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Abstract

Near infrared spectroscopy (NIR) is

a promising technique for continu-

ous blood glucose monitoring for

diabetic patients. Four interferents,

at physiological concentrations,

were introduced to study how the

glucose predictions varied with a

standard multivariate calibration

model. Lactate and ethanol were

found to interfere strongly with the

glucose predictions unless they

were included in the calibration

models. Lactate was mistaken for glucose and gave erroneously high glucose

predictions, with a dose response of 0.46 mM/mM. The presence of ethanol

resulted in too low glucose predictions, with a dose response of −0.43 mM/

mM. Acetaminophen, a known interferent in the glucose monitoring devices

used for diabetes management today, was not found to be an interferent in

NIR spectroscopy, nor was caffeine. Thus, interferents that may appear in high

concentrations, such as ethanol and lactate, must be included in the calibra-

tion or model building of future NIR-based glucose measurement devices for

diabetes monitoring.

KEYWORD S

acetaminophen, diabetes mellitus, ethanol, glucose, lactate, NIR, PLSR

1 | INTRODUCTION

In pursuit of more effective treatment for diabetes
mellitus type 1 (DM1), reliable glucose measurements are
vital to achieve good blood glucose control (blood glucose

Abbreviations: APAP, acetaminophen; CGM, continuous glucose
monitoring; DM1, diabetes mellitus type 1; LV, latent variable; NIR,
near-infrared; PLSR, partial least squares regression; rms, root mean
square; RMSE, root mean square error; RMSECV, root mean square
error of cross-validation; RMSEP, root mean square error of prediction;
SNR, signal to noise ratio.
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levels of 4-10 mM). The goal is to avoid harmful effects of
either too high (hyperglycemia) or too low (hypoglyce-
mia) blood sugar levels, of which the first can cause sev-
eral long-term complications, including damages to the
nervous system and vision, poorer general health and
premature death. The current gold standard for glucose
sensing is continuous subcutaneous measurements,
where an electrochemical sensor is placed in the subcuta-
neous tissue just beneath the skin. There it measures glu-
cose in the interstitial fluid surrounding the sensor.
These sensors are selective to glucose and have clinically
acceptable accuracy. However, the continuous glucose
monitoring (CGM) sensors have a limited lifetime, suffer
from interference from certain drugs [1, 2], and most
need frequent calibrations. With the recent introduction
of some pre-cailbrated CGMs, the inconvenience of fre-
quent calibrations is eliminated. As an alternative, optical
glucose sensing could provide a long-term option for con-
tinuous glucose measurements.

Optical glucose sensing is not yet widely realized, but
several options have been researched and there have been
attempts of commercialization [3]. One method is near-
infrared (NIR) spectroscopy (wavelengths 700-2500 nm),
which is promising due to the availability of relatively low-
cost optical components and sources, and because the pene-
tration depth (0.5–4 mm) of the NIR wavelengths in human
skin could enable non-invasive measurements [4–6]. How-
ever, the NIR bands are broad and relatively weak, which is
related to challenges with low signal to noise ratios (SNRs).
The accuracy of the predictions is therefore vulnerable to
factors such as temperature variations, noise in the instru-
mentation, and uncalibrated changes in sample composi-
tion. Therefore, non-invasive NIR techniques face serious
challenges due to inter-individual and time varying differ-
ences in tissue morphology and tissue components. Invasive
NIR techniques, measuring directly in body fluids, repre-
sents a much simpler measurement problem and remains a
promising glucose monitoring technique for future artificial
pancreas based on glucose monitoring in for example the
peritoneal cavity [7–9].

The success of NIR spectroscopy as a measurement
method relies heavily on correct calibration and model
building [10]. If the calibration model is applied to a sample
containing molecules absorbing at the same wavelengths as
glucose which were not present when calibrating and
building the model, these molecules (interferents) may
interfere with the accuracy of the glucose prediction.

Several studies exist on how to diminish effects of
interferents in NIR spectra by data processing [11–13], or
how to predict the concentration of several molecules
simultaneously [14–22]. However, such correction
methods often require a priori information about e.g. pos-
sible interferents not included in the calibration. To

achieve this, the interferents must be known. Some stud-
ies have investigated the effect of other sugars or glycated
hemoglobin as interferents [11, 12, 23, 24] for glucose
sensing, but several other potential interferents are left
unexplored. Calibration of multivariate models for clinical
use is particularly challenging. First, such calibration
model building might require knowledge of the actual
concentrations of the interferents, which may not be feasi-
ble unless the patients are in clinics. Second, the model
calibration would require sufficient variation in inter-
ferent concentrations, something that would require mon-
itoring over extensive time intervals, or worse, never
occur. Thus, it is of great interest to quantify the glucose
prediction errors resulting from unaccounted interferents.

In this study, we aim at exploring how the predictive
ability of a glucose model is affected by the presence of
four clinically relevant possible interferents; lactate, etha-
nol, acetaminophen (APAP) and caffeine. The ultimate
goal is to contribute to the transformation from in vitro
to in vivo NIR glucose measurements with high confi-
dence. The model is based on non-biological samples, but
the results should be transferable to the measurement in
water-dominant bodily fluids. To verify this, a smaller
study was conducted with intraperitoneal fluid spiked
with one of the interferents. Lactate was chosen because
it has a spectrum relatively similar to glucose and occurs
naturally in the body.

Lactate is usually found at lower concentrations than
glucose, but can in certain situations be comparable. During
a workout, lactate is formed from the blood glucose when
insufficient oxygen is available for complete oxydation of
glucose to CO2 and H2O [25]. Lactate levels can also rise
during infections such as the common cold or the flu, when
glucose levels in patients with DM1 also tend to become ele-
vated. Providing an accurate glucose measurement is essen-
tial in such circumstances. Lactate is one of the molecules
that has been predicted simultaneously with glucose in
some studies [15, 19, 21, 22], but to our knowledge the effect
of leaving out lactate in the calibration model has not yet
been examined. In physiological samples that could form
the basis for a calibration model, one would not expect the
lactate levels to be high unless specifically planned for. In
this study, we therefore aimed to investigate how a glucose
prediction model might behave with soaring lactate levels if
the calibration did not include high lactate concentrations.

Ethanol was chosen because it is a popular substance
that affects blood glucose levels [26, 27] and can be found
in comparable concentrations to glucose in the blood.
When a patient with DM1 is under the influence of alco-
hol, the glucose metabolism is affected and the judgment
is impaired. From a clinical point of view, erroneous glu-
cose measurements could be more serious (lead to hyper-
or hypoglycemia).
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Caffeine was chosen because the absorption spectrum
exhibits similar absorption peaks as glucose in the combi-
nation band (2000-2500 nm), and it is a commonly
ingested substance that can have an effect on the glucose
levels of diabetes patients [28]. Caffeine is sometimes
consumed in high-sugar beverages (coffee with milk,
energy drinks), where the blood glucose levels tend to
soar. If caffeine were to interfere with the glucose predic-
tion it would therefore be a useful discovery.

APAP was chosen because it is a known interferent
with the current enzymatic CGM devices [29], which cer-
tain manufacturers are working to solve [30]. APAP is
present in drugs such as paracetamol that can be bought
prescription free in many countries, and is used fre-
quently for self-medication for numerous ailments. It is
perhaps less well known that APAP also is an interferent
for the glucose meters [1]. If APAP is not an interferent
when measuring with NIR spectroscopy, it would be an
advantage over the current gold standard.

Since APAP and caffeine are found at low concentra-
tions in the body compared to glucose, lactate and etha-
nol, they were not expected to have a large impact on the
absorption signal.

2 | EXPERIMENTAL

2.1 | Samples

Glucose in the range 0 to 50 mM was mixed with four inter-
ferents: lactate (0-30 mM), ethanol (0-69 mM), caffeine (0-
0.05 mM), and APAP (0-0.3 mM), in phosphate buffered
saline (tablets from VWR Life Science, PA, USA, 10 mM,
pH 7) for stable pH. The analytes were obtained in powder
form from Sigma Aldrich (MO, USA). The analyte concen-
trations were chosen to span physiological ranges with more
extreme high end-points. Many other studies of optical glu-
cose sensing have a slightly narrower glucose range, up to
around 30 mM, but some also look at ranges similar or wider
to what has been investigated here [3]. The lactate concentra-
tions are similar to some studies determining lactate and
glucose simultaneously [19, 21]. In a previous investigative
study of APAP for amperometric devices, up to 26 mg/L
(corresponding to 0.43 mM) was measured [30].

The sample mixtures were designed using Design
Expert (Stat-Ease, MN, US) and an I-optimal model was
chosen [31] covering the full sample space with 42 cali-
bration samples. There were no significant correlations
between the concentrations of glucose and the inter-
ferents. These samples were replicated in three chemi-
cally independent batches. In addition, a validation set of
42 samples was prepared, spanning the same sample
space but with different concentrations.

2.2 | NIR measurements

The study was conducted at Nofima AS (Norway) using a
NIR Systems XDS Rapid Content Analyzer Spectrometer
(Metrohm Nordic AS, Norway) equipped with silicon
(Si) and lead sulfide (PbS) detectors, covering the visible
and short wave NIR (400-1100 nm) and NIR wavelengths
(1100-2500 nm), respectively. Three quartz cuvettes of 1
mm path length were used. The cuvettes were placed in a
cuvette holder which automatically pulled and centered
the cuvette inside the spectrometer where it was illumi-
nated by a broadband beam from a 50 W lamp. The beam
path was not accessible or changed in the course of the
experiment. The output of the spectrometer was the sample
absorbance: A = − log(I/I0) with arbitrary units (AU). The
cuvette was placed in a heating block that was set to 37�C.
However, there was no mechanism to cool down the sam-
ple which was heated by the beam while being scanned.

The 42 × 3 calibration spectra were collected in tripli-
cate in the wavelength range 400 to 2500 nm sampling
every 0.5 nm (4200 wavelength channels) with a band-
width of 8.75 nm in the course of 4 days, giving a total of
359 spectra after some measurements were lost due to
technical errors. On the fifth day, the validation set was
collected, giving a dataset with 120 spectra.

Spectra of 100 mM of the interferents and glucose are
shown in Figure 1.

2.3 | Chemometric analysis

Due to the many wavelength channels and relation in
absorption between them, NIR spectroscopy models are often
built using multivariate regression (chemometrics). Partial
least squares regression (PLSR) is such a method employed
to build a linear model from a calibration set [22, 32].

FIGURE 1 Spectral deviation of 100 mM spectra of

interferents in phosphate buffered saline. The mean water

spectrum was subtracted for visibility, as the water absorption is

dominating
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In short, PLSR performs a dimensionality reduction of
the calibration spectra X and the glucose values, Y
into latent variables (LVs) which maximally capture
the covariance between X and Y. The vector of regres-
sion coefficients b is a combination of the first few
LVs. The number of LVs are determined based on the
minimum root mean square error (RMSE) of the
model applied to either subsets of the calibration mea-
surements that were kept out of the model building
(cross-validation), or a measurement set completely
detached from the calibration measurements. Includ-
ing too many LVs can lead to over-fitting and less
robust models, it is therefore an important step in the
model building.

A plethora of preprocessing methods exist, for spectral
smoothing, removing spectral noise (for example from scat-
tering and path length changes), or choosing spectral ranges
with the most information. The choice of preprocessing was
found using in-house code publicly available [33], iterating
through derivatives, smoothing and scattering correction
options. The success of the preprocessing was evaluated
based on root mean square error of cross-validation
(RMSECV) of a PLSR model. The most reliable and robust
models were found when the only preprocessing applied
was downweighting of certain noisy wavelengths. The
downweighted regions were: highly absorbing water peaks
(1800-2100 nm, 2300-2500 nm), the overlap of the two spec-
trometer detectors (1090-1110 nm), and the fringes of the
detectors (<500 and >2300 nm), leaving 2956 wavelength
channels unweighted. A selection of the most informative
wavelength channels is not uncommon [20, 34], here we
removed wavelengths that had low SNR either due to the
detectors or almost all light being absorbed by the water
and did not attempt to select regions with more or less glu-
cose features. An example of a spectrum with down-
weighted regions is shown in Figure 2, where the spectral
shape is determined by water.

The sample handling and cuvette cleaning was
improved in the course of the experiment, including better

handling to reduce temperature variations. The first 86 sam-
ples did not benefit from this improvement, and displayed
a larger variability and prediction error. They were
removed from the rest of the analysis on the basis of non-
optimal sample handling. The rest of the sample set with
273 spectra was analyzed in full with a PLSR in Matlab
(Statistics and Machine Learning Toolbox, Release 2020a,
The MathWorks, Inc., MA, USA, plsregress) and a leave 10
out cross-validation which ensured that the duplicates were
binned together. The validation set was held separate from
the choice of parameters and the finished model was
applied at the end of the analysis.

The sample set was then divided into five subsets: four
subsets where one of the interferents was kept at zero,
with 59 to 73 samples in each subset and the average of
10 random subsets (keeping duplicate measurements
together). The 10 random subsets were generated to have
a reliable comparison with the smaller sets that have one
of the interferents left out. The random subsets had 45 to
78 included samples. New models were generated based
on these subsets, and trained with cross-validation with
batches of 15. The number of LVs was chosen based on
the RMSECV to obtain the best possible model. That is,
the models were built without any knowledge of the left-
out interferent in question. The model was then applied
to the rest of the sample set, which varied for each subset
(labeled interferents in Table 1). At the end of the proce-
dure, the model was applied to the validation set, which
was unchanged for all subsets and is therefore the basis of
comparison. In the presence of an interferent, a system-
atic increase in error should be seen with increasing inter-
ferent concentration. To investigate this, the average error
was plotted as a function of interferent concentration, and
in the case of a significant increase in error, the dose
response was found by linear regression (regress, Matlab).

2.4 | Verification using biological
samples

The limited verification study on biological samples was
performed using a lensed fiber-based transmission spec-
troscopy setup with a broadband light source (SLS201L,
Thorlabs, NJ, USA) and a NIRQuest512-2.5 spectrometer
(Ocean Optics, FL, USA) [35]. Standard multi-mode
fibers (0.22 NA M15L01, Thorlabs) were lensed using an
FSM-100P ARC- Master (Fujikura, Japan) and were fixed
with two fiber chucks (Newport, CA, USA) and aligned
approximately 0.64 mm apart.

Porcine samples of intraperitoneal fluid was collected
from two pigs during unpublished pilot experiments
(date: 6 June 2019 and 11 June 2019, kept frozen) per-
formed similarly to other work from our group [36, 37].

FIGURE 2 Example of one of the sample spectra with the

downweighted regions. Water absorption dominates
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The intraperitoneal fluid samples were spiked with glu-
cose and lactate in powder form to avoid diluting the
fluid. Due to a limited amount of biological sample, this
put some constraints on the number of samples mea-
sured, and limited the number of low concentrations.
The sample was spiked further with glucose and/or lac-
tate, yielding a total of 38 mixtures measured, where
18 samples were without lactate. Supra-physiological
concentrations were included to increase the number of
samples and to ensure that the limit of detection was
exceeded, as the experimental setup has higher noise
levels than the spectrometer used in the main study.

A voulme of 100 μL of the sample was applied as a
droplet and measured on the lensed fibers immediately
after mixing in the glucose or lactate powder. The trans-
mission setup was cleaned with ethanol and water
between every sample measurement. A spectrum of air
and water was taken before every sample measurement.
The transmission spectra were acquired using an integra-
tion time of 10 ms and 500 averages, followed by averag-
ing over three spectra. The spectra were subjected to
Savitzky–Golay smoothing (11 point smoothing, second
order) prior to further analysis.

The absorbance spectra were found from the collected
spectra by Beer–Lambert's law, where I0 referred to the air
measurement. The water spectrum taken just before the
sample was subtracted before analysis. These spectra were
analyzed in the same way as the full data set, but only had
one subset of 18 samples that did not contain lactate. The
cross-validation was performed with leaving 25% of the sam-
ples out due to the small number of samples of the subset.

3 | RESULTS AND DISCUSSION

3.1 | Model performance

The root mean square error of prediction (RMSEP) of the
models are shown in Table 1. Model 1 gave a prediction
on the validation set with an RMSEP of 1.6 mM. The

average error is shown for the 10 random subsets (labeled
model 2). The RMSEP of validation varied from 1.0 to
3.8 mM. We can therefore assume that models 5 and
6 built from the subset without APAP and caffeine per-
form within the limit of random fluctuations. Models
3 and 4 built with an absence of lactate and ethanol per-
formed worse.

TABLE 1 The RMSEP for the

models created based on the

different sets

Model number LVs RMSEP interferents RMSEP validation

1. Full 11 — 1.6 mM

2. Random sub (avg.) 9–11 3.1 mM 2.2 mM

3. No lactate 8 10.4 mM 6.3 mM

4. No ethanol 9 20.4 mM 17.9 mM

5. No APAP 9 3.6 mM 2.7 mM

6. No caffeine 9 3.4 mM 2.7 mM

Note: The RMSEP for interferents refers to the error of the model created by the subset applied to the rest of
the full calibration set used in model 1. This is then the RMSEP from the set containing the interferent that
was not included in model 3–6.
Abbreviations: APAP, acetaminophen; RMSEP, root mean square error of prediction.

FIGURE 3 The absolute error (ypred − y0) of glucose model

number 3 generated without lactate applied to the rest of the

sample set (containing lactate) and the validation set, as a function

of lactate concentration. The error points are grouped in bins in

intervals of 5 mM for easier readability

FIGURE 4 The absolute error (ypred − y0) of glucose model

number 4 generated without ethanol applied to the rest of the

sample set (containing ethanol) and the validation set, as a function

of ethanol concentration. The error points are grouped in bins in

intervals of 5 mM for easier readability

FUGLERUD ET AL. 5 of 9



We investigate model number 3 (built without lac-
tate) and 4 (built without ethanol) further. Figure 3
shows a plot of the difference in the predicted glucose
concentrations from the real glucose concentration from
model number 3 as a function of the lactate concentra-
tion. The model performed poorly for high lactate con-
centrations. The dose response for glucose is an elevation
in prediction of 0.46 mM per mM lactate (95% confidence
interval [0.45, 0.47] mM). The model treats lactate as glu-
cose, and an increase in lactate is wrongly assigned to an
increase in glucose. This is also seen clearly in the Clarke
Error Grid plot in Figure 6. Figure 4 shows a plot of the
error of the glucose estimate of model number 4 as a
function of the ethanol concentration. The model per-
formed worse for increasing ethanol concentrations.
Higher ethanol concentrations wrongfully decreased the
glucose prediction, meaning that the ethanol obfuscates
the glucose absorption, or absorb at wavelengths that
model number 4 has assigned to negatively correlate with
the presence of glucose. The dose response on the glucose
prediction is approximately a decrease of −0.43 mM per
mM ethanol (95% confidence interval [−0.44, 0.42] mM).

3.2 | Clinical significance

A way to evaluate the clinical accuracy of a new glucose
measurement device for diabetes treatment is through
the Clarke Error Grid [38]. The results of the analysis on
the full set is plotted in such an error grid in Figure 5,
where measurement results that fall in zones A and B
will lead to correct treatment (insulin being administered
with high blood glucose values, no insulin injections for

low glucose values). Measurements in zones C and D will
give information that will lead to unnecessary or lack of
necessary treatment, and predictions in zone E would
indicate that the patient is hypoglycemic when in reality
hyperglycemic and vice versa [3]. A sensor should prefer-
ably only have predictions in zone A. Some predictions in
zone B are also deemed acceptable, but there should
never be predictions in zone E. The results on the valida-
tion set are compared directly. A summary of the results
is presented in Table 2. The performance of the full
model is adequate with most predictions in Zone A and
only two predictions in zone B. The average of the 10 ran-
dom subsets are given. The percentage of points in zone
A ranged from 61.7% to 100%, with a median of 88.9%.

The models built without lactate and ethanol stand out
as giving particularly poor results. The Clarke Error Grid is
plotted for model number 3 without lactate in Figure 6.
The presence of lactate places many of the predictions in
zone D and E. Model number 4 built without ethanol
resulted in several negative values, that were all set to zero
before calculating points in the Clarke Error Grid. Negative
values enable the use of an alarm and are therefore less
serious than over-estimating the glucose value, which
would instead lead to wrongful insulin administration.

Models 5 and 6 built without APAP and caffeine, respec-
tively, performed similar to some of the random subsets.
Although model number 5 has 14.2% of the predicted glu-
cose values in zone B, the inaccuracy is similar to some of
the random subset models and can be attributed to inaccura-
cies in the measurements and not the APAP concentration.

3.3 | Noise characterization and sources
of error

There was a drift in temperature as the beam heated the sam-
ple. The temperature was measured between 35.6�C and
38.6�C in the course of the experiment, and was seen to drift
around 1�C to 2 �C in the course of a sample acquisition.

FIGURE 5 Clarke's error grid with calibration on the full set,

97.5% of the validation set was within zone A and the respective

2.5% in zone B

TABLE 2 The ratio of points in the validation set placed in the

respective zones of the Clarke's error grid for the models created

based on the different sets

Model number A B C D E

1. Full 97.5% 2.5% — — —

2. Rand. sub. 88.0% 9.1% — 2.8% —

3. No lactate 44.4% 48.1% — 7.4% —

4. No ethanol 38.3% 18.5% — 32.1% 11.1%

5. No APAP 85.2% 14.2% — — —

6. No caffeine 91.4% 7.4% — 1.2% —

Abbreviation: APAP, acetaminophen.
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The spectra were highly temperature dependent, and the dif-
ference in temperature is a source of additional variation.
Temperature variations could be somewhat compensated by
data processing or direct temperature measurement to
achieve an improved prediction result [39, 40]. However, as
the main objective of this paper was to investigate the effects
of interferents, we chose not to introduce other preprocessing
and analysis methods that could convolute the molecular
interference and temperature effects. For noise analysis, the
100% transmission lines were calculated for water samples
obtained throughout the experiment. They were heavily
influenced by changes in temperature. The spectrometer
specifications state that the photometric noise on the detec-
tors should be <50 μAU for the visible part (<700 nm) of the
spectra, and <20 μAU for the NIR (>700 nm). The rms noise
from the 100% lines was 29 μAU for the visible range
included in the analysis (500-750 nm), 33 μAU for the short
wave band (750-1090 nm), 110 μAU for the first overtone
(1500-1800 nm) and 80 AU for the combination band (2100-
2300 nm). Other studies with higher accuracy [41] have pres-
ented much lower rms noise, below 10 μAU. The much
higher rms noise of the first overtone can be attributed partly
to increased temperature dependence due to water absorp-
tion. Water absorption could account for some of the ele-
vated noise for the short wave band and the combination
band, but there could also be other sources of noise, for
example the temperature change in the air from the air con-
ditioning system [42]. The two downweighted water peaks
(at 1800-2100 nm and >2300 nm) had rms noise around
3 mAU, several orders of magnitudes larger, which confirms
the importance of discarding these wavelength channels. A
lower noise floor could have improved the accuracy of the
predictions in this study, and could have been achieved by

better temperature control (i.e. cooling). In a clinical setting,
the temperature is likely to be more stable if the measure-
ment site is within the body, but large variation could be
expected if the measurement is performed non-invasively on
the skin or minimally invasively in the interstitial fluid. Tem-
perature compensation should then be considered.

Although the noise floor and therefore the RMSEP
found in this study is somewhat higher than what has been
obtained in other studies with NIR spectroscopy (RMSEPs
less than 1 mM) [3, 32, 41], what we learn should also be
true for a more accurate model with a lower noise floor, as
the absorption is linear. The effect of lactate and ethanol on
the predictions are not likely to be improved much with
lower noise, as we would not expect finer spectral features
that could differentiate the different analytes to emerge in
this wavelength range. A higher sensitivity could have rev-
ealed very low interference from APAP and caffeine, but we
should have seen some systematic error trend if this were
the case, which is not present. For CGMs, the elevation in
predicted glucose levels due to APAP was 3 to 4 mM [29].
The models presented here would have detected such a
degree of interference. As mentioned, APAP and caffeine
were not expected to interfere due to the comparably low
concentrations they can be found at. We wanted to confirm
this due to the great clinical relevance of especially APAP,
which interferes with common CGM devices.

As is shown by the Clarke Error Grids, some uncer-
tainty is acceptable, and we could expect future NIR-
based glucose measurement devices to have a comparable
accuracy as the full model presented due to the generally
low SNR, the presence of water, and challenges of imple-
mentation in an in vivo setting.

A broadwavelength range was investigated in this prelim-
inary study. When the specific interferents are known, wave-
lengths with glucose features that are not affected by the
interferents can be chosen. The goal in this paperwas to inves-
tigate which molecules could be interfering, and we therefore
conducted a broad wavelength investigation, including some
of the visible spectrum. Wavelengths where glucose does not
absorb much can also contain glucose information in that the
solute (water) spectrum is altered. Including many wave-
lengths in the NIR can be beneficial because the features are
broad and neighboring wavelengths are correlated. By doing a
broad scanwe can be less sensitive to noise.

3.4 | Verification using biological
samples

The full model built with 38 samples used five LVs and had a
RMSECV of 44.7 mM, similar to previous studies using this
fiber-optic setup [35]. An increase in error with increasing lac-
tate concentrations was not found when lactate was included

FIGURE 6 Clarke's error grid with calibration on 73 spectra of

the set not containing lactate. 44.4% of the validation set was within

zone A, 48.1% in zone B and 7.4% in zone D

FUGLERUD ET AL. 7 of 9



in the model. The sub-model built without lactate on 18 sam-
ples with three LVs had a RMSECV of 46.3 mM. When this
model was applied to the measurements taken on samples
with lactate, an increase in error was seen with increasing lac-
tate levels, shown in Figure 7. The dose response was found
to be 0.56 mM/mM (95% confidence interval [0.49, 0.63]
mM). Although this is slightly higher than the dose response
found in the study, the general trend is confirmed.

4 | CONCLUSIONS

Lactate and ethanol at physiological levels were found to
interfere with the NIR based glucose prediction when not
part of the calibration set. A multivariate model was able to
predict the glucose concentration in the presence of the inter-
ferents, if they were included in the analysis. The results were
verified using peritoneal fluid samples. These results are of
medical interest, as a NIR calibration model could be
expected to be built on physiological samples, where high
levels of lactate and ethanol might not occur. Naturally
higher lactate levels can be found during illness and exercise,
situations where accurate glucose measurements are impor-
tant to DM1 patients. Although patients might be asked to
exercise before giving samples for a calibration model,
patients are not likely to ingest ethanol before delivering such
samples. In addition, the use of ethanol affects the glucose
levels and can be followed by hypoglycemia [26, 27]. Consid-
ering that the user may be intoxicated and be less alert to
strange behaviors in their glucose measurement device, it is
of paramount importance that prospective NIR-based sensors
also calibrate for physiological levels of ethanol.

APAP and caffeine did not appear to affect the predic-
tions of glucose concentrations at the levels measured, as
expected. This reveals an advantage of NIR sensing, as APAP
is a known interferent to the enzymatic glucose sensors.

To summarize, we have shown how the presence of
lactate and ethanol can deteriorate the predictive ability
and robustness of the glucose model. With known inter-
ferents, it is possible to correct for this in the calibration
design and/or chemometric model building. Thus, when
the technology is mature enough to go from in vitro to
in vivo NIR glucose measurements, lactate and ethanol
should be part of the calibration models.
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