by the copula. When the contours become very tall

and narrow, only the edges are visualized across the plotted range,

i.e., not the rounded ends. In Figure 6a, the Gaussian copula has

been detected in the block 4-1 (i.e., high response-time ś low knowl-

edge mastery), and the respective contours visualize the underlying

structure and the fitting on the data points (i.e., the seven students).

The moderate strength of the detected dependence in this block ś

based on the tail-dependence coefficient reported in Table 1 ś is

also shown in the contour plot, as a second inner contour is also

detected (upper right corner). Similarly, the strong dependence in

block 4-4, in which the Rotated Gumbel copula has been detected, is

shown in Figure 6d. The results for all other datasets are analogous.
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Figure 6: Contour plots for the learning data (Algebra

dataset) with the respective copulas.

6 DISCUSSION, IMPLICATIONS AND
CONCLUSIONS

Current research on the improvement of learners’ knowledge mas-

tery models focuses on incorporating in the models supplemen-

tal observational data from learners’ activity, beyond response-

accuracy or correctness alone. Themost commonly used, yet promis-

ing data is learners’ response-times. The topic is of high interest for

both the Intelligent Tutoring Systems (i.e., learning) and the Psy-

chometrics (i.e., testing) communities. Previous research attempted

to shed light to the underlying relationship between response-time

and knowledge mastery [9, 11, 26, 56]. Determining the shape of

the dependence structure between those two variables, is expected

to allow one to study in depth the impact that response-time has on

response correctness and knowledge mastery; in turn, this can be

informative for the possible underlying processes and for refining

the learner models and guiding the design of adaptive systems.

Previous studies have shown that this relation is non-linear

[4, 9, 11, 23]. An in-depth investigation of this relationship is still

missing, as discovering this relationship is not a trivial task per se ś

contemporary analytical modeling approaches are either based on
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arbitrary assumptions about the distributions, or they may describe

the error instead of the true relationship. In this study, we proposed

an empirical, purely data-driven approach based on copulas. To de-

termining the kind of the relationship between response-time and

knowledge mastery, the idea is to separate the joint distribution into

the dependence structure and the marginal behaviour [31]; here,

we characterise both the nature of their dependence (i.e., the copula

family) and measure its strength (i.e., the tail-dependence coeffi-

cient). In other words, this information reveals both the pattern of

the underlying relationship and its strength for each data-point in a

dataset, and as such, it enables the development of new models, and

allows for revisiting the adaptation decision for each data-point ac-

cordingly. We empirically explored the relationship between these

two observations using datasets from diverse disciplines, contexts

and learners. The copulas selected for this study have been found

to be the most common and robust for modeling both the positive

and negative dependencies in bivariate distributions [6].

There are numerous interesting observations one can make from

the findings of the empirical study. Firstly, figures 4 and 5 show that

five generic patterns of dependence structure were detected across-

datasets (i.e., not across-contexts). In each context, the overlap of

the detected empirical patterns between the different datasets was

high (up-to 68.8% for the learning data when considering the sign

of the dependence, and 93.8% when considering only the copula

families; and up-to 62.5% for the assessment data, regardless of the

directionality of dependence). Interestingly, although the approach

is purely data-driven, it does not overfit the data, and is not affected

by the differences in the margins, in contrast to [4]. Furthermore,

both Clayton and Gumbel are for the one side of the tail-dependence

ś in a way they model either upper or lower tail dependence. In

the terms of knowledge mastery and response-time, those copulas

show that the co-movement of these variables in the tails of the

distribution follows specific patterns, and the above-mentioned

copulas are utilized to model those patterns. The amount of time

used by the learners to respond to a task, and their knowledge mas-

tery is reflected in the patterns: according to the pattern detected,

the learners are located in one of the blocks (see Figures 4 and 5)

that corresponds to that pattern, and we can learn the mapping

function between their response-time and mastery. Learning this

function, allows us to drive adaptation, e.g., to select the task that

has the greatest expected reduction in entropy, i.e., that better fits

the learner’s mastery class.

In addition, the detection of the Gaussian copula in blocks with

łhigh response-time ś low knowledge masteryž or łlow response-

time ś high knowledge masteryž is in line with the High Speed High

Stakes rule used in [23], and based on the hierarchical framework

that is extensively used in testing settings [56]. This is an intriguing

finding because, in our study, the Gaussian copula was detected

mostly in the learning data (see Figure 4). Although the framework

has recently received some criticism [3], the results indicate that for

some learners’ sub-populations, it can model well the relationship

between response-times and knowledge mastery.

Furthermore, the tail-dependence coefficients (Table 1) revealed

the nonlinear nature of the underlying relation between the vari-

ables of interest. Indeed, the nonlinearity is further confirmed both

in the learning and in the assessment context, although the two

contexts are not compared with each other. For most of the sub-

populations in all datasets, the copulas that describe the dependence

structure do not imply linear structures. In other words, the nonlin-

ear trend is met across datasets, disciplines, learners, and contexts.

The approach allows for nonlinear dependence detection and

characterization, the identification of the exact underlying patterns

of dependence, and captures both positive and negative dependen-

cies. In a sense, the rotation of copulas that do not display negative

dependencies, can be utilized to explain rapid guessing using the

model suggested in [61]. This model (i.e., from [61]) implies only

positive dependencies, and could not be used to explain results from

previous approaches that detected negative relations (e.g., [4, 9]).

The copula-based approach goes a step beyond this limitation, using

the rotation of the copulas to address directionality issues.
6.1 Implications

Previous studies have shown how to model the dependence struc-

ture between two random variables as a function of an arbitrary

set of exogenous predictors (covariates) [50, 59]. Specifically, those

studies built-upon the GAM [21] that link the mean behaviour of

a random variable X with a set of covariatesW . GAM provides a

flexible model for a univariate response. In a bivariate context, if

we are interested in the dependence between X1 and X2 that both

can be individually explained by covariates ofW , it is likely that

their dependence structure also depends on some of the covariates

inW . This problem has been addressed in [59], and GAMs have

been extend to a tail dependence structure between random vari-

ables in [50]. Practically, a GAM for tail dependence coefficients

in the presence of covariates can be utilized to explore how the

joint response-time and knowledge mastery depends on covari-

ates. Considering other meaningful attributes of the learners’ (e.g.,

self-efficacy) or the tasks’ (e.g., difficulty) as covariates has the po-

tential to explain the detected dependence structures, and justify

the relationship between response-times and knowledge mastery.

Furthermore, one of the advantages of the method is that it can

handle and detect the dependence structure even for extreme values

in the datasets. Considering the contemporary massive open online

courses, in which the populations at the tails of the distributions

might be thousands, the copula-based approach can be scaled-up

and allows for detecting the nature of association of response-time

and knowledge mastery, for those students, and opens the path for

designing adaptive systems for such environments.

6.2 Limitations and Future work

The strength of the relationships was low in some cases ś mostly

in the assessment data (Table 1). This result might have been due

to not considering other characteristics of the tasks (e.g., difficulty),

that can catalyze both learners’ response-times and accuracy. For

instance, we did not examine random guessing or łgaming the

systemž behaviours; this is within our future work plans.

Another limitation of this study is that the assessment datasets

were relatively small, and some of the dependencies were weak.

Bigger datasets might had provided more granular information.

Exploiting the analytical models and the knowledge gained about

the dependence structure between response-time and knowledge

mastery is expected to also improve the predictive models. The

next step is to incorporate this information in the learner models to

drive adaptation, and to evaluate the accuracy of the new models.
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