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The onset of surface instability during diffusion-driven

swelling of hydrogels depends on the kinetics of the swelling

process. Here, we outline a perturbation analysis frame-

work using a finite difference approach for calculating the

stability limit of swelling hydrogel plates with graded mate-

rial properties accounting for kinetic effects. The framework

is implemented as a Python routine which is made freely

available. Results obtained for bilayered hydrogel plates il-

lustrate that onset of instability occurs earlier in time and

at a lower global swelling ratio when kinetics is accounted

for compared to the homogeneous swelling case. This work

presents an accessible calculation tool for stability analysis

of swelling gels, providing input for the design of novel hy-

drogel systems.

1 Introduction

Hydrogels are polymeric networks that swell in an aque-

ous solution through the diffusion of water. As these ma-

terials can be tuned to change their level of swelling as

a response to characteristics of the surrounding solution

(e.g. pH, temperature, salinity) they hold great potential for

emerging applications like drug delivery systems [1–3], bio-

logical sensors [4,5], and responsive surfaces [6]. An intrigu-

ing feature of hydrogel materials is the possible occurrence

of geometrical surface instabilities as a response to compres-

sive stresses in the gel [7–10]. Swelling-induced compres-

sive stresses can arise due to geometrical confinements [7],

the transient nature of the diffusion process [11], or graded

material properties [9]. Where graded material properties

can be caused by a continuous variation in cross-linking den-
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sity through the thickness of the gel [9,12] or layering of the

material [13–15]. The successful design of hydrogel systems

relies on predictive methods for the stability of swelling gels

providing sound stability diagrams. Previous computational

studies on the instability of gels have made use of two main

methods, finite element (FE) simulations [16–21] or pertur-

bation analysis (PA) [22–27].

FE simulations have successfully been applied to study

geometrical instability of transiently swelling gels in a few

recent studies [19–21]. This method excels in its applicabil-

ity to general geometries and loading conditions, and use of

the method has demonstrated that the swelling kinetics can

alter both the level of swelling and the wavelength of the sur-

face pattern at the onset of instability. In particular, soft bi-

layered gels with a low stiffness ratio (i.e. the stiffness of the

upper layer relative to the lower layer) have been shown to

change their instability mode from a global long-wavelength

wrinkling pattern to localized creasing as the speed of the

swelling process is reduced [20,21]. Nevertheless, the appli-

cation of FE simulations of swelling gels in the design of new

hydrogel systems can be limited by its requirements of ad-

vanced software, highly skilled analysts, and computational

resources. Further, for simulations where localized creasing

defines the initial instability mode of the gel, mesh depen-

dence hinders accurate predictions for the level of swelling

at the onset of instability [17].

The PA methodology excels in computation efficiency

and availability, as it with relative ease can be implemented

in an open-source programming language like Python. The

PA framework is based on Biot’s linear perturbation analy-

sis of compressed elastomers [28] and was formulated for

swelling gel plates with homogeneous material properties by

Kang and Huang [22]. Wu et al. further extended the method

to account for plates with bilayered material properties [25]

and, using a subspace and a finite difference method, to gels

with an arbitrary gradient in the material properties [27].

However, previous studies using PA for swelling gels have

assumed a homogeneous chemical potential through the gel,

meaning that the swelling kinetics of the problem has not

been considered.

This work expands the PA methodology to account for

the kinetics of the swelling process, to obtain a simple, avail-

able, and accurate computational approach to predict the sta-

bility of swelling hydrogels. The presented work improves

on previously published studies in two main ways. i) We

include gradients in the chemical potential of the gel in the

PA method, hence accounting for the kinetics of diffusive

swelling. ii) We make use of a non-uniform node distribution

in the finite difference solution of the eigenvalue problem to

significantly improve the computational efficiency. Further,

the implementation of the framework described here is made

freely available [29].

The presented method is used to study the instability of

bilayered plates at the extremes of fast and slow diffusion.

Hence, the stability plots obtained for slow diffusion adds

new results compared to previous studies. Further, the pro-

posed method sheds light on the competition between short-

and long-wavelength instability modes for soft gels under

slow diffusion.

The article is organized as follows: In the following sec-

tion, we introduce the geometry and general characteristics

of the studied problem. In Section 3, we outline the per-

turbation analysis method using a finite difference approach

with a non-uniform node spacing and discuss its implemen-

tation in Python. Section 4 presents a demonstration of the

proposed framework giving results for a bilayered structure.

In the end, Section 5 draws the main conclusions from the

study.

2 Problem definition

Consider an infinitely wide 2D plate of a hydrogel ma-

terial having a height H at reference time t0. The plate is rep-

resented in the reference coordinate system X, as schemat-

ically shown in Fig. 1a. At its bottom (X2 = 0), the gel

is fixed to a rigid substrate providing an in-plane constraint.

The upper surface (X2 = H) can swell or shrink freely in the

out-of-plane direction. The node numbering indicated in Fig.

1a will come to use in Section 3.4 and beyond. For further

calculations, we introduce the normalized coordinate

X̄2 = X2/H (1)

We consider the gel to be in chemical equilibrium with its

surroundings at t0, meaning that it has a homogeneous nor-

malized chemical potential µ̄0. Then, assume that from time

t0 to t1 the normalized chemical potential of the solvent

change linearly from µ̄0 to µ̄1 with the upper surface of the

gel being in equilibrium with the solvent. This will cause a

gradient of the chemical potential through the thickness of

the gel, which drives the diffusion of water into the plate.

This diffusion of water causes swelling of the gel, giving it a

new height h, as shown in Fig. 1b which represents the gel in

the current coordinate system x (the surface perturbation in

the figure will be further discussed in Section 3.3). The kinet-

ics of the swelling process will depend on the initial height

H, the time of the chemical potential increase tr = t1−t0, and

the apparent diffusion coefficient of the solvent molecules D

(having dimensions of m2/s).

To relate the three relevant parameters we define the di-

mensionless ramping time

t̄r = tr/τ (2)

where the characteristic swelling time τ is defined as τ =
H2/D. The swelling kinetics of an arbitrary gel will then

be within the limits of t̄r = ∞ and t̄r = 0. First, if t̄r = ∞
the whole gel will have time to equilibrate for all values of

the chemical potential, hence, there will be a homogeneous

potential through the thickness of the gel. Second, if t̄r = 0

we have an abrupt change in the boundary condition, and

there will be an inhomogeneous chemical potential through

the gel. Figure 2 illustrates the difference between the two

limiting cases, showing the chemical potential through the
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Fig. 1: Sketch of an infinitely wide hydrogel plate in (a) the reference configuration and (b) a swollen configuration with the

dotted line indicating a perturbation of wavelength Λ. The lower boundary of the gel is attached to a rigid substrate while

the upper surface is exposed to a solvent.

thickness of the gel at various time steps for t̄r = ∞ (Fig.

2a) and t̄r = 0 (Fig. 2b) given the chemical potential values

µ̄0 =−2 and µ̄1 = 0 (the method for calculating the potential

profiles and the values chosen for µ̄0 and µ̄1 are discussed

further in Section 3.2). Note that the time t (being zero at t0)

is normalized by the ramping time tr for the case of t̄r = ∞
and the characteristic swelling time τ for t̄r = 0.

We emphasize that the diffusion coefficient D is given

by the hydrogel and solvent combination and typically lies

in the range of 10−9 − 10−10 m2/s [30]. Hence, for a given

gel and solvent type the value of t̄r can be changed by altering

the ramping time of the chemical potential tr or the initial gel

height H. In the following, we will develop a methodology to

calculate the stability of swelling gels for the limiting cases

of t̄r = ∞ and t̄r = 0.

3 Methods

3.1 Constitutive formulation

To develop a perturbation analysis framework for

swelling hydrogel plates, we first need a constitutive descrip-

tion of the process of confined swelling. The constitutive

modeling of hydrogel behavior applied herein is based on

the work by Hong et al. [31, 32]. The free-energy function

for the hydrogel is assumed to originate from the stretch-

ing of the polymer network and the mixing of the polymer

and the solvent molecules, and the two contributions add up

to [33–35]

W (F,C) =
1

2
NkT [FiKFiK −3−2ln(detF)]+

kT

v

[

vC ln

(

vC

1+ vC

)

+
χvC

1+ vC

] (3)

where N is the number of polymeric chains per reference

volume, kT is the temperature in the unit of energy, F is

the deformation gradient tensor, v is the volume per sol-

vent molecule, C is the nominal concentration of solvent

molecules, and χ is the Flory-Huggins parameter. By assum-

ing that both the polymer network and the solvent molecules

retain their volumes through the swelling process, we find

that the volume increase of the gel relies on an increase in

the number of solvent molecules inside the gel, hence we

can write

J = detF = 1+ vC (4)

where J denotes the volume ratio of the gel. Through a Leg-

endre transformation, we introduce a new potential Ŵ to en-

sure the deformation gradient F and the chemical potential µ

to be the two independent variables of the model

Ŵ (F,µ) =W (F,C)−
µ

v
(J−1) (5)

The nominal stress components in the gel can then be found

through

siK =
∂Ŵ (F,µ)

∂FiK

= NkT
(

FiK −HiK+

1

Nv

[

J ln

(

1−
1

J

)

+1+
χ

J
−

µ

kT
J

]

HiK

)

(6)

where H = F−T . For the problem presented in Fig. 1, the

plate is under constrained swelling, with the deformation

gradient having the non-zero components F11 = F33 = 1 and

F22 = λ, resulting in J = λ. The nominal out-of-plane stress

component can then be written as

s22 = NkT

[

λ−
1

λ
+

1

Nv

(

ln

(

1−
1

λ

)

+
1

λ
+

χ

λ2
− µ̄

)]

(7)

where we have introduced the normalized chemical potential

as µ̄ = µ/kT . If the gel is traction free at its upper surface,

static equilibrium gives s22 = 0 and we get a non-linear rela-

tion between the swelling ratio and the chemical potential

Nv

(

λ−
1

λ

)

+ ln

(

1−
1

λ

)

+
1

λ
+

χ

λ2
= µ̄ (8)

The methodology for calculating the chemical profiles

through time for t̄r = ∞ and t̄r = 0, as illustrated in Fig. 2, is

the focus of the following section.
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Fig. 2: The profile of the normalized chemical potential through the thickness of the gel at various times for the limiting cases

(a) t̄r = ∞ and (b) t̄r = 0 (profiles obtained using the method outlined in Section 3.2). Note that the time step t is normalized

by the ramping time tr in (a) and by the characteristic swelling time τ in (b).

3.2 Chemical potential profiles

For t̄r = ∞, the chemical potential through the thick-

ness of the plate is simply assumed to be homogeneous at all

times. The chemical potential is set to increase from µ̄0 =−2

to µ̄1 = 0, where µ̄0 = −2 corresponds to an out-of-plane

swelling of λ ≈ 1.04 (with the exact value depending on the

gel parameters Nv and χ).

For t̄r = 0, on the other hand, the profile of the chemical

potential through the thickness of the plate must be calcu-

lated as a function of time for each set of material parame-

ters (Nv and χ). From our previous FE simulations [21] we

find that the flow of chemical potential is one dimensional

up until the onset of instability. Hence, for the present study

(which scope is limited to predictions of the onset of insta-

bility) we consider the flow of solvent only in the direction

of the thickness of the gel and adopt the modeling procedure

outlined by Hong et al. [31] and Bouklas and Huang [36].

Note that for studies of the post-buckling regime a multidi-

mensional flow should be accounted for.

As the material properties are defined in the reference

configuration, all equations are related to the normalized

through-thickness coordinate X̄2. Further, as the dry state

of the gel yields a singular set of equations, we assume that

the plate initially is in an equilibrium state with a homoge-

neous normalized chemical potential of µ̄0, and an isotropic

deformation gradient F0 = λ0I. From this initial state, the

plate is confined from in-plane expansion but can still freely

swell out-of-plane. The chemical potential is then abruptly

changed to µ̄1 = 0 at the upper surface (i.e. t̄r = 0) and the

gel gradually expands in the X2-direction giving a deforma-

tion gradient with the non-zero elements F11 = F33 = λ0 and

F22 = λλ0 where λ = λ(X̄2, t). The swelling ratio of the gel

can then be expressed as J = λ3
0λ.

It should be noted that the gradient in chemical potential

through the thickness of a gel at a given time, and hence the

stability limits obtained, would depend on the value of the

homogeneous chemical potential µ̄0. In this work, we set

µ̄0 = −2 to obtain an equilibrium state close to the dry state

of the gel, with λ0 ≈ 1.01 (the exact value depending on the

gel parameters Nv and χ).

A kinetic law for the gel can be written as

JK =−MKL

∂µ

∂XL

(9)

where J(X, t) is the nominal flux vector for the solvent

molecules (not to be mixed with the volume ratio J), while

the mobility tensor M is symmetric and positive-definite.

The diffusion coefficient of the solvent molecules D is taken

as isotropic and independent of the deformation gradient F

and the concentration of solvent molecules C. It can be

shown that the mobility tensor can be written as [21]

MKL =
D

vkT
HiKHiL (detF−1) (10)

From the condition of molecular incompressibility (Eqn.

(4)), we can express the nominal concentration of solvent

molecules as

C (X̄2, t) =
1

v
(J−1) =

1

v

(

λ3
0λ−1

)

(11)

By combining Eqn. (9) and (10) the nominal flux in the X̄2-

direction can be written as

J2 =−M22
∂µ

∂X̄2

=−
D

v

(

λ0

λ
−

1

λ2λ2
0

)

∂µ̄

∂X̄2
(12)

where we can express
∂µ̄

∂X̄2
through Eqn. (8) and use of the
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chain rule

∂µ̄

∂X̄2

=
∂

∂X̄2

(

Nvλ

λ0
+ ln

J−1

J
+

1−Nv

J
+

χ

J2

)

=

(

Nv

λ0
+

1
(

λ3
0λ−1

)

λ
+

Nv−1

λ3
0λ2

−
2χ

λ6
0λ3

)

∂λ

∂X̄2

(13)

The conservation of solvent molecules requires

∂C

∂t
=−

∂J2 (X̄2, t)

∂X̄2

(14)

where ∂C
∂t

can be obtained using Eqn. (11)

∂C

∂t
=

λ3
0

v

∂λ

∂t
(15)

Finally, by inserting Eqn. (13) into (12) we can write Eqn.

(14) as

∂λ

∂t
=

D

λ3
0

∂

∂X̄2

((

λ0

λ
−

1

λ2λ2
0

)

(

Nv

λ0
+

1
(

λ3
0λ−1

)

λ
+

Nv−1

λ3
0λ2

−
2χ

λ6
0λ3

)

∂λ

∂X̄2

)
(16)

Solving Eqn. (16), we obtain the stretch λ as a function

of the coordinate X̄2 and time t. The corresponding chemical

potential µ̄(X̄2, t) can be found through the relation in Eqn.

(8). We emphasize that the material properties of the gel will

impact the chemical potential profile through the thickness,

hence, a unique chemical profile must be calculated for each

set of gel parameters.

3.3 Perturbation analysis

Based on the works by Kang and Huang [22] and Wu

et al. [25, 27] we outline an eigenvalue problem that can be

solved using a finite difference method. We introduce a small

2D perturbation from the swollen state given by the displace-

ments u1 and u2 (illustrated with the dotted line shown in Fig.

1b). The deformation gradient tensor of the perturbed state

F̃ can be written as

F̃ =







1+ ∂u1
∂x1

λ ∂u1
∂x2

0

∂u2
∂x1

λ
(

1+ ∂u2
∂x2

)

0

0 0 1






(17)

Retaining only linear terms of the perturbation, the volume

ratio of the perturbed state is approximated by

J̃ = det F̃ ≈ λ

(

1+
∂u1

∂x1
+

∂u2

∂x2

)

(18)

Using the relation in Eqn. (8) to eliminate µ̄ in Eqn. (6)

and again neglecting higher-order terms in the perturbation,

the four in-plane nominal stress components of the perturbed

state can be approximated by

s11 ≈ NkT

[

(1+λξ)
∂u1

∂x1
+λ(ξ−λ)

∂u2

∂x2
−λ2 +1

]

(19)

s22 ≈ NkT

[

(ξ−λ)
∂u1

∂x1
+(ξ+λ)

∂u2

∂x2

]

(20)

s12 ≈ NkT λ

(

∂u1

∂x2
+

∂u2

∂x1

)

(21)

s21 ≈ NkT

(

λ2 ∂u1

∂x2
+

∂u2

∂x1

)

(22)

where ξ = 1
λ + 1

Nv

(

1
λ−1

− 1
λ −

2χ
λ2

)

. In the absence of body

forces, mechanical static equilibrium requires

∂s11

∂x1
+λ

∂s12

∂x2
= 0 (23)

∂s21

∂x1
+λ

∂s22

∂x2
= 0 (24)

Combining the perturbed stress components (eqs (19)-

(22)) and the equilibrium equations (eqs (23) and (24)) gives

two coupled differential equations

(1+λξ)
∂2u1

∂x2
1

+λ2 ∂2u1

∂x2
2

+λξ
∂2u2

∂x1∂x2

+ f1 (x2)

(

∂u1

∂x2
+

∂u2

∂x1

)

= 0

(25)

∂2u2

∂x2
1

+λ(ξ+λ)
∂2u2

∂x2
2

+λξ
∂2u1

∂x1∂x2

+ f2 (x2)
∂u1

∂x1
+ f3 (x2)

∂u2

∂x2
= 0

(26)

where f1 (x2) =
λ

Nv
d

dx2
(λNv), f2 (x2) =

λ
Nv

d
dx2

[Nv(ξ−λ)],

and f3 (X̄2) =
λ

Nv
d

dx2
[Nv(ξ+λ)]. We now assume the two

perturbations to be harmonic

u1 =U1(x2)sinωx1 and u2 =U2(x2)cosωx1 (27)
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where ω is the wavenumber of the perturbations, and we can

write the two equilibrium equations (eqs (25) and (26)) as

λ2 d2U1

dx2
2

+ f1
dU1

dx2
−ω2 (1+λξ)U1

−ωλξ
dU2

dx2
−ω f1U2 = 0

(28)

ωλξ
dU1

dx2
+ω f2U1 +λ(ξ+λ)

d2U2

dx2
2

+ f3
dU2

dx2
−ω2U2 = 0

(29)

As the material parameters of the gel are given in the ref-

erence coordinate system, we re-write the equilibrium equa-

tions in terms of X̄2, noting that x2=λX2 = HλX̄2 giving

d

dx2
=

1

Hλ

d

dX̄2

(30)

and

d2

dx2
2

=
1

H2λ2

d2

dX̄2
2

−
1

H2λ3

dλ

dX̄2

d

dX̄2

(31)

The final equilibrium equations can then be written as

d2U1

dX̄2
2

+λ−2

[

f1 (X̄2)−λ
dλ

dX̄2

]

dU1

dX̄2

−ω2H2 (1+λξ)U1

−ωHξ
dU2

dX̄2

−ωHλ−1 f1 (X̄2)U2 = 0

(32)

ωHξ
dU1

dX̄2

+ωHλ−1 f2 (X̄2)U1 +λ−1 (ξ+λ)
d2U2

dX̄2
2

+

λ−2

[

f3 (X̄2)− (ξ+λ)
dλ

dX̄2

]

dU2

dX̄2

−ω2H2U2 = 0

(33)

where f1 (X̄2) =
λ

Nv
d

dX̄2
(λNv), f2 (X̄2) =

λ
Nv

d
dX̄2

[Nv(ξ−λ)],

and f3 (X̄2) =
λ

Nv
d

dX̄2
[Nv(ξ+λ)]. We note that ωH can be

considered a dimensionless wavenumber.

To complete the eigenvalue problem, we must include

the boundary conditions at the lower and upper surface. The

lower surface of the gel is attached to a rigid substrate giving

U1 (X̄2 = 0) =U2 (X̄2 = 0) = 0 (34)

The upper surface is traction free which implies that the out-

of-plane stress components must be zero

s22 (X̄2 = 1) = s12 (X̄2 = 1) = 0 (35)

which by Eqn. (20) and (21) gives

(ξ−λ)
∂u1

∂x1
+(ξ+λ)

∂u2

∂x2
=

ωHλ
ξ−λ

ξ+λ
U1 +

∂U2

∂X̄2

= 0, for X̄2 = 1

(36)

and

∂u1

∂x2
+

∂u2

∂x1
=

∂U1

∂X̄2

−ωHλU2 = 0, for X̄2 = 1 (37)

3.4 Finite difference discretization

To solve the eigenvalue problem outlined in Section 3.3

while accounting for spatial variations in both material prop-

erties and chemical potential, we make use of the finite dif-

ference method. In contrast to Wu et al. [27], we formu-

late the equations for grids with non-uniform node spacing

to improve computational efficiency. The grid consists of m

nodes, numbered from 1 at the fixed bottom surface to m at

the top free surface (see Fig. 1a). The central difference

formulae for the first and second derivative of U i
k (where i

denotes the node number, k=1,2) can then be written as

dU i
k

dX̄2

≈ αi
1U i−1

k +βi
1U i

k + γi
1U i+1

k (38)

d2U i
k

dX̄2
2

≈ αi
2U i−1

k +βi
2U i

k + γi
2U i+1

k (39)

By further defining X̄ i
2 as the coordinate of node i and intro-

ducing ∆i = X̄ i+1
2 − X̄ i

2 as the node spacing (see Fig. 1a), it

can be shown that the best set of parameters (α, β, and γ)

is [37]

αi
1 =−

∆i

∆i−1 (∆i−1 +∆i)

γi
1 =

∆i−1

∆i (∆i−1 +∆i)

βi
1 =−αi

1 − γi
1

(40)

αi
2 =

2

∆i−1 (∆i−1 +∆i)

γi
2 =

2

∆i (∆i−1 +∆i)

βi
2 =−αi

2 − γi
2

(41)

It can be noted that this approach gives a second-

order accuracy of the first derivative, while the second-order
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derivative in the general case is first-order accurate. How-

ever, if ∆i−1 = ∆i, meaning we have a uniform node spac-

ing, the coefficients in Eqn. (41) would give second-order

accuracy. Hence, the accuracy obtained with non-uniformly

spaced grids depends on the ratio between ∆i−1 and ∆i, with

improved accuracy for ratios close to unity.

By use of the central difference formulae to node i we

can write the normalized equilibrium Eqn. (32) and (33) in

the format

Ai
1U i−1

1 +Ai
2U i−1

2 +Ai
3U i

1

+Ai
4U i

2 +Ai
5U i+1

1 +Ai
6U i+1

2 = 0
(42)

Bi
1U i−1

1 +Bi
2U i−1

2 +Bi
3U i

1

+Bi
4U i

2 +Bi
5U i+1

1 +Bi
6U i+1

2 = 0
(43)

From the boundary condition in Eqn. (34) we have

U1
1 =U1

2 = 0 (44)

For i = 2,3,4, ...,m we can find

Ai
1 = αi

2 +
αi

1

(λi)2

[

f1 (X̄2)−λi dλi

dX̄2

]

Ai
2 =−αi

1ωHξi

Ai
3 = βi

2 +
βi

1

(λi)2

[

f1 (X̄2)−λi dλi

dX̄2

]

−ω2H2
(

1+λiξi
)

Ai
4 =−βi

1ωHξi −
ωH

λi
f1 (X̄2)

Ai
5 = γi

2 +
γi

1

(λi)2

[

f1 (X̄2)−λi dλi

dX̄2

]

Ai
6 =−γi

1ωHξi

(45)

and

Bi
1 = αi

1ωHξi

Bi
2 =

αi
2

λi

(

ξi +λi
)

+
αi

1

(λi)2

[

f3 (X̄2)−
(

ξi +λi
) dλi

dX̄2

]

Bi
3 = βi

1ωHξi +
ωH

λi
f2 (X̄2)

Bi
4 =

βi
2

λi

(

ξi +λi
)

+
βi

1

(λi)2

[

f3 (X̄2)−
(

ξi +λi
) dλi

dX̄2

]

−ω2H2

Bi
5 = γi

1ωHξi

Bi
6 = γi

2

1

λi

(

ξi +λi
)

+
γi

1

(λi)2

[

f3 (X̄2)−
(

ξi +λi
) dλi

dX̄2

]

(46)

For the uppermost node i = m, the amplitudes at the

ghost node Um+1
k , k = 1,2, must be solved for. Hence, we

set the distance between the surface and the ghost node to

∆m = ∆m−1, and use central differences around the boundary

condition in Eqn. (36) and (37)

Um+1
1 =Um−1

1 +C1Um
2 (47)

Um+1
2 =Um−1

2 +C2Um
1 (48)

where C1 =
2

∆m−1 ωλm and C2 = − 2
∆m−1 ωλm ξm−λm

ξm+λm . The two

discretized equations for the top surface node can then be

rewritten as

(Am
1 +Am

5 )Um−1
1 +(Am

2 +Am
6 )Um−1

2

+(Am
3 +Am

6 C2)Um
1 +(Am

4 +Am
5 C1)Um

2 = 0
(49)

(Bm
1 +Bm

5 )Um−1
1 +(Bm

2 +Bm
6 )Um−1

2

+(Bm
3 +Bm

6 C2)Um
1 +(Bm

4 +Bm
5 C1)Um

2 = 0
(50)

Equations (42) and (43) can be organized as

KU = 0 (51)

where the matrix K(ωH,Nv(X̄2) ,χ(X̄2) ,λ(X̄2, t)) have the

dimensions (2(m−1)×2(m−1)) and consists of the coeffi-

cients A and B for each node while the vector U is organized

as U =
[

U2
1 ,U

2
2 , ...,U

m
1 ,Um

2

]T
. The stability of the gel is gov-

erned by the determinant of the matrix K and instability will

occur when

detK = 0 (52)

We note that the eigenvalue problem outlined in this sec-

tion needs the stretch in each node λi as input. This stretch

value is calculated using Eqn. (8) with the material prop-

erties and the chemical potential obtained in Section 3.2 as

input.

3.5 Spatial discretization

For t̄r = 0, the chemical potential profile will display

sharp gradients close to the upper surface of the gel at the

beginning of the swelling process. This means that a short

inter-node distance is needed in this region to obtain con-

verged results. Close to the lower surface, on the other hand,

there are small gradients, and a larger node spacing can be

used. Hence, to improve the computational efficiency, the

node spacing can be gradually increased towards the bottom
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of the gel without significant loss of accuracy (see the con-

vergence study in the supplemental material). We assign the

uppermost node spacing ∆m−1 and calculate the following

inter-node distances by the algorithm

∆i =

{

∆m−1 if X̄2 ≥ (1−ρ)

∆i+1 (1+α) if X̄2 < (1−ρ)
(53)

working from i = m− 2 to i = 1. The parameter ρ is a user

input that defines a fraction of the gel with uniform node

spacing. It can be noted that α = 0 gives a uniform grid

throughout the gel. To ease the comparison between uniform

and non-uniform grids we introduce m∗ =
(

1/∆m−1
)

+1, be-

ing a measure of the inter-node distance close to the upper

surface. For the case of a uniformly spaced grid, m∗ would

equal the number of nodes in the grid (i.e. m∗ =m for α= 0).

Further, two grids with the same m∗ value will have the same

node spacing in the uniform part of the grid, although the

total number of nodes m might differ.

3.6 Implementation

The framework outlined in the previous sections has

been implemented in Python and the code is made freely

available [29]. The stability criterion in Eqn. (52) is solved

using a bisection method in SciPy, searching for a critical

time step tc > 0 where the chemical profile µ̄(X̄2, tc) causes

instability. This search is performed for a discrete set of the

dimensionless wavenumber ωH for each set of material pa-

rameters Nv(X̄2) and χ(X̄2). The critical global out-of-plane

stretch λc apparent at the onset of instability is approximated

from the local stretch in each node λi
c through

λc =
h

H
≈

m

∑
i=1

∆i +∆i−1

2
λi

c (54)

where ∆i = X̄ i+1
2 − X̄ i

2 is a dimensionless number and ∆0 =
∆m = 0.

So, one critical stretch value can be found for each dis-

crete value of the dimensionless wavenumber. As the global

stretch of the gel is increasing monotonically during the

swelling process, the smallest critical stretch value yields the

state of the gel at the onset of instability. Hence, the global

out-of-plane stretch of a gel at instability λi is found from

λi = min(λc) (55)

A computational pipeline for the implementation can be

found in the supplemental material.

3.7 Convergence

A vital feature of a computational framework as de-

scribed here is the convergence of the method for a refine-

ment of the discretization. The proposed procedure was

found to yield converged results for the mesh parameters

m∗ = 5000, α = 0.01 and ρ = 0.12 for t̄r = ∞, and m∗ =
40000, α = 0.01 and ρ = 0.12 for calculations with t̄r = 0.

Hence, these mesh parameters are used for all presented re-

sults.

A detailed discussion on the convergence of the code can

be found in the supplemental material.

4 Results and discussion

4.1 Preliminaries

Due to the availability of benchmark results, we choose

to demonstrate the framework outlined in Section 3 for bilay-

ered plates. In such plates, the cross-linking density through

the thickness is given as

N (X̄2) =

{

Nb if X̄2 < (1−η)

Nt if X̄2 ≥ (1−η)
(56)

where Nt and Nb are the cross-linking densities in the top and

bottom layers of the gel respectively. The parameter η rep-

resents the thickness of the top layer as a fraction of the total

gel thickness and is the following set to 0.1. We introduce

the stiffness ratio as

n = Nt/Nb (57)

and limit the scope of this study to 1 < n ≤ 20, giving hard-

on-soft configurations in the low to moderate stiffness ra-

tio range. The parameter χ is assumed constant through the

plate.

We study the stability of gels for the two limiting cases

of the normalized ramping time of the boundary condition,

t̄r = ∞ and t̄r = 0. For the latter case, the profile of the chem-

ical potential through the thickness of the gel is calculated

for the given set of material parameters by solving Eqn. (16)

with respect to time and calculating the corresponding chem-

ical potential profiles before the perturbation analysis is per-

formed. For the presentation of the results, we introduce the

normalized wavelength of the perturbation

Λ̄ = Λ/H (58)

where Λ = 2π/ω is the wavelength in dimensional units.

4.2 Effect of swelling kinetics

4.2.1 t̄r = ∞ vs t̄r = 0

To highlight the effect the swelling kinetics has on the

state of the gel at the onset of instability, Fig. 3a shows

the resulting stability plots for t̄r = ∞ and t̄r = 0 with the

material parameters Nbv = 0.01, n = 2, and χ = 0.5. The

markers in the plot indicate the swelling ratio and normal-

ized wavelength where instability of the gel would initiate

(i.e. λi and Λ̄i). The plot demonstrates that the kinetics
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of the swelling process can play an important role for the

stability diagrams of the gels with instability occurring at a

significantly lower swelling ratio and wavelength for t̄r = 0

compared with t̄r = ∞.

To showcase the significance of the upper and lower

limit solution provided by the PA approach, λi from t̄r = ∞
and t̄r = 0 are compared with the FE results from Ilseng et

al. [21] in Fig. 3b. This illustrates how the upper and lower

bound PA results represent the plateau levels obtained for

large and small values of t̄r in the FE simulations. It should

be noted that the range in the normalized ramping time where

the transition between the two plateau levels happens de-

pends on the stiffness properties of the gel, as discussed

in [21].

For low values of t̄r, the FE simulations can be seen to

predict a slightly lower λi than the PA method. This dis-

crepancy between the methods could stem from the fact that

the PA method calculates the point of onset of instability di-

rectly, while in the FEM approach the onset of instability is

estimated based on the topology of the gel surface [21].

4.2.2 Effect of stiffness ratio

To illustrate how the effect of the swelling kinetics de-

pends on the stiffness ratio of a bilayered gel, Fig. 4 presents

(a) the swelling ratio at instability, (b) the normalized wave-

length at instability, and (c) the dimensionless time to insta-

bility for stiffness ratios between 1.5 and 20.

The stability plot shown in Fig. 4a illustrates how the

swelling ratio at instability drops for increasing stiffness ra-

tios for both the limiting cases, t̄r = ∞ and t̄r = 0. The shaded

area between the two curves indicates the range in which in-

stability can occur for a gel with a specific stiffness ratio,

depending on the timescale of the diffusion process (i.e. the

value of t̄r). For a fast diffusion process, instability will oc-

cur close to the blue solid line, while a slow diffusion process

would lead to instability close to the dashed red line. From

the plot, it can be concluded that the effect of the swelling

kinetics for the swelling ratio at instability is reduced with

larger stiffness ratios. The results obtained with the pre-

sented method are also compared with FE results from [21]

for t̄r = 10−4 and t̄r = 106 at n values of 2, 5, and 20. The two

methods shows a good correspondence, although the PA re-

sults for t̄r = 0 are slightly above the FE results for t̄r = 10−4,

as already discussed for n = 2 in Section 4.2.1.

The change in the normalized wavelength at instability

with a change in stiffness ratio is shown in Fig. 4b. We see a

clear trend of increasing wavelength for increasing stiffness

ratio for the case of t̄r = 0. For t̄r = ∞, on the other hand,

the wavelength first decreases as the stiffness ratio goes from

1.5 to 3, before it increases as the stiffness ratio is increased

further. The slightly irregular trend of the two curves are

caused by numerical artefacts as instability is checked at dis-

crete values of ωH. Further, FEM results based on previ-

ous simulations [21] are shown for n values of 2, 5, and 20.

While both PA and FEM disclose the same trend of a gener-

ally increasing normalized wavelength for increased stiffness

ratios, it can be observed that FEM simulations predicts a

lower normalized wavelength at instability compared to the

PA results. There can be multiple sources for this discrep-

ancy. I) The PA method assumes an infinite plate, while a

finite width is used in the FEM simulations. II) In the PA

method, the wavelength at instability is calculated directly,

while in the FEM approach the wavelength is estimated from

the instability pattern occurring in the model. III) As the sta-

bility diagram in the (Λ̄,λc)-plane often shows a low critical

swelling ratio for a wide range of wavelengths (see as an ex-

ample Fig. 5a, n=20), small numerical variations can lead to

significant changes in the predicted wavelength at instability

for both the FEM and the PA approach. However, this sen-

sitivity is expected to be reflected in experiments as a high

variability in the measured critical wavelength due to varia-

tions in experimental imperfections.

The dimensionless time to instability is shown in Fig.

4c. The time to instability tc is normalized by the time of

the ramping process tr for the t̄r = ∞ results (solid blue line)

referring to the left ordinate. Through this normalization, the

critical time to instability can be interpreted as the increase

in the chemical potential in the gel relative to the maximum

increase. This means that tc/tr ≤ 1, where tc/tr = 1 repre-

sents the case where the onset of instability happens when

the gel reaches a homogeneous normalized chemical poten-

tial of µ̄1. The time to instability results for t̄r = 0 (dashed

red line) are normalized by τ and corresponds to the right

ordinate. From the plot it is clear that the critical time to in-

stability drops gradually with increased stiffness for homo-

geneous swelling, i.e. t̄r = ∞. For the t̄r = 0 results, on the

other hand, the critical time to instability drops significantly

as the stiffness ratio increase from 1.5 to 5. For stiffness

ratios larger than 5, instability happens almost immediately

after the surface is exposed to an increased chemical poten-

tial. The latter fact correlates to the small swelling ratio at

instability, observed in Fig. 4a.

4.2.3 Change of instability mode for soft gels

Studies assuming homogeneous chemical potentials in

bilayered gels have found that long-wavelength instability

modes occur for hard-on-soft configurations, while instabil-

ity in the short-wavelength limit would be obtained for soft-

on-hard configurations [25, 27]. However, studies assessing

transient swelling states through the use of FE simulations

have found that bilayered gels with a sufficiently soft sub-

strate combined with a low stiffness ratio can display insta-

bilities in the short-wavelength limit even for hard-on-soft

configurations [20, 21]. Such short-wavelength instability

modes are known to be highly unstable and to easily collapse

to creases [38].

Using the proposed PA method, this change of mode

with a change in the swelling kinetics is illustrated in Fig.

5, showing the stability curves for Nbv = 10−3 and three

different values of the stiffness ratio n for t̄r = ∞ (Fig. 5a)

and t̄r = 0 (Fig. 5b). For t̄r = ∞, we see that a long-

wavelength instability mode is predicted for all values of n.

For t̄r = 0, on the other hand, we see a competition between

short-wavelength and long-wavelength instability modes for
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(b)(a)

Fig. 3: (a) Comparison of stability curves for infinite and zero normalized ramping times and (b) evolution of λi from t̄r ≈ 0

to t̄r ≈ ∞ obtained with FE simulations and compared with the PA results. The material parameters Nbv = 0.01, n = 2, and

χ = 0.5 were used.

(a) (b)

(c)

Fig. 4: (a) Critical swelling ratio, (b) normalized critical wavelength, and (c) dimensionless time to onset of instability

(t̄r = ∞ results refers to left ordinate and t̄r = 0 results refers to right ordinate). The shaded area in (a) indicates the instability

swelling ratio that can be obtained for a given value of n depending on the normalized ramping time. The markers in (a) and

(b) indicate results obtained using finite element simulations [21]. The parameters Nbv = 0.01 and χ = 0.5 are used.

the gels with a low stiffness ratio. Specifically, for a stiff-

ness ratio of n = 2, the global minimum state tends towards

the short-wavelength limit and a low critical swelling ratio.

Still, a long-wavelength instability mode is found as a local

minimum at a critical swelling ratio of 1.15. For n = 5, the

global minimum state is found for a long-wavelength mode,

however, the critical swelling ratio is rapidly decreasing to-

wards the shorter wavelengths. Note that the accuracy of the

presented model is compromised at extreme values of the di-

mensionless wavenumber ωH, hence, accurate stability pre-
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dictions for very small values of Λ̄ = 2π/ωH are inacces-

sible. However, we assume that the trend in the curves for

n = 2 and n = 5 would continue towards the shorter wave-

lengths, and that experimental realizations of these config-

urations would display immediate instability in the short-

wavelength limit. For n = 20, on the other hand, the stiff-

ness ratio is sufficiently high such that the global minimum

is a long-wavelength mode and instability is not predicted

for low values of Λ̄ (note that the curve for n = 20 stops at

Λ̄ ≈ 0.3 as no instability point was found for 0.1 ≤ Λ̄ ≤ 0.3).

Regarding the spatial-temporal discretization of the problem,

it can be noted that calculations with a refinement of the

nodal distance (specifically m∗ = 80000) replicate the results

presented in Fig. 5b. Further, the initial time step t1 is set

sufficiently small (t1/τ ≈ 1 · 10−4) such that the first occur-

rence of instability is found after multiple time steps. Hence,

a further refinement of the temporal discretization of Eqn.

(16) is not expected to impact the presented data.

The results in Fig. 5b illustrate the competition between

short- and long-wavelength instability modes for soft gels

with a low stiffness ratio, and are in line with our previ-

ous results obtained through FE simulations, finding a short-

wavelength instability mode in combination with a low in-

stability swelling ratio for Nbv = 10−3 combined with n = 2

and n = 5, while a long-wavelength instability mode was

obtained for n = 20 [21]. Further, these results highlight

the importance of accounting for the transient nature of the

swelling problem for predictions of both the critical swelling

ratio and the instability mode.

5 Concluding remarks

We have presented a new approach for predicting upper

and lower bounds for the stability of transiently swelling hy-

drogels using a linear perturbation analysis framework, and

the implemented code is made freely available online [29].

The framework is demonstrated for a bilayered plate struc-

ture for which it shows a clear convergence for a refined dis-

cretization and good correspondence with previously pub-

lished results.

Adding the transient effects provides a new lower bound

to the degree of swelling at the onset of instability of bi-

layered plates, complementing previous upper bound results

obtained through an assumption of a homogeneous chemi-

cal potential. The proposed method also sheds light on the

competition between short- and long-wavelength instability

modes for soft gels with a low stiffness ratio exposed to dif-

fusive swelling.

Using the proposed model, it is straight forward to ob-

tain results also for other variations of through-thickness

plate stiffness, and in other ranges of chemical potentials.

Further, the proposed computational method could be used

to study the onset of instability for specific types of hydro-

gels, e.g. temperature-sensitive ones, or other geometries,

e.g. spheres. However, changing the constitutive formula-

tion or geometrical assumptions would require the derivation

and implementation of a new model.

Compared with finite element simulations, the presented

approach excels in simplicity, computational cost, and avail-

ability. We believe that the provided code can be used to ob-

tain guidelines for experimental testing and new applications

of graded hydrogels under diffusion induced swelling, pro-

viding estimates of the stability range for both fast and slow

diffusion. The main disadvantage of the presented method-

ology is its limitation to simple geometries and loading con-

ditions. For the ability to predict the stability range of gen-

eral geometries and loading conditions, in addition to access

to the post-buckling behavior, a finite element framework

would be more suited.
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Supplementary data to: ”A Perturbation Analysis
Approach for Studying the Effect of Swelling
Kinetics on Instabilities in Hydrogel Plates”

The following provides the supplementary data to:

Ilseng, A., Skallerud, B.H., Stokke, B.T., and Prot, V.,

2021. ”A Perturbation Analysis Approach for Studying

the Effect of Swelling Kinetics on Instabilities in Hy-

drogel Plates” Journal of Applied Mechanics, 88(5), doi:

https://doi.org/10.1115/1.4049633. The document gives a

description of the computational pipeline for the implemen-

tation of the method described in the paper and the conver-

gence of the code.

1 Computational pipeline

An illustration of the computational pipeline used for

the implementation of the presented framework is outlined

in Algorithm 1.

Algorithm 1 Computational pipeline

1: Input: t, Nv(X̄2), χ(X̄2), t̄r, ωHlist

2: if t̄r = 0 then

3: Calculate µ̄(X̄2, t) ⊲ Equations (16) and (8)

4: else if t̄r = ∞ then

5: Define a homogeneous µ̄(t)
6: end if

7: while ωHlist is coarse do

8: for each ωH in ωHlist do

9: Search for tc such that detK(µ̄(X̄2, tc)) = 0 ⊲

Equation (52)

10: Calculate λ(X̄2, tc) from µ̄(X̄2, tc) ⊲ Equation (8)

11: Calculate λc from λ(X̄2, tc) ⊲ Equation (54)

12: Add λc to λclist

13: end for

14: Refine ωHlist around min(λclist)

15: end while

16: Save λclist and ωHlist to file

2 Convergence

2.1 t̄r = ∞
For the case of a normalized ramping time t̄r = ∞ the

gel will always be in chemical equilibrium with its surround-

ings. Hence, the gradient governing the precision of the fi-

nite difference discretization will be the stiffness distribu-

tion through the thickness, yielding a slower convergence for

larger stiffness ratios. Therefore, the convergence is studied

for a stiffness ratio of n= 20. In Supplemental Fig. 1, the sta-

bility curves obtained with various grids are compared with

a direct bilayer method solving the eigenvalue problem with-

out the use of a finite difference discretization [1]. The direct

bilayer method is described by Wu et al. [1] and our imple-

mentation of this method in Python is available online [2]. It

can be noted that the direct bilayer method is computation-

ally very efficient, however, it is limited to bilayered configu-

rations with homogeneous chemical potentials. Supplemen-

tal Fig. 1a presents the convergence for grids with uniform

node spacing (i.e. α = 0, m = m∗). We see that the finite dif-

ference discretization with 1000 uniformly spaced nodes pre-

dicts a too low critical swelling, especially for long and short

wavelengths. Increasing to 5000 nodes through the plate, the

finite difference approach yields good correspondence with

the direct bilayer method, being able to reproduce the min-

imum point of the curve and only slightly underestimating

the critical swelling ratio at very large wavelengths. We note

that convergence for 5000 nodes in a uniform grid is in line

with previous studies [3].

Supplemental Fig. 1b compares the stability curve from

using 5000 evenly spaced nodes to that obtained using a non-

uniform grid with the parameters m∗ = 5000, α = 0.01, and

ρ = 0.12, giving a total of 983 nodes in the grid. Note that

the two grids have the same node density in the upper 12 %

of the gel and that ρ > η such that the fine grid includes the

layer interface. In the lower 88 % of the non-uniform grid,

the node spacing increases by 1 % for each node. The result-

ing instability curves using the uniform and the non-uniform

grids are indistinguishable. We note that increasing the num-

ber of nodes in the grid by a factor k was found to increase

the computation time by a factor k2.25. Hence, reducing the

number of nodes from 5000 to 983 reduced the computation

time from hours to a few minutes on a normal desktop com-

puter.

2.2 t̄r = 0

For the case of a normalized ramping time t̄r = 0 the

gradient of the chemical potential in the gel dominates the

accuracy of the code and we find the slowest convergence for

the lowest stiffness gradients. Hence, the convergence of the

code is shown in Supplemental Fig. 2 for n = 1.5. Supple-

mental Fig. 2a compares the instability curves for four dif-

ferent non-uniform grids, while Supplemental Fig. 2b shows

how the instability swelling ratio λi depends on the node den-

1 Copyright © by ASME



(b)(a)

Supplemental Fig. 1: Convergence of the code for a bilayered gel with t̄r = ∞. (a) The stability plots for uniform grids

compared with the direct bilayer solution. (b) A comparison of stability plots for uniform and non-uniform grids having the

same value for m∗. The material parameters Nbv = 0.01, n = 20 and χ = 0.5 were used.

(b)(a)

Supplemental Fig. 2: (a) Stability plots for a bilayered gel with t̄r = 0. (b) The convergence of the swelling ratio at the

onset of instability λi for reduced node spacing in the upper part of the gel. The grid parameters α = 0.01 and ρ = 0.12 and

material parameters Nbv = 0.01, n = 1.5 and χ = 0.5 were used.

sity towards the surface of the gel. From the two plots in

Supplemental Fig. 2, it can be concluded that m∗ = 40000

yields converged results for both the stability diagram and

λi.
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