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ABSTRACT
Authors of academic papers are generally required to nominate
several keywords that characterize the paper, but are rarely of-
fered guidance on how to select those keywords. We analyzed the
keywords in the past 15 years of selected computing education
publications: the 1274 papers published in the proceedings of ICER
and ITiCSE, including the ITiCSE working group reports. As well
as the keywords assigned by the authors, we mined the abstracts
of these papers to extract a separate list of keywords. Our work
has two goals: to frame the thematic landscape of the field, using
keywords that communicate the work conducted; and to detect
differences between the human judgement and interpretation of
keywords and the machine ‘intelligence’ on handling those key-
words, with respect to the clusters of thematic topics identified in
each case. The analysis shows that the field is dominated by learn-
ing approaches (e.g., active learning, collaborative learning), aspects
of programming (e.g., debugging, misconceptions), computational
thinking, feedback, and assessment, while other areas that have
attracted attention include academic integrity (e.g., plagiarism) and
diversity (e.g., female students, underrepresented groups). It was
observed that the keywords chosen by authors are often too general
to provide information about the paper (e.g., ‘concerns’, ‘course’,
‘fun’, ‘justice’). We elaborate on the findings and begin a discussion
on how authors can improve the communication of their research
and make access to it more transparent.

CCS CONCEPTS
• Social and professional topics→ Computing education.
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1 INTRODUCTION
Over the past two decades, computing education research (CER)
has striven to increase its rigor and validity [3, 33] and to mature
into a respectable field of research [40]. A number of recent reviews
have set out to capture and present the state of the art in various
areas of CER, such as introductory programming [21], K-12 [10,
46], and teaching assistants [27], and exploring such aspects as
measurements [23], replications [13], empiricism [2], and inferential
statistics [35].

CER as a field of study is growing in popularity, as evidenced by
the numbers of submissions to ITiCSE and the SIGCSE Technical
Symposium (TS), both of which have more than doubled over the
past 20 years [1], and the number of publications concerning intro-
ductory programming, which has tripled over the period from 2003
to 2017 [21]. To help capture the big picture of CER, the present
work identifies the thematic areas of interest of the CER community,
using hierarchical clustering, strategic diagrams, and graph theory.

To achieve this objective, the paper employs a method called
‘co-word analysis’ combined with social network analysis, with a
focus on the core-periphery structure (i.e., the frequency, central-
ity, and interconnectivity of themes). This scientometric method
examines the associations and networks among concepts, ideas,
and issues that have contributed to the maturation of the field to
date [6]. Co-word analysis relies on the assumption that an article’s
keywords or phrases adequately summarize its content, and can
therefore be used to represent the article [7]. Co-word analysis also
assumes that co-occurrence of keywords within a paper indicates a
linkage between the topics represented by those keywords. There-
fore, co-word analysis can help researchers to identify patterns that
point to changes in a research topic (such as emerging or declin-
ing research interests) or changes in research direction (such as
paradigm changes), based on the graph of keywords [7].

The current study aims to map the intellectual progress of the
CER landscape, as reflected in the proceedings of ITiCSE (Innova-
tion and Technology in Computer Science Education) and ICER
(International Computing Education Research Conference), which
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provide a solid foundation for the related work published since
the first offering of ICER in 2005 — the so-called ‘modern era’ of
computing education research [12]. Considerable work has been
published during this period, allowing us to observe where the field
currently stands, what challenges and opportunities researchers
are facing, and what the potential driving forces will be in the
near future. This work contributes by documenting the intellectual
progress of the scientific area of computing education; by provid-
ing evidence-based insights of the community’s research themes;
and by highlighting individual topics as popular, core, or backbone
research topics within the discipline. Furthermore, a classification
schema of the author-assigned keywords was developed, relying
exclusively on the judgement and interpretation of human experts
in the field. This allows us to synergistically combine the fully au-
tomated approach and the human understanding to provide a more
holistic understanding of the CER landscape.

Our research questions are thus:
RQ1 What computing education topics emerge from an analysis

of key phrases extracted automatically from abstracts?
RQ2 What computing education topics emerge from human clas-

sification of author-assigned keywords?
RQ3 What do the lists of topics from RQ1 and RQ2 have in com-

mon, and how do they differ?

2 BACKGROUND AND RELATEDWORK
Various standardized methods and processes, both qualitative and
quantitative, have been applied to study scientific communities.
Different review and bibliometric measures, such as inclusion in-
dex, centrality, and density, have been developed to quantify and
evaluate the impact of scientific communities [14]. This section
summarizes previous reviews and bibliometric efforts to investigate
the CER landscape and gives a brief overview of co-word analysis.

There have been a number of reviews of the computing educa-
tion literature, some focusing on particular aspects of computing
education while others aim to develop frameworks, taxonomies,
or definitions. In a review of articles published from 2000 to 2005,
Randolph et al. [32] focused on the methodological approaches
reported. They collected 352 papers from a large number of venues
– SIGCSE Bulletin, Computer Science Education (CSEd), SIGCSE TS,
ITiCSE, ICER, Koli Calling, and Australasian Computing Education
Conference (ACE) — and concluded that a relatively high proportion
(40%) of studies with human subjects used solely anecdotal evidence.
Kinnunen et al. [17] created a theoretical categorization of didactic-
oriented CER. Examining papers published at ICER between 2005
and 2009, they found that the most common educational topics were
those relating to students’ actions and understanding of learning
outcomes and to pedagogical activities used in the classroom.

Other review works have focused on the use of supporting theo-
ries in CER, clustering them into three main theory communities
focused on social theories, experiential theories, and theories of
mind [45]. In a review of computing education publications from
1976 to 2000, Holmboe et al. [15] noted the limited references to
pedagogical theory and the fact that the majority of papers pro-
vided reflections from computer scientists on their teaching. More
than a decade later, Malmi et al. [22] conducted a literature review
on the theoretical underpinnings of CER, covering works published
from 2005 to 2011 in ICER, Transactions on Computing Education

(TOCE), and CSEd. They found that as many as 60% of publications
refer to external theories, most of which are drawn from education,
psychology, or other relevant disciplines; only 16% of the theories
used were developed in CER.

Simon [37] devised a classification scheme for computing educa-
tion papers and applied it to all of the computing education papers
published in three years of ACE and New Zealand’s conference of
the National Advisory Committee for Computing Qualifications
(NACCQ). With various co-authors he applied the scheme to all of
the papers over eight years of NACCQ [44], three years of ICER
[42], and a number of other bodies of work [38–41, 43]. The classi-
fication included an assessment of what each paper is about, but
by examining the paper itself, rather than its keywords or abstract.

Miró Julià et al. [26] analysed the author networks of a number of
computing research conferences, a number of computing education
conferences, and ICER, finding that on various measures ICER lies
between the group of computing research conferences and the
group of CER conferences. McCartney and Sanders [24] extended
the analysis to include ITiCSE’s working groups, which Miró Julià
et al. [26] had not considered because they had no counterpart in
the other conferences that they studied. McCartney and Sanders
[24] found that the author networks of ITiCSE working groups are
more like those of ICER than of the standard ITiCSE papers.

All of these bibliometric analyses rely on human examination of
the papers. In our work, we are interested in classifying publications
based on automatic and semi-automatic analysis of their keywords,
a process that entails no examination of the papers themselves.

Our goal is to characterize the CER landscape through the lens
of two of the main research conferences, ICER and ITiCSE, and
their entire proceedings for 15 years. We have not included the
SIGCSE TS because the volume of its papers would dominate the
two we have chosen. If these two are reasonably representative,
analyzing them will give us some insight into the thematic areas
and landscape of the CER community, and its intellectual progress.

Co-word analysis is a content analysis technique that maps the
strength of relationships between terms in texts and traces patterns
and trends in term association [6]. In particular, the extracted key-
words are seen as the basic building blocks of the structure of a
research field and their dynamics are represented as an interac-
tion between keywords: keywords that co-occur within a paper
show a link between the research topics they represent. Co-word
analysis can thus reveal patterns and trends in CER based on the
co-occurrence patterns of pairs of words. The same approach has
been used to discover connections and interactions among research
themes in various areas such as the UbiComp community [19], the
CHI community [20] and the learning analytics community [31].

3 METHOD
3.1 Data Collection
The data analyzed in this study, all 1274 peer-reviewed full and
short papers published in ICER, ITiCSE, and ITiCSE working group
reports between 2005 and 2019, were extracted from the ACM Digi-
tal Library. The author-assigned keywords were extracted from the
metadata of each paper and were used as a unit of analysis. How-
ever, the granularity of the keywords may not be consistent since
they are subjectively selected by the human authors. For example,



the authors might describe their work in fairly generic terms to
enhance its visibility, to categorize and link their work to a broader
research domain, or to synopsize the sub-topics, replacing specific
terms such as ‘Java’ and ‘Python’ with more generic ones such as
‘programming languages’. Therefore, the abstracts of the papers
were also text-mined in order to automatically extract from them
key-phrases that can describe their contents, based on the under-
standing that the abstract can be seen as a ‘standalone’ summary
of the paper, a coherent synopsis of the paper. The 1274 papers,
containing 5601 author-assigned keywords (M=4.40 per article)
and 6308 machine-extracted key-phrases (M=4.95 per article), are
distributed by year of publication as shown in Figure 1.

Figure 1: Number of publications (ICER, ITiCSE, and
ITiCSEWGR) per year, 2005–2019

3.2 Data Preprocessing
The author-assigned keywords were manually preprocessed and
standardized by merging singular and plural forms of nouns and
words that convey similar meaning (e.g., ‘computing education’
and ‘IT education’, ‘TDD’ and ‘test-driven development’), fixing
spelling errors (e.g., ‘internet of ings’), and combining UK and
US terms (e.g., ‘behaviour’ and ‘behavior’), following previously
recommended approaches [16, 20, 31]. At the end of this phase, 2821
(50% of the original author-assigned keywords) were identified as
unique keywords, and were retained for further analysis.

To extract the key-phrases from abstracts we used a Python im-
plementation of the TextRank algorithm for text summarization
[25]. TextRank is fully unsupervised: no training is necessary, and
instead of n-grams, it can tokenize words and phrases and annotate
the tokens with parts of speech (PoS). In this study, the TextRank
sliding windowwas set to 4, for the PoS we included nouns (NOUN),
adjectives (ADJ) and proper nouns (PROPN), and we requested the
top 15 phrases. After manually removing phrases that carry little
semantic significance (e.g., ‘general goal’, ‘first iteration’, ‘contri-
bution’), we were left with 6308 key-phrases, and we repeated the
same preprocessing as for the author-assigned keywords, ending
up with 4127 (65%) key-phrases identified as unique.

3.3 Co-word Analysis and Strategic Diagram
This study employs co-word analysis to summarize the big picture
of computing education research, mapping the strength of relation-
ships between terms in texts and tracing patterns and trends in term
associatedness [6]. Co-word analysis relies on the assumptions that
key-terms identified within an article (either as author-assigned
keywords or as machine-extracted key-phrases) can adequately
describe and communicate the content of that article, and that the

co-occurrence of two or more key-terms in the same article indi-
cates a linkage between those topics, known as a theme [5]. The
main units of analysis are key-terms, clusters (sets of closely related
key-terms), and key-term networks [20].

Co-word analysis is applied to reduce the broad network of key-
terms into a smaller network of related topics using graph theory
[8]. Graphs consist of nodes that represent the key-terms and links
that represent the interactions between the nodes. Given a network
of key-terms, a combination of clustering, network analysis, and
strategic diagrams is used to model the conceptual structure of a
field [5]. The graph theory concepts employed to map the research
field are centrality, the strength of the links from one research theme
or cluster to others, indicating its significance in the development
of the community [20]; and density, the coherence of a cluster
and a measure of a theme’s development [14]. A two-dimensional
strategic diagram [5] combines centrality on the horizontal axis
and density on the vertical axis: the position of a cluster in the
diagram shows the importance of the cluster in the whole network
(its centrality) in relation to how well its theme is developed (its
density), as shown in Figure 2.

Figure 2: Strategic diagram of density and centrality [20]

In the strategic diagram, Quadrant I (Q1) holds the motor themes
(i.e., mainstream themes) that have strong centrality and high den-
sity. Quadrant II (Q2) contains themes that are more specialized
and peripheral to the mainstream work, and are internally well-
structured but have weak external ties. Quadrant III (Q3) includes
the themes with low density and low centrality, which are either
emerging or declining. Finally, Quadrant IV (Q4) covers basic and
transversal themes, central to the community or borrowed from
other disciplines, that have the potential to become significant.

3.4 Data Analysis – Machine-Extracted
Key-phrases

To identify the major research themes in the computing education
domain, we performed hierarchical clustering analysis on a corre-
lation matrix with the retained terms, using Ward’s method with
squared Euclidean distance as the distance measurement [28]. This
supervised clustering method allows the maintenance of content va-
lidity and cluster fitness for the greatest number of clusters [20, 31]
or research themes.We further analyzed the co-word network using
the following measures [31]:

• Key-terms: set of terms that constitute a cluster.
• Size: number of key-terms in the cluster.
• Frequency: how many times all key-terms in a cluster ap-
pear in the full data set.



• Co-word frequency: how many times at least two key-
terms from a cluster appear in the same paper. This frequency
leads to a symmetrical co-occurrence matrix [18], in which
values on the diagonal are term frequencies and values off
the diagonal are co-word frequencies. High co-occurrence
between terms indicates a connection between the topics
they represent.

• Transitivity: a number in the range [0, 1] representing the
tightness of a cluster’s connection (its clustering coefficient).
Transitivity is the frequency in the cluster of loops of length
three: sequences of nodes 𝑥,𝑦, 𝑧 such that (𝑥,𝑦), (𝑦, 𝑧) and
(𝑧, 𝑥) are edges of the graph [36].

• Centrality: the number of other clusters that a cluster con-
nects to [5]. Centrality comprises a group of metrics that
aim to quantify the ‘importance’ of a particular node or clus-
ter within a network; examples are betweenness centrality,
closeness centrality, eigenvector centrality, and degree cen-
trality) [29]. Here we used betweenness centrality (C), with
0 ≤ 𝐶 ≤ 1.

• Density: the cohesiveness of the cluster of terms, the num-
ber of direct ties observed for the cluster divided by the maxi-
mumnumber of possible ties [5]. Density is graph-dependent,
and can be any positive real number [9].

Based on the clustering results, we plotted the strategic diagram
for the years 2005–2019 to visualise the cohesion and maturity of
the research themes in computing education [5, 20].

3.5 Data Analysis – Human-Rationalized
Keywords

For the author-assigned keywords we applied a distinctly different
approach. Two researchers with many years of experience in the
computing education literature manually grouped the keywords
into related themes. This entailed merging different keywords that
represent the same concept, as in the automated preprocessing
described in Section 3.2. But beyond that, it entailed the grouping
of distinct but related terms such as ‘academic integrity’, ‘plagia-
rism’, ‘collusion’, ‘cheating’, ‘program similarity’, and ‘attribution’.
Grouping of this sort is indisputably subjective, and was in this case
carried out by consensus. This sets the semantically-based grouping
of keywords in sharp contrast to the automated clustering of the
key-phrases that were extracted automatically from the abstracts of
the papers, and thus provides an interesting basis for comparison
of the two sets of terms.

3.6 Data Analysis – Network Graphs
From both the human-generated and machine-generated lists we
generated key-term network graphs. In these graphs each key-term
is represented as a node, and the key-terms that co-appear in a pa-
per are joined by a line. The associations between key-terms lead to
the creation of multiple networks associated with different themes.
In this case, bridges are built between the nodes of key-terms, to al-
low communication and information flow between isolated regions
of the network. Those nodes are known as structural holes [30].
Key-terms acting as structural holes also serve as the ‘backbone’
of a network: if they are removed, the network loses its cohesion
and disintegrates into separate and disconnected concepts. Thus
the network’s core-periphery structure needs to be computed in

order to determine whether nodes are part of a densely connected
core (one with a higher number of bridges) or a sparsely connected
periphery [34]. Core nodes are reasonably well connected to pe-
ripheral nodes, while peripheral nodes are sparingly connected to
a core node or to one another. Hence, a node belongs to a core
only if it is well connected to other core nodes and to peripheral
nodes [34]. A follow-up core-periphery analysis was performed to
identify the core research topics from the perspective of the whole
network. In this analysis, key-terms were categorized according to
their popularity, coreness (connectedness with other topics), and
constraint (backbone topics). The whole approach is illustrated in
Figure 3. in which the nodes marked ‘SNA’ refer to the production
and analysis of the network graphs.

Figure 3: Researchmethod; ‘SNA’ refers to semantic network
analysis, the production and analysis of network graphs

4 RESULTS
To investigate how each year’s publications contribute to CER de-
velopment through the various research topics, we performed a
correspondence analysis (CA) between the publication years and
the identified keywords. CA employs a homogeneity analysis of
an indicator matrix to obtain a low-dimensional Euclidean repre-
sentation of the original data [11]. CA uses the frequencies formed
by categorical data (i.e, a contingency table) and provides factor
scores (coordinates) for both the rows and the columns of the in-
dicator matrix (i.e., the contingency table). These coordinates are
used to graphically visualize the association between the row and
column variables in the contingency table in a two-dimensional
space, based on the chi-squared statistic associated with the contin-
gency table. In the two-dimensional outcome chart, all rows of the
contingency table (i.e., a set of variables in the original data set) and
all columns of the contingency table (i.e., a different set of variables
in the original data set) can be displayed on the same axes. All data
should be on the same scale for CA to be applicable, keeping in
mind that the method treats rows and columns equivalently. The



results of the CA for CER for the years 2005–2019 are illustrated in
Figure 4. The CA factor map positions the most common keywords
and years on a common set of orthogonal axes. The percentages
depicted on the axes correspond to the proportions of the variance
in the data that can be explained by the visualization. In this study,
the visualization displays 27.5% of the variance in the data.

Based on the results of the CA depicted in Figure 4, different
years have contributed to the development of different topics. We
see that the publications of the first five years of our analysis (2005–
2009) are positioned in the lower right quadrant of the CA. These
first five years of our analysis contributed heavily to knowledge
on the topics of visualization, introductory course curriculum, soft-
ware engineering, and dropout. The triangle of the years 2010, 2013,
and 2014 contributed to games, game development, CS2, and mo-
tivation, positioned in the upper right quadrant. In the upper left
quadrant is another triangle, 2012, 2015, and 2018, covering subjects
such as computational thinking, open source, multiple-choice ques-
tions, and novice programmers. In the lower left quadrant, recent
publications (2017 and 2019) address the topical areas of teaching
assistants, Python, assignments, and misconceptions. The years
2011 and 2016, close to the centre of the map, cover CS majors,
programming concepts, and exams.

Figure 4: Correspondence analysis map for CER, 2005—2019

4.1 Major Research Themes, 2005–2019, Based
on Machine-Extracted Key-Phrases

Of the 4127 unique machine-extracted key-phrases (Section 3.2),
there are 94 that occur in six or more papers, together covering
85% of the papers. Clustering analysis on these 94 keywords leads
to 14 clusters (labeled as C01-C14 in Table 1), each representing a
research theme or a subfield. In order to better understand the rela-
tive ‘positions’ of these clusters within the overall CER field (their
distance from one another in terms of cohesion and the maturity of
the research themes they correspond to), and in order to create the
conceptual structure of the CER discipline, we constructed a strate-
gic diagram using the centrality and density of each cluster [6]. In

this plot (Figure 5), the axes are centered to the average centrality
(0.59) and density (1.36). The overall network density, representing
the cohesiveness of the whole research field, was found to be 0.057.
To understand the results, the reader needs to consider Figure 5
and Table 1 together.

Figure 5 shows that the CER field, as portrayed by ICER and
ITiCSE proceedings, has two mainstream research (Q1) themes, rep-
resented by clusters C02 (e.g., introductory programming courses,
exam performance, CS1) and C11 (e.g., CS2, game development,
games), with C09 (e.g., design, evaluation, computational thinking,
professional development) being very close to Q1. There are also
some developed but isolated research themes (Q2), which are in-
ternally well-structured, but have rather weak external ties; these
are represented by the clusters C4 (e.g., algorithm visualization,
visualization system, block-based programming), C6 (e.g., software
development, software engineering), and C8 (e.g., dropout, student
satisfaction). The third quadrant (Q3) includes several themes that
are either emerging or disappearing: C1 (e.g., programming lan-
guages, OOP, data structures, ITS), C10 (e.g., non-majors, CS majors,
introductory programming, CS curriculum), and C13 (e.g., cognitive
skills, cognitive load, instructional material). The final quadrant
(Q4) includes a relatively high number of basic and transversal
themes, themes that are strongly linked to specific research inter-
ests throughout the network, yet are only weakly linked together:
C3 (e.g., errors, pair programming, compiler errors, syntax errors),
C5 (e.g., performance, assessment, exams, assignment, feedback),
C7 (e.g., survey, student perceptions), C9 (e.g., design, evaluation,
computational thinking, professional development), C12 (e.g., CS
education, CS students), and C14 (e.g., novice students, high school
students). The detailed results are listed in Table 1.

Figure 5: Strategic diagram for CER, 2005–2019, based
on machine-extracted key-phrases; numbers correspond to
cluster IDs in Table 1

4.2 Major Research Themes, 2005–2019, Based
on Author-Assigned Keywords

The author-assigned keywords were grouped into 23 different clus-
ters by two experienced computing education researchers. For each
cluster, we calculated its size (how many unique keywords belong
to the cluster), its frequency (how many times the keywords in



Table 1: Clusters of topics in CER, 2005–2019, machine-extracted keywords, including their quadrant on the strategic diagram
(Figure 5)

Q ID Key-terms (the most frequent in bold) Size Freq† CW-Fr† T† C† D†
Q1 C2 introductory programming course, programming concepts, student per-

formance, exam performance, cs1, misconceptions, multiple choice questions,
student understanding, python

9 251 437 0.72 0.87 1.97

Q1 C11 games, motivation, introductory cs course, cs2, interest, game development 6 132 184 0.73 0.69 1.60
Q1-Q4 C9 computational thinking, design, evaluation, cs concepts, professional devel-

opment, k12
6 129 163 0.56 0.60 1.33

Q2 C4 algorithm visualization, visualization, visualization system, block-based cod-
ing, scratch

5 73 95 0.87 0.40 1.50

Q2 C6 software development, software engineering, software engineering course 3 80 89 1.00 0.38 3.67
Q2 C8 drop-out, student satisfaction, information technology 3 28 47 1.00 0.29 2.00
Q3 C1 programming language, object-oriented programming, data structures, in-

telligent tutoring system, learning styles
5 74 108 0.87 0.53 1.00

Q3 C10 cs curriculum, non-majors, student success, gender, cs majors, introductory
programming

6 88 126 0.25 0.50 0.67

Q3 C13 cognitive skills, cognitive load, instructional material 3 21 44 1.00 0.27 1.33
Q4 C3 novice programmers, errors, empirical study, pair programming, compiler

errors, syntax errors, collaborative learning
7 95 146 0.64 0.62 0.86

Q4 C5 assessment, performance, programming, introductory course, programming
course, exams, assignment, feedback, java, programming assignment, summa-
tive assessment, peer review, source code, grading

14 322 424 0.59 0.85 0.86

Q4 C7 survey, undergraduate students, learning environments, semi-structured inter-
view, solo taxonomy, teaching assistants, design practices, student engagement,
student perceptions, student survey

10 130 191 0.59 0.71 0.67

Q4 C12 cs education, active learning, cs students, programming skills, attitudes, female
students, retention, pedagogical approach, cs course

9 207 265 0.64 0.80 0.86

Q4 C14 novice students, programming environment, mental model, case study, intro-
ductory cs, learning outcomes, recursion, high school students

8 112 185 0.48 0.69 0.79

† Freq: Total frequency of all key-terms in cluster; CW-Fr: Co-word Frequency; T: Transitivity; C: Centrality; D: Density

the cluster appeared in the papers), and its strength (the ratio of
frequency to size). The strongest cluster (CH6) comprises generic
terms such as computing education, computer science education,
and education. Another cluster, almost equally strong but with only
three keywords (CH11), comprises the terms evaluation, perfor-
mance, and course performance. A cluster that is both very strong
and large is introductory programming (CH12), which includes
terms such as CS1, novice programmer, and introductory program-
ming course. There are several moderately strong clusters (strength
≥ 3), such as computational thinking (CH4), computing (CH5), edu-
cational data (C10), pedagogy (CH14), and programming (CH15).
The remaining clusters are relatively weak, although some of them
are quite large (e.g., general terms, specific courses or topics, and
learning approaches). Table 2 lists the clusters arising from the
analysis of the author-assigned and expert-ranked keywords.

4.3 Keyword Network Map
In order to better understand the CER research themes presented
in Tables 1 and 2, we visualized their relationship through network
analysis and the development of two granular network maps of
the keywords. Figures 6 and 7 display the networks of machine-
extracted and author-assigned keywords respectively. Each node in
the graphs represents a keyword that is linked to other keywords
that appear in the same paper. The size of the nodes is proportional
to the frequency of the keywords, the color of the node corresponds
to the cluster the keyword has been classified in, and the thickness

of the links between nodes is proportional to the co-occurrence
correlation for that pair of keywords. From this analysis, keywords
that appeared less than six times in the initial data set were excluded
(as previously explained), and keywords with fewer than six strong
ties were excluded to avoid a highly disconnected network.

Our last analysis was to identify the core research topics in the
field from a whole-network perspective, as individual keywords,
regardless of the cluster they belong to (this is known as core-
periphery analysis). We performed this analysis separately for the
machine-extracted keywords (Table 3) and the author-assigned
keywords (Table 4). The core-periphery analysis yielded ten core
research topics in each of the following categories:

• Popularity: how frequently a keyword is used;
• Core: how connected a keyword is with other topics; core-
ness is measured on a [0–1] scale;

• Structural holes (constraint): how connected a research
keyword is with otherwise distinct topics (i.e., if the topic
creates a backbone of the field); constraint is measured on a
[0–1] scale.

A higher core value indicates a topic that is well connected to other
topics. Higher structural holes indicate keywords that brings to-
gether otherwise isolated topics. Burt’s constraint [4] is commonly
used as a measure of structural holes: the larger the constraint value,
the fewer structural opportunities a node may have for bridging
structural holes, and so keywords that act as bridges between topics
have lower constraint values. Topics with high scores on popularity



Table 2: Clusters of topics in computing education, 2005–2019, human processing of author-assigned keywords

ID Cluster Name (alpha order) Popular Keywords (ordered based on their frequency)‡ Size† Freq† Str†
CH1 academic integrity academic integrity, plagiarism, cheating, collusion, program simi-

larity, ethical hacking, copying
19 40 2.11

CH2 aspects of programming debugging, recursion, misconceptions, testing, simulation, mental mod-
els, software testing, test-driven development (tdd), polymorphism

244 480 1.97

CH3 assessment assessment, feedback, automated grading, peer assessment, SOLO
taxonomy, exam, programming assignments, multiple choice questions

156 327 2.09

CH4 computational thinking computational thinking, problem solving, abstraction, alg. thinking 26 105 4.04
CH5 computing discplines software engineering, computer science, introductory computer

science, CS, informatics, Information technology
15 91 6.07

CH6 computing education computer science education, education, computing education, soft-
ware engineering education, CS education, informatics education

29 266 9.17

CH7 course management Moodle, course management, mobile devices, assistive technology,
learning environments, classroom management, content management

54 82 1.52

CH8 curriculum curriculum, curriculum design, course design, curriculum issues, in-
structional design, learning outcomes, curricula, learning objectives

54 117 2.17

CH9 diversity gender, diversity, women in computing, broadening participation, gen-
der issues, girls, women, minorities, under-represented group, disability

73 138 1.89

CH10 educational data educational data mining, learning analytics, data mining, big data 11 38 3.45
CH11 evaluation evaluation, course evaluation, course performance 3 26 8.67
CH12 introductory programming CS1, introductory programming, learning to program, introductory cs,

novice programmer, introductory programming course
31 206 6.65

CH13 learning approaches active learning, collaborative learning, e-learning, pair programming,
games, constructivism, peer instruction, cognitive load theory

299 622 2.08

CH14 pedagogy pedagogy, computer science pedagogy, course pedagogy, educational
model, pedagogical approach

16 66 4.13

CH15 programming programming, novice programmers, programming education, object-
oriented programming, block-based programming, coding

53 256 4.83

CH16 programming languages and en-
vironments

Java, python, scratch, alice, BlueJ, Jeliot, interactive learning environ-
ments, visual programming language, app inventor

64 132 2.06

CH17 research and approaches CS ed research, experimental evaluation, phenomenography, qualita-
tive research, empirical research, grounded theory

150 279 1.86

CH18 school K-12, high school, middle school, outreach, secondary education, chil-
dren, high school curriculum, elementary school

54 129 2.39

CH19 specific courses or topics CS2, data structures, algorithms, research methods, artificial intelli-
gence, CS1/2, operating systems, game development, security

301 607 2.02

CH20 students motivation, retention, self-efficacy, non-majors, accessibility, attitudes,
engagement, creativity, students, cognition

224 408 1.82

CH21 teachers pedagogical content knowledge, professional development, teach-
ing assistants, teachers, programming knowledge, teacher training

53 86 1.62

CH22 visualisation visualization, algorithm visualization, program visualization, graph-
ics/visualization, software visualization, visual representations

26 76 2.92

CH23 ungroupable (general) terms experience report, higher education, tools, educational technology,
interaction, data, practitioner

862 1024 1.19

† Size: How many unique keywords belong to the cluster; Freq: How many times the keywords that belong to the cluster are found;
Str: The ratio of frequency to size, indicating that the keywords in that cluster are commonly used in the community (i.e., strong).

‡ Other low-frequency keywords are omitted to reduce visual clutter.

and coreness and a low score on constraint can be considered as
the driving force for advances in the field: without these topics, a
research field would be fragmented.

Table 3 shows the results of this analysis of themachine-extracted
keywords. We can see that the term ‘introductory programming
courses’ dominates in the machine-extracted keywords (is the most
popular, core, and backbone topic), while topics such as assessment,
software development, CS1, exams, and assessment were also iden-
tified as significant keywords (top 10 in popularity, coreness, and
connectivity with other topics). The results of the analysis of the
author-assigned keywords can be seen in Table 4. Topics identified

as significant (top 10 in popularity, coreness, and connectivity with
other topics) are specific courses or topics, learning approaches,
aspects of programming, students, programming research and ap-
proaches, and programming languages and environments.

Comparing the two keyword networks, we see that while in-
troductory programming dominates in the machine-extracted key-
words, it also has a central role and is very popular in the author-
grouped keywords. In the machine-extracted keywords (Figure 6),
besides the dominant cluster of introductory programming, we can
see several relatively large clusters: one in the areas of software



development and software engineering; one in the areas of com-
putational thinking, K-12, and high school students; and one in
feedback, grading, and assessment. There is also a good number
of smaller clusters (e.g., games and game development; novice pro-
grammer and syntax errors; and programming languages, recursion
and mental models). On the author-assigned and expert-grouped
keywords (Figure 7), we can see several central nodes, such as intro-
ductory programming, learning approaches, assessment, students,
as well as some generic terms such as computing education. We
can also see several nodes incorporating thematic areas that are
less popular (depicted by their size), central (depicted by their po-
sition), and interconnected (depicted by their connections): these
themes include evaluation, educational data, academic integrity,
visualization, teachers, and course management.

Figure 6: Keyword network map for CER, 2005—2019, based
on machine-extracted keywords; each line links two key-
words with correlation coefficient ≥ 0.24

Figure 7: Keyword network map for CER, 2005-–2019, based
on human-processed author keywords; each line links two
keywords with correlation coefficient ≥ 0.18

5 DISCUSSION
The CER community has witnessed steady growth over the past
two decades, as evidenced by the initiation and development of
new conferences (ICER and CompEd) and the growing number of

submissions and participants in all major computing education con-
ferences. As we see from the results of this analysis, CER has also
developed several mainstream/established areas where research
is mature. Since our research field is constantly growing and pro-
gressing, it is important to map the landscape as well as to identify
the popular and core research topics in order to facilitate an under-
standing of our community and its subfields.

5.1 Machine ‘Intelligence’: from Text
Summarization to Unsupervised Clustering

Transitivity and density are used to measure the degree to which
the key-terms within a cluster are related to one another. The
clusters with the highest levels of density (𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≥ 1.5) also
have high levels of transitivity (𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 > 0.7). Such clusters
include C2 (introductory programming), C11 (games), C4 (algorithm
visualization), C6 (software development), and C8 (drop-out). These
clusters represent groups of topics that are closely related or often
appear together in published work.

As shown from our analysis (Table 1), some of the CER thematic
areas have reached a relatively high level of maturation and cen-
trality in the field (e.g., introductory programming, computational
thinking), although some researchers might be disappointed that
some areas were not found to be as mature as they might have liked
(e.g., algorithm visualization, assessment).

Table 3 identifies the most popular (high frequency), core (high
connection with other topics), and backbone (connection with oth-
erwise isolated topics) thematic areas that emerged during the
period 2005–2019. Six of the most popular themes (identified in
bold) are also in the top ten core and backbone themes in the field,
suggesting a high consistency between research interests and scien-
tific efforts to maintain the sustainability of the field. However, one
of these themes, CS education, is very general and tells us relatively
little about the content of the corresponding papers in this analysis.

Introductory programming appears to be the most frequent topic,
has the highest connection with other topics, and connects other-
wise isolated topics. The keyword CS1, which is considered a proxy
for introductory programming, also appears in the top ten most
popular, core, and backbone themes. The analysis of clusters de-
scribed in Table 1 illustrates that the cluster containing introductory
programming is one of the largest clusters, and appears in Q1 with
strong centrality and high density — this is a mainstream theme.
Our analysis confirms findings from a recent substantive review
of this topic which found that there is a large (and growing) body
of research into introductory programming, and that the research
relates to a wide range of other topic areas that impact students,
teachers, curriculum, and assessment [21].

Two related topics that demonstrate high levels of popularity,
core, and backbone characteristics are the themes of assessment
and exams. Table 1 shows that the terms assessment and exams
appear in the same cluster, and that cluster has very high centrality,
connecting to a large number of other clusters. This is unsurprising,
as assessment is a central component of education and forms one of
the main data sources that can be analysed in computing education.
This suggests a substantial focus in the community on the way that
student performance is evaluated.



Table 3: Summary of popular, core, and backbone topics of computing education, 2005–2019, machine-extracted keywords

# Popular Topic Frequency Core Topic Coreness [0-1] Backbone Topic Constraint [0-1]

1 introductory pro-
gramming course

68 introductory pro-
gramming course

0.445 introductory pro-
gramming course

0.116
2 assessment 63 cs1 0.224 SW development 0.154
3 feedback 58 cs education 0.148 cs1 0.171
4 cs education 57 SW development 0.145 cs education 0.202
5 cs1 55 exams 0.111 programming concepts 0.227
6 SW development 45 programming concepts 0.096 multiple choice ques. 0.250
7 student performance 44 assessment 0.095 exams 0.256
8 games 41 novice programmers 0.075 k12 0.286
9 game development 35 k12 0.070 computational thinking 0.301
10 exams 34 computational thinking 0.062 assessment 0.309

Table 4: Summary of popular, core, and backbone topics of computing education, 2005–2019, human-processed keywords

# Popular Topic Frequency Core Topic Coreness [0-1] Backbone Topic Constraint [0-1]
1 specific course/topic 441 aspects of prog/ming 0.048 students 0.238
2 learning approaches 406 assessment 0.042 specific course/topic 0.288
3 aspects of prog/ming 357 specific course/topic 0.034 school 0.291
4 students 299 students 0.020 teachers 0.293
5 computing education 253 learning approaches 0.020 learning approaches 0.294
6 assessment 229 research/approaches 0.014 aspects of prog/ming 0.294
7 programming 229 computing education 0.014 programming 0.298
8 research/approaches 201 programming 0.013 computational thinking 0.300
9 introductory prog/ming 175 introductory prog/ming 0.008 research/approaches 0.304
10 prog/ming languages

& environments
115 prog/ming languages

& environments
0.007 prog/ming languages

& environments
0.305

The final theme identified as popular, core, and backbone is the
broad category of software development. It could be argued that
much of what we do as computing educators relates to software
development, or is motivated by producing graduates capable of
software development, which may explain the significance of this
theme in the data.

However, it is worth noting that themachine-extracted keywords
may unfairly emphasize topic areas for which there are commonly
used and broadly applicable terms that have few synonyms. Very
general terms, such as CS education and computing education, are
frequently used by authors and therefore identified as popular
topics. Such terms are useful to distinguish different disciplinary
areas (e.g., computing education compared with cybersecurity) in
computing databases such as the ACM Digital Library, but provide
little value in distinguishing topic areaswithin computing education
in an analysis of papers published in venues associated with the
computing education discipline.

As the machine analysis does not use semantic clustering during
calculation of popularity, core, and backbone, topics such as CS1
and introductory programming are treated as distinct. If a topic area
had a diverse range of synonyms that were all used in the abstract,
the machine analysis would record the topic area as diffused into a
wide range of lower-frequency keywords.

5.2 Human Perspective: from Selection of
Keywords to Abstract (Conceptual) Schema

The strongest cluster of the 23 groups described in Table 2 is the
computing education cluster (CH6). This cluster comprises generic
keywords that relate to education (e.g., computer science education,
computing education, education), which serve a valuable purpose

in distinguishing education-focused publications from other disci-
plinary areas, but are of limited use within the CER community.

We observe that CER authors use relatively few theory-related
keywords (CH17 and CH14). This is an interesting observation,
since we know from the literature that approximately six out of ten
CER papers acknowledge a theoretical underpinning [22]. Never-
theless, authors do not appear to be using keywords to categorize
their papers according to the theories they employ.

Besides the thematically constructed clusters, the cluster CH23
consists of generic terms (e.g., experience report, tools, data). There
is a very large number of such generic terms (862), with very low
frequency (1.19 on average). The use of such generic and low-
frequency terminology in CER contributes to a long-tailed distribu-
tion of keywords. One possible explanation for this observation is
that the community’s interests are broad and disparate. However,
a closer look at the keywords shows that the long tail is due both
to the selection of keywords that do not necessarily characterize
the contribution of the paper (e.g., data, report, technology, tools)
and to the absence of a common nomenclature to describe com-
mon concepts (e.g., introductory CS, introductory programming,
introductory courses, CS1).

Themost popular (highest-frequency) clusters identified through
manual coding (Table 2) are learning approaches (CH13, 622), spe-
cific courses or topics (CH19, 607), aspects of programming (CH2,
480), students (CH20, 408), and assessment (CH3, 327). These clus-
ters reflect the most active areas of publication – our teaching
strategies (learning approaches), the content we focus on (specific
courses and topics, aspects of programming), our students, and how
we assess those students.



5.3 Comparing Machine Intelligence and
Human Perspective

The analysis involving machine extracted keywords is objective, yet
unaware of context. This results in clusters of keywords that may
frequently appear together, but have different semantic meaning
(e.g., CS1 and exam performance). The authors’ choice of keywords
is more context-aware, but while the human clustering of those key-
words adds subjective bias, it can more easily group semantically
similar ideas together. This ability to form abstract conceptualiza-
tions of the keywords results in a different clustering of topics that
focuses on semantics rather than structural relationships between
the keywords.

Despite the differences in approaches, assessment was identi-
fied as a significant topic area by both the manual and automated
analyses. Introductory programming, which was identified as pop-
ular, core, and backbone by the machine analysis, also includes
programming concepts within the same cluster. The manual analy-
sis includes aspects of programming and programming within the
top ten most popular, core, and backbone clusters. The manual
categorization also results in introductory programming being in
the top ten popular and core clusters, but not a backbone cluster.
This provides a high degree of confidence that both assessment and
programming form a strong core of computing education research.

5.4 Limitations
Although this work considers a substantial portion of the published
work of the past 15 years, we do not claim that it provides a com-
prehensive review of the field; rather, it provides insights from
quantification of the author-assigned keywords and key-phrases
extracted automatically from the papers’ abstracts, in order to map
the landscape of the CER community. The selection and execution
of each step of our methodology was extensively discussed by the
authors. However, as with any methodological decisions, we are
aware that our choices also pose certain limitations.

First and foremost, the analysis includes only ICER and ITiCSE
proceedings. Although these conferences are principal CER venues,
the selection brings some bias to the study by excluding papers
published in other computing education conferences, computing
education journals, and indeed other computing, software engi-
neering, HCI, and engineering education venues. These factors
introduce a selection bias to our work — but the inclusion of CER
contributions from other conferences and journals would also in-
troduce a selection bias. Nevertheless, the papers included in our
analysis (ICER papers, ITiCSE papers, and ITiCSE working group
reports), lead to clear insights on the CER landscape seen through
the lens of those particular publications.

Another crucial issue is the extent to which author-assigned or
machine-extracted keywords accurately reflect a paper. Authors do
not all follow the same approach when writing their abstracts or
choosing keywords for their papers; they use different terminology,
different focus, and different backgrounds, and this might lead to
inconsistencies. Although our analysis takes care of some of the
inconsistencies with dedicated protection mechanisms, such as
disregarding very low-frequency keywords, there is still a certain
bias coming from authors’ habits and perceptions. Nevertheless, in

order to map the landscape of a research community, it is important
to consider how the main actors of this community, the authors,
perceive the various thematic areas and consequently select their
keywords and write their abstracts.

5.5 Conclusions and Future Work
CER is a growing community with several annual conferences (e.g.,
ICER, ITiCSE, SIGCSE TS) and and journals (e.g., TOCE, CSEd). As
the community grows, there is potential benefit in mapping the
landscape and progress of the various topic areas, in discussing
where we are, where we want to be, and what it takes to get there.
This study performed a co-word analysis on two CER publication
channels (ICER and ITiCSE) in order to map the landscape and
progress of the field via various metrics (e.g., core, popular, and
emerging topics) and visualizations (e.g., keyword networks). The
findings of our study suggest that recent growth in CER includes
several mainstream themes (programming concepts, introductory
programming, student performance, exam performance, CS1, mis-
conceptions, student understanding, to mention a few), that are
summarized in three clusters (Table 1). The results from the analysis
of the two different perspectives (machine-extracted keywords and
author-assigned expert-grouped keywords) show that introductory
programming seems to dominate (with very high frequency in both
analyses); that topics such as software engineering, evaluation, and
assessment are identified as significant; while topics such as aca-
demic integrity, diversity, and educational data seem to be in the
periphery.

Future work can further our understanding of CER development
by conducting analyses such as authorship analysis and citation
analysis, or more qualitative approaches such as systematic and
narrative reviews. In addition, future work can consider CER pub-
lications from other venues such as SIGCSE TS, TOCE, and CSEd.
As our findings demonstrate a reasonable overlap between the
machine-generated and human-annotated analysis, future work
can apply the machine-generated analysis to larger data sets, such
as the SIGCSE TS corpus, where human analysis would be highly
laborious. Finally, further analysis should consider investigating
potential differences of the use of terms between the different peri-
ods (for example, in five-year windows). Such an analysis would
reveal areas that had recently emerged, areas that had disappeared,
and areas that had transformed into something new. This could be
particularly interesting, since besides the traditional research areas
of CER, we would be able to see research approaches arising from
bridging between CER and other areas such as learning analytics,
ITS, HCI, and K-12 education.

A recommendation for authors is that they devote more time and
consideration when choosing keywords and writing abstracts. Can
these fields be seen as providing a plausible, albeit brief, summary
of the paper? If so, they are more likely to be helpful, not just for
automated analysis but also for informing prospective readers.
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