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The rupture of a polymer chain maintained at temperature T under fixed tension is prototypical to a wide
array of systems failing under constant external stress and random perturbations. Past research focused on
analytic and numerical studies of the mean rate of collapse of such a chain. Surprisingly, an analytic
calculation of the probability distribution function (PDF) of collapse rates appears to be lacking. Since rare
events of rapid collapse can be important and even catastrophic, we present here a theory of this
distribution, with a stress on its tail of fast rates. We show that the tail of the PDF is a power law with a
universal exponent that is theoretically determined. Extensive numerics validate the offered theory. Lessons
pertaining to other problems of the same type are drawn.
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Introduction.—The probability of rare events in which
materials, devices, or structures fail catastrophically, even
when they are expected to remain whole for long average
times, is a subject of great interest in material physics, in
engineering, and in environmental sciences; cf. [1,2], and
references therein. The development of techniques and
ideas that allow the computation of the probability of rare
events is of obvious necessity. In this Letter, we discuss a
fundamental problem of this type and maybe one of the
simplest, i.e., a polymer in a thermal bath; see [3] and
references therein. We consider a one-dimensional chain of
Nb þ 1 particles, or beads, interacting with their nearest
neighbors with a given potential. The chain is anchored at
one end and pulled from the other end using a constant
force f. The chain is maintained at temperature T, and the
question is, how long will the chain persist until “aging”
will result in its breaking, and what is the probability that
this collapse will occur at a given time τ? The breaking time
τ is a stochastic variable, since the dynamics at any given
temperature induces random fluctuations in the separation
of the particles until one (or more) reaches a breaking point.
Many studies considered this problem under one guise or
another, mainly with the aim of offering a theory for the
mean breaking time, or the mean rate of breaking hτ−1i,
where the angular brackets represent an average over many
realizations [4–12]. It turns out (and see below) that the
distribution of breaking rates is not at all sharply peaked,
and one should worry about the tail of the distribution that
represents rare, but potentially catastrophic, fast rates of
breaking (or, mutatis mutandi, short times for failure). We
are mainly interested in the probability distribution function
(PDF) of breaking rates Pðτ−1;Nb; T; fÞ as a function of

Nb, T, and f. We will show that even in this relatively
simple problem there exist relatively high probabilities for
rupture at times much shorter than the mean time. In fact,
the main result of the Letter is that the PDF of rupture rates
exhibits a power-law tail:

Pðτ−1;Nb; T; fÞ ∼ ½τ−1�−ζ for τ−1 ≫ hτ−1i; ð1Þ

with a universal exponent ζ ¼ 2 (up to higher-order terms)
independent of the values of Nb, T, and f. We here show
how to calculate ζ theoretically and demonstrate excellent
agreement with numerical simulations.
Model.—The positions of Nb þ 1 beads can be specified

by the degrees of freedom r1;r2;…;rNbþ1, where r≡
ðx; yÞ. The Nb bond stretches are denoted R1; R2;…; RNb

,
where Ri ¼ jriþ1 − rij − re with re ¼ 1.54 Å being the
equilibrium distance between the unstretched bonds.
The beads interact via stressed Morse potentials, which
for each bond has the form [9]

VðRi; fÞ ¼ Deð1 − e−αRiÞ2 − fRi: ð2Þ

The total potential of the polymer is the sum
PNb

i VðRi; fÞ
[9]. Thus, the potential is fully specified by three para-
meters: De, α, and f. In our simulations, we used
De ¼ 120 Kcal=mole, which is the maximum potential
energy of the unstretched Morse potential, α ¼ 0.5 Å−1 is
an inverse length scale for reaching this maximal stretch,
and f is the applied force in Kcal=ðmole × ÅÞ. In this
Letter, these parameters are the same for every bond, but
a richer model can be defined with a distribution of
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parameters. In a stressed Morse potential VðR; fÞ (see
Fig. 1), a potential barrier of sizeΔðfÞ appears at a distance
R ¼ RbðfÞ. We assume that the chain ruptures if any of the
bonds reaches R ¼ RbðfÞ; no healing phenomena occur in
which a chain can reform once it is stretched beyond the
peak at RbðfÞ. The barrier height ΔðfÞ, the positions of the
peak RbðfÞ, and the minimum of the stretched potential Req

can be calculated as follows:

∂VðR; fÞ=∂RjR¼RbðfÞ ¼ 0;

ΔðfÞ ¼ V½RbðfÞ; f� − V½ReqðfÞ; f�: ð3Þ

Plugging Eq. (2) into Eqs. (3) then yields analytic forms for
RbðfÞ and ReqðfÞ:

RbðfÞ ¼ −
1

α
log

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f=fmax

p
2

;

ReqðfÞ ¼ −
1

α
log

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − f=fmax

p
2

; ð4Þ

where fmax ¼ Deα=2. Below, we discuss simulations in
which f is not too close to fmax. These are the statistically
more interesting situations in which the rupture rates τ−1

are widely distributed. For forces too close to fmax, rupture
occurs almost instantly and the problem is less challenging.
Note that, in general, hτ−1i is increasing with f, becoming
singular for fmax.
For a single Morse potential, one can quote the results of

transition state theory, which treats the bond breakage as a
unimolecular reaction Req → Rb. The mean rate for single
bond breakage has an Arrhenius form:

hτ−1iðReq → Rb; T; fÞ ¼ νðfÞ exp½−ΔðfÞ=T�; ð5Þ

where the “attempt rate” to cross the barrier is given by [9]

νðfÞ ¼ 1

2π

ωbðfÞωeqðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωeqðfÞ2 þ 2ωbðfÞ2

q ; ð6Þ

with

mωeqðfÞ2 ¼ d2VðReq; fÞ=dR2
eq;

−mωbðfÞ2 ¼ d2VðRb; fÞ=dR2
b: ð7Þ

We will see below that the mean rupture rate, for a single
bond or the whole polymer, is not sufficiently informative,
since the PDF of the polymer rupture rates is very broad
with a power-law asymptotic tail. As said, our aim in this
Letter is to go beyond Eq. (5) to compute the tail of the
PDF Pðτ−1;Nb; T; fÞ.
Numerical simulations.—To study the rupture of the

polymer, we performed molecular dynamics simulations
employing LAMMPS [13]. The simulations always begin
with the chain of Nb þ 1 particles connected sequentially,
with the first particle being anchored to a wall at position r1.
Initially, the chain is thermalized by Langevin dynamics at
temperature T, resulting in the chain being folded to a mini-
mum free-energy state. Second, this folded thermalized
polymer is then pulled from the last bead by the force f at a
constant temperature. In the analysis below, the force f is
always larger than the minimal value necessary to stretch
the polymer enough to eliminate any long-range interaction
between the particles. Temperature in our simulations is
measured in degrees Kelvin, but for the purpose of
presentation of our results and in the theory discussed
below all the parameters are made nondimensional.
Temperature is reported in units of De=kB, where kB ¼
0.001 987204 1 kcal=ðmole · KÞ after thermalization, and
the constant tensile force f which is applied to the last
particle at rNbþ1 is measured in units of fmax. The moment
of application of the constant force is declared to be t ¼ 0.
The simulations are employed to determine the time τ at
which the chain breaks. For every ensemble, we normalize
the rupture times by the maximal inverse time τ−1max for that
ensemble. Finally, bond stretches are normalized by Rb. A
typical simulations for a dimensionless force f ≈ 0.7
of a chain with 41 beads at dimensionless temperature
T ¼ 0.0109 is shown in the movie that can be observed in
Supplemental Material [14]. During simulations, we prepare
typically 4000 independent realizations of the polymer and
determine for each the rupture inverse time τ−1. Typical PDFs
of τ−1 as obtained in simulations are shown inFig. 3. The data
are shown in a log-log plot to stress that the distribution is
very wide. There is a high probability to rupture quickly,
muchquicker than the average rate; the tail of thePDFdecays
as slowly as a power law. Our aim is now to understand and
compute the power-law tail of these distributions.
Theory.—Here, we present a theory to estimate the PDF

Pðτ−1;Nb; T; fÞ. We begin with some elementary statistical
mechanics. Define the bond partition function as

FIG. 1. The strained Morse potential with various values of
pulling force f; see Eq. (2). With the present parameters
fmax ¼ 30 Kcal=ðmole × ÅÞ, any force larger than fmax will
result in instant rupture of a bond. Note that Req increases with
f, while Rb decreases until they coalesce at fmax.
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ZbondðT; fÞ ¼
Z

RbðfÞ

0

dR exp ½−VðR; fÞ=T�: ð8Þ

We will assume that the moment that any bond reaches Rb
the chain breaks instantly and it does not heal. Denote now
the cumulative probability CðR; T; fÞ for a single bond to
be stretched any distance 0 < R < Rb. This is given by

CðR; T; fÞ ¼
Z

R

0

dr exp ½−Vðr; fÞ=T�=ZbondðT; fÞ: ð9Þ

To connect this to the rate of rupture, we will assert that
the bond that breaks is always the bond that has reached the
largest extension among all the bonds. Obviously, such a
bond exists in every realization. It does not always break,
but, when rupture occurs, it is always due to the breaking
of that bond that was maximally extended. Here, we are
interested in the situations for which f < fmax, meaning
that the chain reaches thermal equilibrium and equiparti-
tion, much before it ruptures. Denote then the probability
that any single bond has a length less than R as P<ðRÞ and
that it is greater than R as P>ðRÞ. Using Eq. (9), we can
write

P<ðRÞ ¼ CðRÞ; P>ðRÞ ¼ 1 − CðRÞ: ð10Þ

For Nb bonds, the probability density that exactly one bond
will have length larger than Rmax is

P1ðRmax;Nb; T; fÞ ¼
Nb

Z1ðT; fÞ
P>ðRmaxÞ½P<ðRmaxÞ�Nb−1;

Z1ðT; fÞ ¼ Nb

Z
RbðfÞ

0

dRP>ðRÞ½P<ðRÞ�Nb−1:

ð11Þ

Clearly, this result is exact provided that the polymer is
thermalized before it ruptures. We reiterate that this
condition excludes forces that are too high, since then
rupture can take place before thermalization. A typical
comparison to numerical simulations is shown in Fig. 2.
Not surprisingly, agreement is excellent. Note in passing
that for Nb → ∞ this PDF is expected to converge to one of
the canonical functions in extreme value statistics, known
as the Weibull distribution [15,16]. Obviously, it is an
analytic function with an end point at Rmax ¼ Rb where it
vanishes. As such, it can be expanded near its end point:

P1ðRmax;Nb; T; fÞ ¼ αðRb − RmaxÞ for Rmax → Rb;

ð12Þ

with α being the derivative at Rb.
Denote now the breaking rate that we measure in

simulations τ−1ðReq → Rb;Nb; T; fÞ. This is a random
variable, and we will be unable to determine analytically

its full distribution. Rather, we will aim at the distribution
of large rates which is dominated by the probability of
bonds to stretch to large distances at short times. The
quantity of theoretical interest will be therefore τ−1ðRmax →
Rb;Nb; T; fÞ. The PDF of our wanted rates for rupture is

Pðτ−1;Nb; T; fÞ ¼
Z

Rb

0

dRmaxP1ðRmax;Nb; T; fÞ

× δ½τ−1 − τ−1ðRmax → Rb;Nb; T; fÞ�:
ð13Þ

Note that the integral is over bond lengths, whereas the δ
function is over rates. To perform the integral, we need to
relate the two. To do this, we recognize that the rate τ−1

which appears in the PDF and in the δ function is arbitrary,
and it will be associated with some Rmax, say, Rmax ¼ R�,
which satisfies the condition

τ−1ðR� → Rb;Nb; T; fÞ ¼ τ−1: ð14Þ

Imagine that we succeeded to determine the relationship
R� ¼ R�ðτ−1Þ. Then, changing variables accordingly,
Eq. (13) leads to

Pðτ−1;Nb; T; fÞ ¼
dR�

dτ−1
P1ðR�;Nb; T; fÞ: ð15Þ

So our task now is to find the Jacobian of the trans-
formation dR�=dτ−1.
To find this Jacobian, we need to make approximations.

First, we assume that the total time for breaking can be
written as the sum of the time for reaching R� during the
thermal agitation and then the time from R� to Rb:

τðReq → R�Þ þ τðR� → RbÞ ¼ τðReq → RbÞ: ð16Þ

Since we are interested in the rates, we invert this equation
in favor of the fast rate going from R� to Rb:

FIG. 2. Comparison between the theoretical PDF for maximal
bond extension Eq. (11) and its numerical measurement. Here
Nb ¼ 11, T ¼ 0.007 285 6… and f ¼ 0.77.
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τ−1ðR� → RbÞ ¼ ½τðReq → RbÞ − τðReq → R�Þ�−1: ð17Þ

Second, we assume that the major source of randomness is
in the distribution P1ðRmaxÞ, which is governed by the
thermal agitation. Therefore, for the purpose of estimating
the Jacobian, the random times appearing in Eq. (17) can
be estimated by their means. Thus,

τ−1ðReq → Rb;Nb; T; fÞ ∼ νðfÞe−ΔðfÞ=T;
τ−1ðReq → R�;Nb; T; fÞ ∼ νðfÞe½VðReq;fÞ−VðR�;fÞ�=T: ð18Þ

Returning now to Eq. (17), we note that if R� is close to
Rb where the potential has a maximum, we can estimate to
second order in Rb − R�:

VðRb; fÞ − VðR�; fÞ ¼ mω2
bðfÞ
2

ðRb − R�Þ2: ð19Þ

Using now Eqs. (18) and (19) in Eq. (17) results in

Rb − R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T
mω2

bðfÞ

s �
− ln

�
1 −

νðfÞ exp½−ΔðfÞ=T�
τ−1

��
1=2

:

ð20Þ

Computing the derivative of R� with respect τ−1, we end up
with

dR�

dτ−1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

2mω2
bðfÞ

s �
− ln

�
1 −

νðfÞ exp½−ΔðfÞ=T�
τ−1

��
−1=2

×
νðfÞ exp½−ΔðfÞ=T�

τ−1fτ−1 − νðfÞ exp½−ΔðfÞ=T�g : ð21Þ

Equations (15) and (21) are our theoretical predictions that
should be compared with the results of numerical simu-
lations. For τ−1 ≫ hτ−1i, we find that the Jacobian Eq. (21)
goes as

dR�

dτ−1
∝ ½τ−1�−3=2 for τ−1 ≫ hτ−1i; ð22Þ

up to higher-order terms. On the other hand, combining
Eqs. (12) and (20), we find that

P1ðR�;Nb; T; fÞ ∼ ½τ−1�−1=2; ð23Þ

again up to higher-order terms. Together, these two factors
result in a power-law tail for Pðτ−1;Nb; T; fÞ:

Pðτ−1;Nb; T; fÞ ∼ ½τ−1�−2 for τ−1 ≫ hτ−1i; ð24Þ

up to higher-order corrections. We note that this result is
independent of Nb, T, and f as long as the polymer

equilibrates before snapping. This is a surprisingly univer-
sal result that needs to be compared to simulations.
Comparison of theory and simulations.—In comparing

our theory to the numerical simulations, we remember that
the former is limited to the tail of the PDF Pðτ−1;Nb; T; fÞ
for τ−1 ≫ hτ−1i. The actual distribution is normalized, but
the theoretical prediction is not. The comparison is
presented in Fig. 3 for six different choices of parameters.
In particular, we note that the prediction of a power-law
tail is very well supported, and the exponent in the
power-law tail computed theoretically fits well the tail
of the actual normalized distribution as found in the
simulations. The agreement between theory and simula-
tions shown in Fig. 3 is typical as long as the polymer has
reached thermal equilibrium before rupture. We have
also considered forces f that are too high for the polymer
to equilibrate (not shown here), and, not surprisingly, the
excellent agreement exhibited in Fig. 3 disappears. In
such cases, also the comparison of the measured
P1ðRmax;Nb; T; fÞ to the theoretical result Eq. (11) as
shown in Fig. 2 is no longer favorable.

FIG. 3. Comparison of the numerically simulated PDF
Pðτ−1;Nb; T; fÞ to the theoretical prediction of its tail, for six
different sets of parameters. We reiterate that τ−1 is normalized by
its maximum value as found in each case. In dots are the
simulations, and in dashed curves are the theoretical prediction
Eq. (24). (a) Nb ¼ 11, T ¼ 0.0073, and f ¼ 0.77. (b) Nb ¼ 21,
T ¼ 0.0109, and f ¼ 0.68. (c) Nb ¼ 41, T ¼ 0.0146, and
f¼ 0.58. (d) Nb ¼ 81, T ¼ 0.0109, and f¼ 0.63. (e) Nb ¼ 161,
T ¼ 0.0109, and f ¼ 0.62. (f) Nb ¼ 321, T ¼ 0.0109, and
f ¼ 0.58. In all panels, we provide the slope computed via the
maximum likelihood estimate (MLE) [17] and the Kolmogorov-
Smirnov distance (d).
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Summary and discussion.—In summary, we show that
the ability to predict the tail of the PDF for fracture rates in
the stressed polymer chains, and also in many other similar
problems, depends on two ingredients. The first is an
identification of the “weakest link,”which in this case is the
bond that extends most, denoted above as Rmax. A first step
of the analysis requires a calculations of the PDF of this
weakest link. When the random perturbations are thermal,
standard statistical mechanics suffices to compute the PDF.
If the random perturbations are of a different sort, their
nature and their statistics must be provided in order to
achieve this first step. Note that usually the PDF computed
in the first step is expected to be of the Weibull type, but
this by itself is not sufficient to provide the universal tail.
The second step is where our approach appears novel, in
determining the rate of failure associated with each value of
the maximally dangerous link. In the present example, it is
Eq. (20) that provided the necessary relation. In any other
problem of a similar type, physical intuition should be
exercised again to state the analogous relation. Only the
combination of these two steps can provide predictability of
the type shown in Fig. 3. In future work, one will need to
explore these ideas in more complex models like bundles of
polymers, say, of poly-ethylene oxide [11], protein gels
[18], and other biological examples; cf. Refs. [19,20]. Also
one needs to remember that, under constant strain, results
for aging may differ [21].
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