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An Augmented Lagrangian for Optimal Control
of DAE Systems: Algorithm and Properties

Marco Aurelio Aguiar, Eduardo Camponogara, and Bjarne Foss

Abstract—This work proposes a relax-and-discretize ap-
proach for optimal control of continuous-time differential
algebraic systems (DAE). It works by relaxing the algebraic
equations and penalizing the violation into the objective
function using the augmented Lagrangian, which converts the
original problem into a sequence of optimal control problems
(OCPs) of ordinary differential equations (ODEs). The relax-
and-discretize approach brings about flexibility, by allowing
the OCPs of ODEs to be solved by the method of choice,
such as direct or indirect methods. Conditions are developed
for global, local, and sub-optimal convergence in terms of
the solution of the underlying OCPs. The method is applied
to an illustrative example.

Index Terms—Optimal control, Differential-Algebraic Sys-
tems, Nonlinear systems, Optimization algorithms.

I . I N T R O D U C T I O N

The augmented Lagrangian method is well established in
constrained optimization, arguably because of its efficient
algorithms and strong theory [1]. It has enjoyed diverse
applications that include model predictive control [2],
distributed and parallel optimization [3], to name a few.

For optimal control, an equivalent method has been
proposed and applied to some academic systems [4], [5].
The algorithms thereof relax the algebraic equations of an
optimal control problem (OCP) with a system of a differ-
ential algebraic equations (DAE). However, little effort has
been put into developing a theoretical endorsement for such
algorithms. An exception is [6], which provides conditions
that ensure converge for problems with a convex objective
and a linear system.

The contributions are as follows. This paper proposes
an algorithm for solving optimal control problems of
continuous-time DAE systems, providing conditions for
global and local convergence, and convergence with sub-
optimal iterations. This algorithm facilitates the solution
of OCPs of DAEs in embedded hardware with limited
computational power by eliminating the need of a DAE
solver. For a network system with subsystems coupled by
algebraic input-output equations, the proposed algorithm
enables the decoupling by relaxing these equations. In
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a distributed solution scheme, such a decoupling allows
subsystem problems to be solved with distinct approaches,
unlike discretize-and-relax approaches. The paper illus-
trates the computational and implementation aspects of
the algorithm in a simple, but representative example.

I I . O P T I M A L C O N T R O L P R O B L E M

This work is concerned with the optimal control problem
for a system of differential-algebraic equations of the form:

P : min J(x, y, u) =

∫ tf

t0

L(x, y, u, t) dt (1a)

s.t.: ẋ = f(x, y, u, t) (1b)
g(x, y, u, t) = 0 (1c)
x(t0) = x0 (1d)
u(t) ∈ UB , t ∈ [t0, tf ] (1e)

with UB = {u ∈ U |uL ≤ u ≤ uU} and where
x(t) ∈ X = RNx is the state variable, y(t) ∈ Y = RNy

is the algebraic variable, u(t) ∈ UB ⊂ U = RNu is the
control variable, and t is the time variable. The function of
dynamics f , the function of algebraic relations g, and the
function of dynamic cost L are assumed to be continuously
differentiable with respect to their arguments.

The DAE system formed by (1b) and (1c) is assumed
to be in the semi-explicit index-1 form, which means that
it is solvable for y and the Jacobian ∂g

∂y is invertible. The
algebraic equation can also be used to model equality
constraints, e.g. u1 + u2 = 0, where either u1 or u2 can
be represented as an algebraic variable y. Problems of the
form P with a final cost function can be framed to this
approach by transforming the objective [7].

The Hamiltonian function of the OCP (1) is

H(x, λ, y, ν, u, t) = L(x, y, u, t) + λT f(x, y, u, t)

+ νT g(x, y, u, t) (2)

where λ : [t0, tf ] → RNx is the multiplier associated
with the state equations, and ν(t) ∈ RNy is the multiplier
associated with the algebraic equations.

Using this Hamiltonian, the necessary conditions for
(x∗, λ∗, y∗, ν∗, u∗) to be optimal are given by [8]:

∂H

∂x

T

= −λ̇∗ = ∂L

∂x

T

+
∂f

∂x

T

λ∗ +
∂g

∂x

T

ν∗ (3a)

∂H

∂y

T

=
∂L

∂y

T

+
∂f

∂y

T

λ∗ +
∂g

∂y

T

ν∗ = 0 (3b)
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u∗(t) = argmin
u∈UB

H(x∗(t), λ∗(t), y∗(t), ν∗(t), u, t) (3c)

∂H

∂λ

T

= ẋ∗ = f(x∗, y∗, u∗), λ∗(tf ) = 0 (3d)

∂H

∂ν

T

= g(x∗, y∗, u∗) = 0, x∗(t0) = x0 (3e)

for all t ∈ [t0, tf ]. More general necessary conditions are
found in [9] which concerns OCPs with mixed constraints.
Less restrictive conditions were recently developed for pure
and mixed constraints in [10].

Methods that solve the boundary value problem (BVP)
resulting of the necessary optimality conditions (3) are
known as indirect methods [11]. The proposed relax-and-
discretize algorithm is presented and its properties are
demonstrated, both of which make use of the Hamiltonian.

I I I . AU G M E N T E D L A G R A N G I A N A L G O R I T H M

The algorithm proposed in this work solves the OCP in
the form P by first relaxing the algebraic constraint (1c),
and then introducing a new objective functional,

Jµ(x, y, u, ν) =

∫ tf

t0

Lµ(x, y, u, ν, t) dt (4)

where the function Lµ is defined by

Lµ(x, y, u, ν, t) = L(x, y, u, t) + ν(t)T g(x, y, u, t)

+
µ

2
‖g(x, y, u, t)‖2 , (5)

where µ > 0 is a scalar, and the function ν : [t0, tf ] →
RNy is an estimate of the multiplier function ν∗, which will
be driven by the algorithm towards satisfying the optimality
conditions (3) of problem P .

The functional (4) is the objective of the auxiliary OCP
solved by the algorithm at each iteration k, given by

PL(µk, νk) : min
y,u

Jµk
=

∫ tf

t0

Lµk
(x, y, u, νk, t) dt (6a)

s.t.: ẋ = f(x, y, u, t) (6b)
x(t0) = x0 (6c)
u ∈ UB , t ∈ [t0, tf ] (6d)

Notice that without an algebraic equation, the variable y is
free to be optimized. In this sense, the algebraic variable
plays the same role as the control variable u. Therefore,
an extended control variable û = [u, y] can be defined,
where û(t) ∈ Û = UB × Y . Using û, problem PL meets
the standard form of an OCP of ODE, whose optimality
conditions are well established [7].

A. Algorithm

The proposed algorithm follows the same structure
of the augmented Lagrangian for standard constrained
optimization [1]. Let µ0 be an initial value for the sequence
of penalty values {µk}, ν0 be an initial estimate for the
sequence of multipliers {νk}, and εg be a tolerance on

Algorithm 1 Augmented Lagrangian for Optimal Control
Require: µ0, ν0, and εg:

1: for k = 1, 2, . . . do
2: (Jk, xk, yk, uk)← solve{PL(µk, νk)}
3: νk+1 ← νk + µkg(xk, yk, uk)
4: µk+1 ← update mu{µk}
5: if ‖g(xk, yk, uk)‖ < εg then
6: return uk
7: end if
8: end for

the violation of the algebraic constraint. Starting with
these parameters, at each iteration k, the problem (6) is
solved, the multiplier estimate and penalty are updated,
and the process is repeated until an acceptable tolerance
is achieved, as detailed in Algorithm 1.

The pseudo-function solve yields a solution for the sub-
problem PL and returns the functional values Jk and the
trajectories for the states, algebraic and control variables.
The pseudo-function update mu represents the use of an
update rule for the penalization µk. For the convergence
analysis it is assumed that µk+1 = βµk with a β > 1
to ensure that µk → ∞. In practice, however, a µk →
∞ will cause ill-conditioning on the Hessian of the sub-
problem PL, therefore when performing a computational
implementation, it is recommended to use an upper bound
µmax for the penalization.

B. Mathematical Properties

Conditions are now established for the solution sequence
produced by the algorithm to arrive at a global solution
of the OCP of DAE. Less restrictive conditions are then
presented for convergence to local solutions and conver-
gence under a suboptimal solution sequence, which reflect
situations typically found in practice.

Before presenting the convergence theorems, some defi-
nitions are in order.

Assumption 1 (Regularity). For problem P (1) and
PL(µk, νk) (6) to be well-conditioned, we assume that

1) x : [t0, tf ] → RNx is continuously differentiable;
y : [t0, tf ] → RNy , u : [t0, tf ] → UB , and νk :
[t0, tf ]→ RNy are continuous,

2) L, g, and f are continuously differentiable with
respect to all the arguments,

3) The space of feasible functions for problems P and
PL are compact,

4) the Jacobian ∂g
∂y (x(t), y(t), u(t), t) has full rank for

all x(t) ∈ X , y(t) ∈ Y , u(t) ∈ UB , and t ∈ [t0, tf ],
5) the sequence {µk} has the property that 0 < µk <

µk+1 for all k, and µk →∞ as k →∞,
6) problem P and PL(µk, νk) are solvable.

From condition 4) of the Assumption 1, the algorithm
is not applicable to OCP with DAE of index greater than
one.
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The following theorems will make use of uniform con-
vergence and uniform norm for functions, their definitions
are given in Appendix A.

Theorem 1. Let the functions 〈xk, yk, uk〉 be global
minima of the problem PL(µk, νk) (Eq. 6) at each iteration
k. In addition, assume that {〈xk, yk, uk〉}K and {νk}K
are uniformly convergent subsequences. Then, under As-
sumption 1, the limiting functions of every subsequences
{〈xk, yk, uk〉}K are a global minimizer of problem P and
the subsequence {Jµk

(xk, yk, uk, νk)}K converges to the
optimum objective of P .

Proof: Let 〈x∗, y∗, u∗〉 be limiting functions of the
subsequence {〈xk, yk, uk〉}K . By definition of xk, yk, and
uk, for a given k

Jµk
(xk, yk, uk, νk) ≤ Jµk

(x, y, u, νk) (7)

for all feasible x, y, and u.
Let J∗ denote the optimal value of P . We have that

J∗ = min
u

s.t. (1b)-(1e)
J = min

y,u
s.t. (6b)-(6d)
g(x,y,u,t)=0

Jµk
(µk, νk) (8)

the last term implies the minimization of the problem PL
over y and u with the additional equation g(x, y, u, t) = 0.
The first equality holds by definition. The second equality
holds because P and PL are equivalent when the equation
g(x, y, u, t) = 0 is included in PL.

The inequality (7) holds for any x, y, and u, including a
minimizer of (8). Therefore, we can substitute the optimum
value J∗ on the right-hand side of (7), and on the left-hand
side we substitute Jµk

(xk, yk, uk, νk) with its definition to
obtain∫ tf

t0

L(xk, yk, uk, t) + νTk g(xk, yk, uk, t)

+
µk
2
‖g(xk, yk, uk, t)‖2 dt ≤ J∗ (9)

Given that the subsequence {νk}K is uniformly conver-
gent, it has a limiting function ν∗. By taking the limit with
k →∞ in the inequality (9) we obtain∫ tf

t0

[
L(x∗, y∗, u∗, t) + ν∗T g(x∗, y∗, u∗, t)

]
dt

+ lim
k→∞

µk
2

∫ tf

t0

‖g(xk, yk, uk, t)‖2 dt ≤ J∗ (10)

Since ‖g(xk, yk, uk, t)‖2 ≥ 0 and µk →∞, it follows that
we must have g(xk, yk, uk, t)→ 0 and

g(x∗, y∗, u∗, t) = 0 ∀t ∈ [t0, tf ] (11)

otherwise the limit on the left-hand side of (10) would go
to +∞ which does not hold since J∗ is finite. Therefore,

J(x∗, y∗, u∗) =

∫ tf

t0

L(x∗, y∗, u∗, t) dt ≤ J∗ (12)

Any solution to problem PL satisfies all of the con-
straints of P except the relaxed algebraic equations. How-
ever (11) ensures that the limiting functions x∗, y∗, and
u∗ do satisfy the algebraic equation. By definition, J∗ is
less or equal to the objective of any feasible functions for
problem P , therefore we have

J∗ ≤ J(x∗, y∗, u∗) (13)

Using (12) and (13), we conclude that

J∗ ≤ J(x∗, y∗, u∗) ≤ J∗ =⇒ J∗ = J(x∗, y∗, u∗) (14)

which proves that the limiting functions x∗, y∗, and
u∗ are global minimizers for problem P and that
{Jµk

(xk, yk, uk, νk)}K → J∗.

Definition 1. Let V be a function space, then a nonempty
set V∗ ⊂ V is said to be an isolated set of local minima of
problem P if each function v∗ ∈ V∗ is a local minimum
of problem P and, for some ε > 0, the set

V∗ε = {v ∈ V : ‖v − v∗‖ ≤ ε for some v∗ ∈ V∗} (15)

contains no local minima of problem P other than the
functions of V∗.

An isolated set of local minima consisting of a single
function is a strict local minimum.

Theorem 2. Suppose that the regularity Assumption 1
holds, and that V∗ is a compact and isolated set of
local minima of problem P . If 〈xk, yk, uk〉 is a local
minimizer for problem PL for each k, then there exists
a subsequence {〈xk, yk, uk〉}K converging to a limiting
function 〈x∗, y∗, u∗〉 ∈ V∗. Furthermore, if V∗ consists of
a single function 〈x∗, y∗, u∗〉, then there exists a sequence
{〈xk, yk, uk〉} such that {〈xk, yk, uk〉} → 〈x∗, y∗, u∗〉.

Proof: Consider the set

V∗ε̃ = {v ∈ V : ‖v − v∗‖ ≤ ε̃ for some v∗ ∈ V∗} (16)

where V is the set of feasible functions of PL, with some
0 < ε̃ < ε, and ε is as in (15). From (16) and because
V is compact by Assumption 1, it follows that V∗ε̃ is also
compact, and hence the problem

min
x,y,u

Jµk
=

∫ tf

t0

Lµk
(x, y, u, νk, t) dt (17a)

s.t.: ẋ = f(x, y, u, t) ∀t ∈ [t0, tf ] (17b)
u(t) ∈ UB ∀t ∈ [t0, tf ] (17c)
〈x, y, u〉 ∈ V∗ε̃ , x(t0) = x0 (17d)
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has a global minimum 〈xk, yk, uk〉 ∈ V∗ε̃ . By Theorem 1,
every limiting function 〈x∗, y∗, u∗〉 of {〈xk, yk, uk〉}K is
a global minimum of the problem

min
x,y,u

J =

∫ tf

t0

L(x, y, u, t) dt (18a)

s.t.: ẋ = f(x, y, u, t) ∀t ∈ [t0, tf ] (18b)
g(x, y, u, t) = 0 ∀t ∈ [t0, tf ] (18c)
u(t) ∈ UB ∀t ∈ [t0, tf ] (18d)
〈x, y, u〉 ∈ V∗ε̃ , x(t0) = x0 (18e)

Furthermore, each global minimum of the problem above
must belong to V∗ by the definition of V∗ε̃ . Thus there is a
subsequence {〈xk, yk, uk〉}K converging to 〈x∗, y∗, u∗〉 ∈
V∗. If V∗ contains only one local optimum, then all the
subsequences will lead to this local optimum, therefore
{〈xk, yk, uk〉} → 〈x∗, y∗, u∗〉 ∈ V∗.

From a practical point of view, numerical methods are
expected to terminate when the optimality conditions of
PL are almost satisfied, meaning that for a small scalar
εk > 0 the necessary optimality conditions [7] are

‖f(xk, yk, uk, t)− ẋ‖ ≤ εk, (19a)

∥∥∥∥∂Lµk

∂x
(xk, yk, uk, νk, t)

T+

+
∂f

∂x
(xk, yk, uk, t)

Tλk + λ̇k

∥∥∥∥ ≤ εk, (19b)

∥∥∥∥uk(t)− arg inf
u∈UB

H(xk(t), λk(t), yk, νk, u, t)

∥∥∥∥ ≤ εk (19c)

∥∥∥∥∂Lµk

∂y
(xk, yk, uk, νk, t)

T +
∂f

∂y
(xk, yk, uk, t)

Tλk

∥∥∥∥ ≤ εk.
(19d)

The following theorem shows that if εk → 0, the
algorithm still converges.

Theorem 3. Suppose that Assumption 1 holds and
let 〈xk, yk, uk〉 be a suboptimal solution obtained for
PL(µk, νk) such that the violation of the optimality con-
ditions are given by (19), for which inequality (19d) is
fundamental, where 0 ≤ εk, and εk → 0 as k →∞, {νk}
is a uniform convergent sequence, and λk is the costate at
the k-th algorithm iteration. Assume that a subsequence
{〈xk, yk, uk〉}K converges uniformly to 〈x∗, y∗, u∗〉 such
that ∂g

∂y (x∗, y∗, u∗, t) has full rank and is bounded for all
t ∈ [t0, tf ].

Then the subsequence {νk + µkg(xk, yk, uk, t)}K con-
verges uniformly to ν̃∗, such that the following relations
are obtained, with respect to y

∂L

∂y
(x∗, y∗, u∗, t)T +

∂f

∂y
(x∗, y∗, u∗, t)Tλ∗

+
∂g

∂y
(x∗, y∗, u∗, t)T ν̃∗ = 0 (20a)

and with respect to λ, u, and x are

−λ̇∗ =
∂L

∂x
(x∗, y∗, u∗, t)T +

∂f

∂x
(x∗, y∗, u∗, t)Tλ∗

+
∂g

∂x
(x∗, y∗, u∗, t)T ν̃∗ (20b)

u∗(t) = arg inf
u∈UB

H(x∗(t), λ∗(t), y∗, ν∗,u, t) (20c)

ẋ∗ = f(x∗, y∗, u∗, t). (20d)

Proof: The derivative of Lµk
w.r.t. y results in

∂Lµk

∂y
(xk, yk, uk, νk, t) =

∂L

∂y
(xk, yk, uk, t)

+ [νk + µkg(xk, yk, uk, t)]
T ∂g

∂y
(xk, yk, uk, t) (21)

Then, by defining for all k

ν̃k = νk + µkg(xk, yk, uk, t) (22)

replacing ν̃k into (21) results in

∂Lµk

∂y
(xk, yk, uk, νk, t) =

∂L

∂y
(xk, yk, uk, t)

+ ν̃Tk
∂g

∂y
(xk, yk, uk, t). (23)

Since ∂g
∂y is invertible, we can derive the following expres-

sion for ν̃k,

ν̃k =

[
∂g

∂y
(xk, yk, uk, t)

T

]−1 [
∂Lµk

∂y
(xk, yk, uk, νk, t)

T

− ∂L

∂y
(xk, yk, uk, t)

T

]
(24)

From (24) we can say that there exists an F such that

ν̃k = F (xk, yk, uk, νk) (25)

which is continuous since all the functions in (24) are
continuous. Given that a subsequence {〈xk, yk, uk〉}K con-
verges to 〈x∗, y∗, u∗〉 and {νk} converges to ν∗, Theorem
4 (from Appendix A) is invoked to conclude that

{ν̃k = F (xk, yk, uk, νk)}K → ν̃∗ = F (x∗, y∗, u∗, ν∗)
(26)

which shows that {νk + µkg(xk, yk, uk, t)}K → ν̃∗ uni-
formly, and ν̃∗ is given by

ν̃∗ =

[
∂g

∂y
(x∗, y∗, u∗, t)T

]−1 [
∂Lµ∗

∂y
(x∗, y∗, u∗, ν∗, t)T

− ∂L

∂y
(x∗, y∗, u∗, t)T

]
. (27)

Considering the optimality conditions for y, given in
(19d), and taking the limit k →∞, we obtain

∂Lµ∗

∂y
(x∗, y∗, u∗, ν∗, t) = −λ∗T ∂f

∂y
(x∗, y∗, u∗, t) (28)
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which can be substituted into (27) to obtain

ν̃∗ =

[
∂g

∂y
(x∗, y∗, u∗, t)T

]−1 [
− ∂L

∂y
(x∗, y∗, u∗, t)T

− ∂f

∂y
(x∗, y∗, u∗, t)Tλ∗

]
(29)

which can be rearranged into

∂L

∂y
(x∗, y∗, u∗, t) + λ∗T

∂f

∂y
(x∗, y∗, u∗, t)

+ ν̃∗T
∂g

∂y
(x∗, y∗, u∗, t) = 0 (30)

and related to the necessary conditions (3d) of the original
OCP P . Similar approach can be used to obtain the
conditions for x, u, and λ.

Since the sequence {νk} is bounded and {νk +
µkg(xk, yk, uk, t)}K → ν̃∗ from (26), it follows that
{µkg(xk, yk, uk, t)}K is bounded. Given that µk →∞ we
must have g(xk, yk, uk, t) → 0 with g(x∗, y∗, u∗, t) = 0
for all t.

Notice that the sequence {νk} was never specified, other
than it is a uniformly convergent sequence. From Theorem
3, an update rule can be derived such that {νk} → ν̃∗.

Corollary 1. By defining νk+1 = νk + µkg(xk, yk, uk, t)
we have that {νk} → ν̃∗ and {µkg(xk, yk, uk, t)} → 0.

Proof: For any uniformly convergent sequence {νk},
Theorem 3 ensures that {νk + µkg(xk, yk, uk, t)} → ν̃∗.
Therefore, we can define νk+1 = νk + µkg(xk, yk, uk, t),
which makes the sequence become {νk+1} → ν̃∗.

I V. C O M P U TAT I O N A L D E TA I L S A N D
E X P E R I M E N T S

To illustrate the algorithm behavior and to remark some
implementation details, the algorithm is applied to the
optimal control problem of stabilizing a four-tank system.

A. Problem Modeling

Instead of modeling the four tank as an ODE system as
it is commonly done, this paper represents the process as a
DAE system by using an algebraic variable for the outflow
of each tank. For every tank i, the outflow is given by

qt,i = ai
√

2ghi. (31)

where g is the gravity constant, ai is the cross section area
of the orifice and hi is the fluid level of tank i, given by

ḣ1 =
q3 + γ1qp,1 − qt,1

A1
, ḣ2 =

q4 + γ2qp,2 − qt,2
A2

(32a)

ḣ3 =
(1− γ2)qp,2 − qt,3

A3
, ḣ4 =

(1− γ1)qp,1 − qt,4
A4

(32b)

where Ai is the cross section area of the tank i, and the
flow on each pump j is given by the differential equation

q̇p,j = δj . (33)

The objective of the controller is to stabilize the tanks
1 and 2, while reducing the variation in the pump flows,
which is expressed by the following objective

min
u

J =

∫ tf

t0

∆xT∆x+ uTu dt (34)

with ∆x = x − xref , x = [h1, h2, h3, h4, qp,1, qp,2], and
u = [δ1, δ2].

B. Applying the Augmented Lagrangian

By using the algorithm to relax the algebraic equation
(31), the following relaxed problem is obtained

min
u,y

Jµk
, s.t.: eq. (32) and (33) (35)

where:

Jµk
=

∫ tf

t0

∆xT∆x+uTu+

4∑
i=1

[
νi,k

(
qt,i − ai

√
2ghi

)
+
µk
2

∥∥∥qt,i − ai√2ghi

∥∥∥2 ] dt (36)

At each algorithm iteration, the relaxed problem (35)
is solved and the solution is used to compute the new
multiplier estimates νi,k+1 according to the rule

νi,k+1 = νi,k + µk

[
qt,i − ai

√
2ghi

]
(37)

As discussed in [4], since νi,k is a function that can
assume any shape, a piecewise polynomial approximation
with a finite number of terms is used instead. For this
application, the Lagrangian polynomial was chosen as it
facilitates the computation of updates.

C. Computational Experiments

To solve the relaxed subproblem, an indirect collocation
method with polynomials of order 3 was used, discretized
in 30 finite elements and implemented using YAOCP-
Tool and CasADi [12]. The same settings were used to
solve the original problem (Eqs. (31)-(34)) for comparison
purpose. The resulting nonlinear programming problems
were solved with the IPOPT solver. By using indirect
methods, the multipliers are easily obtained which allow us
to compare with the estimate νi yielded by our algorithm.
The multiplier estimates νi are also approximated with a
piecewise polynomial of degree 3 with 30 finite elements.

Since no information on the multipliers is available the
algorithm is initialized with the multiplier estimates as zero
(ν0 = 0 for all t ∈ [t0, tf ]). The penalization term starts
with µ0 = 0.1 and increases at a rate β = 4.

Although not shown here, the trajectories of the proposed
algorithm coincide with the optimal trajectories obtained
by the indirect method. To evaluate if the algorithm is
converging to the optimal solution of the original problem,
in Fig. 1, the relaxed objective (Jµk

) and the evaluation
of the solution iteration on the original objective (Jk) are
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Figure 1. Comparison of the objective functions.

Figure 2. Convergence of the algebraic function to zero (red) and the
multiplier estimate converging to the original problem multiplier (blue).

compared to the optimal cost obtained with the indirect
method (J∗). It can be seen that the objectives converge
to the same objective value J∗ as the indirect method. As
for the violation of algebraic equations, the line in blue
of Fig. 2 shows the violation rapidly converging to zero;
the line in red shows the norm of the difference between
the multiplier obtained with the indirect method and the
multiplier estimate computed by the proposed algorithm,
which decreases as the algorithm iterates.

An experiment was performed using the proposed algo-
rithm with direct multiple shooting to solve the subprob-
lems (AL-DMS). To solve the ODE of the suproblems,
we apply Sundails CVODES and a 4th order Runge-Kutta
method (RK4). The proposed algorithm was compared
against DMS applied directly to the original OCP, whereby
Sundails IDAS was used to solve the DAE. Table I presents
the results that indicate faster convergence of proposed
algorithm with RK4, which might be more suitable for em-
bedded applications with restricted computational power.

Table I
A L G O R I T H M S O LV I N G T I M E ( S )

AL-DMS (CVODES) AL-DMS (RK4) DMS (IDAS)
24.15 0.11 2.42

V. C O N C L U S I O N

An algorithm based on the augmented Lagrangian for
solving OCPs of DAEs by relaxing the algebraic equations
was presented. Properties for global and local convergence,
and convergence under sub-optimal iterations are shown.
The algorithm properties are verified with an illustrative
example, showing the convergence of the objective value,
multiplier estimate, and optimal trajectory.

The proposed algorithm can be deployed for optimal
control in applications where DAE solvers are too costly,
which are supported by the convergence conditions estab-
lished heretofore. As future work, the structure of certain
problems could be exploited in the augmented Lagrangian
to enable distributed and parallel computations.

A P P E N D I X A
Definition 2. Let f : [t0, tf ] → RN be a continuous
function then ‖f‖ is given by ‖f‖ = maxt∈[t0,tf ] ‖f(t)‖∞.

Definition 3. Let fk : [t0, tf ] → RN be a function for
every k ∈ N. The sequence of functions {fk} converges
uniformly to the limiting function f∗ : [t0, tf ]→ RN if, for
every ε > 0, there exists a number K ∈ N such that for all
t ∈ [t0, tf ] and all k ≥ K, we have ‖fk(t)− f∗(t)‖ < ε.

Theorem 4. Let g : Rd1 → Rd2 be a continuous function,
and the sequence of functions {fn} to converge uniformly
to f , where fn : [0, 1] → Rd1 . Let the function norm ‖·‖
be given by ‖g‖ = maxx∈[0,1] ‖g(x)‖∞. Then {g(fn)}
converges uniformly to g(f).

Proof: If fn converges uniformly to f , then for all
εf exists N , such that ‖fn − f‖ < εf for all n > N , and
exists an upper bound M s.t. ‖fn‖ ≤M for all n ∈ N.

Then, consider g : [−M,M ]d1 → Rd2 . As g is continu-
ous in a compact set, for all εg > 0, there exists a δg > 0
such that ‖g(z1)− g(z2)‖ < εg for all ‖z1 − z2‖ < δg.
Using εf = δg, ‖fn − f‖ < εf = δg for all n > N .
Therefore, ‖g(fn)− g(f)‖ < εg for all n > N .
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