
Detection of Previously Unseen Malware using
Memory Access Patterns Recorded Before the Entry

Point
Sergii Banin∗, Geir Olav Dyrkolbotn†,

∗†Department of Information Security and Communication Technology
Norwegian University of Science and Technology

∗ Email: sergii.banin@ntnu.no
† Email: geir.dyrkolbotn@ntnu.no

Abstract—Recently it has been shown, that it is possible to
detect malware based on the memory access patterns produced
before executions reaches its Entry Point. In this paper, we
investigate the usefulness of memory access patterns over time,
i.e to what extent can machine learning algorithm trained on
”old” data, detect new malware samples, that was not part of
the training set and how does this performance change over time.
During our experiments, we found that machine learning models
trained on memory access patterns of older samples can provide
both high accuracy and a high true positive rate for the period
from several months to almost a year from the update of the
model. We also perform a substantial analysis of our findings
that may aid researchers who work with malware and Big Data.

Index Terms—information security, malware detection, low-
level features, memory access patterns

I. INTRODUCTION

Detection and analysis of malware is one of the important
areas in the information security research [1]. Malware anal-
ysis can be divided into two categories: static and dynamic
analysis. While static analysis uses features derived from
the file itself, dynamic makes use of the behavioral traces
generated when malware is launched. Behavioral or dynamic
features can be categorized into high- and low-level features
[2]. Low-level features emerge from the hardware of the
system: hardware performance counters, opcodes, or memory
access patterns are the low-level or hardware-based features. In
our paper we utilize dynamic malware analysis using low-level
features (memory access patterns). Malware analysis often
involves dealing with Big Data: for example, the database
table containing memory access patterns of 4000 executables
can take several tens of gigabytes [1]. Thus, in this paper,
we show how one can analyze the classification performance
results obtained after processing the big amounts of data.

It has been recently shown, that it is possible to detect
Windows malware based on the behavioral traces produced
before the Entry Point (BEP) [3]. It is an important finding
since malware malware stopped upon detection BEP can not
harm the system where it was launched. However, the authors

The research leading to these results has received funding from the Center
for Cyber and Information Security, under budget allocation from the Ministry
of Justice and Public Security of Norway.

of [3] used k-fold cross-validation to assess the performance
of the machine learning model used for malware detection.
Such approach has some limitations: for example, the feature
selection made on the full dataset may affect the validity of
the classification performance results. As the new malware
samples are detected every day, and the amount of newly
discovered malware constantly grows [4] it is important to
study, how a novel malware detection approach can handle
samples that were not involved in training. Thus, we decided
to test how memory access traces produced BEP can be used
to detect newer, previously unseen malware. We split our
dataset into the train set and several time-arranged test sets
which will emulate ”aging” of the model. We also update
the train set with newer malware and observe changes in the
performance of the model. To conduct this study we outlined
the following research questions. RQ1: Is it possible to use
memory access traces recorded BEP to distinguish between
previously unseen malicious and benign executables? RQ2:
How long, since the update, the ML model trained on memory
access traces recorded BEP can provide a good detection rate?
While answering the RQ1 we expect, that the detection of
previously unseen malware should be possible with the use of
BEP memory access traces. At the same time, while answering
the RQ2 we expect, that the classification performance and
detection rate should be worse the further away in time a
train and test set are from each other. However, the 13 months
time span of our dataset may affect the results. We assume
a detection rate equal or more than 0.95 to be good. While
conducting our studies, we found some unexpected trends
in classification performance. Since the amounts of data we
worked with were very big, we perform analysis which may
pose an interest to other researchers working with malware and
Big Data. The remainder of the paper is arranged as follows:
in Section II we make a short literature overview; in Section
III we describe our methods; in Section IV we describe our
experimental setup; we provide the results in Section V; in
Section VI we perform an analysis of the findings and outline
a need for an additional evaluation which is present in Section
VII; in the end, we discuss our findings and provide concluding
remarks in Section VIII.



II. BACKGROUND

Here we present a brief overview of the related literature.
Malware detection with the use of memory access patterns
was first described in [5] by Banin et al. There it has been
shown, that it is possible to distinguish between malicious
and benign executables with the accuracy of up to 98%. It was
[5] where the required amount of memory access operations
(1M) and the size of n-grams (96) were shown to be sufficient
for such tasks. The technique proposed in [5] was recently
extended by Yucel et al. in [6], where authors used memory
access patterns to explore the similarity between different
malware categories. Later, Banin et al. in [7] showed, that
memory access patterns can be successfully used to classify
malware into 10 families and 10 types with an accuracy of
78% and 66% respectively. In that paper, it has also been
shown, that one needs very few features to perform this type
of classification. However, the memory access pattern by itself
does not give any information regarding the functionality
of the malware to the human analyst. Thus, in their next
paper [2] authors performed an attempt to correlate memory
access patterns (low-level features) with API calls (high-level
features) to bring more context to the human analysts. During
the analysis of findings made in [2] authors found, that most of
the memory access patterns they recorded emerged from BEP.
These findings lead to another work [3], where authors showed
that memory access patterns from BEP can be used to detect
malware with an accuracy similar to the one achieved with
memory access patterns emerged from after the Entry Point
(AEP). In particular, they achieved a classification accuracy of
more than 99% when distinguishing between malicious and
benign executables with a help of only 9 BEP memory access
patterns. To the best of our knowledge, memory access patterns
have not been tested against previously unseen malware that
was not used to train the model. However, many works provide
examples of splitting the malware dataset into train and test
sets to emulate the detection of previously unseen malware.
In [8] authors randomly selected 50% of the dataset to be
used as a train set, while the remainder was used as a test
set. On the test set, containing roughly 3K malicious and
2.2K benign executable, they managed to achieve accuracy of
100% with the Random Forest algorithm. Similarly, authors
of [9] used around 10K malicious and 2.5K benign samples
for training, 750 malicious and 610 benign executables for
testing, and achieved up to 89% of accuracy. Authors of [10]
split their dataset into train and test sets based on the year
when samples were submitted to the VirusTotal [11]. With a
train set containing samples from the year 2012, and a test set
from the year 2013, they managed to achieve 72% detection
rate without a human reviewer and 89% with. The different
approach in training and testing was presented in [12]. The
authors used a dataset of benign and malicious Android appli-
cations from the years 2010-2017. They performed consecutive
training on a certain year and testing on the years newer than
the one used for training. Their results show, that e.g. precision
may both drop or rise as the test set becomes more distant

in time from the train set. Similarly, authors of [13] test the
performance of their Android malware detection approach on
test sets arranged on the monthly basis. In their paper, it is
possible to observe the decay of the performance of the model
trained on samples from the year 2014 as test sets become
more distant in time from train one. Authors of [14] elaborate
on the good practices for building the relevant malware dataset
and conducting time-aware malware studies. Among the other
recommendations they give, there are several that we follow
in our research: describe an experimental environment, OS,
network connectivity, etc.; describe the dataset; provide family
names of the malware samples in use. Authors of [15] state,
that train and test sets combination that is built based on a
certain time metric will generally yield the performance worse
than the one of a random split (e.g. k-folds cross-validation).

III. METHODOLOGY

This section is dedicated to the description of the methods
used in this paper. Our choice of methods is based on findings
made in [5], [2] and [3]. We begin with the description of
our data collection process. Then we explain the way we
preprocess and select features. Later, we explain the way we
split our data into train and test sets. In the end, we describe
the evaluation metrics and machine learning algorithm used in
this paper.

A. Data collection

Our data collection is based on the BEP-AEP approach
that was first presented and described in [3] and analysis of
memory access patterns first used in [5]. The key concept
involves splitting the behavioral trace of the process into two
main parts: the one that occurs before the Entry Point (BEP)
and after (AEP). In this paper, we focus only on the trace
produced BEP. With a help of Intel Pin binary instrumentation
framework [16] we record the memory access operations
produced by the process from the moment it starts. We record
only the type of memory access operation: R for read and W
for write. We record the sequence of the first 1M of memory
access operations. However, if the sample does not produce
1M million memory access operations BEP we still keep its
data, thereby making our experiments more realistic. Similarly
to [3] we stop recording the trace as soon as the execution
flow reaches the first instruction from the main module of
executable.

B. Data preprocessing and feature selection

The sequence of up to 1M of memory access operations
is recorded for each sample in the dataset. Each sequence
is later split into the set of overlapping n-grams of the size
n=96: memory access patterns. Each next n-gram overlaps the
previous one on n-1 operations. These 96-grams later serve
as features for ML algorithms. For classification purposes,
each feature describes the presence or absence of a certain
pattern in a trace of a sample: it takes value 1 if a pattern is
present in a trace of a sample and 0 if not. When working
with memory access traces the amount of features (unique



patterns) is always big and can reach millions of features [1]
[2] [3] [5] [7]. It is unlikely, that all features contain valuable
information. Moreover, regular machine learning packages are
not suitable to work with data of such a high dimensionality.
So it is important to perform feature selection before feeding
the data into ML algorithm. To reduce the feature space, we
perform a two-step feature selection process that was described
in more detail in [3]. First, we select 50K best features from
the training set based on their Information Gain (IG) [17].
Later, we use these 50K features to select the best feature
subset using Correlation-based feature selection (CFS) [18]
from ML package Weka [19]. CFS searches for the best subset
of the given feature space and selects features that have a
high correlation with classes in the dataset but low correlation
between each other. We use CFS with the default for Weka
parameters. With current implementations, it is challenging
to use CFS on the full feature set, since performing the
CFS requires a calculation of correlation matrix between all
features, the process that requires an infeasible amount of
time and computational resources when we are talking about
millions of features. It is important to note, that CFS adds
features to the feature set until the merit of the feature set
stops growing more than a certain threshold [18]. Thus, it is
challenging to choose the desired amount of features to be
selected by CFS.

C. Splitting the dataset

Different authors utilize different approaches to test their
malware detection method on previously unseen malware.
Some simply split the dataset into train and test sets. While
others make their dataset time coherent: samples arranged
based on a certain time property. This allows emulating the
updates of the models with time. In this paper, we arrange
our dataset based on the first seen time from the VirusTotal
(VT) [11]. There are not many other sources of time-related
information when talking about the Windows executables,
as compilation time available in PE header can be forged
[20]. We split our dataset into bins based on the month the
malware samples were first seen on VT. Note, that finding
enough benign samples from a certain period of time is a
quite challenging task. Thus, even though we also arrange
benign samples based on VT data, we add them into bins
based on their position on the benign timeline and the number
of malicious samples in the same bin (see Section IV-B).
This approach allows us to make training and test sets to have
almost equal amounts of malicious and benign executables.
We consider samples that are present in a certain bin to be
unseen to those present in the older bins. Thus, newer benign
and malicious samples do not contribute to the model and do
not affect the feature selection process. We try to keep the
amount of malicious and benign executables in bins equal.
We also keep all malware samples in the bins regardless of
the malware family they belong to. We decided to use our
dataset as is since samples from the same family evolve over
time and the distribution of families across the bins is not
uniform what adds more realism to our experiments.

D. Evaluation

To check the applicability of memory access traces recorded
BEP for the detection of previously unseen malware we train
the ML model on the training set that consists of one or
several bins and separately test it on the bins that were not
used for training. We iteratively increase the training set by
adding newer bins into it. As an ML algorithm we have chosen
Random Forest (RF) algorithm from Weka [19] package, since
it has shown one of the best results in [3]. RF constructs a
number of decision trees, which are used for the classification.
We use RF with default, for Weka, parameters where the
number of trees is 100. To evaluate the quality of the models
we use several metrics. Accuracy, as the amount of correctly
classified samples. True positive rate (TPR), as the amount of
actual malware that is detected as malware (detection rate).
False positive rate (FPR), as the amount of actual benign
executables classified as malware (potential false alarms in the
system). In this paper, we show, how these metrics change with
the increased amount of time passed since the ”last update”
of the model (latest bin added to the training set).

IV. EXPERIMENTAL SETUP

In this section, we describe our experimental environment,
provide details about our dataset, and explain our experimental
flow.

A. Experimental environment

When using dynamic malware analysis, it is important to
avoid the influence of changes in the experimental environment
and ensure equal launching conditions for all samples. It is
also important to isolate malware so that the host system or
network are not affected by the malicious behavior. To ensure
security and repeatability we use Virtual Box virtual machine
(VM) with Windows 10 guest operating system. The VM was
isolated from the internet. All our VMs were launched on the
Virtual Dedicated Server (VDS) with 4-cores Intel Xeon CPU
E5-2630 CPU running at 2.4GHz and 32GB of RAM with
Ubuntu 18.04 as a host operating system.

B. Dataset

In this subsection, we describe the content of our dataset and
explain how the dataset is split into bins which are later used
to construct different train- and test-set combinations. This
dataset was previously used in [3] and [1]. Our dataset can be
divided into two main parts: benign and malicious executa-
bles. Malware samples were obtained from VirusShare 00360
collection from VirusShare [21]. VirusShare 00360 contained
65518 samples, out of which 2973 were PE executables. For
each malicious sample, we got a report from VirusTotal(VT)
[11]: an online malware analysis tool that also allows seeing
how different Anti-Virus engines react to a certain sample.
We left only samples that were recognized as malicious by
at least 20 engines. In the final dataset, we included samples
that belonged to the 10 most common families: Fareit, Oc-
camy, Emotet, VBInject, Ursnif, Prepscram, CeeInject, Tiggre,
Skeeyah, GandCrab. According to the VT reports, resulted



TABLE I
DISTRIBUTION OF MALWARE FAMILIES IN THE DATASET

Total Fareit Occamy Emotet VBInject Ursnif Prepscram CeeInject Tiggre Skeeyah GandCrab
2005 573 307 196 164 162 143 127 117 115 101

samples were first seen (first submission date) between March
2018 and March 2019. Not all the samples were launched
successfully, so the amount of malware samples that gener-
ated traces is 2005. Benign samples were downloaded from
Portable Apps [22] in September 2019 and is a set of free
Portable applications. It contains various software such as
graphical, text, and database editors; games; browsers; office,
music, audio, and other types of Windows software. According
to the VT, benign samples were first seen between December
2006 and December 2019. Some benign samples were first
seen on VT after their download date because it was we who
first uploaded them to the VT to check whether they are truly
benign. We left only samples that were not recognized as
malicious by any of the AV engines available on VT. After
running the samples 2098 of them produced traces.

As it is outlined in the literature [14], it is important to
present the distribution of malware categories in the dataset.
In Table I we show the number of samples that belong to
each of the families. As it is possible to see, the dataset is
not balanced in terms of malware families. However, we did
not polish this aspect of our dataset since we only cared about
samples being benign and malicious.

We looked at two possible splitting approaches to create
time-ordered subsets from the original dataset. In the first
approach, we split malware into 13 bins based on the month
they were first seen on VT. We also included benign samples
into the monthly bins based on their VT first seen date.
However, this approach resulted in highly imbalanced subsets,
where the malware to goodware ratio sometimes was as high
as 50 to 1. It is quite problematic to find the desired amount of
benign samples from the desired time period. So we decided
to discard the first approach due to this imbalance. Instead, we
decided to split benign samples into 13 time-ordered bins and
align the number of samples in them according to monthly
bins created from malware samples. Each bin would contain
as many benign samples as the corresponding malicious bin.
Only the last bin would contain more benign samples since
the amount of benign samples is bigger in the original dataset.
This way, every next bin will have benign samples that are
newer than those in the previous one. In Table II we present
the amount of benign and malicious samples that were put
into each of the 13 resulting bins. As we can see, the bins
have different amounts of samples in them. To describe our
bins in an even more detailed way, in Fig. 1 we present the
distribution of the above-mentioned malware families among
the malware samples in each of the 13 bins. As we can see,
malware families are not evenly distributed among the bins.

Having 13 bins with equal malware to goodware ratio except
for the bin #13 we use them to construct train and test sets
that are used to training and test ML models. The training set

TABLE II
AMOUNT OF BENIGN AND MALICIOUS SAMPLES IN BINS.

Bin # 0 1 2 3 4 5 6 7 8 9 10 11 12
Benign 64 119 174 88 167 66 39 130 149 264 214 307 317
Malicious 64 119 174 88 167 66 39 130 149 264 214 307 224

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12

Bins families distirution

VBInject

Ursnif

Tiggre

Skeeyah

Prepscram

Occamy

GandCrab

Fareit

Emotet

Fig. 1. Distribution of malware families among the malware samples within
each of the 13 bins

is a combination of one or several consecutive bins. From here
the training sets will be named in the following way: training
set based on the bin #0 is called T0 while training set built
from bins #0 to 7 is called T0 7 and so on. For each training
set, we have one or more test sets, made of the remaining
bins that were not used in the construction of the train set.
For example, for the training set T0 10 we will have two test
sets consist of the bin 11 and bin 12 respectively. With such
approach, we obtain 12 combinations of train and test sets. As
we previously described the distribution of malware families
within the bins (which now also represent test sets) we now
use Fig. 2 to show the distribution of the malware families
within train sets. As we can see, after the train set T0 1 the
distribution of families within the train sets begins to stabilize
itself and becomes quite similar between the train sets closer
to the last one.

C. Experimental flow

Every sample from our dataset is first copied to the clean
snapshot of the VM. Then, we launch it together with a
customized Intel Pin tool. The Intel Pin tool records memory
access operations and stores them into a trace file. The trace

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T0 T0_1 T0_2 T0_3 T0_4 T0_5 T0_6 T0_7 T0_8 T0_9 T0_10T0_11

Trains sets families distirution

VBInject

Ursnif

Tiggre

Skeeyah

Prepscram

Occamy

GandCrab

Fareit

Emotet

Fig. 2. Distribution of malware families among the malware samples within
train sets



is later copied to the host system, and the VM is reverted to
the previous state. It is important to note, that the benign ex-
ecutables from PortableApps were copied to the VM together
with the content of their folder. This approach allowed us to
provide more realistic results since benign executables often
require additional resources to be launched properly.

V. RESULTS

In this section, we provide the detection performance
achieved with our approach by RF algorithm. As we outlined
in Section III we decided to test our malware detection
approach with help of the RF ML algorithm because it
has previously shown good classification performance with a
similar type of features. In Fig. 3 we show the accuracy,
true positive rate, and false positive rate of RF algorithm. For
table data see Appendix A. Each line on the chart represents a
certain evaluation metric of the ML model trained on a certain
train set. Each point of the line is the value of the metric
obtained while attempting to classify samples from one of
the test bins. Before looking into the achieved results it is
important to mention, that accuracy, TPR, and FPR achieved
by models trained on the sets T0 1 - T0 5 match for all
the corresponding test sets. Thus, corresponding points and
lines on the charts merge. To simplify our charts we omit
results achieved with T0 3 - T0 4 since they are the same as
those achieved with T0 1, T0 2 and T0 5. First, let’s take a

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12

AC
C

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(a) Accuracy

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

TP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(b) True positive rate

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

FP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(c) False positive rate

Fig. 3. Performance of RF algorithm

look at the accuracy achieved by the RF algorithm. As it is
possible to see from Fig. 3a we can outline two main trends

in the classification performance. The first trend shows, that
the further in time a test bin from the train set - the lower
the classification accuracy. This trend, however, has several
exceptions. First of all, the model trained on T0 shows a drop
in accuracy for test bins 5 and 6. For other test bins, it has
a quite stable accuracy while showing minor improvements
(e.g. accuracy on bin 7 is higher than the one on the bin 0).
Lastly, models trained on T0 6 and T0 7 show a significant
spike of accuracy on the T0 11 and drop on the last test bin.
The second trend shows, that the closer train set to the test set
(the more up-to-date it is) the higher classification accuracy on
the test set becomes. For example, accuracy on the test set 12
improves when the train set is updated with newer bins. Now
let’s look at the TPR and FPR showed by the RF algorithm.
As we can see, most of the test bins are classified with TPR
that is equal to or higher than 0.95. Moreover, models trained
on sets T0 1 - T0 7 always show TPR of 1 for all test bins. It
means, that such a model will not miss any of the previously
unseen malicious samples. However, from the FPR chart, we
can also see that some models (especially T0 1 - T0 5) show
an increasing amount of false positives for test bins that are
further away from the training set. FPR can become as high as
0.72 which in reality will result in a significant amount of false
alarms and may seriously affect the operations of the system
that uses such models in AV solutions. It is also important
to mention, that model trained on T0 shows 0 FPR for all of
the test bins while missing some of the malware samples. The
overall trend of FPR and TPR is the following. Most of the
models, while keeping high TPR (detection rate) over time
develop higher FPR which clearly shows that even the models
with good detection capabilities have to be regularly updated.

While acquiring the data present on the Fig. 3a, 3b and 3c
we derived several interesting findings. The performance of
the models does not change when trained on sets T0 1 - T0 5
as they show very low accuracy towards the last test bins. But
when the model is trained on the sets T0 6 and beyond, the
accuracy rapidly improves. We also noticed, that when a train
set is changed from T0 to T0 1 the model starts performing
worse for many of the test bins. It is quite counter-intuitive
since normally we would expect a better performance of the
model that used more recent samples (bigger and updated
training set) to train. The rapid improvement of accuracy and
a counter-intuitive difference in performance between models
trained on T0 and T0 1 raised our attention and we analyze
these findings in Section VI.

As we can see, the performance of most of the models
built with the use of memory access patterns recorded BEP
degrade over time. Some models degrade more than the others,
acquiring high FPR. But at the same time, the TPR of most
of the models remains relatively high, thus even an outdated
model built with BEP memory access traces will protect the
potential system over a long period of time (while producing
a high amount of false alarms).



TABLE III
AMOUNT OF FEATURES SELECTED BY CFS FEATURE SELECTION METHOD

FOR ALL TRAIN SETS

Train Set T0 T0 1 T0 2 T0 3 T0 4 T0 5 T0 6 T0 7 T0 8 T0 9 T0 10 T0 11
Features 555 133 135 136 134 134 134 8 10 11 11 10

VI. ANALYSIS

When we discovered a rapid improvement in the model’s
performance with the change of train set from T0 5 to T0 6
and significant difference between models trained on T0 and
T0 1 we had several hypotheses about the reason for these
changes.

A. Influence of families

The simplest idea was the influence of the malware families’
distribution in training and test sets. For example, different
distribution of families in train sets could lead to models biased
towards a certain category of malware. However, if looking
into Fig. 2 and 1 from Section IV we may see, that the
distribution of families in training sets T0 5 and T0 6 are
almost identical. The family distribution does not also explain
the difference in performance between models trained on T0
and T0 1: it is easy to see, that family distribution in T0 1 is
closer to e.g. test bin 9 than the one in T0. Thus we rejected
this hypothesis.

B. Influence of features

The other potential reason for the model performance
changes could be the features. As we are not using the entire
feature set and using a two-step feature selection process it
could be, that the features we select as well as their amount
can affect the potential performance of the model trained on
data built with such features. First of all, let’s take a look in
Table III where the amounts of features selected by CFS for
each of the train sets are present.

First of all, it is easy to see that train sets can be grouped
into three categories based on the number of features selected
on them by CFS. In the first group, it will be a single set T0:
555 features were selected from it. In the second group there
will be sets T0 1 - T0 6 with the number of features ranging
from 133 to 136. And in the third group there will be sets
T0 7 - T0 11 with the number of features ranging from 8 to
11.

The amounts of features selected from the sets in the third
group did not surprise us, since they are quite similar to what
can be seen in [3]. It was already known, that in some cases we
need very few of the BEP memory access patterns to achieve
0.99 classification accuracy.

When talking about T0, 555 is a quite high amount of
features, since T0 has only 128 samples. It is generally
considered in the literature, that fewer features in the dataset
improves the performance of ML algorithms [5] [7] [3] [17].
In some articles authors suggest using the rule of 10: to train
a good performing ML model, it is advised to have ten times
more training samples than features [23]. However, in our case,
a bigger amount of features allowed to eliminate false positives

TABLE IV
AMOUNT OF COMMON FEATURES BETWEEN THE FEATURE SETS.

T
0

55
5

T
0

1
13

3

T
0

2
13

5

T
0

3
13

6

T
0

4
13

4

T
0

5
13

4

T
0

6
13

4
T

0
7

8
T

0
8

10
T

0
9

11
T

0
10

11
T

0
11

10

T0 555 555 126 126 127 126 126 126 2 2 3 3 3
T0 1 133 133 128 126 126 126 126 1 1 1 1 1
T0 2 135 135 127 127 127 127 1 1 1 1 1
T0 3 136 136 127 127 127 1 1 1 1 1
T0 4 134 134 128 128 1 1 1 1 1
T0 5 134 134 128 1 1 1 1 1
T0 6 134 134 1 1 2 1 1
T0 7 8 8 0 0 0 0
T0 8 10 10 4 2 0
T0 9 11 11 1 1
T0 10 11 11 5
T0 11 10 10

and contributed towards relatively stable TPR and accuracy
along the test sets. Based on the experience from [3] we were
surprised by the fact that CFS has selected so many features
for a relatively small dataset. So we calculated IG for all of the
555 features selected from T0 and found, that 531 of them had
IG of 1. For a two-class dataset, it means that each of these
features can be solely used to correctly classify all samples of
the train set. As CFS stops adding features to the feature set
when the merit of the set stops to increase, it becomes clear
that the high amount of selected features is due to their high
quality. Even if they correlate with each other, there is no way
to distinguish between features with exact same values for all
samples if they carry a lot of information.

While evaluating the second group, we found, that the
number of features selected for the sets T0 5 and T0 6 is
the same. So the number of features has no influence over
the rapid increase in model performance. Thus we decided
to check how feature sets change with the change of the train
sets. To observe changes in feature sets we built a Table IV. In
this table, each row and column is named T0 X N where T0 X
represents one of the training sets, while N is the number of
features selected from this training set. Each cell of the table
shows the amount of features common between the feature
sets whose row and column cross in this cell.

It is easy to see, that feature sets from T0 to T0 6 share
many common features between them. However, as it was
shown in Section V, model trained on T0 show better
performance on the last 6 test bins than models trained on
T0 1-T0 6. This can be a sign of the drawback in our feature
selection approach, as it can not select the same features from
e.g. train sets T0 and T0 1. Let’s now look into the feature sets
T0 5 134 and T0 6 134, a place where the RF model gets
rapid improvement in classification accuracy. These feature
sets share 128 of 134 features. However, the latter allows for
higher classification accuracy. We examined 6 ”old” unique
features from T0 5 134 and 6 ”new” from T0 6 134 in terms
of the information they carry. We found, that 5 out of 6 of
old and new features have the same IG in their respective
train sets. The remaining features have their IG different in
the 5th digit after the decimal point. We believe, that such an



TABLE V
PROPORTION OF FEATURES THAT REPRESENT ONE CLASS MORE THAN

ANOTHER.

Fe
at

ur
e

Se
t

T
0

55
5

T
0

1
13

3

T
0

2
13

5

T
0

3
13

6

T
0

4
13

4

T
0

5
13

4

T
0

6
13

4

T
0

7
8

T
0

8
10

T
0

9
11

T
0

10
11

T
0

11
10

Mal 0.771 0.030 0.037 0.037 0.022 0.022 0.022 0.125 0.2 0.273 0.364 0.5
Ben 0.229 0.970 0.963 0.963 0.978 0.978 0.978 0.875 0.8 0.727 0.636 0.5

insignificant difference in feature set quality could not result
in the improvement of classification accuracy that we’ve seen
in Section V. It is also worth to mention, that feature sets
from T0 7 to T0 11 share more common features with T0
then with T0 1-T0 6. And the RF models trained on them
generally perform better than those trained on T0 1-T0 6.

Another thing we could check emerges from the nature of
our features and the way we process experimental data. As
we explained in Section III the feature takes value 1 when a
certain memory access pattern is generated by a sample and
0 otherwise. What can happen, that the majority of selected
features take value 1 for more samples of one class that of
another. This means, that the feature set represents behavior
of a certain class. In other words, one class can be described
by the presence of certain memory access patterns while
another by absence of such. And since malware and benign
software evolve over the time it might happen, that newer
samples of a certain class will start generating patterns that
were not generated by samples of this class at the time of
training (in the training set) and vice versa. Thus, we decided
to explore how selected features represent classes in train
sets. To do this we counted the proportion of features that
represent more malicious or more benign samples. Basically,
we found the number of features that take value 1 in more
samples of one class than in another. In Table V, values
in column Mal reflect the portion of the entire feature set
features that take value 1 more often in malicious samples,
while column Ben reflect similar values for the benign class.
As we can see from this table, feature sets that contribute to
the good performance of RF models (T0,T0 7-T0 11) have
a smaller imbalance between the number of features that
represent malicious and benign classes than other feature sets.
However, the feature set T0 6 stands out. It has one of the
highest imbalances but allows for better performance than
feature sets with similar feature balance. Thus, we can not
conclude that the way features represent classes affects the
performance of models. We also trained RF models with 50K
best features (see Section III) but the results were the same
as with CFS-selected features.

C. Influence of feature space

As we found, that feature qualities have no direct influence
on the classification performance we decided to check whether
the entire feature sets can be a reason for the classification
performance we observed in Section V. Samples in a dataset
can be considered as points in the multidimensional space,
where dimensionality is defined by the number of features

and coordinates of the point are the values of features for the
particular sample. It is known, that in general the further away
in given feature space samples of a different class from each
other - the easier it is to distinguish between them [17] [24].
Some ML algorithms, e.g. k-Nearest Neighbors or Support
Vector Machines, use distances between samples directly. But
even if the distance measure between samples is not used
in the ML algorithm, two samples of two different classes
that have the same coordinates (are in the same point of
feature space) are impossible to distinguish from each other.
So we decided to visualize how selected features allow to
separate samples of different classes. It is impossible to draw
a space which dimensionality exceeds 3. However, there is
a way to reduce the dimensionality of a dataset and draw
it on the 2D plane while keeping relative distances between
point intact: multidimensional scaling [25] (MDS). With a
help of MDS, it is possible to visualize how samples from
the multidimensional dataset are located relative to each other
on the two-dimensional plane. Using MDS implementation
from scikit-learn [26] Python package we built Fig. 4. In
this Figure, each subfigure is an illustration of the location
of the train and test samples in the feature space of a certain
training set. For example, in Fig. 4c we can see how samples
are located in the feature space of the T0 2. On each of the
subfigures we depicted the following elements (for colors and
shapes see the legend on Subfigure 4m):

• Train samples of benign and malicious classes. Train sam-
ples of a malicious class have different shapes according
to their family (see Legend) but use the same dark-red
color.

• Test samples of benign and malicious classes. Test sam-
ples of a malicious class have different shapes and colors
according to their family (see Legend).

• We have also marked centers of malicious and benign
parts of the train and each of the test sets. A center here
is a point that has coordinates equal to the mean of the
samples in the group: it can be considered as a centroid
of the corresponding cluster. For example in Fig. 4l a
point Named ”Ben Test 12” is a center of benign samples
for test set 12.

From Fig. 4 it is possible to understand some of the clas-
sification results. For example, in Fig. 4a we can see, that
benign parts of train and test samples lay relatively close to
each other, while several groups of malicious test samples are
located closer to benign samples than to the malicious train set.
This explains 0 FPR achieved by ML model on this train and
test sets combination and non-ideal TPR since some malicious
samples are closer to the benign part of the train set than to
the malicious one. On its turn, Fig. 4b shows why FPR grows
and accuracy drops for a model trained on T0 1: both benign
samples and centers of benign parts of test sets become closer
to the malicious train part over the time. We may also observe
in Fig. 4h- 4l that malicious and benign sets slightly overlap,
but still quite distinguishable. On the other hand, a comparison
of Fig. 4f and 4g does not explain the rapid improvement



(a) T0 (b) T0 1 (c) T0 2 (d) T0 3

(e) T0 4 (f) T0 5 (g) T0 6 (h) T0 7

(i) T0 8 (j) T0 9 (k) T0 10 (l) T0 11

(m) Legend

Fig. 4. Distance-preserving projection of train and test samples from multidimensional feature spaces into the two dimensional plane.

in the classification accuracy of the models. Moreover, the
relative positioning of the benign and malicious sets almost
doesn’t differ1. At this point, we had to conclude, that feature
spaces analysis does not help to understand the classification
accuracy difference between T0 5 and T0 6 models. We must
also admit, that the counter-intuitive difference between the
performance of models trained on T0 and T0 1 can not be
explained with this approach. Our next hypothesis about the
unexpected classification performance was about the potential
limitations of the RF algorithm. Thus, we decided to train

1It is important to note, that Fig. 4f and 4g look rotated against each
other only because we had no control over how exactly the points from
multidimensional space are placed on the two-dimensional plane by the MDS
algorithm.

models with several different ML algorithms and compare
their performance to the RF algorithm. We decided to find
out whether it is possible to obtain models that can detect
malware with the use of BEP memory access traces better.

VII. ADDITIONAL EVALUATION

This section is dedicated to answering the question ”Is
it possible to classify malicious and benign samples better
than with use of RF algorithm?2”. When we decided to test
classification performance of other algorithms we first checked
the k-Nearest Neighbors(kNN) algorithm as it performed quite
well in [3], [7] or [5]. However, it showed very similar to
RF performance so we do not present the results achieved

2Under the current conditions: same dataset and features.



0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6 7 8 9 10 11 12

AC
C

Test bin number

T0
T0_1
T1_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(a) Accuracy

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

TP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(b) True positive rate

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

FP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(c) False positive rate

Fig. 5. Performance of J48 algorithm

by kNN. The next algorithm we decided to check was the
J48 (Decision Trees) algorithm from Weka [19]. The main
difference between RF and J48 is the number of trees that
are used. By default, RF from Weka uses 100 trees while J48
builds a single tree. In Fig. 5 we present accuracy, TPR, and
FPR of J48. For table data see Appendix B. First of all, J48
trained on sets T0-T0 4 show exactly the same performance
as RF. On the Fig. 5, similarly to Fig. 3, we omit results on
T0 3 and T0 4 because the results on the remaining test sets
do not change. However, when we look at the performance
of J48 trained on T0 5 we can easily see, that J48 performs
better with this train set than RF. Moreover, J48 trained on
T0 5 classifies test sets 7-11 with exactly the same accuracy
as RF trained on T0 6. At the same time, J48 trained on T0 6
classifies test sets 7-12 with exactly the same accuracy as RF
trained on T0 5. For the rest of the training sets, J48 and RF
behave mostly similarly but there are some visible differences.
E.g. J48 trained on T0 8 performs better than RF, while RF
trained on T0 9 performs better than J48. As RF is a set of
many decision trees, we explored how the number of trees
affects the performance of RF. It was found, that the number
of trees of 4 or less RF performs the same way J48 does. This
means that we could have observed a case of overfitting of
the Random Forest algorithm when trained on T0 5. So far
we showed, that there can be specific cases when one tree-
based algorithm outperforms another. But in an attempt to
improve the classification accuracy of models trained on T0 1-
T0 5 we decided to utilize Locally-Weighted Learning (LWL)

algorithm from Weka. LWL is a combination of kNN and any
other ML algorithm that supports weighted learning and has
relatively low training time. The basic principle of LWL is the
following: to classify a test sample, at the time of classification
LWL trains an ML model with a use of k train samples that are
close to the test sample. The k samples are weighted according
to their distance. This way every test sample is classified by
a separate ML model. The default ML algorithm that is used
in LWL in Weka is Decision Stump (DS). Decision stump is
a simple decision tree that consists of only one node. In the
Fig. 6 we present the performance of the LWL algorithm. For
table data see Appendix C What is easy to see in Fig. 6b is
the improvement of TPR if compared to RF and J48. We can
also observe the FPR values (Fig. 6c) became more diverse
between the models trained on different train sets. From the
accuracy chart (Fig. 6a) we can see, that the model trained
on T0 performs not as well as similar models of RF and J48.
Its performance almost matches the one of a model trained on
T0 7 on the test sets 8-12. We also observe a decline in the
performance of the models T0 1 - T0 5 if compared to T0.
However, the LWL models T0 1 - T0 4 perform better than
those of RF and J48: accuracy is higher, while FPR is lower.
So we were able to improve the performance of some of the
low-performing models by changing the ML algorithm. But
the LWL trained on T0 5 performs almost as bad as the RF
and significantly worse than J48. When switching to the T0 6
model we see the rapid improvement of the performance that
is similar to the one we have seen with RF.

As we were able to see, for some combinations of train and
test sets it is possible to improve classification performance by
choosing the different ML algorithms. Thus, we can answer
positively to the question outlined at the beginning of this
section. Some algorithms will perform better under certain
conditions while worse under the other. But the final choice
of the ML algorithm is always up to the developers of the
potential AV system and should be based on the requirements
of the system in interest.

VIII. DISCUSSION AND CONCLUSIONS

In this section, we discuss our findings, present the conclu-
sions, and outline possible improvements that can be imple-
mented in future work.

In this paper, we have shown, that behavioral traces recorded
before the Entry point have the potential to be used for the
detection of previously unseen malware. It is an important
finding since malware detected BEP has no chance to harm
the system even though it was launched. The results presented
in Sections V and VII show, that we can answer yes to the
RQ1 outlined in Section I. The memory access traces recorded
before the Entry Point can be successfully used to distinguish
between previously unseen malicious and benign executables.
To answer the RQ2 we have also shown, that most of the ML
models trained on the BEP memory access traces can provide
a good detection rate (TPR > 0.95) for the significant periods
of time since the update of the model. Some models provide
high TPR for a period of at least 11 months. But it is important



0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12

AC
C

Test bin number

T0
T0_1
T0_3
T0_4
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(a) Accuracy

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12

TP
R

Test bin number

T0
T0_1
T0_2
T0_3
T0_4
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(b) True positive rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

1 2 3 4 5 6 7 8 9 10 11 12

FP
R

Test bin number

T0
T0_1
T0_2
T0_3
T0_4
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(c) False positive rate

Fig. 6. Performance of LWL algorithm

to remember, that they also tend to develop high FPR which is
a clear sign of the need for regular updates of the model since
high FPR will disrupt operations of the system by raising a
lot of false alarms. Thus, we have to conclude that memory
access traces recorded BEP can be used for malware detection,
but such an approach has its limitations that should be taken
into account.

We have also performed an attempt to explain some of the
cases of difference in the performance of ML models. Under
our approach, we were not able to show that features or feature
spaces influence the classification performance of the models.
But we were able to show, that in some cases (for certain
combinations of train and test sets) some ML algorithms
perform better than the others. But it is still important to pay
attention to the TPR and FPR when making a choice of the
ML algorithm to be used in a real system. Some trends of
the classification performance results remain similar between
different ML algorithms: e.g. models trained on T0 outperform
those trained on T0 1 - T0 6 on the last 7 test bins (true for
RF, J48, LWL); models trained on T0 5 are among the worst-
performing models (RF, LWL); model trained on T0 shows
a drop of performance for the test bins 5 and 6 (RF, J48,
LWL). Based on these findings we have to conclude, that such
performance of models can be a sign of a potential weakness
of our BEP memory access patterns approach. In future work,
one may try to understand, whether this is a weakness in
the use of memory access patterns or the fact that we are

focusing on the BEP activity. To do this, different types of
features and features recorded AEP may be used on the same
dataset. It may also be the result of some special properties
of our dataset, that we had no control over since we used
all of the available samples. So in future research, one may
use our approach on the different, potentially larger, and more
diverse dataset. It may also be useful to perform the analysis
of the misclassified samples [14], as it may help to understand
the classification performance as it was shown in [7]. During
the analysis phase we also observed a case of overfitting of
Random Forest algorithm. We believe, that this finding has a
potential to be investigated by machine learning researchers
working on improving of understanding the performance of
common ML algorithms.

We also believe, that our paper provides an important exam-
ple of the analysis of the classification performance. Analysis
of subcategories, the influence of the amount and quality of
features in the updated feature set, and graphical analysis of
feature space can help other researchers to understand their
results. We think, that such approach can be used not only
in malware analysis but in many areas where ML is used.
Together with the feature selection approach, where we can
reduce the feature space from hundreds of thousands and
millions of features to hundreds and even fewer features, our
paper provides valuable solutions for those working with Big
Data and high-dimensional datasets.

REFERENCES

[1] S. Banin, Malware Analysis using Artificial Intelligence and Deep
Learning: Fast and straightforward feature selectionmethod: A case of
high dimensional low sample size dataset inmalware analysis. Springer,
2020.

[2] S. Banin and G. O. Dyrkolbotn, “Correlating high-and low-level fea-
tures,” in International Workshop on Security. Springer, 2019, pp.
149–167.

[3] S. Banin and G. O. Dyrkolbotn, “Detection of running malware before it
becomes malicious,” in International Workshop on Security. Springer,
2020, pp. 57–73.

[4] AVTEST. The independent IT-Security Institute, “Malware,” https://
www.av-test.org/en/statistics/malware/, 2020.

[5] S. Banin, A. Shalaginov, and K. Franke, “Memory access patterns for
malware detection,” Norsk informasjonssikkerhetskonferanse (NISK), pp.
96–107, 2016.

[6] Ç. Yücel and A. Koltuksuz, “Imaging and evaluating the memory access
for malware,” Forensic Science International: Digital Investigation,
vol. 32, p. 200903, 2020.

[7] S. Banin and G. O. Dyrkolbotn, “Multinomial malware classification via
low-level features,” Digital Investigation, vol. 26, pp. S107–S117, 2018.

[8] S. Sharma, C. R. Krishna, and S. K. Sahay, “Detection of advanced
malware by machine learning techniques,” in Soft Computing: Theories
and Applications. Springer, 2019, pp. 333–342.

[9] A. Sharma, S. K. Sahay, and A. Kumar, “Improving the detection
accuracy of unknown malware by partitioning the executables in groups,”
in Advanced computing and communication technologies. Springer,
2016, pp. 421–431.

[10] B. A. Miller, “Scalable platform for malicious content detection inte-
grating machine learning and manual review,” Ph.D. dissertation, UC
Berkeley, 2015.

[11] V. Total, “Virustotal-free online virus, malware and url scanner,” Online:
https://www. virustotal. com/en, 2012.

[12] H. Cai, “Assessing and improving malware detection sustainability
through app evolution studies,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 29, no. 2, pp. 1–28, 2020.

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/


[13] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“{TESSERACT}: Eliminating experimental bias in malware classifica-
tion across space and time,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 729–746.

[14] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. Van Steen, “Prudent practices for
designing malware experiments: Status quo and outlook,” in 2012 IEEE
Symposium on Security and Privacy. IEEE, 2012, pp. 65–79.

[15] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Are your training
datasets yet relevant?” in International Symposium on Engineering
Secure Software and Systems. Springer, 2015, pp. 51–67.

[16] IntelPin, “A dynamic binary instrumentation tool,” 2020.
[17] I. Kononenko and M. Kukar, Machine learning and data mining:

introduction to principles and algorithms. Horwood Publishing, 2007.
[18] M. A. Hall, “Correlation-based feature subset selection for machine

learning,” Ph.D. dissertation, University of Waikato, Hamilton, New
Zealand, 1998.

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations, vol. 11, no. 1, pp. 10–18, 2009.

[20] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine
learning aided static malware analysis: A survey and tutorial,” in Cyber
Threat Intelligence. Springer, 2018, pp. 7–45.

[21] VirusShare, “Virusshare.com,” http://virusshare.com/, accessed:
12.10.2020.

[22] PortableApps.com, “Portableapps.com,” https://portableapps.com/apps,
2020.

[23] Malay Haldar, “How much training data do
you need?” https://medium.com/@malay.haldar/
how-much-training-data-do-you-need-da8ec091e956, 2015.

[24] S. Sathe and C. C. Aggarwal, “Nearest neighbor classifiers versus ran-
dom forests and support vector machines,” in 2019 IEEE International
Conference on Data Mining (ICDM). IEEE, 2019, pp. 1300–1305.

[25] A. Mead, “Review of the development of multidimensional scaling
methods,” Journal of the Royal Statistical Society: Series D (The
Statistician), vol. 41, no. 1, pp. 27–39, 1992.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

APPENDIX A
CLASSIFICATION RESULTS ACHIEVED BY RF

TABLE VI
RF ACCURACY

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.975 0.991 0.989 0.994 0.902 0.885 0.992 0.980 0.994 0.984 0.982 0.987
T0 1 1.000 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0 2 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0 5 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0 6 0.992 0.913 0.947 0.923 0.984 0.876
T0 7 0.930 0.953 0.949 0.987 0.878
T0 8 0.996 0.998 0.998 0.935
T0 9 0.998 0.997 0.945
T0 10 0.997 0.987
T0 11 0.976

TABLE VII
RF TPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.95 0.983 0.977 0.994 0.803 0.769 0.985 0.96 0.989 0.967 0.964 0.969
T0 1 1 1 1 1 1 1 1 1 1 1 1
T0 2 1 1 1 1 1 1 1 1 1 1
T0 5 1 1 1 1 1 1 1
T0 6 1 1 1 1 1 1
T0 7 1 1 1 1 1
T0 8 1 1 0.997 1
T0 9 1 0.993 1
T0 10 0.993 1
T0 11 1

TABLE VIII
RF FPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0 0 0 0 0 0 0 0 0 0 0 0
T0 1 0 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0 2 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0 5 0 0.1 0.32 0.215 0.294 0.72 0.58
T0 6 0.015 0.173 0.106 0.154 0.033 0.211
T0 7 0.14 0.094 0.103 0.026 0.208
T0 8 0.008 0.005 0 0.11
T0 9 0.05 0 0.095
T0 10 0 0.022
T0 11 0.041

APPENDIX B
CLASSIFICATION RESULTS ACHIEVED BY J48

TABLE IX
J48 ACCURACY

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.975 0.989 0.989 0.994 0.902 0.885 0.992 0.980 0.994 0.984 0.982 0.987
T0 1 1.000 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0 2 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0 5 1.000 0.992 0.916 0.947 0.923 0.984 0.876
T0 6 0.950 0.840 0.892 0.853 0.640 0.660
T0 7 0.916 0.947 0.923 0.984 0.876
T0 8 0.996 1.000 0.997 0.998
T0 9 0.986 0.818 0.980
T0 10 0.995 0.995
T0 11 0.959

TABLE X
J48 TPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.95 0.977 0.977 0.988 0.803 0.769 0.985 0.96 0.989 0.967 0.964 0.969
T0 1 1 1 1 1 1 1 1 1 1 1 1
T0 2 1 1 1 1 1 1 1 1 1 1
T0 5 1 1 1 1 1 1 1
T0 6 1 1 1 1 1 1
T0 7 1 1 1 1 1
T0 8 0.992 1 0.993 0.996
T0 9 1 0.993 0.996
T0 10 0.997 0.997
T0 11 0.931

http://virusshare.com/
https://portableapps.com/apps
https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956
https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956


TABLE XI
J48 FPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0 0 0 0 0 0 0 0 0 0 0 0
T0 1 0 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0 2 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0 5 0 0.015 0.167 0.106 0.154 0.033 0.211
T0 6 0.1 0.32 0.215 0.294 0.72 0.58
T0 7 0.167 0.106 0.154 0.033 0.211
T0 8 0 0 0 0
T0 9 0.028 0.358 0.032
T0 10 0.007 0.006
T0 11 0

APPENDIX C
CLASSIFICATION RESULTS ACHIEVED BY LWL

TABLE XII
LWL ACCURACY

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.996 0.991 1.000 0.997 0.977 0.923 0.992 0.916 0.947 0.916 0.980 0.871
T0 1 1.000 1.000 1.000 1.000 1.000 0.969 0.886 0.921 0.888 0.822 0.778
T0 2 1.000 1.000 1.000 1.000 0.973 0.903 0.928 0.911 0.912 0.815
T0 3 1.000 1.000 1.000 0.962 0.853 0.900 0.864 0.723 0.721
T0 4 1.000 1.000 0.969 0.853 0.921 0.876 0.775 0.765
T0 5 1.000 0.954 0.873 0.898 0.876 0.661 0.667
T0 6 0.992 0.903 0.947 0.916 0.933 0.861
T0 7 0.916 0.947 0.923 0.984 0.876
T0 8 0.992 0.984 0.819 0.946
T0 9 0.984 0.818 0.980
T0 10 0.989 0.989
T0 11 0.989

TABLE XIII
LWL TPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.992 0.98 1 0.994 0.96 0.85 1 0.99 1 0.986 0.987 0.991
T0 1 1 1 1 1 1 1 1 1 1 1 1
T0 2 1 1 1 1 1 1 1 1 1 1
T0 3 1 1 1 1 1 1 1 1 1
T0 4 1 1 1 1 1 1 1 1
T0 5 1 1 1 1 1 1 1
T0 6 1 1 1 1 1 1
T0 7 1 1 1 1 1
T0 8 1 1 0.997 1
T0 9 0.995 0.993 0.996
T0 10 0.98 0.982
T0 11 0.982

TABLE XIV
LWL FPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0 0 0 0 0 0 0.015 0.16 0.106 0.154 0.026 0.215
T0 1 0 0 0 0 0 0.062 0.23 0.158 0.224 0.355 0.379
T0 2 0 0 0 0 0.054 0.19 0.143 0.178 0.176 0.315
T0 3 0 0 0 0.077 0.29 0.2 0.271 0.554 0.476
T0 4 0 0 0.062 0.29 0.158 0.248 0.45 0.401
T0 5 0 0.092 0.25 0.204 0.248 0.678 0.568
T0 6 0.015 0.19 0.106 0.168 0.134 0.237
T0 7 0.17 0.106 0.154 0.033 0.211
T0 8 0.015 0.033 0.358 0.091
T0 9 0.028 0.358 0.032
T0 10 0.003 0.006
T0 11 0.006


	Introduction
	Background
	Methodology
	Data collection
	Data preprocessing and feature selection
	Splitting the dataset
	Evaluation

	Experimental setup
	Experimental environment
	Dataset
	Experimental flow

	Results
	Analysis
	Influence of families
	Influence of features
	Influence of feature space

	Additional evaluation
	Discussion and Conclusions
	References
	Appendix A: Classification results achieved by RF
	Appendix B: Classification results achieved by J48
	Appendix C: Classification results achieved by LWL

