Queries to the Author

When you submit your corrections, please either annotate the IEEE Proof PDF or send a list of corrections. Do not send new source files as we do not reconvert them at this production stage.

Authors: Carefully check the page proofs (and coordinate with all authors); additional changes or updates WILL NOT be accepted after the article is published online/print in its final form. Please check author names and affiliations, funding, as well as the overall article for any errors prior to sending in your author proof corrections. Your article has been peer reviewed, accepted as final, and sent in to IEEE. No text changes have been made to the main part of the article as dictated by the editorial level of service for your publication.

Per IEEE policy, one complimentary proof will be sent to only the Corresponding Author. The Corresponding Author is responsible for uploading one set of corrected proofs to the IEEE Author Gateway

Q1. Please provide index term for this article.
Q2. Please confirm or add details for any funding or financial support for the research of this article.
Q3. Please provide page range for Ref. [10].
Q4. Please provide year for Refs. [15], [16].

Modeling Movement-Induced Errors in AC Electromagnetic Trackers

Mutaz Tuffaha ${ }^{\oplus}$, Øyvind Stavdahl ${ }^{\oplus}$, and Ann-Katrin Stensdotter

Abstract

Error analysis of electromagnetic motion tracking systems is of growing interest to many researchers. Under sensor movement, it is logical to presume that the error in position and orientation measurements will increase due to the linearization used in the algorithms, among other reasons. In this article, we analyze theoretically the error, that results from linearization, in position measurement of the Polhemus tracking system for a moving sensor. We derive formulas to estimate this error in terms of the sensor position and speed. Then, we verify these formulas by numerical simulations.

Index Terms-

1 INTRODUCTION

BECAUSE they do not require a direct line of sight, electromagnetic motion tracking systems (EMTS) have been used in many research arenas such as, inter alia, computerassisted medical interventions [1], Biomechanical movements analysis [2] and [3], Robotics [4], virtual/augmented/mixed reality and simulators [5] and [6]. Usage of EMTS in these contexts range from capturing the geometry and movements of the real-world objects and actors for geometric modeling purposes to intuitive use interfaces for advanced visualization applications.

Since the pioneering work in [7], many papers and patents have been written in which the authors have been trying to exploit magnetic field theory to track moving objects. Simultaneously, many manufacturers have been competing to introduce EMTS. For surveys on the various techniques and manufacturers of EMTS, the reader is advised to see e.g., [1], [5], or [8].

On the other hand, many researchers have been interested in investigating the accuracy of such systems. The authors in [1] classify the errors of EMTS into static and dynamic. Static errors are encountered when the sensor is fixed, while dynamic errors arise due to sensor movement [1]. The sources of the errors in such systems can be classified, also according to [1] into: Inherent System Errors (such as noise of the field generator), Field Distortion Errors

- Mutaz Tuffaha is with Indra Navia AS, NO-1383 Asker, Norway. E-mail: mutaz.tuffaha@indra.no.
- Øyvind Stavdahl is with the Department of Engineering Cybernetics, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.E-mail: oyvind.stavdahl@ntnu.no.
- Ann-Katrin Stensdotter is with the Department of Neuromedicine and Movement Science, Faculty of medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway. E-mail: ann-katrin.stensdotter@ntnu.no.
Manuscript received 6 May 2019; revised 9 Aug. 2020; accepted 20 Aug.

2020. Date of publication 0 . 0000; date of current version 0.0000.
(Corresponding author: Mutaz Tuffaha.)
Recommended for acceptance by K. Kiyokawa.
Digital Object Identifier no. 10.1109/TVCG.2020.3019700
(resulting from interference with ferromagnetic materials or 36 electromagnetic fields other than the field generated by the 37 system in the surrounding), and Motion-Induced Errors 38 (resulting from the motion of the sensor).

Because manufacturers usually prefer to keep the details 40 of their products covert, and because the algorithms and 41 techniques used in EMTS span a wide range of theories 42 and inventions, investigating the accuracy of such systems 43 theoretically would be very challenging. Furthermore, the 44 complexity of the analysis multiplies as the sources of 45 errors, mentioned earlier, vary in nature and contribution. 46 That is why the researchers prefer the experimental study 47 of the accuracy over the theoretical analysis. Experiments 48 can be carried out by using special apparatuses or phan- 49 toms, and then the measurements are usually compared 50 with a specific gold standard. The phantoms can be sta- 51 tionary if the static accuracy is under investigation such as 52 a plate or pegboard [9], while moving phantoms such as a 53 pendulum [10] or a moving plate [11] are used to investi- 54 gate the dynamic accuracy.

To our best knowledge, very few studies on the theoreti- 56 cal analysis were published. For example, the authors in 57 [12] showed, theoretically and experimentally, that the error 58 due to electrical fields and nearby metals increases as the 59 fourth power of the distance from the transmitter, but they 60 considered stationary sensors only. Another example can be 61 found in [13] where the author proposed an algorithm to 62 track objects through-the-earth such as in drill guidance 63 and mine rescue. Further, he did some sensitivity analysis 64 of his own algorithm and found some limits on the error in 65 position and orientation errors, but he also did not consider 66 the dynamics of the sensor [13].

We believe that it is important to study and analyze the 68 mathematical algorithm used by a particular EMTS, espe- 69 cially when it comes to dynamic accuracy of that specific 70 EMTS. Most of the algorithms used by manufacturers 71 depend on some kind of linearization to determine the posi- 72 tion and orientation, in other words, six degrees of freedom 73 (DOF) of the moving sensor. This linearization by itself 74 introduces some error, especially as the speed increases. 75

Obviously, the linearization is not the only source of error, and perhaps not the most influential one. However, it is certainly a source of error that needs to be quantified and taken into consideration when analyzing the error of EMTS, and this is the topic of this paper.

Some of the current authors participated in a previous work on head stabilization [14], and they used LIBERTY system [15] from Polhemus [16], in their experiments. Thus, dynamic accuracy of this EMTS is of particular interest. Actually, Polhemus was one of the first companies to introduce EMTS based on the work in e.g., [17] and [18]. Fortunately, the algorithm described in [17] is still used by Polhemus after almost 40 years. The technical support in Polhemus confirmed that the basic concept of tracking is still as described in [17], but of course over all these years they have been developing and improving their system by using the most cutting-edge techniques in electronics and signal processing.

So, in this work we theoretically investigate the dynamic error in position and orientation measurements by Polhemus EMTS according to their published algorithm in [17]. We further derive formulas to estimate the error in position measurements at fixed orientation in terms of the position and speed of the sensor in spherical coordinates. Then, we show by simulations that the proposed formulas are accurate even when the orientation changes, as long as the rates of change of the Euler angles are not large. It is worth mentioning here that we are investigating the error due to linearization only that results from the motion of the sensor. Thus, we do not consider the field distortion errors that result from the interference with ferromagnetic materials or other electromagnetic fields. We do all our analysis in spherical coordinates, but extending the proposed formulas to Cartesian coordinates would not be problematic.

The proposed formulas show that this error increases or accumulates with time systematically as the sensor moves, even if the speed is constant. In addition, those formulas can predict the singularities around which the error may explode. Our simulations confirm those conclusions, as will be shown later.

The importance of the proposed formulas is twofold. First, they are of great interest to the researchers who are interested in error analysis of EMTS and the manufacturers for development purposes. Moreover, the proposed error model can be used for any system that uses this type of linearization. The paper is organized as follows. In the subsequent section we present a summary of the basic algorithm used by Polhemus, as explained in [17], and we state the problem. In Section 3, we derive the proposed formulas that can be used to quantify the error in position measurements assuming fixed orientation. In Section 4, we investigate the error in orientation measurements and we discuss the influence of changing the orientation on the proposed formulas. In the last section we draw our conclusions.

2 The Basic Algorithm and Problem Statement

In this section, we summarize the basic algorithm used by Polhemus system, as described in [17]. This algorithm depends on the orthogonal rotational matrices given in Table 1.

TABLE 1
List of Rotation Matrices

About	Position	Orientation
z-axis	$\mathbf{T}_{\alpha}=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]$	$\mathrm{T}_{\psi}=\left[\begin{array}{ccc}\cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1\end{array}\right]$
y-axis	$\mathbf{T}_{\beta}=\left[\begin{array}{ccc}\cos \beta & 0 & -\sin \beta \\ 0 & 1 & 0 \\ \sin \beta & 0 & \cos \beta\end{array}\right]$	$\mathbf{T}_{\theta}=\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$
x-axis	$\mathbf{T}_{\gamma}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \gamma & \sin \gamma \\ 0 & -\sin \gamma & \cos \gamma\end{array}\right]$	$\mathbf{T}_{\phi}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi\end{array}\right]$

The source has three orthogonal coils, so three distinct 135 excitation states can be used, as follows:

$$
\mathbf{S}_{1}=\left[\begin{array}{l}
1 \tag{1}\\
0 \\
0
\end{array}\right], \mathbf{S}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } \mathbf{S}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

where each one describes the excitation in one coil. Assum- 139 ing that the three coils of the source are identical, the output 140 of the source can be represented by a vector $\mathbf{f}_{1}=141$ $\left[f_{1 x}, f_{1 y}, f_{1 z}\right]^{T}$. In this model, the source and the sensor are 142 considered as point source and point sensor. Now, if the 143 sensor is located at position $\left(\rho, \alpha_{1}, \beta_{1}\right)$ relative to the source 144 spherical coordinate frame i.e., the coordinate system cen- 145 tered at the source with its $x-, y-$ and $z-$ axes are aligned 146 with the fixed source coils, the output of an equivalent 147 source whose $x-$ axis is aligned with the line connecting the sensor and the source can be described by [17]:

$$
\begin{equation*}
\mathbf{f}_{2}=\mathbf{T}_{\beta_{1}} \mathbf{T}_{\alpha_{1}} \mathbf{f}_{1} . \tag{2}
\end{equation*}
$$

Because the wavelength of the used excitation signal is 152 much longer than the distance between the source and the 153 sensor, near-field components are only considered. Hence, 15 the output of the source coils at the sensor position can be 155 modeled by [17]:

$$
\begin{equation*}
\mathbf{f}_{3}=\frac{C}{\rho^{3}} \mathbf{S} \mathbf{f}_{2}, \tag{3}
\end{equation*}
$$

where C is a constant depends on the magnetic coupling 159 between the source and the sensor, and S describes that cou- 160 pling and is given by [17]:

$$
\mathbf{S}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{4}\\
0 & -\frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]
$$

Then, to make the sensor output oriented with the source 164 frame, one needs to rotate the sensor output in reverse 165 direction to obtain a zero-oriented output as [17]:

$$
\begin{equation*}
\mathbf{f}_{4}=\mathbf{T}_{-\alpha_{1}} \mathbf{T}_{-\beta_{1}} \mathbf{f}_{3} . \tag{5}
\end{equation*}
$$

Finally, assuming that the sensor orientation can be 169 described by three angles $\left(\psi_{1}, \theta_{1}, \phi_{1}\right)$ from the sensor frame, 170 which is now aligned with the source frame, the sensor out- 171 put after inserting (2), (3) and (5) is given by [17]:

$$
\begin{align*}
\mathbf{f}_{5} & =\mathbf{T}_{\phi_{1}} \mathbf{T}_{\theta_{1}} \mathbf{T}_{\psi_{1}} \mathbf{f}_{4} \\
& =\frac{C}{\rho^{3}} \mathbf{T}_{\phi_{1}} \mathbf{T}_{\theta_{1}} \mathbf{T}_{\psi_{1}} \mathbf{T}_{-\alpha_{1}} \mathbf{T}_{-\beta_{1}} \mathbf{S T}_{\beta_{1}} \mathbf{T}_{\alpha_{1}} \mathbf{f}_{1} \tag{6}\\
& =\frac{C}{\rho^{3}} \mathbf{Q} \mathbf{f}_{1} .
\end{align*}
$$

The sensor also has three coils, and thus three measurements can be taken from the sensor. We represent them here by the following three row vectors:

$$
\mathbf{M}_{1}^{T}=\left[\begin{array}{l}
1 \tag{7}\\
0 \\
0
\end{array}\right], \mathbf{M}_{2}^{T}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { and } \mathbf{M}_{3}^{T}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

This algorithm assumes that the output of each sensor coil corresponding to each excitation state can be distinguished, separately. This means that three different measurements $\mathbf{M}_{1} \mathbf{f}_{5}, \mathbf{M}_{2} \mathbf{f}_{5}$ and $\mathbf{M}_{3} \mathbf{f}_{5}$ can be taken for each one of excitation states $\mathbf{S}_{1}, \mathbf{S}_{2}$ and \mathbf{S}_{3} when used as inputs for \mathbf{f}_{1}. Thus, we end up with nine different measurements at each time instant which are more than enough to determine the position $\left(\rho, \alpha_{1}, \beta_{1}\right)$ and the orientation $\left(\psi_{1}, \theta_{1}, \phi_{1}\right)$, or the socalled 6 DOF . In practice, this requires some sort of multiplexing (time, frequency or similar) or modulation to distinguish the outputs of the sensor coils for each excitation state. Unfortunately, the authors in [17] did not specify which type of multiplexing the company uses. Let us, from here on, presume that the nine measurements can be taken simultaneously, or at least the time gaps between those measurements (assuming time multiplexing) are so small compared to the updating time, as will be explained later. Obviously, the transformation matrix $\mathbf{Q} \in \mathbb{R}^{3 \times 3}$ in (6) is highly nonlinear because of the many products of the sines and cosines of different angles. Hence, there could be no way to find the six unknowns even with the nine equations from the nine measurements. Instead, the authors in [17] proposed to linearize this transformation by what they called previous measurement technique. Actually, the idea is so intuitive. The nine measurements described above are taken and updated at every time step ΔT_{u}. In this technique, it is assumed that the estimates of the position $\left(\hat{\rho}, \hat{\alpha}_{1}, \hat{\beta}_{1}\right)$ and the orientation $\left(\hat{\psi}_{1}, \hat{\theta}_{1}, \hat{\phi}_{1}\right)$ at the previous time step are known. Then, the position and orientation at the current time step can be determined as follows. The output of the source at the current time step f_{1} can be determined from the output of the source at the previous time step f_{0} by [17]:

$$
\begin{equation*}
\mathbf{f}_{1}=\mathbf{T}_{-\hat{\alpha}_{1}} \mathbf{T}_{-\hat{\beta}_{1}} \mathbf{f}_{0} . \tag{8}
\end{equation*}
$$

Similarly, the sensor output \mathbf{f}_{5} can be rotated in reverse direction to make it zero-oriented based on the previous measurement as [17]:

$$
\begin{equation*}
\mathbf{f}_{6}=\mathbf{T}_{-\hat{\psi}_{1}} \mathbf{T}_{-\hat{\theta}_{1}} \mathbf{T}_{-\hat{\phi}_{1}} \mathbf{f}_{5} . \tag{9}
\end{equation*}
$$

Then, the output should be rotated by the previous measured angles to make it aligned with the source again, as [17]:

$$
\begin{equation*}
\mathbf{f}_{7}=\mathbf{T}_{\hat{\beta}_{1}} \mathbf{T}_{\hat{\alpha}_{1}} \mathbf{f}_{6} \tag{10}
\end{equation*}
$$

Inserting (8), (9) and (10) in (6), one gets:

$$
\begin{equation*}
\mathbf{f}_{7}=\frac{C}{\rho^{3}} \mathbf{R} \mathbf{f}_{0} \tag{11}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{R}= & \mathbf{T}_{\hat{\beta}_{1}} \mathbf{T}_{\hat{\alpha}_{1}} \mathbf{T}_{-\hat{\psi}_{1}} \mathbf{T}_{-\hat{\theta}_{1}} \mathbf{T}_{\phi_{1}-\hat{\phi}_{1}} \mathbf{T}_{\theta_{1}} \mathbf{T}_{\psi_{1}-\alpha_{1}} \mathbf{T}_{-\beta_{1}} \ldots \tag{12}\\
& \ldots \mathbf{S T}_{\beta_{1}} \mathbf{T}_{\alpha_{1}-\hat{\alpha}_{1}} \mathbf{T}_{-\hat{\beta}_{1}} . \tag{228}
\end{align*}
$$

As a matter of fact, the differences between the previous 229 and current measurements of the position and orientation 230 are supposed to be small if the updating time ΔT_{u} is small 231 enough, and the velocities or rates of change are not so 232 high. Let $\Delta \alpha_{1}, \Delta \beta_{1}, \Delta \psi_{1}, \Delta \theta_{1}$ and $\Delta \phi_{1}$, be the differences 233 between the current and previous measurements of the 234 angle $\alpha_{1}, \ldots, \phi_{1}$, respectively, such that [17]:

$$
\begin{equation*}
\Delta \alpha_{1}=\alpha_{1}-\hat{\alpha}_{1} \tag{13}
\end{equation*}
$$

and so on. Note that the incremental angles $\Delta \alpha_{1}, \ldots, \Delta \phi_{1}$ are 238 measured in the source frame coordinates. However, those 239 incremental angles can also be measured in what the 240 authors in [17] called tracking frame coordinates, which is 241 defined by rotations from the source frame by the previ- 242 ously estimated angles $\hat{\alpha}_{1}$ and $\hat{\beta}_{1}$. The corresponding incre- 243 mental changes of the angles in the tracking frame are 244 denoted by $\Delta \alpha_{0}, \ldots, \Delta \phi_{0}$. By using those definitions, the 245 authors showed that the \mathbf{R} matrix in (12) can be approxi- 246 mated by [17]:

$$
\widetilde{\mathbf{R}}=\left[\begin{array}{ccc}
1 & \frac{3}{2} \Delta \alpha_{0}-\frac{1}{2} \Delta \psi_{0} & -\frac{3}{2} \Delta \beta_{0}+\frac{1}{2} \Delta \theta_{0} \tag{14}\\
\frac{3}{2} \Delta \alpha_{0}-\Delta \psi_{0} & -\frac{1}{2} & -\frac{1}{2} \Delta \phi_{0} \\
-\frac{3}{2} \Delta \beta_{0}+\Delta \theta_{0} & \frac{1}{2} \Delta \phi_{0} & -\frac{1}{2}
\end{array}\right]
$$

As explained before, since the outputs in the three coils of 250 the sensor can be measured for the three excitation states 251 (simultaneously), the nine elements of the $\widetilde{\mathbf{R}}$ matrix can be 252 determined and hence the incremental angles. First of all, 253 assuming that the constant C in (11) is known, the estimate 25 of the distance ρ from the source is obtained from (14) by:

$$
\begin{equation*}
\tilde{\rho}=\sqrt{[3]} \frac{C}{2 \mathbf{M}_{1} \mathbf{R S _ { 1 }}}=\sqrt{[3]} \frac{-C}{2 \mathbf{M}_{2} \mathbf{R S}}=\sqrt{[3]} \frac{-C}{2 \mathbf{M}_{3} \mathbf{R S}} . \tag{15}
\end{equation*}
$$

Then, the incremental angles measured in the tracking 258 frame can be approximated as follows [17]:

$$
\begin{align*}
& \widetilde{\Delta \alpha_{0}}=\frac{2 \tilde{\rho}^{3}}{3 C}\left(2 \mathbf{M}_{1} \mathbf{R} \mathbf{S}_{2}-\mathbf{M}_{2} \mathbf{R} \mathbf{S}_{1}\right) \\
& \widetilde{\Delta \beta_{0}}=\frac{2 \tilde{\rho}^{3}}{3 C}\left(\mathbf{M}_{3} \mathbf{R} \mathbf{S}_{1}-2 \mathbf{M}_{1} \mathbf{R S}_{3}\right) \\
& \widetilde{\Delta \psi_{0}}=\frac{2 \tilde{\rho}^{3}}{C}\left(\mathbf{M}_{1} \mathbf{R} \mathbf{S}_{2}-\mathbf{M}_{2} \mathbf{R} \mathbf{S}_{1}\right) \tag{16}\\
& \widetilde{\Delta \theta_{0}}=\frac{2 \tilde{\rho}^{3}}{C}\left(\mathbf{M}_{3} \mathbf{R S}_{1}-\mathbf{M}_{1} \mathbf{R S}_{3}\right) \\
& \widetilde{\Delta \phi_{0}}=\frac{2 \tilde{\rho}^{3}}{C} \mathbf{M}_{3} \mathbf{R S}_{2}=-\frac{2 \tilde{\rho}^{3}}{C} \mathbf{M}_{2} \mathbf{R S}_{3} .
\end{align*}
$$

The next step is to transform the incremental angles from the tracking frame to the source frame. To this end, the authors in [17] showed that:

$$
\begin{equation*}
\widetilde{\Delta \alpha_{1}}=\frac{\widetilde{\Delta \alpha_{0}}}{\cos \beta_{1}} \text { s.t. } \beta_{1} \neq \pm \frac{\pi}{2}, \widetilde{\Delta \beta_{1}}=\widetilde{\Delta \beta_{0}} \tag{17}
\end{equation*}
$$

and

$$
\left[\begin{array}{c}
\widetilde{\Delta \phi_{1}} \cos \hat{\theta}_{1} \tag{18}\\
\widetilde{\Delta \theta_{1}} \\
\widetilde{\Delta \psi_{1}}-\widetilde{\Delta \phi_{1}} \sin \hat{\theta}_{1}
\end{array}\right]=\mathbf{T}_{\hat{\psi}_{1}-\hat{\alpha}_{1}} \mathbf{T}_{-\hat{\beta}_{1}}\left[\begin{array}{c}
\widetilde{\Delta \phi_{0}} \\
\widetilde{\Delta \theta_{0}} \\
\widetilde{\Delta \psi_{0}}
\end{array}\right] .
$$

Finally, the previous measurements $\hat{\alpha}_{1}, \ldots, \hat{\phi}_{1}$ are updated by adding the incremental angles $\widetilde{\Delta \alpha_{1}}, \ldots, \widetilde{\Delta \phi_{1}}$. Note that in the above equations we use the tilde $\operatorname{sign}($.$)) to denote the$ approximation of the true value, as will be explained in the next section. One can locate the following possible sources of errors in this algorithm:

1) The assumption that the near-field component only is significant. However, this assumption is justified within the measuring volume recommended by the manufacturer ($<3 \mathrm{~m}$) because the carrier frequencies, usually in the range of $7-14 \mathrm{kHz}$ [17], yield wavelengths in the 215-430 m range.
2) The linearization and the approximation of the matrix $\widetilde{\mathbf{R}}$. Note that $\widetilde{\mathbf{R}}$ given in (14) is not equal to the original \mathbf{R} in (12). The authors used $\widetilde{\mathbf{R}}$ to derive formulas to obtain the estimates of the position and orientation as given in (15) and (16). In practice, the measurements are taken from the coils of the sensor whose position and orientation are described by \mathbf{R} not $\widetilde{\mathbf{R}}$. That is why we wrote the formulas in (15) and (16) in terms of \mathbf{R}. And that is why we used the tilde sign (.) to emphasize the idea that the obtained incremental angles are only estimates of the real ones.
3) Transforming from the tracking to the source frame. The incremental angles $\Delta \alpha_{0}, \ldots, \Delta \phi_{0}$ measured in the tracking frame obtained from (16) are transformed by (17) and (18) into the incremental angles $\Delta \alpha_{1}, \ldots, \Delta \phi_{1}$ measured in the source frame to be used to update the previous measurements. Although the derivations of the transformation rules in (17) and (18) look logical, and they prove to be good approximations, there are two possible sources of error. First, the singularities of the transfer functions. For the incremental angle $\Delta \alpha_{0}$, the transformation is obtained by dividing by $\cos \beta_{1}$. The authors in [17] stated that alternative formulas must be used when $\beta_{1} \approx \pm \frac{\pi}{2}$. Unfortunately, the authors in [17] did not propose any alternative formula. The same can be said about dividing by $\cos \hat{\theta}_{1}$ to obtain the incremental roll angle $\Delta \widetilde{\phi}_{1}$. Second, and more significantly, the accumulation of the error resulting from those transformation rules. Consider again the transformation rule in (17), for example. The algorithm cannot divide by the real angle β_{1} because it is not known. Instead it must use the latest known value,
that is $\widetilde{\beta}_{1}$. Thus, the error in measuring this angle 311 will propagate through the whole algorithm and 312 accumulate as the time progresses.
Actually, the error due to linearization and transforma- 314 tion, explained in the last two points above, is the topic of 315 this work.

3 Error Analysis: Constant Orientation

In this section, we analyze the error in position measure- 318 ments, assuming that the orientation of the sensor is kept 319 constant. From here on, we use the tilde sign (.) to denote 320 the approximated values. We also use the symbol ϵ_{x} to 321 denote the error between x and the approximation \tilde{x}, for 322 any variable x.

3.1 Mathematical Model of the Error

Let $\dot{\alpha}_{1}(t)$ and $\dot{\beta}_{1}(t)$ denote the rate of change of the azimuth 325 and elevation angles, respectively, of the sensor with respect 326 to the source frame. Since the measurements are updated 327 every ΔT_{u}, the measured rate of change of the azimuth and 328 the elevation angles are given by $\left(\frac{\widetilde{\Delta \alpha_{1}}}{\Delta T_{u}}\right)$ and $\left(\frac{\widetilde{\Delta \beta_{1}}}{\Delta T_{u}}\right)$, respec- 329 tively. Note that the measured angular velocities are con- 330 stant over ΔT_{u} time period, while the real velocities may 331 change over the same period. Let us now define the error in 332 measuring the elevation angle as:

$$
\begin{equation*}
\epsilon_{\dot{\beta}_{1}}(t)=\dot{\beta}_{1}(t)-\widetilde{\dot{\beta}}_{1}=\dot{\beta}_{1}(t)-\frac{\widetilde{\Delta \beta_{1}}}{\Delta T_{u}} \tag{19}
\end{equation*}
$$

and
where, in the last equation, we consider $\Delta \beta_{1}(t)=339$ $\int_{t}^{t+\Delta T_{u}} \dot{\beta}_{1}(\tau) d \tau$ to allow for changing velocities. From the 340 basic definitions in (19) and (20) one can obtain the following important result:

$$
\begin{equation*}
\epsilon_{\Delta \beta_{1}}(t)=\Delta \beta_{1}(t)-\dot{\beta}_{1}(t) \Delta T_{u}+\epsilon_{\dot{\beta}_{1}}(t) \Delta T_{u} . \tag{21}
\end{equation*}
$$

The result above basically means that the errors in measur- 341 ing the incremental elevation angle and its rate of change 342 are proportional. Then, the error in measuring the elevation 343 angle can be defined as:

$$
\begin{equation*}
\epsilon_{\beta_{1}}(t)=\beta_{1}(t)-\widetilde{\beta}_{1}(t), \tag{2}
\end{equation*}
$$

which can be simplified by using (19) and (20) to:

$$
\begin{align*}
\epsilon_{\beta_{1}}(t) & =\int_{0}^{t} \dot{\beta}_{1}(\tau) d \tau-\sum_{i=1}^{\frac{t}{\Delta T_{u}}} \widetilde{\Delta \beta_{1}}\left(i \Delta T_{u}\right) \\
& =\int_{0}^{t} \dot{\beta}_{1}(\tau) d \tau-\frac{1}{\Delta T_{u}} \int_{0}^{t} \widetilde{\Delta \beta_{1}}(\tau) d \tau \tag{23}\\
& =\int_{0}^{t} \epsilon_{\dot{\beta}_{1}}(\tau) d \tau=\frac{1}{\Delta T_{u}} \int_{0}^{t} \epsilon_{\Delta \beta_{1}}(\tau) d \tau .
\end{align*}
$$

So, our strategy to find the error $\epsilon_{\beta_{1}}$ goes as follows. First, 350 we find an estimate of $\epsilon_{\dot{\beta}_{1}}$ from (19). Second, we obtain an 351 estimate of $\epsilon_{\Delta \beta_{1}}$ from (21). Then, we find $\epsilon_{\beta_{1}}$ from (23) above. 352 For the azimuth angle we follow exactly the same strategy. 353

First:

$$
\begin{equation*}
\epsilon_{\dot{\alpha}_{1}}(t)=\dot{\alpha}_{1}(t)-\widetilde{\alpha}_{1}=\dot{\alpha}_{1}(t)-\frac{\widetilde{\Delta \alpha_{1}}}{\Delta T_{u}} . \tag{24}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\epsilon_{\Delta \alpha_{1}}(t)=\Delta \alpha_{1}(t)-\dot{\alpha}_{1}(t) \Delta T_{u}+\epsilon_{\dot{\alpha}_{1}}(t) \Delta T_{u} \tag{25}
\end{equation*}
$$

Afterwards, the error in azimuth angle will be determined by:

$$
\begin{equation*}
\epsilon_{\alpha_{1}}(t)=\int_{0}^{t} \epsilon_{\dot{\alpha}_{1}}(\tau) d \tau=\frac{1}{\Delta T_{u}} \int_{0}^{t} \epsilon_{\Delta \alpha_{1}}(\tau) d \tau \tag{26}
\end{equation*}
$$

Finally, the error in the measured distance between the source and the sensor can be defined as:

$$
\begin{equation*}
\epsilon_{\rho}(t)=\rho(t)-\tilde{\rho}(t) \tag{27}
\end{equation*}
$$

Note that the estimate of distance $\tilde{\rho}$ according to this algorithm is obtained from (15), and it is not obtained by finding the increments from the previous measurement as is done with the azimuth and elevation angles. Thus, we suffice by finding the error in measuring the distance because the error in its rate of change will not be required.

To this end, we discuss how to obtain estimates of $\epsilon_{\dot{\beta}_{1}}$ and $\epsilon_{\dot{\alpha}_{1}}$. In order to do that, we keep in mind that the estimated increments $\widetilde{\Delta \beta}_{0}$ and ${\widetilde{\Delta \alpha_{0}}}_{0}$ in (16) depend on the real transformation matrix \mathbf{R} in (12) not its approximation $\widetilde{\mathbf{R}}$ in (14), as explained before. Besides, the transformation matrix \mathbf{R} results from the sequence of rotations between the real position (not the measured position) at time t and that at $t+$ ΔT_{u}. So, we need to distinguish between the previous real position defined by the coordinates $\left(\hat{\rho}, \hat{\alpha}_{1}, \hat{\beta}_{1}\right)=(\rho(t-$ $\left.\left.\Delta T_{u}\right), \alpha_{1}\left(t-\Delta T_{u}\right), \beta_{1}\left(t-\Delta T_{u}\right)\right)$, and the previous measured coordinates denoted, from here on, by ($\left(\widetilde{\hat{\rho}}, \widetilde{\hat{\alpha}}_{1}, \widetilde{\hat{\beta}}_{1}\right)$.

3.2 Error Realization

We have the recipe now to find the error. Let us assume that the elevation, azimuth and range of the sensor are changing at the rates $\dot{\beta}_{1}, \dot{\alpha}_{1}$ and $\dot{\rho}$, respectively. Then, we find the real increment $\widetilde{\Delta \beta}_{0}$ from (16) and (17) by using the real \mathbf{R} in (12) and substitute in (19).

Actually, even with Symbolic Math Toolbox in MATLAB, obtaining formulas for the above error would not be trivial, and the obtained formulas will be so long to be inserted here. However, with some trigonometry and some approximations one can obtain:

$$
\begin{align*}
\epsilon_{\dot{\beta}_{1}}(t)=\dot{\beta}_{1}(t) & -\frac{\sin \left(2 \Delta \beta_{1}\right) \cos \left(\Delta \alpha_{1}\right)}{\Delta T_{u} \kappa(t)} \tag{28}\\
& -\frac{\sin \left(2 \beta_{1}\right) \sin ^{2}\left(\Delta \alpha_{1}\right)}{2 \Delta T_{u} \kappa(t)},
\end{align*}
$$

where

$$
\begin{equation*}
\kappa(t)=2-3 \sin ^{2}\left(\Delta \beta_{1}\right)-3 \cos ^{2} \beta_{1} \cos ^{2} \hat{\beta}_{1} \sin ^{2}\left(\Delta \alpha_{1}\right), \tag{29}
\end{equation*}
$$

and

$$
\begin{align*}
& \Delta \beta_{1}(t)=\int_{t}^{t+\Delta T_{u}} \dot{\beta}_{1}(\tau) d \tau \tag{30}\\
& \Delta \alpha_{1}(t)=\int_{t}^{t+\Delta T_{u}} \dot{\alpha}_{1}(\tau) d \tau
\end{align*}
$$

Our simulations show that, when the rate of change of the 404 distance $\dot{\rho}$ is not so high, the factor $\kappa(t)$ above can be 405 approximated by 2 , and hence:

$$
\begin{align*}
\epsilon_{\dot{\beta}_{1}}(t)=\dot{\beta}_{1}(t) & -\frac{\sin \left(2 \Delta \beta_{1}\right) \cos \left(\Delta \alpha_{1}\right)}{2 \Delta T_{u}} \\
& -\frac{\sin \left(2 \beta_{1}\right) \sin ^{2}\left(\Delta \alpha_{1}\right)}{4 \Delta T_{u}} \tag{31}
\end{align*}
$$

which yields when inserted in (21):

$$
\begin{align*}
\epsilon_{\Delta \beta_{1}}(t)=\Delta \beta_{1}(t) & -\frac{\sin \left(2 \Delta \beta_{1}\right) \cos \left(\Delta \alpha_{1}\right)}{2} \tag{32}\\
& -\frac{\sin \left(2 \beta_{1}\right) \sin ^{2}\left(\Delta \alpha_{1}\right)}{4}
\end{align*}
$$

Finding the error in measuring the elevation angle $\epsilon_{\beta_{1}}(t) 412$ requires finding the integral in (23) analytically, and that is 413 tedious. However, numerical evaluation of that integral will 41 do the job, as will be shown in the simulations part. Analo- 415 gously, finding the real increment $\widetilde{\Delta \alpha_{0}}$ from (16) and (17) by 416 using the real \mathbf{R} in (12), substituting it in (24) and with the 417 help of Symbolic Math Toolbox in MATLAB, the error in 418 measuring azimuth rate of change reads:

$$
\begin{equation*}
\epsilon_{\dot{\alpha}_{1}}(t)=\dot{\alpha}_{1}(t)-\frac{2 \sin \left(\Delta \alpha_{1}\right) \cos \left(\Delta \beta_{1}\right)}{\Delta T_{u} \kappa(t)} . \tag{33}
\end{equation*}
$$

In fact, the formula above does not take into consideration 422 the problem of the error propagation explained earlier. To ${ }_{423}$ elaborate, the incremental angles $\Delta \alpha_{0}$ in the tracking frame 424 are transformed to $\Delta \alpha_{1}$ in the source frame by dividing by 425 $\cos \left(\beta_{1}\right)$ as shown in (17). However, the algorithm can not 426 use the real value of β_{1} because it is not available. Instead, 427 the algorithm must use the approximation $\widetilde{\beta}_{1}$. Thus, the 428 errors $\epsilon_{\dot{\alpha}_{1}}(t)$ and $\epsilon_{\Delta \alpha_{1}}(t)$ may explode when the error in mea- 429 suring the angle β_{1} accumulates. In order to take this accu- 430 mulation into consideration, we propose to modify the 431 formula in (33) into:

$$
\begin{equation*}
\epsilon_{\dot{\alpha}_{1}}(t)=\dot{\alpha}_{1}(t)-\frac{\sin \left(\Delta \alpha_{1}\right) \cos \left(\Delta \beta_{1}\right) \cos \left(\beta_{1}\right)}{\Delta T_{u} \cos \left(\widetilde{\beta}_{1}\right)} \tag{34}
\end{equation*}
$$

Note here also that the factor $\kappa(t)$ in the above formula is 435 approximated by 2 as was done in (31). Now, we need to 436 find an expression for $\widetilde{\beta}_{1}$ in terms of the real velocities and 437 angles. To this end, we use the error $\epsilon_{\beta_{1}}$ defined in (22). 438 Thus, the error $\epsilon_{\dot{\alpha}_{1}}(t)$ can be described by:

$$
\begin{equation*}
\epsilon_{\dot{\alpha}_{1}}(t)=\dot{\alpha}_{1}(t)-\frac{\sin \left(\Delta \alpha_{1}\right) \cos \left(\Delta \beta_{1}\right) \cos \left(\beta_{1}\right)}{\Delta T_{u} \cos \left(\beta_{1}-\epsilon_{\beta_{1}}\right)} . \tag{35}
\end{equation*}
$$

Inserting (35) in (25) results in:

$$
\begin{equation*}
\epsilon_{\Delta \alpha_{1}}(t)=\Delta \alpha_{1}(t)-\frac{\sin \left(\Delta \alpha_{1}\right) \cos \left(\Delta \beta_{1}\right) \cos \left(\beta_{1}\right)}{\cos \left(\beta_{1}-\epsilon_{\beta_{1}}\right)} . \tag{36}
\end{equation*}
$$

One more time, we use numerical integration to find the error $\epsilon_{\alpha_{1}}(t)$ in (26). Finally, the error ϵ_{ρ} can be determined by finding $\tilde{\rho}$ from (15) by using the real \mathbf{R} in (12) and substituting it in (27). With the help of Symbolic Math Toolbox in MATLAB and some algebraic manipulation, the error is described by:

$$
\begin{equation*}
\epsilon_{\rho}(t)=\rho(t)\left(1-\sqrt{[3] \frac{2}{\kappa(t)}}\right) \tag{37}
\end{equation*}
$$

Note that if we approximate $\kappa(t)$ by 2 as was done before, the error ϵ_{ρ} will be zero. When we present our simulations in the subsequent section, we will see that ϵ_{ρ} is much less than the other errors, as expected from the formula above. However, we keep the factor $\kappa(t)$ for the sake of completeness and to check our model.

The following can be stated about the given formulas:

1) As $\Delta T_{u} \rightarrow 0, \Delta \alpha_{1} \rightarrow \Delta \beta_{1} \rightarrow 0$, and thus it can be easily shown that:

$$
\begin{align*}
\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\dot{\beta}_{1}}(t) & =\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\Delta \beta_{1}}(t)=\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\beta_{1}}(t)= \\
\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\dot{\alpha}_{1}}(t) & =\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\Delta \alpha_{1}}(t)=\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\alpha_{1}}(t)= \tag{38}\\
\lim _{\Delta T_{u} \rightarrow 0} \epsilon_{\rho}(t) & =0
\end{align*}
$$

2) The errors $\epsilon_{\dot{\alpha}_{1}}, \epsilon_{\Delta \alpha_{1}}$ and $\epsilon_{\alpha_{1}}$ escape to $\pm \infty$ whenever $\beta_{1}-\epsilon_{\beta_{1}}= \pm(2 n+1) \frac{\pi}{2}$ because of the factor $\cos \left(\beta_{1}-\right.$ $\epsilon_{\beta_{1}}$) placed in the denominator in (35) to account for the error propagation.
3) The errors in the azimuth and elevation measurements do not depend on the distance $\rho(t)$.
4) The above formulas were obtained assuming that the measurements are updated every ΔT_{u}. In practice, longer time intervals can be experienced. Some time is needed for the data processing. Also some time gap is allocated for taking the measurements, especially if multiplexing is used to distinguish the outputs of the three excitation states, as explained before. Should more precise estimations of the errors be required, the above formulas can be modified by increasing ΔT_{u} to account for those time gaps, assuming that we can obtain good estimations of them.

3.3 Numerical Simulations

For simulation purposes, the real position of the sensor was modeled as follows:

$$
\left[\begin{array}{c}
\rho(t+\delta t) \tag{39}\\
\alpha_{1}(t+\delta t) \\
\beta_{1}(t+\delta t)
\end{array}\right]=\left[\begin{array}{c}
\rho(t) \\
\alpha_{1}(t) \\
\beta_{1}(t)
\end{array}\right]+\left[\begin{array}{c}
\dot{\rho}(t) \\
\dot{\alpha}_{1}(t) \\
\dot{\beta}_{1}(t)
\end{array}\right] \delta t,
$$

where δt was assumed one tenth of ΔT_{u} the update time that was assumed $\frac{1}{240} \mathrm{~s}$ as given in the specifications of Polhemus. The initial position of the sensor was assumed at $\left(\rho_{0}, \alpha_{0}, \beta_{0}\right)=(0.5,0,0)$. The measured position was found by the algorithm described in [17], specifically by using (15),

TABLE 2
Parameters Used for the Two Examples

	Example I	Example II	Example III
$A_{\alpha_{1}}(\mathrm{rad} / \mathrm{s})$	10π	0	8.5π
$B_{\alpha_{1}}(\mathrm{rad} / \mathrm{s})$	0	0	0
$A_{\beta_{1}}(\mathrm{rad} / \mathrm{s})$	0	0	1.5π
$B_{\beta_{1}}(\mathrm{rad} / \mathrm{s})$	0	10π	0
$A_{\rho}(\mathrm{m} / \mathrm{s})$	0.2	0.2	0.2
$B_{\rho}(\mathrm{m} / \mathrm{s})$	0.3	0.3	0.3

(16) and (17), by using the real transformation matrix \mathbf{R} in 492 (12). The initial measured position was assumed as same 493 as the real initial position to avoid the problem of the algo- 494 rithm initiation and convergence. The errors were mea- 495 sured by taking the difference between the real and the 496 measured positions. Then, the error $\epsilon_{\rho}(t)$ was calculated by 497 the proposed formula in (37). The error $\epsilon_{\beta_{1}}(t)$ was deter- 498 mined by integrating $\epsilon_{\dot{\beta}_{1}}(t)$ obtained from (28). Finally, the 499 error $\epsilon_{\alpha_{1}}(t)$ was obtained by integrating the error $\epsilon_{\dot{\alpha}_{1}}(t) 500$ found by using (35). Whether measured or calculated, the 501 errors $\epsilon_{\alpha_{1}}(t)$ and $\epsilon_{\beta_{1}}(t)$ can reach values much greater than 502 2π. So, we subtracted the complete rotations of $2 n \pi$ from 503 those errors. The rates of change $\dot{\alpha}_{1}(t), \dot{\beta}_{1}(t)$, and $\dot{\rho}(t)$ were 504 assumed to vary as:

$$
\begin{align*}
\dot{\alpha}_{1}(t) & =B_{\alpha_{1}}+A_{\alpha_{1}} \sin \left(A_{\alpha_{1}} t\right) \\
\dot{\beta}_{1}(t) & =B_{\beta_{1}}+A_{\beta_{1}} \sin \left(A_{\beta_{1}} t\right) \tag{40}\\
\dot{\rho}(t) & =B_{\rho}+A_{\rho} \sin (10 \pi t)
\end{align*}
$$

where $A_{\alpha_{1}}, B_{\alpha_{1}}, A_{\beta_{1}}, B_{\beta_{1}}, A_{\rho} B_{\rho}$ are constants. Three exam- 508 ples were solved. The values of the used constants in each 509 example are listed in Table 2. The examples listed the table 510 were chosen to illustrate the efficiency of the proposed for- 511 mulas in as different cases as possible within the allowed 512 page limits. In all examples the range ρ was assumed chang- 513 ing at the same rate. This range rate was assumed more 514 complicated (sinusoidal and DC) than the other rates. 515

The results obtained from solving Example I, Example II 516 and Example III are depicted in Figs. 1, 2 and 3, respectively. 517

3.3.1 Example I

In this example, $\dot{\beta}_{1}$ was assumed zero, as if the sensor does 519 not change its elevation. Thus, the error $\epsilon_{\beta_{1}}(t)$ was obtained 520 to be zero whether by measuring or by using the proposed 521 formulas. The azimuth rate was assumed pure sinusoidal. 522 As you can see in Fig. 1a, the calculated and measure errors 523 of the range ϵ_{ρ} coincide. Keep in mind that ϵ_{ρ} depends on 524 $\kappa(t)$ which is a function of the azimuth and elevation from 525 (29). Since the elevation was assumed constant, $\kappa(t)$ is a 526 function of the azimuth only which in turn was assumed 527 changing sinusoidally. That explains the sinusoidal nature 528 of the error ϵ_{ρ}. Further, the magnitude of ϵ_{ρ} is increasing 529 because it depends on $\rho(t)$ as you can see in (37), and $\rho(t) 530$ was assumed increasing. Moreover, we can note that the 531 magnitude of ϵ_{ρ} is insignificant, in general. The reason 532 behind that is the fact that $\kappa(t)$ is very close to 2 , and this 533 makes the error almost zero, as noted before. On the other 534 hand, Fig. 1 b depicts the error $\epsilon_{\alpha_{1}}(t)$. We can see that the 535 measured and calculated errors do not coincide completely. 536

Fig. 1. The errors obtained for Example I: (a) $\epsilon_{\rho}(t)$ (b) $\epsilon_{\alpha_{1}}(t)$. Measured (solid red) and calculated from the proposed formulas (dotted-dashed black). The measured and the calculated error $\epsilon_{\beta_{1}}(t)$ were obtained to be zero.

That is because the proposed formulas give an estimate of the error. However, considering the high rate of change assumed for the azimuth in this example, the results can be considered satisfactory, at least to predict the rate of change of the error.

3.3.2 Example II

In this example, the azimuth was assumed fixed $\left(\dot{\alpha}_{1}(t)=0\right)$, and hence the error $\epsilon_{\alpha_{1}}(t)$ was obtained to be zero whether by measuring or by using the proposed formulas. The elevation was assumed changing at a constant rate $\left(\dot{\beta}_{1}(t)=10 \pi\right)$, and the rate of the range was assumed as in Example I. Fig. 2a shows the measured and calculated error ϵ_{ρ}. One more time, both errors coincide. In addition, we notice that the error is changing steadily because $\dot{\beta}_{1}$ is constant. The increase in the magnitude is due to the increase of ρ, as explained earlier in Example I. On the other hand, Fig. 2b depicts the error $\epsilon_{\beta_{1}}(t)$. Obviously, the error is increasing steadily because $\dot{\beta}$ was assumed constant. The estimated error in this case does not coincide completely with the measured error, because the proposed formulas give merely an estimate of this error. However, we claim that the results are satisfactory, especially if the rate of change is not so high.

Fig. 2. The errors obtained for Example II: (a) $\epsilon_{\rho}(t)$ (b) $\epsilon_{\beta_{1}}(t)$. Measured (solid red) and calculated from the proposed formulas (dotted-dashed black). The measured and calculated error $\epsilon_{\alpha_{1}}(t)$ were obtained to be zero.

3.3.3 Example III

This example represents a worse situation in which the 560 position of the sensor changes in all coordinates, and the 561 rates of change $\dot{\alpha}_{1}(t)$ and $\dot{\beta}_{1}(t)$ were both assumed of sinu- 562 soidal nature. One can see in Fig. 3 that the measured errors 563 $\epsilon_{\rho}(t)$ and $\epsilon_{\beta_{1}}(t)$ almost coincide with the calculated values. 564 However, the measured and calculated values of the error 565 $\epsilon_{\alpha_{1}}(t)$ do not coincide, in general. Deeper look at Fig. 3b 566 shows that the traces of the measured and calculated error 567 $\epsilon_{\alpha_{1}}(t)$ differ only at the discontinuities or jumps. Those 568 jumps take place when the error changes abruptly by large 569 values or when it exceeds 2π because we subtract the full 570 rotations. This results from the error propagation phenome- 571 non explained earlier and modeled by the factor $\cos \left(\beta_{1}-572\right.$ $\epsilon_{\beta_{1}}$) in the denominator in (35). Thus, whenever the quantity 573 $\beta_{1}-\epsilon_{\beta_{1}} \rightarrow \pm(2 n+1) \frac{\pi}{2}$ from the left or the right, a jump will 574 occur. Apparently, the magnitude of each jump differs 575 between the calculated and the measured values because 576 the reciprocal of the factor $\cos \left(\beta_{1}-\epsilon_{\beta_{1}}\right)$ is so sensitive 577 around the singularities. Here, let us remember that the azi- 578 muth error $\epsilon_{\alpha_{1}}(t)$ is calculated by integrating the error $\epsilon_{\dot{\alpha}_{1}}(t) 579$ as in (26). The integration thus adds to the randomness of 580 those jumps. In order to illustrate the previous argument, 581 see Fig. 4 that shows the measured and the calculated val- 582 ues of the error in the rate of change of the azimuth angle 583

(b) $\epsilon_{\alpha_{1}}(t)$

(c) $\epsilon_{\beta}(t)$

Fig. 3. The errors obtained for Example III: (a) $\epsilon_{\rho}(t)$ (b) $\epsilon_{\alpha_{1}}(t)$ and (c) $\epsilon_{\beta_{1}}(t)$. Measured (solid red) and calculated from the proposed formulas (dotted-dashed black).
$\epsilon_{\dot{\alpha}_{1}}(t)$ for Example III. Obviosly, the measured and calculated values of the error $\epsilon_{\dot{\alpha}_{1}}(t)$ coincide except at the discontinuities around the singularities. This, in addition to the integration and randomness of the jump, explains the difference between the measured and calculated values of the error $\epsilon_{\alpha_{1}}(t)$.

In conclusion, we showed that the proposed formulas can predict the errors with very good accuracy. As the

Fig. 4. The error in the azimuth rate of change $\epsilon_{\dot{\alpha}_{1}}(t)$ obtained for Example III. Measured (solid red) and calculated from the proposed formulas (dotted-dashed black).
speed of the sensor increases, the results obtained from the 592 proposed formulas diverge from the real values, especially 593 around the singularities where random jumps are encoun- 594 tered. In any case, the proposed formulas can predict the 595 times of those jumps but not their magnitudes. Further- 596 more, we note that the accuracy of the used algorithm is not 597 as reliable as expected. To elucidate, note that the errors are 598 increasing with time and exploding in some moments 599 (around singularities) although the rates of change of the 600 azimuth and elevation angles were assumed in all examples 601 less than $10 \pi \mathrm{rad} / \mathrm{s}$, namely 5 Hz . However, one can thank 602 that this can be sufficient for biomechanical movements. ${ }_{603}$

4 Varying Orientation

In the previous section, we analyzed the errors in measuring 605 the position of the sensor assuming the orientation constant. 606 Unfortunately, quantifying the errors in orientation meas- 607 urements is more complicated than describing the errors in 608 position measurements. Assuming the position is constant 609 may look like a good start. Even with this assumption, 610 describing the errors in orientation measurements could be 611 infeasible not only due to the complexity of the transforma- 612 tion matrix \mathbf{R} in (12), but also due to the complex rules in 613 (18) that are used to transform the incremental measured 614 Euler angles from the tracking frame to the source frame 615 and the error propagation encountered with these rules. 616 However, two important results can be drawn about the ori- 617 entation measurements from the numerical simulations. 618 First, the errors in measuring the orientation is significant 619 even when the position is assumed fixed, and they can be 620 larger than the errors in measuring the position. Let us con- 621 sider, for example, a sensor which changes its orientation as: 622

$$
\begin{equation*}
\dot{\psi}_{1}(t)=\dot{\theta}_{1}(t)=\dot{\phi}_{1}(t)=2 \pi \sin (2 \pi t) \tag{41}
\end{equation*}
$$

$$
\left[\begin{array}{l}
\psi_{1}(t+\delta t) \tag{42}\\
\theta_{1}(t+\delta t) \\
\phi_{1}(t+\delta t)
\end{array}\right]=\left[\begin{array}{l}
\psi_{1}(t) \\
\theta_{1}(t) \\
\phi_{1}(t)
\end{array}\right]+\left[\begin{array}{l}
\dot{\psi}_{1}(t) \\
\dot{\theta}_{1}(t) \\
\dot{\phi}_{1}(t)
\end{array}\right] \delta t,
$$

Fig. 5. The errors of orientation measurements when the Euler angles change as in (41) and fixed position: (a) $\epsilon_{\psi_{1}}(t)$ (b) $\epsilon_{\theta_{1}}(t)$ and (c) $\epsilon_{\phi_{1}}(t)$.
where δt was assumed one tenth of ΔT_{u}, as before. The initial orientation of the sensor was assumed at $\left(\psi_{0}, \theta_{0}, \boldsymbol{\phi}_{0}\right)=$ $(0,0,0)$. The measured orientation was found by the algorithm described in [17], specifically by using (15), (16) and (18), by using the real transformation matrix \mathbf{R} in (12). The initial measured orientation was assumed as same as the real initial orientation. The errors were measured by taking the difference between the real and the measured orientations. Then, a complete rotation of 2π was subtracted
whenever the angles exceeded 2π. The results are shown in 638 Fig. 5. Apparently, the orientation errors are changing with 639 time because the Euler angles were assumed changing with 640 time. One can also note that the errors reach levels up to 641 approximately 2π rad although the rate of change of the ori- 642 entation angles was assumed $2 \pi \mathrm{rad} / \mathrm{s}$ i.e., 1 Hz .

The second observation that we could note from our sim- 644 ulations is that the orientation change does not affect the 645 accuracy of the proposed formulas to describe the errors in 646 the position measurements, as long as the rate of change of 647 the orientation is not so large. To illustrate that observation, 648 let us repeat Example III from the previous section by con- 649 sidering changing orientation as in (42). The results are 650 depicted in Fig. 6. Comparing Fig. 3 with Fig. 6, one can 651 note that the difference between the measured and the cal- 652 culated values of the errors is still small even when the ori- 653 entation changes. Note also that the error $\epsilon_{\dot{\alpha}_{1}}(t)$ at fixed 654 orientation from Fig. 3, that was repeated in Fig. 6b for com- 655 parison, is still close to the error $\epsilon_{\dot{\alpha}_{1}}(t)$ at changing orienta- 656 tion, if the jumps around the sigularities are neglected, as 657 explained before. Hence, we can say that the proposed for- 658 mulas of the errors in position measurements are accurate 659 even when the orientation changes, as long as the rate of 660 change of the orientation is slow.

5 Discussion and Further Work

A natural next step is to empirically verify the suggested 663 model. This could be done by forcing the EMTS through 664 known, dynamic trajectories and comparing the EMTS out- 665 put to the actual trajectories to quantify the dynamic errors. 666 While conduction of empirical verification is outside the 667 scope of this paper, in the following we give a brief outline 668 of a possible setup and procedure for carrying out this 669 experiment. Ideally, the apparatus used for the experimen- 670 tal investigation will allow the sensor to be moved around 671 the source in all six DOF separately as well as any combina- 672 tions thereof. A proposed solution is illustrated in Fig. 7. 673 Here, the sensor is attached to the tip of a rigid, non-metallic 674 pylon extending from the distal end of a 6-DOF robot 675 manipulator, said pylon being long enough to allow for the 676 planned sensor trajectories while continually observing the 677 EMTS manufacturer's recommended distances to metallic 678 objects (i.e., the robot).

At any time during the experiment the sensor's 6-DOF 680 position can be deduced from the robot's intrinsic joint sen- 681 sor outputs and an appropriate kinematic model. If unmod- 682 eled elastic deflection of the pylon or the robot itself is a 683 concern, the sensor can be equipped with lightweight, reflec- 684 tive markers and tracked with an optical motion tracking 685 system (Relevant manufacturers of optical motion tracking 686 systems are Vicon, OptiTrack, Qualisys and similar), which 687 will provide ground truth data for the sensor's actual move- 688 ments. Alternatively, or additionally, the EMTS sensor can 689 be equipped with inertial sensors to provide ground truth 690 data on acceleration and angular velocity. All ground truth 691 data can be combined in e.g., a Kalman filter to provide opti- 692 mally correct values. The resulting errors of this ground 693 truth system will decide the accuracy of the eventual experi- 694 mental verification, its magnitude depending on the exact 695 equipment selected; further details on this are outside the 696

(b) $\epsilon_{\alpha_{1}}(t)$ (The measured error at fixed orientation obtained in Fig. 3(b) is repeated here in red for comparison)

Fig. 6. The errors obtained for Example III when the orientation changes as in (41): (a) $\epsilon_{\rho}(t)$ (b) $\epsilon_{\alpha_{1}}(t)$ and (c) $\epsilon_{\beta_{1}}(t)$. Measured (solid blue) and calculated from the proposed formulas (dotted-dashed black)
scope of this paper, except to say that equipment of sufficient performance should be readily available. Any applicable calibration of the robot, EMTS and ground truth system should be completed prior to further data acquisition. The robot may then be programmed to put the sensor in different static 6-DOF positions to experimentally establish the overall

Fig. 7. Suggested experimental setup with robot (A), pylon (B), EMTS sensor (C) and source (D). Optional: reflective marker cluster (E), optical motion tracking cameras (F) and/or sensor mounted inertial sensors (not shown) for ground truth measurements. Components not to scale, number of cameras and markers arbitrary.
system's static accuracy and precision. Finally, the robot is 703 programmed to implement sensor movements such as those 704 simulated in Subsection III.C to experimentally quantify the 705 EMTS' dynamic errors. This can be repeated at different dis- 706 tances from the source and using a range of velocities and 707 accelerations to establish the errors' dependency on these 708 parameters.

6 Conclusion

In this work a theoretical analysis of the dynamic error in 711 position measurements by Polhemus EMTS was performed 712 based on their published algorithm as described in [17]. 713 There are several sources of errors in such systems. The cur- 714 rent work discussed one source of the error, in particular 715 the linearization. Formulas to estimate the error in position 716 measurements that results from the sensor motion at fixed 717 orientation in terms of the position and the speed of the sen- 718 sor in spherical coordinates were derived. Numerical simu- 719 lations were executed to compare the error estimated by the 720 proposed formulas with the error measured from the simu- 721 lations. The proposed formulas were given in spherical 722 coordinates, but the corresponding formulas in Cartesian 723 coordinates can be easily found if preferred. In addition, the 724 proposed formulas can be modified by increasing the 725 update time to account for other time gaps such as process- 726 ing time and multiplexing (if any) time, if more accurate 727 estimates are required. The results of our simulations 728 showed that the proposed formulas are accurate for the 729 error in distance and elevation measurements. The error in 730 azimuth measurement estimated by the proposed formulas 731 did not coincide with the measured one due to the error 732 propagation phenomenon that results in error explosion 733 around the singularities of the transfer function. However, 734 the proposed formulas could predict the singularities. 735 Besides, if the manufacturer measures to avoid the jumps 736 due to these singularities are known, the estimated error by 737 using the proposed formulas would coincided with the 738 measured error. Simulations of varying orientation were 739 also carried out and showed that the error in orientation 740 measurements is, in general, larger than the error in posi- 741 tion measurements.

Moreover, the numerical simulations showed that the 743 proposed formulas to estimate the error in position meas- 744 urements are still acceptable with changing orientation, as 745 long as the rates of change of the Euler angles are not large. 746

The proposed formulas predict that the error increases with motion, in general. In addition, they imply that the error explodes around the singularities of the transfer function. Those conclusions were confirmed by the simulations. This, however, does not mean that Polhemus EMTS are unreliable. Those conclusions imply that some preventive measures are taken to compensate for this type of error, e.g redundancy of sensors. Unfortunately, since the manufacturers are discreet about the details of their algorithm, we can not be sure. In any case, the proposed formulas can be used by the manufacturers to improve their system and by any researcher who is interested in a profound error analysis. Besides, this error model applies to any algorithm of motion detection that exploits similar method of linearization.

References

[1] A. M. Franz, T. Haidegger, W. Birkfellner, K. Cleary, T. M. Peters and L. Maier-Hein, "Electromagnetic tracking in medicine - a review of technology, validation and applications," IEEE Trans. Med. Imag., vol. 33, no. 8, pp. 1702-1725, Aug. 2014.
[2] K. Kobayashi, L. Gransberg, E. Knutsson and P. Nolen, "A new system for three-dimensional gait recording using electromagnetic tracking," Gait Posture, vol. 6, pp. 63-75, 1997.
[3] K. N. An, M. C. Jacobsen, L. J. Berglund, and E. Y. S. Chao, "Application of A magnetic tracking device to kinesiological studies," J. Biomechanics, vol. 21, no. 7, pp. 613-620, 1988.
[4] M. Field, D. A. Stirling, F. Naghdy, and Z. Pan, "Motion capture in robotics review," in Proc. IEEE Int. Conf. Control Autom., 2009, pp. 1697-1702.
[5] G. Welch and E. Foxlin, "Motion tracking: No silver bullet, but a respectable arsenal," IEEE Comput. Graphics Appl., vol. 22, no. 6, pp. 24-38, Nov./Dec. 2002.
[6] V. V. Kindratenko, "A survey electromagnetic position tracker calibration techniques," Virt. Reality, vol. 5, pp. 169-182, 2000.
[7] H. P. Kalmus, "A new guiding and tracking system," IRE Trans. Aerosp. Navigational Electronics, vol. ANE-9, no. 1, pp. 7-10, Mar. 1962.
[8] J. E. Lenz, "A review of magnetic sensors," in Proc. IEEE, vol. 78, no. 6, pp. 973-989, Jun. 1990.
[9] S. Bryston, "Measurement and calibration of static distortion of position data from 3D trackers," Proc. SPIE, Stereoscopic Displays Appl. III, vol. 1669, pp. 244-255, Jun. 1992.
[10] J. Hummel, M. Figl, M. Bax, R. Shahidi, H. Bergmann and W. Birkfellner, "Evaluation of dynamic electromagnetic tracking deviation," in Proc. SPIE Med. Imag., Vis. Image-Guided Procedures Model., 2009, vol. 7261.
[11] M. J. Murphy, R. Eidens, E. Vertatschitsch and J. N. Wright, "The effect of transponder motion on the accuracy of the Calypso electromagnetic localization system," Int. J. Radiat. Oncol. Biol. Phys., vol. 72, no. 1, pp. 295-299, 2008.
[12] M. A. Nixon, B. C. McCallum, W. R. Fright and N. B. Price, "The effects of metals and interfering fields on electromagnetic trackers," Presence, vol. 7, no. 2, pp. 204-218, Apr. 1998.
[13] F. H. Raab, "Quasi-static magnetic-field technique for determining position and orientation," IEEE Trans. Geosci. Remote Sens., vol. GE-19, no. 4, pp. 235-243, Oct. 1981.
[14] A.-K. Stensdotter, M. DinhoffPedersen, I. Meisingset, O. Vasseljen, and \varnothing. Stavdahl, "Mechanisms controlling human head stabilization during random rotational perturbations in the horizontal plane revisited," Physiol. Rep., vol. 4, no. 10, 2016, Art. no. e12745.
[15] [Online]. Available: http://polhemus.com/motion-tracking/alltrackers/liberty
[16] [Online]. Available: http://www.polhemus.com/
[17] F. H. Raab, E. B. Blood, T. O. Steiner and H. R. Jones, "Magnetic position and orientation tracking system," IEEE Trans. Aerosp. Electronic Syst., vol. AES-15, no. 5, pp. 709-718, Sep. 1979.
[18] J. B. Kuipers, "SPASYN-an electromagnetic relative position and orientation tracking system," IEEE Trans. Instrum. Meas., vol. IM-29, no. 4, pp. 462-466, Dec. 1980.

Mutaz Tuffaha received the BSc degree in elec- 815 trical engineering from the University of Jordan, 816 in 1999, the MSc degree in signal processing, 817 and another MSc degree in mathematics from 818 Linnaeus University, Sweden, in 2011 and 2012, 819 respectively, and the PhD degree in engineering 820 cybernetics from the the Norwegian University of 821 Science and Technology (NTNU), Norway, 2016. 822 Then, he joined the Department of Neuromedi- 823 cine and Movement Science, NTNU, as a post- 824 doc research fellow conducting his research on 825 motion tracking systems and gait analysis. Currently, He is an algorithm 826 developer at Indra Navia AS in Norway working on augmented landing 827 systems. His research interests include: control systems, signal proc- 828 essing, motion tracking, data analysis, optimization and GPS.

Øyvind Stavdahl received the MSc and PhD 830 degrees from the Department of Engineering Cyber- 831 netics, Norwegian University of Science and Tech- 832 nology (NTNU), Trondheim, Norway, in 1994 and 833 2002, respectively. He became a research scientist, 834 in 1998, and a senior scientist, in the Department of 835 Applied Cybernetics, SINTEF Information and Com- 836 munication Technology, in 2004, where he headed 837 the Motion Control research Group for a time. Fol- 838 lowing a period as a postdoctoral fellow and lecturer, 839 he became an associate professor in 2008, and pro- 840 fessor in the Department of Engineering Cybernetics, NTNU, in 2018. He 841 was a visiting fellow with the Institute of Biomedical Engineering, University of 842 New Brunswick, Fredericton, NB, Canada, in 2005, he was a visiting aca- 843 demic in Auckland Bioengineering Institute in Auckland, New Zealand, during 844 2017-2018. He was a co-founder of Cypromed, a Norwegian start-up com- 845 pany that pioneered the use of Li-ion batteries in upper-limb prostheses in the 846 late 1990'ies, and he is presently a co-founder and scientific advisor of the 847 subsea robotics company Eelume. His many research interests include reha- 848 bilitation engineering and biomimetic robotics.

Ann-Katrin Stensdotter receoived the PhD 850 degree in physiotherapy specializing in move- 851 ment science, from Umeå University, Sweden. 852 She is currently a full professor with the Norwe- 853 gian University of Science and Technology 854 (NTNU), and has been teaching basic science at 855 the physiotherapy program at NTNU, since 1997. 856 Her major work has been conducted in laboratory 857 settings investigating movement issues in various 858 conditions, with special focus on effects of long- 859 standing pain. Her research interest include 860 human movement science, human motor control using methods of 3D 861 kinematics, kinetics and electromyography in studies of movements, 862 and forces and muscle activity. The objective is foremost to understand 863 movement anomalies and derive underlying mechanisms that may 864 explain strategies or deficits in motor control such as postural control 865 and gait.
\triangleright For more information on this or any other computing topic, 867 please visit our Digital Library at www.computer.org/csdl.

