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ABSTRACT
Many factors influence learners’ performance on an activity be-
yond the knowledge required. Learners’ on-task effort has been
acknowledged for strongly relating to their educational outcomes,
reflecting how actively they are engaged in that activity. However,
effort is not directly observable. Multimodal data can provide addi-
tional insights into the learning processes and may allow for effort
estimation. This paper presents an approach for the classification of
effort in an adaptive assessment context. Specifically, the behaviour
of 32 students was captured during an adaptive self-assessment
activity, using logs and physiological data (i.e., eye-tracking, EEG,
wristband and facial expressions). We applied k-means to the mul-
timodal data to cluster students’ behavioural patterns. Next, we
predicted students’ effort to complete the upcoming task, based on
the discovered behavioural patterns using a combination of Hid-
den Markov Models (HMMs) and the Viterbi algorithm. We also
compared the results with other state-of-the-art classification algo-
rithms (SVM, Random Forest). Our findings provide evidence that
HMMs can encode the relationship between effort and behaviour
(captured by the multimodal data) in a more efficient way than the
other methods. Foremost, a practical implication of the approach
is that the derived HMMs also pinpoint the moments to provide
preventive/prescriptive feedback to the learners in real-time, by
building-upon the relationship between behavioural patterns and
the effort the learners are putting in.
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1 INTRODUCTION
Learners’ on-task mental effort has been acknowledged for strongly
relating to their educational outcomes, such as persistence in learn-
ing (e.g.,[5, 37]) academic achievement (e.g., [14, 55]), and learning
performance (e.g., [42, 51]). Especially in adaptive learning and as-
sessment contexts, in which the activities are tailored to fit learners’
needs and mastery levels [12], learners’ on-task mental effort is an
important factor that reflects how actively they are engaged with
the tasks and affects the correctness of activity outcomes and the
quality of learning gains [64].

Learning (and assessment) adaptation has been found to have
a positive impact on learners’ engagement with activities (e.g.,
[5, 48]) and with the improvement of learners’ performance (e.g.,
[42, 53]). In these settings, learners’ active engagement with the
adaptive tasks results in significant benefits, such as discouraging
help-avoidance [47], improving problem-solving skills [34], increas-
ing attendance and attention [21], improving self-regulation [31],
guiding and facilitating autonomous learning decisions [53].

Active engagement is when the learners give their best efforts to
understand and complete tasks - effortful behaviour, similar to solu-
tion behaviour proposed in [63]. Although active engagement leads
to improved learning experiences [31, 42, 53], “true performance”
can be potentially overshadowed and threatened by “hidden”, ef-
fortless behaviours, commonly exhibited by learners. Effortless be-
haviour can be seen as a generalization of “rapid guessing”and
“gaming the system” behaviours. The term rapid guessing was intro-
duced to label when examinees rapidly respond to questions in a
random fashion in Computerized Adaptive Testing (CAT) settings
[63]. This kind of “cheating” behaviour is also apparent in adaptive
learning contexts. For example, “gaming the system” behavioural
patterns counterfeit the learning outcomes in intelligent tutors [6].

Timely detection and classification of “effortless” (e.g., [51, 72])
or “effortful” patterns (e.g., [5, 64]) is a prerequisite for preventing
unwanted learner behaviour and improving adaptive learning ser-
vice quality [8]. This paper suggests and evaluates an approach for
classification of effort learners would exhibit in their next response,
during an adaptive self-assessment process, using Hidden Markov
Models and Viterbi algorithm with multimodal data.

2 RELATEDWORK
2.1 Modeling the learning process
Modeling of the student learning process is not a new concept
and is, in fact, a primary backbone to the research on intelligent
tutoring and adaptive educational systems. Particularly, many of
these models aim to predict the state of the students’ knowledge to
support these students in mastery learning.
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One of the more widely used models in this space is Bayesian
Knowledge Tracing (BKT) [17]. BKT uses a Hidden Markov Model
(HMM) where the observable states are the student responses to
questions (in terms of correctness) and the hidden states reflect
the students binary knowledge of the skill. At each step, a student
has a probability to transition from not knowing to knowing the
skill. When they do not know the skill, there is a probability that
they will guess correctly, and when they know the skill there is a
probability that they will slip to make an error.

Since the original BKT model, many adaptations have been pro-
posed to improve the prediction power of student correctness. Adap-
tations to BKT have allowed for student specific parameters [74]
while others have incorporated student response time [41]. Rather
than modeling each skill separately, Dynamic Bayesian Networks
support the relationship between different skills [40]. Other models,
such as Performance Factors Analysis, take a logistical regression
approach to predict accuracy [57]. However, all of the these models
focus primarily on predicting correctness.

On the other hand, other models have focused on predicting
student behaviours during the learning process. When students
are learning, the effort that they put into the process can be seen
through certain behavioural patterns. For example, two main be-
haviours that are often tracked in adaptive systems are “wheel-
spinning” [10] and “gaming the system” [7]. In “wheel-spinning”
the students are putting in effort but are still not able to provide
correct answers. This behaviour is important to differentiate be-
tween productive effort in which the process is still beneficial to the
student [39]. By identifying “wheel-spinning” early, an intervention
can be put into place. In contrast, when a student is “gaming the
system” they are not providing any effort, yet the responses may
look the same as a student who is “wheel-spinning”. In this case,
the intervention that is needed for the student would be different
to match the effort of the student.

In addition to the cognitive behaviours, during the learning
process, students also engage in self-regulatory behaviours. In
technology-enhanced systems, students are often able to request
hints. Models of this help-seeking behaviour can support the stu-
dents’ meta-cognitive skills [61]. More recently, the use of learning
analytics to support meta-cognitive processes has been proposed
[9]. For example, by combining learning curves and phases, groups
with different self-regulated learning needs can be identified [46].

2.2 On-task mental effort in adaptive learning
Existing adaptation mechanisms take into consideration on-task
learners’ effort, as probabilities of effortful/less behaviours – from
this point on, we will use the term “effortful behaviour” for both
– i.e., to guess a solution or slip a correct answer [5, 8, 13, 30, 72].
Considering the required effort to successfully complete a task is a
step ahead from taking into account only the task difficulty as effort
reflects students’ engagement with the task. In these approaches, a
guessing parameter is incorporated in the learnermodels to describe
the possibility of a learner responding correctly due to chance
(effortless) instead of actively seeking to determine the correct
answer (effortful) [30]. For instance, it was suggested that to identify
features of an action using machine learning (a) an action should
be characterized as a guess or slip immediately after it occurs and

(b) information from subsequent actions should not be used [8]. An
“effort-based” tutoring algorithmwas proposed to inform adaptation
decisions (i.e., selection of tasks and feedback) for each student on
each task based on a student’s number of incorrect answers, hints
requested and response-time [5].

Most of the recent approaches to explain effortful behaviour usu-
ally rely on response time and guessing behaviour patterns detected
in the log files of clickstream data from the learners’ on-task activity
[5, 13, 51, 52, 58, 70, 72]. It was found that repeatedly measuring
mental effort (using subjective rating scales and associating the
measurements with response-times) after performing individual
tasks in a series was favoured for tasks that take longer than usual
to complete [70]. Process mining techniques were also applied on
response-time data to identify and model guessing behaviours [52].

Aforementioned contributions are based on the cognitive aspects
of effort displayed by the students. Affective states, like boredom,
have also been found to have a detrimental impact on learning
outcomes [18]. Further, engaged concentration have been found
to be positively associated with learning [56]. To detect learners’
affective states while they interact with a given learning environ-
ment is necessary for adaptive learning technologies that aim to
support and regulate learners’ affect [24, 60].

2.3 Assessing student cognition and affective
states through multimodal data

Recently, more sophisticated measurements have been employed
for assessing a student’s cognitive state. Multimodal data provide
educational technology researchers with an unprecedented oppor-
tunity to gain insights and understanding of learners’ actions in
diverse learning contexts (e.g., [3, 23, 59, 64]). For instance, re-
searchers found that electroencephalography (EEG) variables were
sensitive to disengagement due to cognitive load [27]. Furthermore,
effort-related cardiovascular responses can be mapped to success
until a maximum effort has been achieved [73]. Speech, posture
and gaze were used to automatically detect the moments when
students’ expectations are likely to influence their engagement [3].
Wristband data (e.g., Electrodermal Activity (EDA), Galvanic Skin
Conductance (GSC), temperature) and accelerometer data were
used to measure simultaneous arousal levels among students with
respect to students’ mood, motivation, affect and collaborative en-
gagement [59], whereas the fusion of wristband data, gaze and
emotions yielded highly accurate prediction of effort [64].

Previous studies show the use of multimodal data to estimate
affect. Posture and interaction were used to detect affect, which
was used to provide feedback to reduce students’ frustration [20].
Learners’ boredom, confusion, and frustration were detected by
monitoring conversational cues, gross body language, and facial
features [22]. An experiment comparing the affect-sensitive and
non-affective tutors indicated that the affective tutor improved
learning for low domain knowledge students, particularly at deeper
levels of comprehension [22]. Three cognitive phases in problem
solving, encoding, solving and responding, where found through
an fMRI study in which an HMMwas used to detect the stages from
participants’ brain activation patterns [67]. Another study provided
EEG-based estimates of students’ cognitive load and showed that
EEG is a viable option to define the cognitive load of students [44].
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3 METHODOLOGY
3.1 Research aim and question
The existing adaptation methods focus on estimating learners’ ef-
fortful behaviour to complete tasks and use response-time indi-
cators from clickstream data using probabilistic models [5, 8, 13,
30, 72]. However, as seen from the review of relevant literature
[3, 23, 59, 64], to fully understand effort-related processes, learner
on-taskmental effort data need to be collected usingmultiple modal-
ities.

To this end, this study goes a step beyond current state-of-the-art
approaches and predicts the effort of the next response in adaptive
assessment tasks, based on learners’ previous behaviour, using ma-
chine learning and effort-related multimodal data produced during
a learner’s interaction with the adaptive system. This is important
because it can contribute to improving the adaptation mechanism
and to provide timely, proactive (cognitive, metacognitive or affec-
tive) feedback. This feedback can prevent, for example, students
who are expected to give a wrong-effortless response to a task that
is tailored to their ability or to encourage students who are pre-
dicted to give an effortful response to a task fitting their needs. It
will use learners’ previous behaviour in terms of attention, emo-
tion, cognitive load, mental workload, load on memory, and arousal.
Thus, the research question that guided this study was:

RQ: “How can we predict learners’ effort using multimodal data?”
For answering the RQ and addressing the objective, this study

suggests and evaluates the following approach: learners’ states are
captured using multimodal data (i.e., clickstreams, eye-tracking,
wristband and EEG, and facial expressions, that have been acknowl-
edged to satisfactorily explain effort-related behaviour) and their
behaviour is coded by clustering those data. Learners’ responses
are then categorized in one of the two effort categories: effortful
and effortless. Then, a combination of HMMs and Viterbi algorithm
are used to predict the effort category of the learners’ upcoming re-
sponse based on their past behaviour, and the results are compared
with other state-of-the-art classification methods.

3.2 Participants and Experimental Procedure
An online adaptive self-assessment activity was offered at a Euro-
pean University for aWeb Technologies course (related to front-end
development), and 32 undergraduate students (15 females [46.9%]
and 17 males [53.1%], aged 18-21 years-old [M=19.24, SD=0.831])
were enrolled. The learners answered questions about based web-
technology related to front-end application development (HTML,
CSS). The questions were presented in a textual form via a simple
GUI. The participants undertook the self-assessment activity indi-
vidually, at an especially equipped and organized university lab for
approximately 45 minutes.

Prior to their participation, all students signed an informed con-
sent form that explained to them the data collection and the adaptive
assessment procedure and gave the researchers the right to use the
data collected for research purposes. After granting consent, the
participants had to wear a wristband and an EEG cap and be con-
nected to all the data collection devices (i.e., eye-tracker, wristband,
EEG, cameras). Then, the actual adaptive self-assessment activity
started and the students had to answer the tasks delivered to them
one-by-one. Each task had two to four possible answers, but only

one was correct. Every time the students submitted an answer to a
task, their mastery class was revised and the next task was delivered
according to the correctness of the answer and the discrimination
ability of the tasks (briefly explained in the next sub-section). At
the end of the procedure, the self-assessment score was available
to the students, along with their full-test results, including all the
tasks they had answered, their responses, the correctness of the
responses, and the option to check the correct solution to the tasks
for which they had submitted wrong answers, with a full expla-
nation of the solution to support self-reflection. The experimental
setup is illustrated in Figure 1.

Figure 1: The experimental setup - The participant is con-
nected to all data collection devices and is ready to take the
self-assessment test

The participation to the procedure was optional. The adaptive
self-assessment activity was offered to facilitate the students’ self-
preparation before the final exams, to help them track their progress,
and self-reflect. The scores on the self-assessment had no influence
to students’ final grade in the course.

3.3 The adaptive self-assessment procedure
For adapting the self-assessment, Measurement Decision Theory
(MDT) [62] was used to classify the students in three mastery
classes based on their tasks responses (solutions), a priori task
information, and a priori population classification proportions. The
core of the methodology in use is the estimation of the students’
mastery class every time they submit a solution. This estimation
is reached by applying Bayes Theorem: P(mk |z) = c · P(z |mk ) ·

P(mk ), with: (a) z = (z1, z2, ..., zn ): a student’s response vector with
zi ∈ {0, 1}; (b) P(mk |z): the probability that the student belongs to
mastery classmk given z; (c) P(z |mk ): the probability of responses
z given the student’s mastery class; (d) P(mk ): the probability of a
randomly selected student belonging to mastery classmk ; and (e) c :
a standardization constant so that P(m1 |z)+P(m2 |z)+P(m3 |z) = 1.

At each step, the posterior classification probabilities P(mk |z)
are treated as updated prior probabilities P(mk ), and are used to
help identify the next task to deliver. The selection of the next
task is based on entropy, i.e., the selected task should maximise the
reduction in entropy. This process continues until either a degree
of decision accuracy is attained with a minimum number of tasks
assigned, or a maximum number of tasks assigned is reached. In that
case, for the termination of the test, if the Sequential Probability
Ratio Test (SPRT) criterion [65] was not met after assigning 20
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tasks, the self-assessment ended and the student was classified into
the mastery class with the largest probability P(mk |z) to this point.
Overall, a minimum of 10 and a maximum of 20 items were used to
classify the students based on their diagnosed mastery level.

3.3.1 Preparation of the self-assessment tasks: The difficulty and
discrimination ability of 80 multiple-choice tasks in total had been
previously determined. The discrimination ability of a task cor-
responds to the probability of students in a given mastery class
answering correctly to that task. For the tasks’ discrimination abil-
ity configuration, three mastery classes of students were used (i.e.,
M1: final grade ≥ 7, M2: final grade ≥ 4, and M3: final grade < 4),
and the respective probabilities were computed, using prior test re-
sults from 194 students who had already been classified, as follows:
for each student and each task, we logged the correctness of each
answer (right (1) - wrong (0), P(z1 = 0|mk ) = 1 − P(z1 = 1|mk )).
The probability P(z |mk ) of the response vector z is the conditional
probability of students in each mastery class responding correctly
to each task, and equal to the product of the conditional probabili-
ties of the task responses. P(mk ) is an approximation of the portion
of students in M1, M2 and M3. After the estimation of P(mk ), and
for each of the tasks, we estimated three probabilities, according to
how likely a student in the given classmk is to answer that task
correctly. The tasks’ difficulty levels were determined according to
these probabilities by setting up the threshold values to 0.4 and 0.7
to discriminate between “easy”, “medium” and “hard", respectively.

3.4 Data Collection
Students’ self-assessment and interaction data were collected with
a web-based self-assessment environment [50]. Furthermore, the
following sensor data (multimodal data) were collected:
Eye-tracking: To record users’ gaze we used the Tobii X3-120
eye-tracking device at 120 Hz sampling rate and using 5-point cali-
bration. The device is non-invasive and mounted at the bottom of
the screen. The screen resolution was 1920x1080 and the partici-
pants were 50–70 cm away from screen. Tobii’s default algorithm
was used to identify fixations and saccades (for details see [49]).
EEG: We recorded 20-channel EEG data organized in a standard 20
channel actiCAP layout following the international 10-20 system.
We built upon previous studies that use EEG headsets in detecting
cognitive engagement in the learning domain [32, 35, 66]. The raw
EEG data was recorded at 500 Hz using a head-mounted portable
EEG cap by ENOBIO (ENOBIO 20 EEG device), Fz was used as
reference electrode, 2 channels were used for EOG correction, 1
channel for reference and 3 Channel Accelerometer sampling rate
at 100 Hz. We applied an EOG filter to remove noise from blinks.
Face videos: Given the fact that we expected participants to ex-
hibit minimal body and gesture information during the study, video
recording focused on their face. We used a Logitech Web cam cap-
turing video at 30 FPS. The webcam focus was zoomed 150% onto
the faces of participants. The video resolution was 640x480.
Wristband: To record arousal data we used the Empatica E4 wrist-
band. Participants wore the wristband on the non-dominant/non-
playing hand. Four different measurements were recorded: 1) heart
rate at 1 Hz, 2) electrodermal activity (EDA) at 64 Hz, 3) body
temperature at 4 Hz, and 4) blood volume pulse at 4 Hz.

3.5 Measurements
For measuring students’ behavioural states, the features in Table
1 were used. It should be noted that for EEG based features, first
the features for each individual channel were computed, and then
the average for all the 17 channels were computed as the actual
features to be used. For pre-processing and data-synchronisation,
we used the same steps mentioned in [64].
Attention: Eye-tracking data were used to compute attention. The
most common practice to compute attention from students’ gaze-
patterns is to compute the average fixation duration during each
sub-task [33, 69]. In this study, attention was computed using the
average fixation duration over the time taken by the student to
answer each self-assessment task.
Emotion: The facial data stream was used to compute and model
students’ emotional intensity. Extracting emotions from facial ex-
pressions is a common feature extraction technique [68]. First, the
Facial Action Units (FAU) [25] were computed from the face videos,
using the OpenFace Library [2]. The average of all FAU contribut-
ing to positive and negative emotions were calculated. Next, the
average of the presence of high and low intensity emotions was
computed. For example, happiness is a positive–low intensity emo-
tion, while excitement is a positive–high energy emotion. Similarly,
sadness is a negative–low intensity emotion, whereas anger is a
negative–high intensity emotion. The absolute value of the emo-
tional intensity was next calculated to capture the extent to which
students externalized their emotions, regardless of their valance.
Cognitive load (CL): Decreasing alpha and theta band power[4] –
to compute the cognitive load from the EEG signals, the following
steps were followed. a) compute the discrete Fourier transform
(DFT) of the signal; b) apply two band pass filters for computing
the alpha (8–13 Hz) and theta (4–7 Hz) waves; c) extract the signal
from the outputs of the filters by using an inverse DFT; d) compute
the power per second for these two signals (power = root mean
square of the amplitude); e) compute the mean of all the negative
slopes for alpha waves and all the positive slopes of theta for the
duration that the students take to respond to a given question.
Load onmemory (LM): Theta band power[45] – use the steps “a”
to “d” from the computation of cognitive load. For the theta waves
take the mean band power computed for each second of the output.
Mental workload (MW): Alpha magnitude[11] – the average of
alpha wave for the the duration that the students take to respond
to a given question. To extract the alpha wave use the “a” to “c”
from the computation of cognitive load, only for the alpha wave.
BVP: The mean blood volume pulse for the duration of a task.
HR: The mean heart rate for the duration of a task.
EDA: The mean electrodermal activation for the duration of a task.
TEMP: The mean skin temperature for the duration of a task.

3.6 Outcome Variable
Our outcome variable was the category of effort for a student’s
task-response. Effort is an indicator of how engaged the learners
are in completing the tasks. In this study, the dichotomous index
of tasks solution behaviour was adopted from [71] for measuring
whether the students try to solve (effortful behaviour) instead of
guessing the answer (effortless behaviour). The task was limited to
multiple-choice questions, the learners did not spend a lot of time
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Table 1: Definitions and sources for the computed features.
Measurement Definition
Attention (ATT) Average fixation duration [38]
Emotion intensity (EI) based on Facial action Units

Cognitive load (CL) Decreasing alpha and increasing
theta band power [4]

Mental workload (MW) Alpha magnitude [11]
Load on memory (LM) theta band power [45]
Heart rate (HR) Mean HR for a given question
Blood Volume
Pulse (BVP) Mean BVP for a given question

Electrodermal
activation (EDA)

Mean EDA for a
given question

Skin Temperature
(TEMP)

Mean Temperature for a
given question

on each question, the data collected was high frequency, but not nu-
anced enough to predict actual response times of the learners before
they could answer (this would be a continuous version of classifi-
cation problem). Therefore, we performed binary classification of
effortful/effortless behaviour.

3.7 Data analysis
K-means was used to cluster students based on the multimodal data.
The number of clusters was optimised using the within distance
among the clusters. To characterise the clusters using the multi-
modal features, we used ANOVA to find out which features were
the most distinguishing for each cluster. We conducted ANOVA
with the cluster ID as the dependent and the features as the inde-
pendent variable. Once the ANOVA yielded significant results, we
further conducted pairwise one-way ANOVAs to check the affinity
between the cluster ID and a specific feature.

Once the clusters and their characterising features were estab-
lished, their IDs were used to label the observed states, and the
effortful/effortless labels were used to refer to the hidden states
of an HMM. The initial, transition and emission probabilities of
HMM were initiated using uniform distributions. An expectation-
maximisation algorithm was used to train the HMM with the first
10 responses of each student. The remaining responses were used
for testing. The classification of effort of the next response was
attained using the Viterbi algorithm. Viterbi is not a classification
algorithm, but it is a generative algorithm. The input to Viterbi
is an HMM and a sequence of N observations, and the algorithm
generates the most probable sequence of N hidden states. To im-
plement the classification method, a cluster ID sequence of length
11 was provided and the 11th hidden state (from the most prob-
able sequence of hidden states) was considered as the predicted
effort category for the next response. In summary, K-means obtains
the “observable” clusters from the multimodal data, the predicted
classes are still “effortful/effortless” behaviour while solving the
given problem.

HMM: this is a probabilistic model that is used to infer the hid-
den (unobserved data/states) from the observed states (usually data
driven). The observed state are modelled based upon the Markov
chains (with the assumption that the current observed state de-
pends only on the previous observed state). Every HMM is char-
acterised by three elements: the initial state, the state transition

matrix (containing the probability of transition from one observed
state to another observed state) and the emission matrix (contain-
ing the probability of inferring from one observed state, a hidden
state). The transition and emission matrices could be obtained us-
ing a Expectation-maximisation algorithm (such as Baum-Welch
or forward-backward algorithm). For mathematical details of the
algorithm please refer to [15, 26].

Viterbi: the purpose of the Viterbi algorithm is to use a trained
HMMand an observed sequence of states and generate the sequence
of hidden states so that the joint probability of the sequence is
maximised. The basic formula is as follows:

µ(Xk ) = max
X0:k−1

P[X0:k ,Y0:k ]

= max
Xk−1

µ(Xk−1)P[Xk |Xk−1]P[Yk |Yk−1] (1)

which results in a probability distribution for seeing different states
given the observed data, with the objective to find the states that
maximise the conditional probability of states given data.

4 RESULTS
4.1 Clustering
The number of clusters was selected using the within cluster dis-
tance. The left panel in Figure 2 plots the within distance vs. number
of clusters. Using this plot, the optimal number of clusters is five,
since using more than five clusters does not significantly decrease
the within distance between the clusters. The right panel in Figure
2 shows the sample distribution in the clusters.

Figure 2: Results from clustering.

A pairwise ANOVA (Table 2) was conducted for each physiolog-
ical feature (defined in Section 3.4) to guide the data-driven cluster
definitions. The 4th and 5th columns of the table show an overall
ANOVA (all five clusters). The 6th to 15th columns show the cluster
ID with the significantly higher value for the feature in the first
column. The missing values represent a non-significant difference.
Let us take the example of “Attention”. One can observe that there
are two emerging patterns in this specific row: 1) all the pairwise
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comparisons with cluster 2 show that cluster 2 has higher values in
attention; and 2) all the pairwise comparisons with cluster 5 show
that cluster 5 has lower values in attention. This implies that one
of the defining features for cluster 2 is high attention, whereas one
of the defining features of cluster 5 is low attention.

Using the same method for all rows in Table 2, the clusters are
as follows. C1: high mental workload; high load on memory; low
HR. C2: high attention; high cognitive load. C3: high EDA; high
emotion; high HR; low mental workload; low ML. C4: low emotion;
low cognitive load; high BVP. C5: low attention; high HR. Figure 3
illustrates the measures for the clusters.

4.2 Classification with Viterbi
Table 3 and Figure 4 show the resulting HMM. The most probable
emission from a given state is presented in bold. Furthermore, the
Viterbi classifications results are shown in Table 4. We notice a
diagonal heavy confusion matrix for the test sample and hence high
precision and recall for all the effort categories. The weightedmeans
for precision and recall remain high (0.89 and 0.84, respectively).

4.3 Comparing Viterbi with SVM and RF
The classification results from Viterbi were compared against other
classification methods. Table 5 shows four different implementa-
tions of machine learning classification approaches and the com-
parison to the proposed approach. A large comparative analysis
[28] (179 general-purpose classification algorithms, 121 different
datasets) found that RFs were the top-performing classification
algorithm, only matched by kernel SVMs. This is the reason why
we used only these two algorithms for comparison.

One way to predict the next effort category from the past data is
to use the data from previous response as features, and the response
on the next question as the target. The implementations in Table 5
use Support Vector Machines (SVM) with polynomial kernel and
Random Forest classifiers, each of which have two different settings.
In the first setting the previous response is not included as one of
the features, while it is included in the second setting. The results
show that only SVM with previous class information provides the
closest results (although significantly lower classification quality)
as the proposed method. Otherwise, all the other classifications
yield significantly lower classification accuracy.

5 DISCUSSION
Adaptive learning and assessment systems aim to support learners
by tailoring the delivered tasks to fit diagnosed learners’ needs,
skills, abilities and mastery levels [5, 8, 12, 58]. To achieve that,
those systems consider learners’ previous states, performance in-
dices, task difficulty and an estimation of learners’ on-task mental
effort required to undertake and successfully complete the tasks. For
the estimation of effort, probabilistic approaches and response-time
patterns from clickstreams are commonly analyzed with a machine
learning prediction algorithm [5, 8, 51], and the adaptation mecha-
nism is updated accordingly. However, recent effort-related studies
showcased that for a deeper and more holistic understanding and
modelling of effort, clickstream data are not enough, and multiple
other modalities should be considered [3, 21, 59, 64]. Therefore, the

research question that guided this study was: “How can we predict
learners’ effort using multimodal data?”

To address our research question, this study suggested and eval-
uated a novel approach, using HMM and Viterbi algorithm with
multimodal data for the classification of effort of learners’ next
response during an adaptive self-assessment activity and compared
the classification results to other state-of-the-art methods. In this
section, we elaborate on the findings from this study.

One might argue about the similarities between our approach
and the most widely known method for adaptivity in education,
that is, BKT. In our case, the HMM is implemented in a slightly
different manner. As opposed to BKT, where the observable state is
the correctness of the response, the observable states in our case
are the physiological states characterised by the different MMLA
measurements. Further, in BKT the hidden states are whether the
student has the skill or not, while in our case the hidden states are
whether the student has put in effort to solve the given problem
or not. Furthermore, most of the work around effort uses the def-
initions of wheel-spinning [10] (effortful behaviour but incorrect
answer) or gaming-the-system [7] (effortless behaviour and cor-
rect answer). We propose that effort is significant in itself to be
considered as a standalone feature of the student learning process.

5.1 Explanation of the classification results
and the HMM

The targeted outcome of this study was effort of next response. It is
important to consider both the correctness of the response and the
effort exhibited by the learners, because this combination of indices
captures the “true performance”, i.e., how much the learners truly
try to complete each task. In other words, effort captures on-task
engagement, which is essential to understand the learning outcome,
since they are correlated. The findings can be explained in terms of
classification accuracy and the resulting HMM.

As seen in Table 4, the accuracy (weighted mean) achieved in
the classification of effort of next response is high when employ-
ing effort-related multimodal data (e.g., eye-tracking, EEG, heart
rate, EDA, BVP and facial expressions). This finding extends pre-
vious work on the estimation of on-task mental effort that em-
ployed response-time patterns from clickstreams or probabilities
to guess/slip [5, 8, 30, 51], by efficiently fusing multimodal data.

Furthermore, since this study is the first one - to the best of
our knowledge - to utilize mutlimodal data for the classification of
effortful performance in adaptive assessment, we compared HMM-
Viterbi with commonly used machine learning classification ap-
proaches to validate the appropriateness of the method. As seen
in Table 5, since none of the other four methods (combination of
the input data and the classification algorithm) could outperform
the HMM-Viterbi combination, one can claim that the temporal
modeling of the multimodal data (inherent in HMM-Viterbi) adds
value to the classification of the effort categories.

The most intriguing finding of this study is the HMM itself. The
underlying idea was to model learners’ behaviour using clusters of
effort-related multimodal data as the observed states of an HMM,
and the effort of their next response as the hidden states of the
HMM. Next, Viterbi was used to predict the next hidden state from
the observed state. Table 3 illustrates the resulting HMM based
on the method described above. The transition matrix is diagonal
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Table 2: ANOVA results for the clusters. ATT = attention; EI = Emotional Intensity; CL = Cognitive Load; MW = Mental
Workload; LM= Load onMemory; BVP=Blood Volume Pressure; EDA= Electrodermal Activation; TEMP= Skin Temperature.

Overall ANOVA
Pairwise ANOVA between two

clusters x-y the cell shows the cluster
ID with larger values

Mean SD F-value p-value 1-2 1-3 1-4 1-5 2-3 2-4 2-5 3-4 3-5 4-5
Attention 224.99 57.03 120.45 .00001 2 1 1 1 2 2 2 3 3 4

Emotional Intensity 0.40 0.08 26.77 .00001 2 3 - 5 3 2 2 3 3 5
Cognitive Load 1.72 0.15 50.16 .00001 2 - 1 - 2 2 2 3 - 5

Mental Workload 0.11 0.12 236.91 .00001 1 1 1 1 2 2 2 4 5 5
Load on memory 1.08 1.24 370.30 .00001 1 1 1 1 2 2 - 4 5 5

Heart Rate 80.22 10.45 164.75 .00001 2 3 4 5 3 2 5 3 - 5
Blood Volume Pressure 0.01 1.51 3.36 .009 - - - - - 4 - - - 4
Electrodermal Activation 0.11 0.17 390.87 .00001 2 3 - 5 3 - 2 3 3 4

Figure 3: Results from ANOVA between clusters (n=number of members)

Table 3: HMM details
Transition matrix Emission matrix

C1 C2 C3 C4 C5 Guess Solve
C1 0.81 0.11 0.01 0.02 0.03 0.75 0.25
C2 0.10 0.39 0.04 0.27 0.17 0.72 0.28
C3 0.01 0.05 0.83 0.01 0.07 0.29 0.71
C4 0.02 0.19 0.01 0.68 0.09 0.43 0.57
C5 0.02 0.09 0.01 0.09 0.77 0.66 0.34

heavy, i.e., the observed transitions are mostly making loops to
the originating cluster, repeating themselves and indicating that
the learners’ physiological states (i.e., the clusters) do not change
frequently. Given this facet and looking at the emission matrix,
one can notice that each cluster is more strongly emitting to a

Figure 4: The resulting HMM, only the most probable emis-
sions and the transitionsmore probable than 0.15 are shown.

single state than to multiple, i.e., the learners consistently exhibit
a concrete type of effortful performance. For example, students
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Table 4: Confusion matrix (test data) and the classification
quality metrics.

Predicted Class classification Quality
Effortless Effortful precision recall f1-score

Effortless 107 5 0.92 0.82 0.93
Effortful 9 42 0.82 0.90 0.85

Wted. Mean 0.89 0.84 0.90

in C1 (high mental workload; high load on memory; low HR) or
C5 (low attention; high HR) are more probable to respond with a
effortless behaviour. This implies that those students might have
been “trapped” into a behaviour that could hinder their success,
and pinpoints the need for cognitive and/or affective feedback
to push them out of this loop. In other words, one noteworthy
observation from the emission matrix of the final HMM is that
there is a clear affinity among the hidden and the observed states.
Another interesting observation from the transition matrix of the
final HMM is that C2 (high attention; high cognitive load) and C4
(low emotion; low cognitive load; high BVP) are the most probable
to transit among each other. Furthermore, looking at the emission
probabilities for C1, C2 and C5, one can observe that students in
those two clusters are more likely to display effortless behaviour to
the next task. This indicates that there is a significant probability
that the students might end up in a loop of effortless attempts and
signals the need for urgent proactive feedback to prevent such
unwanted behaviour.
5.2 Implications for practice: opportunities for

feedback
Asmentioned earlier, there aremoments to provide cognitive and/or
affective feedback. Following are some suggestions for feedback.
Classified: Effortless behaviour –Observed: highmentalwork-
load&high load onmemory& lowHR (C1).When highmental
workload and high load on memory are observed in the current
state of the learner, it is likely that the predicted behaviour for the
next (upcoming) task will be effortless. This is expected to happen
because high mental workload and high load on memory drain the
student’s information processing capability, negatively affecting the
motivation to perform the next task (the person experiences mental
“exhaustness”) [29]. In addition, the rate of cognitive processing
becomes slower when low heart rates are observed [43]. This means
that the learner who is experiencing low heart rates is possibly not
able to sufficiently process the information of the upcoming task.
In combination with the other observable physiological states, it
is expected that this student will not exhibit high mental effort in
that task, overall.
Classified: Effortless behaviour – Observed: high attention
& high cognitive load (C2). Students in this state are focused
on solving the tasks (high attention), however high cognitive load
might lead to “mental fatigue” in certain situations [36], increasing
the chances of displaying an effortless behaviour. In the moments
when such behaviour is likely to happen, delivering (proactive)
cognitive feedback might provoke learners to allocate more time to
actively solve (effortful behaviour) the problem.
Classified: Effortful behaviour – Observed: high EDA& high
emotion & high HR & low load on memory & low mental
workload (C3). In this observed behaviour the combination of low

mental workload and low load on memory indicate less chances
of making mistakes [29]. In addition, both emotional intensity and
EDA are high in this case. High emotional intensity suggests that
the learner is experiencing strong emotions, e.g., excitement. At the
same time, high EDA encompasses high emotional regulation [19],
which means that in the observed state, the learners are capable
of controlling their emotions to remain calm. When learners are
in this observed state, they can remain “focused” on their efforts
to solve the task. To keep them in the same physiological state,
providing affective feedback praising the good work might work.
Classified:Non-confident –Observed: low emotion – low cog-
nitive load & high BVP (C4). Students in this state are stressed
(BVP is correlated to stress [1]) and might not be involved in ef-
fortful attempts, trying to avoid experiencing situations of high
cognitive load. Stress and cognitive loadmight seem to be correlated,
however their physiological measurements have been reported to
be different [16]. It is not clear what might cause the effortless
behaviour (e.g., if it is the stress they are experiencing or if they are
not prepared/motivated enough to solve the tasks). On the other
hand, the combination of low emotion (i.e., the learners have con-
trol of their emotions) and low cognitive load (i.e., the learners
maintain their information processing capacity) might also result
in an effortful behaviour. As such, it is also unclear what kind of
feedback would be more effective in this case, and further work is
required. This might be solved with a two step adaptive feedback
in which the first step is to mitigate low high stress and the second
step is to encourage low emotional intensity.
Classified: Effortless behaviour – Observed: low attention &
high HR (C5). This state is straight forward: the learner is stressed
(high HR indicates stressful situations [1]) and is not paying atten-
tion. In terms of providing proactive feedback, students should be
prompted to pay more attention to questions and to remain calm.

6 CONCLUSIONS
This paper proposes and evaluates an approach for timely classifi-
cation of learners’ effortful/effortless behaviour during an adaptive
assessment activity. Timely classification of such behaviour is one
of the key requirements to prevent unwanted behaviour and im-
prove learning gains[5, 8, 51, 64, 72]. To predict the effort categories
in the adaptive assessment activity, we used a combination of HMM
and Viterbi algorithm with the effort categories as the hidden states
and the multimodal data-driven clusters as the observed states. The
results show that the proposed method not only outperforms the
contemporary classification algorithms but it also gives the edu-
cators several opportunities for providing (proactive) actionable
feedback by pinpointing the exact moments in the learning activity
where feedback is needed.

Effort is one of the factors influencing student performance
among others possibilities. Our future work encompasses extend-
ing the proposed methods to other educational constructs, such as
motivation and metacognition [54], and examining the generaliz-
ability of the method. Moreover, this paper provides the cues to
provide feedback in terms of moments “when” to provide the feed-
back. “What” and “how” remain unanswered. To close the learning
analytics loop effectively and efficiently, we aim to develop the
feedback tools based upon our findings and further examine the ef-
fect of such a tool. Finally, many other multimodal features remain
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Table 5: Comparing Viterbi with other classification methods

Method Overall
Precision

Overall
Recall

Overall
F1-score

F1 Comparison
with HMM-viterbi for
individual participants

HMM-viterbi 0.89 0.84 0.90 -
SVM polynomial with no previous class 0.80 0.77 0.79 t(62) = 3.47; p <.05
SVM polynomial with previous class 0.81 0.78 0.80 t(62) = 3.04; p <.05
Random forest with no previous class 0.76 0.68 0.73 t(62) = 5.46; p <.05
Random forest with previous class 0.79 0.73 0.76 t(62) = 4.63; p <.05

unexplored, which might also explain the engagement, motivation
and metacognition related strategies of the learners with different
levels of generalizability in terms of both the educational construct
and learning activity.

To conclude, this paper opens the discussion towards merging
multimodal physiological data for deeper understanding learners’
effortful performance in adaptive settings, and detecting the mo-
ments for providing proactive cognitive and/or affective feedback
accordingly to prevent learners from exhibiting unwanted and/or
harmful behaviours.
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