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Abstract. Automatic Speaker Verification (ASV) systems accuracy is
based on the spoken language used in training and enrolling speakers.
Language dependency makes voice-based security systems less robust
and generalizable to a wide range of applications. In this work, a study
on language dependency of a speaker verification system and experi-
ments are performed to benchmark the robustness of the x-vector based
techniques to language dependency. Experiments are carried out on a
smartphone multi-lingual dataset with 50 subjects containing utterances
in four different languages captured in five sessions. We have used two
world training datasets, one with only one language and one with multi-
ple languages. Results show that performance is degraded when there is
a language mismatch in enrolling and testing. Further, our experimen-
tal results indicate that the performance degradation depends on the
language present in the word training data.
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1 Introduction

Biometrics characteristics are used to recognize or verify the identity of a person
and to provide access to the security sensitive applications. The biometric char-
acteristics are of two different kinds: physical and behavioral. Face, fingerprint,
iris are popular physical characteristics that have been in research for many
years. Behavioral biometrics are based on the way humans perform certain tasks
like speaking and walking. Speaking characteristics of humans are a well-known
biometric modality used to perform accurate recognition. Automatic Speaker
Verification has been a famous topic in biometric applications for many years
now.

The advancement of computational abilities in the recent decades encouraged
applications to use biometric algorithms in many fields. Due to he wide variety
of users, devices, and applications, many kinds of vulnerabilities and dependen-
cies are evolved in operational biometric systems. The popular vulnerabilities
are anomalies in the samples and presentation attacks on the biometric devices.
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The dependencies are caused due to data capturing methods, change in devices,
aging of the subject, and many more. There are more dependencies on behav-
ioral biometric modalities because the behavior of the subject changes often. In
speaker recognition, apart from the capturing conditions like microphone and
transmission channel, background noise, the biometric algorithms also depend
on the text, language, and emotion which impact the voice sample [8].

Text-dependent speaker recognition has been in use for many years [4]. In
these kinds of approaches, the set of words used in testing is a subset of the words
used in enrolment. Further, text-independent speaker recognition methods us-
ing Gaussian mixture models are introduced [14], and more algorithms were
proposed to exclude the dependency caused by the text [6]. Language depen-
dency is another challenging problem that emerged due to multilingual subjects
and wide usage of the same biometric algorithm across the world. Language-
independent approaches have been proposed on top of text-independent speaker
recognition methods [1] by including multiple languages in enrolment. The Na-
tional Institute of Standards and Technology Speaker Recognition Evaluation
(SRE) series has been including multiple languages in their evaluation protocols
over the years 3.

In this work, cross-lingual speaker verification is evaluated on a smartphone
based dataset with different languages. The objective is to benchmark the per-
formance of the state-of-the-art algorithms when different languages are mis-
matched in training, enrolling, and testing phases of automatic speaker verifica-
tion. Thus, the following are the main contributions of this paper:

– Experiments on state-of-the-art methods that use advanced deep neural net-
works, like x-vector method, to check the language dependency.

– Experiments on multiple languages and multiple session datasets are in-
cluded in this work.

– The dependency of trained languages used in world training data is evalu-
ated.

– Results and discussions are presented using ISO/IEC standardized metrics
for biometric performance [5].

The rest of the paper is organised as follows: Section 1.1 discusses the previous
works on cross-lingual speaker recognition approaches and challenges. Section 2
describes the state-of-the-art approaches chosen for our experiments. In Section
3, the multilingual dataset is described, and Section 4, the cross-lingual experi-
ments are presented with results and discussed. Finally, Section 5 concludes the
work with the presentation of future work.

1.1 Related Work

The Automatic speaker verification as a biometric modality has emerged into
many applications. The initial problems in speaker recognition have leaned over
the text-dependency of the speeches in different speaker verification modules.

3 https://www.nist.gov/itl/iad/mig/speaker-recognition
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Later, the language dependency has emerged into a challenging problem in text-
independent speaker verification [1]. The early works on language mismatch
evaluation are performed by comparing speaker verification with world models
trained on only one language and multiple languages. One could observe that
when provided with all languages and enough data for world model training,
there is no degradation of performance [1]. It is important to note that the en-
rolled and tested speaker’s language are the same in these experiments. Further,
the authors have also pointed out the need for new databases from different
languages.

Subsequently, the research work focused on bilingual speakers and performed
cross-lingual speaker verification. In the investigation of combining the resid-
ual phase cepstral coefficients (RPCC) with Mel-frequency cepstral coefficients
(MFCC) work from [10], it is observed that RPCC has improved the performance
of traditional speaker verification methods. The residual phase characterizes the
glottal closure instants better than the linear prediction models like MFCC. The
glottal closure instants are known to contain speaker-specific information [3] [12].
Considering the advantages of residual phase and glottal flow, Wang et al. [17]
proposed a bilingual speaker identification with RPCC and glottal flow cepstral
coefficients (GLFCC) as features. The experiments on NIST SRE 2004 corpus,
RPCC features show the highest accuracy when compared to MFCC features.

In [9], Mishra et al. examined the language mismatch in speaker verifica-
tion over i-vector system. When all the parameters are kept consistent, and
by changing the language, there is performance degradation in EER by 135%.
Also, including a phoneme histogram normalization method using a GMM-UBM
system improves the EER by 16%. Li et al. [7] have proposed a deep feature
learning for cross-lingual speaker verification in comparison with i-vector based
method. Two deep neural networks (DNN) based approaches are proposed with
the knowledge of phonemes, which is considered as a linguistic factor. The DNN
feature with linguistic factor and PLDA scoring shows better performance than
i-vector based method and DNN without linguistic factor.

2 X-vector based Speaker Verification system

The X-vector based speaker verification, which is a Deep Neural Network-based
approach, proposed by Snyder et al. in [15] has the improved performance from
data augmentation as suggested in [16]. The model is a feed-forward Deep Neural
Network (DNN) which works on cepstral features that are 24-dimensional filter
banks and has a frame length of 25 ms with mean-normalization over a sliding
window of up to 3 seconds. The model consists of eight layers. The first five layers
work on the speech frames, with an added temporal context that is gradually
built on through the layers until the last of the five layers. A statistics pooling
layer aggregates the outputs and calculates the mean and standard deviation
for each input segment. The mean and standard deviation are concatenated
and propagated through two segment-level layers and through the last layer, a
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softmax output layer. The block diagram of x-vector based automatic verification
system is show in Figure 1

Fig. 1. Block diagram of X-vector based automatic speaker verification system

The x-vector method is used with two pre-trained variants, one trained on
the combined dataset of five Switchboard datasets, SRE datasets from 2004 to
2010, and the Mixer 6 dataset and the second one is trained on the VoxCeleb 1
and VoxCeleb 2 datasets. The two models are different in multiple directions in-
cluding the data capturing mechanism, languages spoken in data and variance in
acquisition channels. The pre-trained models have been obtained from the Kaldi
webpages namely the SRE16 model from http://kaldi-asr.org/models/m3,
and the VoxCeleb model from http://kaldi-asr.org/models/m7.

2.1 NIST-SRE16 trained model

The NIST-SRE16 pre-trained model uses a total of 15 different datasets, con-
taining a total of 36 different languages. The combined amount of speakers from
the Switchboard, SRE, and Mixer datasets totals 91k recordings from over 7k
speakers. Data augmentation is done, adding noise and reverberation to the
dataset, and combining two augmented copies to the original clean training set.
The augmentation of the recording was chosen randomly between four possible
types, either augmenting with babble, music, noise, or reverb. Augmenting with
babble was done by appending three to seven speakers from the MUSAN speech
to the original signal, augmenting with music was selecting a music file randomly
from MUSAN, trimmed or repeated to match the duration of the original sig-
nal. Noise augmentation was done by adding one-second intervals to the original
signal, taken from the MUSAN noises set. Reverb augmentation was done by
artificially reverberating via convolution with simulated RIRs.

The SRE16 x-vector model training is employed with with two PLDAs. The
first PLDA is trained on the same datasets as the x-vector model trained, but
not fitted to the evaluation dataset. As the PLDA is only trained on out-of-
domain data, this PLDA is called out-of-domain (OOD) PLDA. The second
PLDA (ADT) is fitted to the same datasets and has been adapted to SRE16
data by using the SRE16 major dataset, containing utterances in Cantonese

http://kaldi-asr.org/models/m3
http://kaldi-asr.org/models/m7
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and Tagalog. Therefore, this PLDA is in-domain adapted (ADT) PLDA. The
evaluation set of SRE16 is used to test the trained model. The performance of
the x-vector method is observed as equal error rate (EER) of 11.73% with OOD
PLDA and 8.57% with ADT PLDA.

2.2 VoxCeleb trained model

The VoxCeleb model used has been trained on the datasets VoxCeleb 1 and
VoxCeleb 2 created by Chung et al. in [11] and [2], respectively. The development
set of VoxCeleb 1 contains over 140k utterances for 1211 speakers, while the
VoxCeleb 2 contains over a million utterances for 6112 speakers. All utterances
in VoxCeleb1 are in English but VoxCeleb2 contains multiple languages and have
been extracted from videos uploaded to YouTube. The training set size has been
increased by using Data Augmentation by adding noise and reverberation to the
datasets. In the same fashion as done in Section 2.1. The test set of VoxCeleb1
with 40 speakers is used to evaluate the training process and the performance is
observed as EER of 3.128%.

3 Smartphone Multilingual Dataset

The SWAN (Secured access over Wide Area Network) dataset [13] is part of
the SWAN project funded by The Research Council of Norway. The data has
been gathered using an Apple iPhone6S and has been captured at five different
sites. Each site has enlisted 50 subjects in six sessions, where eight individual
recordings have been recorded. Depending on the capture site, four of the ut-
terances are in either Norwegian, Hindi, or French, while the remaining four
are in English. The utterances spoken are predetermined with alphanumerical
speeches. The speakers have pronounced the first utterances in English and then
in a national language depending on the site.

The six sessions of data capture are present at each site with a time interval
of 1 week to 3 weeks between each session. Session 1 and 2 are captured in
a controlled environment with no noise. Session 1 is primarily used to create
presentation attack instruments. Therefore, we did not use session 1 data in our
experiments. Session 3,4 and 6 are captured in a natural noise environment, and
session five is captured in a crowded noise environment. In our experiments, we
have enrolled session 2 data in all languages, and other sessions data are used
for testing. This way, we can understand the session variance and the impact
of noise on ASV methods. A sample of single utterance (sentence 2 in English
with duration 14 seconds) is presented in Figure 2 indicting the intra-subject
variation between different sessions. The Figure 2 shows the utterances of the
sentence ”My account number is fake account number” by the same subject in
all sessions.
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Fig. 2. A sample signal from SWAN dataset from each session.

4 Experiments and Results

We have four different sets of languages in our dataset, where English is the
common language in all the sets. Experiments on four sets of different language
combinations are performed. Also, we have five sessions of data capturing in each
of the sets. We have followed the same protocol among all the sets by enrolling
session two samples and using the rest of the sessions data for testing. To study
the cross-lingual speaker recognition results, we have enrolled each language
separately and tested the other languages present in that set.

The results are presented using the ISO/IEC standardized metrics for bio-
metric performance [5]. Equal error rate (EER) is the error rate at which the
false match rate (FMR) and false non-match rate (FNMR) are equal. We have
plotted detection error trade-off (DET) curves, which represent the performance
of the recognition of the biometric system in terms of FNMR over FMR.

4.1 Experiment 1

The first experiment is carried out on NIST-SRE16 trained model for x-vector
extraction and PLDA scoring. This experiment includes two types of PLDA
scoring approaches. The first type (OOD PLDA) is an out-of-domain model
trained on combined data that contains the Switchboard database, all SREs
prior to 2016, and Mixer 6. The second type of PLDA (ADT PLDA) is an in-
domain PLDA that is adapted to the SRE16 major partition.

Table 1 represents the cross-lingual speaker recognition with English as the
enrolment language in all four sessions. The highest error is highlighted among
the block of same enrolled language in each PLDA method. It can be clearly
seen that the EER values are lower when the enroll language and test lan-
guages are the same compared to different languages in test data. Similar results
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Table 1. Results from SRE16-trained X-vector Model with two types of PLDAs and
different sessions.

Enrolment Test S3 S4 S5 S6
language language OOD ADT OOD ADT OOD ADT OOD ADT

English English 3.21 3.20 1.65 1.76 4.05 4.15 1.78 1.83

English Norwegian 6.45 6.65 5.89 5.61 8.60 8.32 6.16 6.11

English Hindi 6.83 6.37 5.68 4.96 7.48 7.27 6.33 6.13

English French 7.76 7.21 5.65 5.08 5.13 4.96 6.13 5.73

Norwegian Norwegian 3.12 3.21 1.28 1.44 4.98 4.42 1.70 1.77

Norwegian English 5.56 5.17 3.62 3.42 8.46 7.34 3.76 2.95

Hindi Hindi 5.26 4.39 5.01 4.23 4.35 4.46 4.77 4.58

Hindi English 7.50 7.51 6.18 5.73 5.45 5.49 5.23 4.72

French French 5.33 4.32 2.45 2.40 2.62 2.35 1.88 2.06

French English 6.13 6.10 3.41 3.18 6.44 5.22 4.63 4.64

(a) Enrolment: English (b) Enrolment: Norwegian

(c) Enrolment: Hindi (d) Enrolment: French

Fig. 3. DET curves showing the performances of Session 3 with trained model on
NIST-SRE16 and out-of-domain adapted PLDA (OOD).

are obtained with Norwegian, Hindi, and French. The highest difference can
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(a) Enrolment: English (b) Enrolment: Norwegian

(c) Enrolment: Hindi (d) Enrolment: French

Fig. 4. DET curves showing the performances of Session 3 data and trained on NIST-
SRE16 with in-domain adapted PLDA (ADT).

be observed in the case of English-French combination with a degradation in
performance of more than 350% on Session 6 data.

Session 5 has displayed the least accuracy in recognizing speakers among
all language combinations. The main reason for this problem could be due to
the crowded environment of the data captured. The Figures 3 and 4 show the
plots of DET curves from different languages used in enrolment and testing
from Session 3. The error rates can be clearly seen increasing when cross-lingual
speaker recognition is performed.

PLDA adaptation The adaptation of PLDA training does not show a regular
trend among different languages. Although the out-of-domain PLDA adaption
(OOD) displays higher error rates in many cases, in-domain adapted PLDA
(ADT) does not improve the performance for some same-language and cross-
language evaluations. In the future works, more experiments on different models
of OOD and ADT will be studied along with multiple languages included in the
data.
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4.2 Experiment 2

VoxCeleb trained model is used in the second experiment. The PLDA used in this
model is trained on VoxCeleb1, and Voxceleb2 combined. A similar protocol from
Experiment 1 is followed here also but with only one type of PLDA model. Table
2 shows the EER values among different language combination with highest EER
value highlighted. The equal error rate is increased in all cases when there is a
language mismatch between enrolment and testing. However, it is interesting to
observe that the difference in the drop of EER is higher than for Experiment 1.

Figure 5 shows the comparison of DET curves between the same language
and cross-language speaker recognition from Session 3 of the dataset. It can be
clearly seen that the performance of the system has decreased when language
mismatch has happened. The difference between the same language and cross-
language is much higher in the VoxCeleb model than that of the NIST-SRE16
trained model.

Table 2. Results from VoxCeleb X-vector Model from different sessions.

Enrolment Test
S3 S4 S5 S6

language language

English English 9.90 7.69 10.01 7.99

English Norwegian 11.83 10.31 15.01 10.48

English Hindi 13.84 13.12 12.75 12.05

English French 11.21 9.06 11.28 9.46

Norwegian Norwegian 8.04 6.44 10.91 6.74

Norwegian English 11.92 9.32 13.71 9.55

Hindi Hindi 12.16 10.68 11.88 10.66

Hindi English 14.77 11.70 13.11 12.72

French French 7.64 6.58 8.29 6.94

French English 11.83 9.71 8.57 9.41

The speaker recognition accuracy is consistently lower than for the NIST-
SRE16 trained model in all the cases. The reason for this could be that the world
training dataset in the NIST-SRE16 model contains multiple languages which
attributes for cross-lingual speaker recognition robustness. On the other hand,
the VoxCeleb2 dataset contains multiple languages, there is a huge variance in
data and bias in the number samples per subject which could be reason that
limits the ability of the system to recognize different languages in enrolling and
testing.

5 Conclusion

Behavioral biometric recognition methods have multiple dependencies due to
high intra-class variation caused by environmental factors and the human fac-
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(a) Enrolment: English (b) Enrolment: Norwegian

(c) Enrolment: Hindi (d) Enrolment: French

Fig. 5. DET curves showing the performances of Session 3 data and trained on Vox-
Celeb data.

tors impacting the capture process. In the speaker recognition community, de-
pendencies of samples like the text used in the speech and language in which
speech is delivered needs to be investigated. The dependency due to language
has been a problem when there is a mismatch between enrolment and tested lan-
guage. In this work, we have focused on evaluating the problem of language mis-
match on the state-of-the-art speaker recognition method, namely the x-vector
method, which uses a deep neural network-based approach. We have chosen a
multilingual dataset with four different languages and four different sessions. For
the world training dataset, we included two popular publicly available datasets
NIST-SRE16 and VoxCeleb.

The experiments on cross-lingual speaker recognition displayed the perfor-
mance degradation when there is a mismatch in languages in enrolment and
testing. Further, the dependency on the languages included in the world train-
ing dataset is observed. If there are multiple languages used in the world training
dataset, which is the case of NIST-SRE16, performance degradation is less com-
pared to the one language model VoxCeleb. In future works, a speaker recognition
approach is implemented to overcome the problem of language dependency.
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