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Abstract
Ensemble simulations of oil fate and transport for a hypothetical oil spill, sometimes

referred to as “stochastic simulations”, are frequently used for environmental risk assessment
related to offshore operations. In this study we investigate the importance of the number of
simulations and the effects of different sampling strategies on the results. We focus partic-
ularly on stranded oil, as this result is often assessed as a worst case criterion. We have run
three ensembles for different discharge durations (3, 24 and 48 hours), all having the same
simulation duration of 10 days. The ensembles were created by starting one simulation every
hour throughout the four year period 2009 – 2012, resulting in a total number of 35064 simu-
lations for each of the three durations. The complete set, as well as smaller subsets, were then
used for further investigations.

We find large variations in the probability distributions for amount of oil in the envi-
ronmental compartments atmosphere, ashore, sea surface, water column and sediments and for
the biodegraded fraction. When calculating the autocorrelations of the series of simulation re-
sults, we found the shorter releases to have shorter correlation times. Based on these findings,
we discuss the relationships between release duration, sampling rate and expected deviation
caused by missing samples. Furthermore, we looked into sampling strategies, using both uni-
form and random sampling to create subsets from the complete set of simulations. We also
briefly discuss the length of environmental data series to use for an environmental risk assess-
ment, and briefly outline some future work.

1 Introduction
Ensemble simulation methods are commonly used in the forecasting of uncertain

events, such as the weather. The Word Meteorological Organization’s Guidelines on Ensem-
ble Prediction Systems and Forecasting (WMO, 2012) has the following introduction:

Ensemble Prediction Systems (EPS) are numerical weather prediction (NWP) sys-
tems that allow us to estimate the uncertainty in a weather forecast as well as the
most likely outcome. Instead of running the NWP model once (a deterministic
forecast), the model is run many times from very slightly different initial condi-
tions. Often the model physics is also slightly perturbed, and some ensembles use
more than one model within the ensemble (multi-model EPS) or the same model
but with different combinations of physical parameterization schemes (multi-
physics EPS).

The topic of the current paper is ensemble simulations, as used to investigate the possible
outcomes of hypothetical oil spills, which is a common practice (see for example Price et al.
(2003); Guillen et al. (2004)). When referring to an ensemble in this paper, we mean a collec-
tion of oil spill simulations, where the environmental forcing data varies between simulations,
corresponding to the different initial conditions mentioned in the quote above. The variation
in environmental data is achieved through varying the start date of the simulation, and select-
ing the corresponding data from an archive of hindcasts. For the ensembles described in the
current study, all the hindcast data come from the same atmosphere and ocean models (see
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Section 1.2 for details). An alternative approach would be to select hindcast data from among
several archives generated by different atmosphere and hydrodynamic models, which would
then be an example of what the WMO calls a multi-model Ensemble Prediction System (see
for example Spaulding et al. (2014)).

The purpose of carrying out an ensemble of oil spill simulations can be to get infor-
mation about possible outcomes, for example the likely sites of shoreline oiling, or it could
be to statistically analyse the effect of response options (see for example Barker and Healy
(2001)). Depending on the scenario of interest, the location of the spill might be known, while
the time usually is not (although for an example of ensemble simulations applied to an on-
going spill, see Barker (2011)). The timing of an oil spill will determine the currents, winds,
waves and other meteorological conditions, which together with the release parameters de-
termine the transport and fate of the spill. Hence the common approach of carrying out large
ensembles of oil spill simulations with different start times, using modelled historical data as
environmental driving forces.

Since numerical simulations of oil spills are time consuming, one goal of an envi-
ronmental risk analysis would typically be to get statistically robust results with the smallest
possible number of simulations. While some work has been done to address the question of
how to sample the environmental data (see for example Price et al. (2004)), clear guidelines
seem to be lacking. The goal of the current study is to investigate the problem of how to utilise
the available environmental data most efficiently, by which we mean to identify the smallest
required number of simulations in order to achieve the required statistical robustness. Addi-
tionally, we discuss the required length of the environmental data series.

1.1 The OSCAR Oil Spill Model
For the oil spill simulations in this paper we have used OSCAR (Oil Spill Contin-

gency And Response), which is a fully three-dimensional oil spill trajectory model for predict-
ing the transport, fate and effects of released oil. The model accounts for weathering, the phys-
ical and chemical processes affecting oil at sea, as well as biodegradation. The development of
models for these processes is strongly coupled with laboratory and field activities at SINTEF,
on the fate and effects of oil and oil components in the marine environment (Brandvik et al.,
2013; Johansen et al., 2015, 2013, 2003).

The OSCAR model computes surface spreading of oil, slick transport, entrainment
into the water column, evaporation, emulsification and shore interactions to determine oil
drift and fate at the surface. In the water column, horizontal and vertical transport by cur-
rents, dissolution, adsorption and settling are simulated. The different solubility, volatility, and
aquatic toxicity of oil components are accounted for by representing oil in terms of 25 pseudo-
components (Reed et al., 2000), which represent groups of chemicals with similar physical
and chemical properties. By modelling the fate of individual pseudo-components, changes in
oil composition due to evaporation, dissolution and biodegradation are accounted for. There
is a biodegradation rate for each of the pseudo-components for the dissolved water fraction,
droplet water fraction, surface and sediments.

OSCAR uses a pseudo-Lagrangian particle transport model, where the release is rep-
resented by numerical particles (Reed et al., 2000). Each model particle is tracked through the
flow field, which is calculated from currents, wind, and ice if relevant. Buoyancy and sink-
ing of oil droplets due to density differences or oil mineral aggregates are also included. The
chemical composition of the released oil is an important part of the input to OSCAR. The
crude oil considered in this study, Balder Blend (2010), has been characterised for use in OS-
CAR at the SINTEF oil lab.
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1.2 The SINMOD Hydrodynamic Model
Current and wind data are required as input to the OSCAR model. The SINMOD

hydrodynamic model was used to produce the current data (Slagstad and McClimans, 2005).
SINMOD is based on the primitive Navier-Stokes equations and is established on a z-grid,
using a constant-depth discretisation. The vertical turbulent mixing coefficient is calculated
as a function of the Richardson number, Ri, and the wave state. The flow becomes turbulent
when Ri is smaller than 0.65 (Price et al., 1986). Near the surface, vertical mixing due to wind
waves is calculated from wind speed and fetch length. Horizontal mixing is calculated accord-
ing to Smagorinsky (Smagorinsky, 1963).

The SINMOD model area used to generate the hydrodynamic data for this study is
shown in dashed outline on the inset globe in Figure 1. The model area has a spatial resolution
of 4 km× 4 km, and the dataset produced has a temporal resolution of 2 hours. Boundary con-
ditions were taken from a larger model domain, at 20 km× 20 km resolution. A total of 8 tidal
components were imposed by specifying the various components at the open boundaries of the
large-scale model. Tidal data were taken from TPXO 6.2 model of global ocean tides (Egbert
et al., 2004)∗. Wind and air temperatures have to be provided as input to SINMOD, and were
in this case taken from the ERA-Interim Reanalysis (Dee et al., 2011).

2 Scenario and Simulation Setup
The base scenario used in this study is a surface release with a total released amount

of 12000 metric tons of oil. This is a realistic amount for oil spills during for example load-
ing from platform to tanker or a release following a ship collision. We have considered three
versions of the same base scenario, with spill durations of 3, 24 and 48 hours. Since the total
release amount is constant, the release rate is higher in the shorter releases. The main scenario
parameters are described in Table 1, and the release location is shown on a map in Figure 1.

The simulations in this study were carried out as an ensemble of individual OSCAR
simulations. This allows the results of each simulation to be considered independently, which
in turn enables us to sub-sample the complete set of simulations in order to investigate conver-
gence. Each simulation took approximately 450 seconds, which gives a total of about 13000
CPU hours for the three complete ensembles.

Table 1 Simulation parameters for ensemble simulations. Other than release duration
and release rate, parameters were kept constant between the three ensembles.

Location 7.01 E, 63.50 N
Release amount 12000 metric tons
Release duration 3 h, 24 h and 48 h
Release depth Surface release
Oil type Balder Blend 2010
Simulation duration 10 days
Number of particles 5000 (dissolved) + 5000 (droplets)
Grid size 336× 278 cells
Cell size 1 km × 1 km
Simulation timestep 10 minutes
Environmental data 2009 – 2012, 4 km ×4 km, 2 hours

∗See also http://volkov.oce.orst.edu/tides/global.html
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Figure 1 Simulation domain on the coast outside Trondheim, with sea depth (in me-
ters), and location of the release marked. The area of the detailed map is
indicated by the rectangle on the inset globe, and the area covered by the
current data is given by the dashed outline.

3 Ensemble Simulation Procedure
For each of the three release durations, an ensemble of simulations has been carried

out by starting one simulation every hour for a period of four years. The first simulation had
a start time of 2009.01.01, 00.00, the next was started at 2009.01.01, 01.00, etc, with the last
simulation started at 2012.12.31, 23.00, and running until 2013.01.09, 23.00. This yields a
total of 35064 simulations for each of the three release durations.

Each simulation will experience different environmental forcing, leading to different
outcomes. Two simulations which are started an hour apart are expected to be very similar,
while two simulations started weeks or months apart are less likely to be correlated. By vary-
ing the simulation start time in this manner, we sample from the underlying distribution of
environmental data, in order to obtain information about the range of possible outcomes of an
oil spill at the given location.

The procedure is essentially a form of Monte Carlo simulations, a commonly used
scheme in computational science in general, where the defining property is that the input is in
some sense “random”. Since we don’t know beforehand what the environmental conditions
during a spill will be, we sample repeatedly from historical data, in order to map out the space
of possible outcomes. The historical data are random in the sense that we choose only the tim-
ing of the release, without letting knowledge of the environmental conditions at that time in-
fluence the choice. In principle, a more statistically robust approach would be to generate a
truly random and independent realisation of current and wind data for each simulation in the
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Figure 2 Results of sensitivity analysis, showing mean and 95-percentile for four differ-
ent compartments of the mass balance, as a function of number of numerical
particles (Lagrangian elements) used. The values are calculated from 672
simulations carried out at hourly intervals throughout February 2009, in each
case taking the value 10 days after the start of the release. Results shown for 3
and 48 hours release durations.

ensemble. However, to do so would be computationally very demanding, and it is also difficult
to generate physically consistent random realisations of environmental data that match the true
distribution of these data in an actual location.

While there are several possible strategies for how to sample the historical data, we
chose uniform sampling, with a constant time difference of 1 hour between consecutive sim-
ulations. By carrying out a very large number of regularly spaced simulations, we are free to
later construct smaller subsets, both regularly and in a more random manner. Furthermore, by
using a shorter sampling interval than the time step of the environmental data (2 hours), we
expect to capture most of the variations possible due to different start times.

The simulation results from the OSCAR model include four dimensional (x, y, z, t)
concentration fields giving concentration per component for droplets and dissolved chemicals,
as well as three dimensional (x, y, t) grids for oil on the sea surface, on the shore and in the
sediments. Additionally, some aggregated quantities are available as time series. These include
amounts of evaporated oil, oil on the sea surface, submerged oil, oil on the shore, oil in the
sediment and amount of oil which has been biodegraded.

These last six quantities make up what is known as the mass balance, because it gives
information about the fraction of the total mass which is found in any given “environmental
compartment” (for reasons of linguistic convenience we include biodegraded as a compart-
ment). During the development of a spill, oil can move from one compartment to another. For
example, oil on the surface can be mixed down by waves and submerged, submerged oil can
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Figure 3 Mass balance (all values in metric tons) for the 3 hour and 48 hour release
durations, shown as a function of start time of release, with the values in the
figure being taken 10 days after the start of the release. Here shown from
January 1 2009 to April 1 2009.

resurface, stranded oil can be washed out to sea, etc. The exception is that oil which has been
evaporated or biodegraded is removed from the simulation.

4 Results
A simple sensitivity study was carried out, running hourly simulations throughout the

month of February 2009 (chosen somewhat arbitrarily because January 2009 displayed very
little stranded oil) with 2000, 4000, 6000, 8000 and 10000 numerical particles (Lagrangian
elements). OSCAR employs two types of numerical particles for oil spills, one to represent
the dissolved phase (dissolved components from the oil), and one to represent the oil phase
(submerged droplets and surface oil). In each case, equal numbers were used, so for the case
with 2000 particles, there were 1000 of each type.

For each number of particles, 672 simulations were carried out (other than number
of particles, the setup was as shown in Table 1). For each of these simulations, we looked at
the mass balance 10 days after the start of the release, and calculated the mean and the 95-
percentile for amount of oil on the shoreline, in the sediments, on the surface and submerged
(all in metric tons). By 95-percentile, we mean the value which is such that 95% of the results
are smaller than this value. The results of the are shown in Figure 2. For the full ensemble of
simulations, we chose to run with 10000 numerical particles (5000 dissolved and 5000 oil).

We have not considered spatial distribution in this paper, looking instead at the aggre-
gate properties that make up the mass balance. Thus, we look for example at the total amount
of oil on the shoreline, without considering the distribution along the shore. Example time
series of such data, showing the six mass balance compartments for the 3 hour and 48 hour
release durations, are shown in Figure 3. Each dot in the figure corresponds to one simulated
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Figure 4 Histogram showing frequency of occurrence of the values of the mass balance
for 3 hour and 48 hour release durations, by using the value at the end of each
10-day simulation. This is based on the full ensemble, covering the period
2009 – 2012.

release, with the start time of the release given by the horizontal axis. Hence, the figure does
not show the development of a single release. Instead, the value for a given time, t, shows
how much oil was found in each of the six compartments, 10 days after the start of the release
which began at time t.

We have included all six compartments here because it is interesting to note how they
have quite different behaviour. The amount of evaporated oil rarely deviates much from its av-
erage value, the amount of biodegraded oil varies by a factor of around 3, whereas the amount
of stranded oil is zero or small most of the time, with a handful of samples at very large val-
ues. In particular, for the data shown in Figure 3 for amount of oil on the shore, for the 3 hour
release duration, the average is 35 mt, the 95-percentile is 185 mt and the worst case is 1001
mt. From these observations, it should be clear that the different compartments obey quite dif-
ferent probability distributions.

In Figure 4, we show the histograms of the distributions of the six compartments,
again for the 3 hour and 48 hour release durations, but in this case the figures are based on all
the available data, i.e, all 35064 simulations for each duration, covering the years 2009 – 2012.
Again, the amount of oil in each compartment at 10 days after the start of the release was used.
The results for amount of oil in the sediment, and amount of stranded oil, stand out from the
rest by being nearly invisible in this figure. In Figure 5, the histograms for oil in the sediments
and stranded oil are shown separately, on a log-log scale.

The goal of an environmental risk analysis is to make statistically robust predictions
of, for example, 95-percentile for the amount of oil on the shore. When we would like to es-
timate the required sample size (meaning number of simulations to include in the ensemble)
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Figure 5 Histogram showing frequency of occurrence of the values of the amount of oil
on the shore and in the sediments for 3 hour and 48 hour release duration, by
using the value at the end of each 10-day simulation. Shown on log-log scale.

for statistically robust results, it is essential to have an idea of the probability distribution of
the variable of interest. For example, from Figures 3 and 4, it seems reasonable to assume that
relatively few samples will do if we were interested in estimating the average amount of evap-
orated oil.

For the amount of oil in the sediments and the amount of stranded oil, however, the
situation is quite different. These two seem to follow more fat-tailed distributions, although of
course with a cutoff, since we know a priori that the largest amount of oil that could end up in
either compartment must necessarily be smaller than the total released amount (which in this
case is 12000 metric tons). However, even with a cutoff, a property of a fat-tailed distribution
is that relatively large values occur much more frequently than in, for example, a Gaussian
distribution. As a consequence, a much larger number of samples is required to accurately
estimate, e.g., the 95-percentile for amount of stranded oil, as compared to the 95-percentile
for amount of evaporated oil.

To further illustrate the differences in distributions, we can compare the average, µ,
the standard deviation, σ, the 95-percentile and the 99-percentile for the six compartments.
These parameters are presented in Table 2. If we consider for example the amount of biode-
graded oil in the 3 hour release, we note that the 95-percentile is about 1.6 standard deviations
above the mean, and the 99-percentile is about 2.3 standard deviations above the mean. This is
approximately as expected for a Gaussian distribution (1.65σ and 2.33σ respectively). For the
amount of oil on the shore, the situation is quite different. We note that the standard deviation
for each of the three durations is larger than the mean, even though the variable cannot be neg-
ative. Furthermore, the 99-percentile is 3σ, 2.8σ and 2.4σ above the 95-percentile for the 3-
hour, 24-hour and 48-hour releases respectively. For a Gaussian distribution, the 99-percentile
is expected to be about 0.68σ above the 95-percentile. This serves to illustrate that the normal
statistical quantities do not behave as one might expect when dealing with variables which fol-
low fat-tail distributions.

4.1 Correlations
By investigating the autocorrelation in time of our series of simulation results, we get

a measure for how “related” two simulations are, as a function of the time, or “lag”, between
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Table 2 Average, µ, standard deviation, σ, and 95 and 99-percentile for the six compart-
ments of the mass balance. All amounts in metric tons.

3 hours 24 hours 48 hours
µ σ 95% 99% µ σ 95% 99% µ σ 95% 99%

Evaporated 4996 279 5377 5466 4902 202 5147 5208 4857 192 5109 5190
Surface 923 1340 3918 6336 1461 1582 4771 6524 1794 1808 5537 6890
Submerged 4066 1866 6407 6566 3683 1803 6314 6496 3486 1754 6242 6466
Biodegraded 335 88.6 474 541 304 87.6 460 530 285 87.9 442 514
Stranded 31.4 90.7 196 466 54.5 145 314 721 67.1 166 400 806
Sediment 949 1651 4953 6144 942 1623 4822 6023 912 1536 4545 5632

them. The autocorrelation, R(τ), of a discrete signal, Xi, as a function of lag, τ , is given by

R(τ) =
N−τ∑
i=0

(Xi − µ)(Xi−τ − µ), (1)

where N is the length and µ is the average of the signal.
In Figure 7 we show the normalised autocorrelations, i.e., R(τ)/R(0), of the amount

of stranded oil for the three release durations. Here, Xi in Equation (1) is the amount of oil
on the shore, at the end of simulation i, when counting from the first simulation in the set. For
comparison, we also include autocorrelations for the time series of currents and winds at the
release location, shown in Figures 8 and 9.

Looking at Figure 7, we note that the correlation in amount of stranded oil falls off
faster for the shorter release durations, meaning that two 48-hour releases separated by an in-
terval of 3 days are more likely to give similar results than two 3-hour releases. This general
trend is to be expected from a simple analysis of the problem. Two 3-hour releases, where one
starts 24 hours after the other, could in principle end up in completely different locations if, for
example, the wind direction had changed in the meantime. For two 48-hour releases with start
time separated by 24 hours, however, the environmental conditions will be identical for half
the release duration.

For the sake of argument, we might make the assumption that oil released at the same
instant, in two different simulations, will always end up in the same location.∗ We can then
argue that the difference in the mass balance of two partially overlapping simulations can only
be due to the oil which is released in the two non-overlapping portions of the simulations.

4321 50

Figure 6 Illustration of two 3-hour releases (thick line) with following simulations
(dashed line), started 1 hour apart. The oil released in the overlapping parts
of the thick lines will be released into identical environmental conditions.

If we consider again two 3-hour releases (see Figure 6), where one release begins
1 hour after the other, then we would expect the oil released in the two overlapping hours to
behave identically in the two cases. Consequently, the greatest absolute difference we could
get in, say, the amount of stranded oil, would be if all the oil released in the first hour of the

∗In reality, this is not true, since each simulation uses a random walk formulation which means that small
differences are to be expected, even under identical conditions, and the movement of the oil will also be affected
by the amount of oil, as for example a thick slick on the surface will behave differently from a thin slick.
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Figure 7 Normalised autocorrelation of the amount of stranded oil, as a function of lag,
shown for the three release durations 3, 24 and 48 hours. Shown for lags from
0 to 10 days (left), and from 0 to 100 days (right).
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Figure 8 Normalised autocorrelation of the surface current at the release location.
Eastward component, northward component and magnitude shown sepa-
rately. Shown for lags from 0 to 10 days (left), and from 0 to 100 days (right).
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Figure 9 Normalised autocorrelation of the wind at the release location. Eastward com-
ponent, northward component and magnitude shown separately. Shown for
lags from 0 to 10 days (left), and from 0 to 100 days (right).
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first simulation ends up on the shore, and none of the oil released in the last hour of the second
simulation. Hence, the largest difference in the mass balance of two overlapping simulations is
given by the non-overlapping fraction of the total release.

Based on this simplified reasoning, we can estimate how densely we need to sam-
ple the available environmental data. Say we are considering a constant 24 hour release, tak-
ing place between January 1, 2009 and December 31, 2012, and that we would like to find
the worst case scenario, in terms of amount of oil on the shoreline. If we sample the entire
four year period, with one simulation every 6 hours, then from the arguments above we can
estimate that the “true” worst case will exceed the worst case among our simulations by no
more than 12.5% of the total released amount. Since no 24-hour release during that period
could differ (in start time) by more than 3 hours from the closest of our simulations, the non-
overlapping fraction of the two releases could be no more than 12.5% of the total released
amount.

4.2 Sampling Strategies – Uniform Sampling
The idea of ensemble simulations for environmental risk assessment of oil spills is

that each simulation is a sample from the space of possible outcomes for that spill. In the fol-
lowing discussion, we use “sampling interval”, to mean the amount of time between the start
of consecutive simulations in the ensemble. Each individual simulation will of course use a
normal model time step and the full resolution of the environmental data, independent of the
sampling interval.

In a standard environmental risk assessment, one would normally use a larger sam-
pling interval than once every hour. In order to investigate the effects of the sampling, we can
create subsets of our complete set of simulations, and compare statistical parameters, such as
the 95-percentile, calculated from subsets constructed in different ways.

For a choice of two hours sampling interval, there are exactly two different ways
to construct this subset from our complete set of one-hourly simulations. While starting the
first release at 2009.01.01 00.00, and sampling at every even hour, might seem like a natu-
ral choice, there is nothing special about this time. We might just as well begin at 2009.01.01
01.00, sampling at every odd hour. In general, for a sampling interval of Nh hours, it is possi-
ble to construct Nh different subsets from our complete set of hourly simulations. In construct-
ing the subset, we refer to the start time of the first included simulation, in number of hours
after 2009.01.01 00.00, as the offset.

As examples, we now subsample our set of simulations with sampling intervals of
Nh = 120 hours and Nh = 240 hours. Since an offset of 120 hours will give the same subset
as an offset of 0 hours, there are 120 possible offsets, and consequently 120 different subsets
for Nh = 120 hours, and 240 different subsets for Nh = 240 hours. In Figure 10, we show
the 95-percentile for amount of oil on the shore calculated for each of the 120 (left) and 240
(right) subsets, as a function of offset, for all three release durations. The figure demonstrates
that the estimated 95-percentile depends strongly on the particular choice of subset of simula-
tions, especially for the shorter release duration. For the 3-hour release and Nh = 120 hours,
the largest value (287 mt) is 2.6 times larger than the smallest value (109 mt), while for the 48-
hour release, the largest value (498 mt) is only 1.6 times the smallest (320 mt). For Nh = 240,
corresponding to starting one simulation every 10 days, throughout the four years, the numbers
for the 3 hour release are 80 mt (min), 406 mt (max) and 5.1 (max/min), and for the 48 hour
release, 237 mt (min), 516 mt (max) and 2.2 (max/min).

We have seen that for a sampling interval of Nh hours, it is possible to create Nh dif-
ferent subsets of our complete set of hourly simulations. Since a smaller sampling interval
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Figure 10 95-percentile for amount of oil on the shoreline (in metric tons), calculated
from subsets of the complete sets of simulations, using 120 hours (left) and
240 hours (right) sampling intervals. The offset gives the start time of the
first included simulation, in hours after 2009.01.01 00.00.

0 12 24 36 48 60 72 84 96 108 120

Sampling interval (hours)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
a
ti

o
 m

a
x
/m

in

3 hours

24 hours

48 hours

0 48 96 144 192 240 288 336 384 432 480

Sampling interval (hours)

1
2

4

6

8

10

12

14

16
R

a
ti

o
 m

a
x
/m

in
3 hours

24 hours

48 hours

Figure 11 Ratio of highest to lowest 95-percentile for oil on the shore, calculated from
the different possible subsets, as a function of sampling interval.

corresponds to more simulations (the number of simulations in a subset with sampling inter-
val Nh hours, is 35064/Nh), we would expect the results to be more reliable for smaller Nh.
An indicator of the reliability of a particular choice of Nh can be found by constructing all the
possible subsets, and then calculating Nh different values of the relevant statistic. If the ratio
of the highest to the lowest value of this statistic is large, the result is strongly dependent on
which of the Nh different offsets you have chosen. Since the offset is a completely arbitrary
choice, it should ideally not affect the results.

In Figure 11, we show the ratio of the highest to the lowest value of the 95-percentile
for amount of oil on the shore, calculated from each of Nh subsets of our complete set of sim-
ulations, as a function of Nh. An analysis such as this can be used to inform the choice of sam-
pling interval. For example, these results indicate that for the 3-hour release we have studied
here, if one chooses a 96 hour sampling interval, one might expect an error of about a factor
2 - 2.5 in the calculated 95-percentile for oil on the shore, simply due to the arbitrary choice
of offset. For the 48-hour release, on the other hand, a sampling interval of 96 hours gives a
possible variation in the predicted 95-percentile of only a factor 1.5.

69

Nordam, T., U. Brönner, and R.L. Daae, Convergence of Ensemble Simulations for Environmental Risk Assessment, Proceedings 
of the Thirty-ninth AMOP Technical Seminar, Environment and Climate Change Canada, Ottawa, ON, pp. 58-73, 2016.  



Figure 12 95-percentile for amount of oil on the shoreline (in metric tons), calculated
from 200 randomly generated subsets of a given size, at 200 different subset
sizes ranging from 100 to 35064. To the left, for a 3 hour release, to the right,
for a 48 hour release.

4.3 Sampling Strategies – Random Sampling
Another sampling strategy consists of carrying out an ensemble of simulations with

random release start times. By generating random subsets of our complete set of simulations,
we can also investigate how this strategy compares to uniform sampling, although since we are
limited to choosing from a base set of simulations with uniform spacing, it will not be truly
random sampling.

A subset of size Ns, of our complete set of N = 35064 simulations, can be selected in
a large number of different ways (N !/Ns!(N − Ns)!). In Figure 12 we show the 95-percentile
for amount of oil on the shore, calculated from 200 randomly generated subsets for each of
200 subset sizes, starting at Ns = 100 and going up to Ns = 35064, i.e., including all simula-
tions from the complete set.

As the number of included samples increases, the 95-percentiles calculated from the
subsets converge towards the 95-percentile in the complete set of simulations. While this does
not guarantee that the 95-percentile of the complete set of simulations is identical to the “true”
95-percentile, it does indicate that the number of included simulations is sufficiently large that
a few outliers will not significantly alter the calculated percentile.

To illustrate the point that apparent convergence does not guarantee convergence to
the “true” result, we have split the set of simulations into four, giving one set of 8760 simu-
lations for each of the years 2009 – 2012 (strictly 8784 for 2012, which was a leap year). We
then generated the same convergence plot as shown in Figure 12, but now for each year sep-
arately, using 100 values of Ns, and 100 realisations for each value. The results are shown in
Figure 13. As can be seen from these figures, the 95-percentile for each individual year ap-
pears to converge smoothly, but they converge towards different values. In particular, the 95-
percentiles of amount of oil on the shore for the simulations carried out during 2010 and 2012
are 2-3 times higher than for 2011, for both the 3-hour and the 48-hour releases. This demon-
strates the role of inter-annual variability in the environmental data, and highlights the need for
using sufficiently long data series

5 Discussion and Conclusions
In deciding upon a strategy to carry out an ensemble of simulations for environmental

risk assessment, there are a number of important questions to ask. Among them are “How long
a time series of environmental data to use?” and “How to sample the environmental data?”.
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Figure 13 95-percentile for amount of oil on the shoreline (in metric tons), calculated
from 100 randomly generated subsets of a given size, at 100 different subset
sizes ranging from 100 to 8760, calculated separately for each of the four
years 2009 – 2012. To the left, for a 3 hour release, to the right, for a 48 hour
release.

We have argued that the sampling interval (meaning time interval between the start of con-
secutive simulations in the ensemble) depends on the release duration, with shorter durations
requiring a shorter sampling interval. This can be inferred from the auto-correlations, shown in
Figure 7, as well as from physical considerations of the behaviour of two partially overlapping
releases. The fact that a shorter release requires denser sampling to achieve the same relative
accuracy is illustrated by Figure 11, which shows that the shorter releases have a wider range
of predicted 95-percentiles, for a given sampling interval. We also argue that the amount of
stranded oil, and the amount of oil in the sediments, follow different probability distributions
from, for example, the amount of biodegraded oil, and that as a consequence, a larger number
of samples is required to accurately estimate the amount of oil in these compartments.

We have also demonstrated that even though the complete set of simulations for the
years 2009 – 2012 appears to converge smoothly towards a well-defined 95-percentile when
a large number of simulations is considered, the four years considered separately converge
towards different values, as illustrated in Figure 13. The large difference seen between the in-
dividual years indicate that we should probably have used more than four years, if we were
carrying out an actual environmental risk assessment for this case. For Northern Europe, inter-
annual differences could (among other things) be due to the North Atlantic Oscillation, which
influences trends in wind speeds and directions over a timescale of years. A follow-up study to
this work is planned, where we will be able to use 10-20 years of high resolution environmen-
tal data. Additionally, an HPC cluster currently being installed at SINTEF will provide us with
the computational resources to also look at the effects of varying the release position.
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