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Abstract—Vessels today are being fully monitored thanks to
the advance of sensor technology. The availability of data brings
ship intelligence into great attention. As part of ship intelligence,
the desire of using advanced data-driven methods to optimize
operation also increases. Considering ship motion data reflects
the dynamic positioning performance of the vessels and thruster
failure might cause drift-offs, it is possible to detect and isolate
potential thruster failure using motion data. In this paper,
thruster failure detection and isolation are considered as a time
series classification problem. A convolutional neural network
(CNN) is introduced to learn the mapping from the logged motion
sequence to the status of the thruster. CNN is expected to generate
task-specific features from the original time series sensors data
and then perform the classification. The dataset is collected from
a professional simulator in the Offshore Simulation Centre AS.
Experiments show that the proposed method can detect and
isolate failed thrusters with up to 95% accuracy. The proposed
model is further extended to deal with thruster failure in a real-
time manner.

Index Terms—Thruster failure, fault detection and isolation,
convolutional neural network, dynamic positioning.

I. INTRODUCTION

THE interest of remotely operated and autonomous ships
is growing in the maritime industry. With the installation

of condition monitoring technology, the operation data of the
vessel becomes available, which encourages the development
of onboard support systems [1]. How to utilize the data to
make the vessel more intelligent and efficient, e.g., assessing
the asset’s health or optimizing maintenance decisions, is one
of the major tasks. Leveraging the statistical or data-driven
methods to explore the data could be beneficial and there is
increasing attention in this area.

Thrusters are the main propulsion units used to position
a modern vessel. To mitigate the effects of thruster failures
in dynamic positioning (DP) operation, vessels today with
DP classes 2 and 3 [2] have been equipped with redundant
thrusters. Once a thruster failure is correctly located, a warning
can be sent to a crewmember or a high-level controller and the
over-actuated vessel can still maintain its position or perform
certain tasks if proper reallocation of the desired thrust is
initiated.
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If the thruster failure causes insufficient driving power of
the vessels to compensate environmental effects, drift-offs will
occur. In such a case, ship motion is correlated to the thruster
failure event. Therefore the motion data can be used inversely
to pinpoint the failed thruster. The use of motion data to
perform thruster fault detection and isolation (FDI) usually
involves model-based and data-driven methods. The model-
based methods require the development of a mathematical
model of ship motion utilizing domain knowledge. Fault
diagnosis algorithms can be developed by monitoring the
consistency between the measured outputs of the real system
and the model outputs [3]. The difference can be represented
as residuals and it can be obtained through observer-based
methods, parity space, and parameter estimation [4]. The
residuals can be used to detect and isolate thruster faults
through hypothetical tests. However, the residuals are difficult
to design for fault isolation since one residual should be
only sensitive to one fault type. In addition, these methods
rely on an accurate dynamic model of vessel, which are
difficult to develop due to the randomness and complexity of
environmental effects.

The data-driven methods treat the problem as pattern recog-
nition or classification problem. This approach has been ap-
plied to many component-level fault diagnosis areas such as
bearings [5], turbine blades [6] and engines [7]. In general,
features can be extracted from the time or frequency domains
and then a classical machine learning algorithm such as
logistic regression (LR), support vector machine (SVM) and
random forest (RF) can be applied. These methods do not
require explicit mathematical models but a huge amount of
historical data for training. Recently, the possibility of building
data-driven predictive models for maritime components such
as power plant [8], [9] and diesel engine [10] have been
demonstrated. The feature extraction process is a fundamental
part and the performance of these methods highly relies
on the quality of the extracted features. Such features are
demanded for manually designing to characterize the system
current state [11]. However, designing such features might
be difficult and it requires lots of trial and error. Recently,
deep learning has emerged as a potential data-driven method
and has achieved state-of-the-art results in image classifica-
tion [12] and speech recognition [13]. The advantage of deep
learning is that it combines hierarchical feature extraction
and classification, which suggests that it can automatically
learn the representation from raw sensor data and therefore
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reduce the effort of hand-crafted feature extraction. Therefore,
it is promising to perform thruster FDI using a deep learning
model.

In this paper, the thruster FDI is treated as a time series
classification problem. This paper is not concerned with the
failure modes in a thruster (such as failed gears or seals) but
rather intends to locate which thruster has failed in a broader
range. A convolutional neural network (CNN) is developed for
thruster FDI of a dynamically positioned offshore vessel. The
control signals and logged ship motions are used as input to
the network. The output is the estimated thruster condition of
the vessel. Although there have been researches concerning
using ship motion data in neural network for control [14],
trajectory prediction [15] and sea state estimation [16], it is the
first time that the ship motion data is used in neural network
for thruster FDI. This approach does not require a dynamic
model of vessel and no feature extraction process is needed
since CNN can produce hierarchical representations from the
raw data. Validation through a case study of an offshore vessel
shows that the proposed method can detect a faulty thruster
with accuracy up to 95%. Comparisons with feature-based
methods show the effectiveness of the proposed method. The
major contributions of this work are as follows:

• Transforming the thruster FDI problem into a time series
classification problem. The focal loss is presented to
address the imbalanced class.

• A deep CNN is proposed for thruster FDI of dynamically
positioned ships. The feature extraction process can be
omitted since this model can generate features itself.

• An online detection scheme for this model is proposed
for the onboard supporting system.

The overall organization of the paper is as follows. Recent
and related work of thruster fault diagnosis and time series
classification is introduced in Section II. Section III introduces
the proposed methodology and Section IV describes the data
and training setting. The experimental results are discussed in
Section V. Section VI concludes the paper.

II. RELATED WORK

A. Thruster fault diagnosis

The aims of thruster fault diagnostics include fault detection,
isolation, and identification. For identifying the failure modes
in a thruster, Capocci et al. [17] measured winding temper-
ature, bus voltage, shaft speed, actual shaft speed, current
consumption of the thruster, and used these measurements
as inputs to train a two-layer feed-forward neural network
to perform the classification. The control signals and the
motions of the plant are usually used to detect and isolate
faulty thruster. Fonod et al. [18] first applied a bank of 5
nonlinear unknown input observers to confine the fault to a
possible subset and further isolate the faulty thruster based
on the directional cosine approach for autonomous spacecraft.
Fabiani et al. [19] used nonlinear principal component analysis
for fault detection and artificial neural network (ANN) for
fault isolation for AUVs. Sun et al. [20] used an improved
particle filter method to detect the fault and estimate the loss
in control forces. For offshore vessels, Benetazzo et al. [21]

used parity methods and a Luenberger observer to generate
the residuals and then a CUSUM algorithm was implemented
to detect and isolate thruster failures. Similarly, Cristofaro and
Johansen [22] used an unknown input observer to generate the
residuals and applied them to perform thruster fault isolation.
The model-based method has been developed rapidly for
detecting and isolating thruster failures but it requires an
accurate dynamic model and most of the residual generated
methods are limited to the linear model. In essence, the control
signals and the ship motions form multi-variate time-series
data, which can characterize a failing thruster. Therefore it is
possible to extract useful information from the control signals
and ship motion data for thruster fault detection and isolation.

B. Time series classification

Time series classification (TSC) algorithms have been de-
veloped over years. The pioneering work focused on distance-
based approaches whose key part is to measure the similarity
of two time series. Dynamic time warping (DTW) [23] might
be the most notable similarity measurement. The classification
is usually done by a k-nearest neighbors (KNN) or SVM
with similarity-based kernels. Feature-based methods extract
features in the time series such as mean and variance, com-
plex features from trend or spectral analysis, and features
from well-known shapelets [24]. A time series bag-of-features
(TSBF) [25] can be formed and then a traditional classification
algorithm such as logistic regression or random forest can
be used. The above methods need heavy crafting on data
preprocessing and feature engineering. Recently, efforts have
been put into exploiting the deep neural networks to provide
end-to-end solutions for TSC. Cui et al. [26] proposed a multi-
scale CNN and argued that the 1-D convolutional filter can be
regarded as a shapelet. Wang et al. [27] proposed a strong
baseline for TSC based on a fully CNN and showed that it
achieves premium performance in the UCI time series archive.
Karim et al. [28] combined a recurrent neural network and
CNN for TSC. Song et al. [29] used the attention model for
clinical TSC. In summary, it is possible to take advantage of
deep learning to extract patterns from the control signal and
ship motion data and therefore to perform thruster FDI.

III. METHODOLOGY

A. Network architecture

The general layout of the proposed method and the detail
network architecture is shown in Fig. 1. The sensor data is
used as input to the model while the conditions of the thrusters
are given as outputs. The convolutional layer includes three
operations:

s = Conv(x)

s = BN(s)
s = ReLU(s)

(1)

where x is the input; Conv represents the convolutional
operation and it contains the learnable weight; BN denotes
the batch normalization [30] layer which helps to accelerate
the training process; ReLu [31] is the activation function.
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Fig. 1: General layout of the method.

Max pooling layers are used after the first two convolutional
layers. Global average pooling (GAP) is applied after the final
convolutional layer instead of a fully connected layer, which
largely reduces the number of weights. Finally, a softmax
layer is employed to produce the probability of each class.
The convolution layer is fulfilled by three 1-D kernels with
the sizes {9, 7, 3} and the output channels {128, 256, 128},
respectively.

Fig. 2 shows a detailed diagram of the proposed method.
The model is trained with historical data which also contains
scenarios where thrusters are failing. Then it is deployed and
provides predictions as new data comes in. Finally, the fault
detection and isolation results are confirmed by feeding the
network’s predictions into a fault detection module. The fault
detection functionalities will be illustrated in Section V-E.

Fig. 2: Block diagram of the method.

B. 1-D convolutional operation

Convolution is a well-established method for handling se-
quential signals [32]. Suppose that f is a convolutional filter
with kernel size s and T is a multi-variate time series with
channel number m, the discrete 1-D convolutional operation
is defined as:

z[i] =
m∑
k=1

s∑
j=1

fk[j] ∗ Tk[i+ j − 1] + b (2)

where i denotes the ith element of result and b is bias.
Fig. 3 illustrates the 1-D convolutional operation process for
multivariate time series data. The convolutional filter with size
s will move along the time axis with stride length r and
repeat the operation as shown in (2). Depending on the filter,
the convolution is capable of extracting insightful information
from the original time series. For instance, consider a 1-
D time series data with a filter f = [−1, 1], the result
of the convolution would be the gradient between any two
neighboring points. Consider the input time series with size
(Lin, Cin) and filter size (s, Cout), the output data size will
be (Lout, Cout).

Lout = bLin − s
r

+ 1c (3)

where Lin and Cin is the input length and channel of the
data, respectively. Cout is the output channel number and it
also suggests the number of convolutional filters. When the
number and size of the filter is determined, its weight can be
learned through the back-propagation algorithm [33].

Fig. 3: 1D convolutional operation.
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C. Focal loss function

To train the network, the focal loss function [34] is used
here instead of the cross-entropy loss function to address the
problem of the imbalanced dataset. The focal loss function can
be expressed as follows:

loss =
n∑
i=1

−pi(1− p̂i)γ log(p̂i) (4)

where p̂i is the predicted probability value for class i and pi is
the true probability for that class, n denotes the class number,
and γ is a tunable parameter. When γ = 0, this function
degrades to the cross-entropy loss function. The term (1−p̂i)γ
diminishes the loss assigned to well-classified examples and
increases the loss for mis-classified examples. By modulating
the cross-entropy loss towards the hard examples, the focal
loss is addressed for class imbalance.

IV. EXPERIMENTAL SETTING

A. Dataset

The data comes from a commercial simulator developed by
the Norwegian company Offshore Simulator Centre AS [35].
The simulator features a simulated environment in which a
user may manipulate the wind, waves, and ocean current
to mimic environmental conditions. A multi-purpose offshore
vessel was selected. This offshore vessel is equipped with 4
tunnel thrusters and 2 main thrusters as presented in Fig. 4.
Three different typical sea states are simulated as shown in
Table I. The wind, wave, and current will come from the same
direction. The direction of the environmental disturbances (α
in Fig. 4) is incremented at an interval of 60 degrees from 0
to 360 degrees, relative to the vessel frame. Although smaller
intervals will result in less sparse data, which is beneficial to
the generalization of the network, we applied an interval of
60 degrees and empirically found that the data satisfies the
modeling and analysis.

Fig. 4: Thruster configuration.

The DP operation is simulated and the desired position
is set to (0, 0). Thrusters are randomly disabled in various
environmental conditions. The resulting dataset is shown in

TABLE I: Descriptions of sea states.

Beaufort scale Wind velocity (m/s) Wave height (m) Current velocity (m/s)
Gentle breeze 4 1 0.2
Fresh breeze 8 2 0.2
Strong breeze 12 3 0.2

Fig. 5. ‘Normal’ denotes no thruster failures and ‘Thruster 1’
represents failure in thruster 1. In total, around 43 hours was
simulated whereof 58% without thruster failure. The dataset
is relatively unbalanced. Three control signals including the
surge, sway, and yaw forces together with the 6 degrees of
freedom (DOF) motion data of the vessel were extracted. The
data was extracted at a sampling rate of 10Hz.

Normal 58%

Thruster 1

7%
Thruster 2

8%

Thruster 37%

Thruster 4
7%

Thruster 5

7%

Thruster 6
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Fig. 5: Thruster failure distribution of the dataset.

B. Measurement noise

In order to provide a more realistic scenario, noise was
added to the following measured states:

• Position: The linear position measurements given in the
North East Down (NED) frame and angular position
including pitch, roll, yaw angle of the vessel.

• Velocity: The three linear velocities and three angular
rates.

The position measurements are subjected to a combination
of white noise, a bias and a Gauss-Markov (GM) process. The
discretized GM process is shown as follows:

q[t+ 1] = exp(−∆t

Tc
)q[t] + ω1[t] (5)

where t is the discrete time variable, ∆t is the sampling
interval, Tc is the correlation time and ω1 is the Gaussian white
noise with a standard deviation of σ. Then the expression for
the measured state with the addition of noise term is presented
as follows [36]:

p[t] = ptrue[t] + q[t] + ω2[t] + δ (6)

where ptrue is the noiseless measured state, q holds the
corresponding GM process noise, ω2 is the added Gaussian
white noise and δ denotes the bias. The angular and linear
velocity received only a constant bias and white noise [37].
The parameters for additive noise are shown in Table II.
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TABLE II: Parameters used for the additive noise elements of
the measured states.

GM White noise Bias
σ Tc σ δ

Linear position 0.1m 240 s 0.2m [-0.2, 0.2]m
Angular position 0.1 ◦ 60 s 0.1 ◦ [-0.1, 0.1] ◦
Linear velocity - - 0.05m/s [-0.01, 0.01]m/s

Angular velocity - - 0.1 ◦/s [-0.04, 0.04] ◦/s

C. Training settings

The data is split 70%-30% for training and testing. Each
input measurement in the training set is normalized with
z-score normalization and the corresponding normalization
statistics are applied to the test set. The mini-batch size is
set to 64 and Adam [38] is selected as the optimizer with a
learning rate of 1 × 10−3. The parameter γ in the focal loss
is set to 4. All of the following experiments use the same
hyper-parameters and training algorithm settings and there
will further elaboration on the effect of these hyperparameters
since it is not the focus of this work. The model is trained
for 100 epochs. The proposed network is implemented using
Pytorch [39].

D. Evaluation metrics

For the multi-class classification problem [40], three evalu-
ation metrics utilizing true positive (TP ), true negative (TN )
and false positive (FP ), are usually used to evaluate the
performance of the model. The precision of class i represents
the predicted accuracy of this class and is expressed as:

Pi = TPi/(TPi + FPi) (7)

The recall of class i refers to the percentage of total relevant
results correctly classified for this class and is expressed as:

Ri = TPi/(TPi + TNi) (8)

In order to summarize the models’ performance into a single
metric, the F1 score is usually used.

F1i = 2 · Pi ·Ri/(Pi +Ri) (9)

The Macro-Precision, Macro-Recall, and Macro-F1 score
are defined as the average precision, recall, and F1 score for
all classes.

Pmacro =
1

n

n∑
i=1

Pi

Rmacro =
1

n

n∑
i=1

Ri

F1macro =
1

n

n∑
i=1

F1i

(10)

Here n is the number of the class. In summary, Pmacro
measures the overall accuracy, Rmacro measures the overall
recall and F1macro is the integration of Pmacro and Rmacro.

V. RESULTS AND DISCUSSIONS

A. Input selection
In total 12 ship motion measurements were obtained from

the GPS and MRU system for a 6-DOFs vessel, and 3 control
signals were obtained from the DP controller. Here we use the
following input cases to train the network.

• Case i: All 12 ship motion measurements with the control
signals.

• Case ii: 6 ship motion measurements (north and east
position, heading angle, surge velocity, sway velocity,
yaw velocity) with the control signals.

• Case iii: 6 ship motion measurements (same as case ii)
without the control signals.

Fig. 6 shows the variation of F1macro with respect to
different input cases and Table III provides the summary after
100 epochs. It can be observed that input case ii performs as
well as case i, which indicates that the reduced 6-DOFs motion
measurements include enough information for representing the
vessel’s behaviors in DP operation. Compared with case i
and case ii, a significant drop is observed in case iii. This
is consistent with the intuition that the motion measurements
only contain a certain amount of information, not enough to
describe the behaviors of the vessel with the faulty thruster.
By combining the 6 ship motion measurements and control
signals, the environmental conditions can be reflected by the
demanded thrust forces to some extent. Therefore the faulty
thruster can be well-isolated by excluding the environmental
influence. Moreover, the convergence rate of case iii is lower
than those of case i and ii.
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Fig. 6: F1macro for different input cases.

TABLE III: Evaluation on different input cases.

Inputs Pmacro Rmacro F1macro

case i 0.94 0.92 0.93
case ii 0.91 0.90 0.91
case iii 0.73 0.70 0.71

B. The effect of the window size
Four different windows sizes (100, 200, 300, 400) are

investigated. Fig. 7 shows the F1macro and Table IV provides
the summary after 100 epochs. It is found that the convergence
rates for different window sizes are almost the same and they
reach a similar performance. The slight performance decrease
in window size 200 might be due to the stochastic gradient
descent with mini-batch. A window size of 100 seems to be
sufficient for isolating faulty thrusters.
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Fig. 7: F1macro for different window sizes.

TABLE IV: Evaluation of different window sizes.

Window size Pmacro Rmacro F1macro

100 0.95 0.94 0.95
200 0.91 0.90 0.91
300 0.96 0.94 0.95
400 0.96 0.94 0.95

C. Evaluation of different environmental conditions

Here we take input case ii and the window size 100 for
further analyses on the performance of the model. Fig. 8
shows the normalized confusion matrix under different sea
state levels, where N denotes the label ‘normal’ and 1 is the
label ‘thruster 1 failure’, etc. It is apparent that it is easy to
confuse thruster 1 and 2 but they have an extremely small
probability of being classified as other thruster failures. The
phenomenon is much more obvious for thruster 3 and 4. The
reason might be that they are located close to each other and
thus they provide similar functionality for the vessel as shown
in Fig. 4. As the sea state level goes from the gentle breeze to
the strong breeze, the probability of classifying faulty states
to normal states increases. It can be explained by the fact that
it is harder for the vessel to keep its position under a stronger
breeze. The classification results under these three sea state
levels are almost the same; only a small decrease can be found
with the increase in sea state level, as shown in Table. V.

TABLE V: Evaluation of different sea states.

Window size Pmacro Rmacro F1macro

Gentle breeze 0.96 0.95 0.96
Fresh breeze 0.95 0.95 0.95
Strong breeze 0.95 0.94 0.94

In Fig. 4, the six directions of environmental disturbances
are further merged into three groups since they are axis-
symmetric. Direction 1 is angle of 30◦ and 330◦, direction
2 is angle of 90◦ and 270◦, and direction 3 is 150◦ and 210◦.
Fig. 9 shows the confusion matrix for the different directions
and Table VI summarizes the results. A similar pattern is
shown in Fig. 8 as observed in Fig. 9. For direction 2, thrusters
5 and 6 have a high probability of being mis-classified as
normal, but the other thrusters do not. For directions 1 and 3,
thrusters 1, 2, 3, and 4 have a higher probability of being
mis-classified as normal than for direction 2. The reason
might be that tunnel thrusters play more significant parts when
environmental disturbances come from direction 2.

TABLE VI: Evaluation on different direction of environmental
disturbances.

Window size Pmacro Rmacro F1macro

Direction 1: α = 30/330◦ 0.96 0.95 0.95
Direction 2: α = 90/270◦ 0.95 0.94 0.94

Direction 3: α = 150/210◦ 0.95 0.95 0.95

D. Comparison with different methods

Two different types of methods are compared here, namely
the feature-based method and the end-to-end method (deep
learning model). The feature-based method requires data pre-
processing while the end-to-end method can work with raw
sensor data directly.

For the feature-based method, features are extracted manu-
ally from the data. For each sensor, six time domain features
and eight frequency features from fast Fourier transform (FFT)
and power spectral density (PSD) are extracted. This results in
126 features in total. Down-sampling is performed to reduce
the data with label ”normal” to almost the same amount as
the faulty data. Three different algorithms are used to train
a classifier. The hyper-parameters are selected based on a 3-
fold cross-validation grid search. The models are implemented
using Scikit-learn [41] in Python.

• Logistic regression (LR): the penalty for l2 regularization
is 2.

• Support vector machine (SVM): RBF kernel function is
used. The hyper-parameters is selected as C = 30 and
γ = 0.01.

• Random forest (RF): the number of trees is 120, maxi-
mum depth of the tree is 20, and the minimum number
of samples required to split an internal node is 5.

For the end-to-end method, two models are compared as
follows:

• Multilayer perceptron (MLP): a simple feed-forward neu-
ral network with 128 hidden units.

• Long short term memory (LSTM): three layers of LSTM
contains 128 hidden units are stacked and the final hidden
outputs are connected with a Softmax layer.

• Fully convolutional neural network (FCN): the FCN
in [27] is adopted for multi-variate time series and the
same settings are used.

Table VII presents the performance for different methods.
End-to-end methods outperform the feature-based method.
Even though it is expected to achieve better results in feature-
based methods with a more sophisticated feature extraction
process or down-sampling approach, it will be highly time-
consuming and laborious. The advantage of end-to-end meth-
ods is that they can achieve competitive results without a
careful feature extraction process. Moreover, LSTM, FCN and
the proposed neural network clearly outperform MLP in this
case. The proposed network has a slight advantage over FCN
and LSTM. The reason for this might be that the pooling
layers in the proposed network reduce the complexity of the
network and therefore provide a more generalized result. The
comparison also shows that the focal loss can improve the
performance of the network.
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Fig. 8: Confusion matrix under different sea states: (a) Gentle breeze, (b) Fresh breeze, and (c) Strong breeze.
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Fig. 9: Confusion matrix under different direction of environmental disturbances: (a) Direction 1, (b) Direction 2, and (c)
Direction 3.
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Fig. 10: t-SNE plot of sampled test data in 2D space.

In order to illustrate that the proposed network can ex-
tract useful features from raw sensor data, the 128 features
generated between the GAP layer and the Softmax layer

TABLE VII: Comparison of different methods.

Types Methods Pmacro Rmacro F1macro

Feature-based
LR 0.32 0.43 0.35

SVM 0.56 0.68 0.60
RF 0.71 0.83 0.75

End-to-end

MLP 0.70 0.81 0.72
LSTM 0.91 0.91 0.91

FCN [27] 0.93 0.92 0.93
Proposed NN (w/o focal loss) 0.93 0.92 0.92

Proposed NN (focal loss) 0.95 0.94 0.95

are extracted. Here we get 2000 random samples from the
test dataset. The data points in the 128 feature space are
then reduced into a 2D space using t-SNE [42] algorithm
for better visualization. t-SNE first constructs a probability
distribution over pairs of high-dimensional objects and then
defines a similar probability distribution over the points in
the low-dimensional map by minimizing the Kullback–Leibler
divergence. Similar objects are therefore grouped together,
which makes it particularly well suited for the visualization of
high-dimensional data. Fig. 10 shows the plot of the sampled
data, where ‘N ’ denotes normal and ‘1’ is thruster 1 failed, etc.
The presence of different groups suggests that the extracted
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Fig. 11: Fault isolation under gentle breeze: (a) without fault predictor, and (b) with fault predictor.
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Fig. 12: Fault isolation under fresh breeze: (a) without fault predictor, and (b) with fault predictor.
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Fig. 13: Fault isolation under strong breeze: (a) without fault predictor, and (b) with fault predictor.
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features from the model are effective to some extent. It can
be observed that ‘1’ and ‘2’ are grouped together, ‘3’ and
‘4’ are grouped together, and ‘5’ and ‘6’ are usually grouped
with ‘N ’. This indicates that the proposed network has the
ability to extract useful features to isolate faulty thrusters.
Since ‘1’ and ‘2’, ‘3’ and ‘4’ are grouped together, which
also indicates that these two pairs exhibit a higher probability
of mis-classification within the pairs. Moreover, the failures of
the two main thrusters ‘5’ and ‘6’ are easy to distinguish from
each other but they are both prone to being mis-classified as
‘N ’.

E. Online detection scheme

To provide onboard support for the vessel, an online de-
tection scheme is proposed. The model is first trained offline
as illustrated in the previous section: the historic data is cut
into segments with fixed lengths to train a CNN classifier.
For the online detection scheme, a sliding window with the
same length as the segments is moving as new sensor data
are available. Then, the trained CNN classifier provides a
predicted probability for each class. Unlike the offline training
step, a fault predictor is introduced on the online detection
step. A fault is first isolated when its corresponding probability
exceeds 0.6. Then a 3/5 principle [43] is applied. As five new
data points come in, the sliding window will move forward
five times and provide five successive predictions. Only when
more than three predictions indicate the same faulty thruster
can we confirm the fault identification. Otherwise, it will be
considered to be in normal condition. The fault predictor is
expected to ensure robustness and eliminate accidental errors.

Fig. 11, Fig. 12 and Fig. 13 present the detection and iso-
lation of thruster fault under gentle, fresh and strong breezes,
respectively. The direction of environmental disturbances is set
to be 30◦ with respect to the vessel frame here. The red dashed
line indicates the ground truth of the moment when thruster 1
has failed. The background in red represents that the thruster
1 failure is detected while the background in green denotes
that the thruster 2 failure is detected. Without the predictor,
the result is simply the highest probability of the predicted
class. Only the probabilities of normal condition, the thruster
1 failure and the thruster 2 failure are presented since the
probabilities of thrusters 3, 4, 5, 6 failure are relatively low
in these cases. Table VIII summarizes the detection time and
corresponding delays for the three cases.

It can be observed from Fig. 11 that after the thruster 1 has
failed, the predicted probability of normal condition decreases
while that of thrusters 1 and 2 failure starts to increase. The
model provides a nearly 9 seconds delay for detecting the fault
and struggles to distinguish between thrusters 1 and 2 in the
first place. This is reasonable since the environmental forces
are small in this case and therefore the ship motion pattern is
relatively unclear. When the environmental forces increase, the
pattern is easier to pinpoint, and this can be observed in Fig. 12
under the fresh breeze. The fault predictor enables the model
to eliminate the wrong prediction on thruster 2 under gentle
breeze and wrong prediction before an actual fault happens
under the fresh breeze. In Fig. 13, the impact of the fault

predictor is small since the symptoms are obvious. That is
why it can be identified with only 1s prediction delay after
the failure happens. As shown in Table VIII, the fault can be
detected under fresh and strong breezes but has a 9s delay in
the gentle breeze. It should be noted that it does not represent
the accuracy but a possible prediction delay under different
environmental conditions.

TABLE VIII: Summary of the online prediction cases.
Ground truth time (s) Failure detection time (s) Detection delay (s)

Gentle breeze 144.7 153.6 8.9
Fresh breeze 144.9 145.5 0.6
Strong breeze 159.2 160.2 1.0

VI. CONCLUSION

In this paper, a deep CNN is proposed to detect and isolate
potential thruster failures for DP vessels based on the control
signals and logged ship motion data. The model is trained
with historical data set that contains normal and fault data.
The focal loss is used to handle the unbalanced dataset since
the amount of normal operation data is much larger than that
of fault data. In the simulation cases, the proposed model is
able to distinguish thruster failure under various environmental
conditions with up to 95% accuracy when being properly
trained under the same conditions. Comparisons with the
feature-based method show that the model can automatically
extract features and performs better. The proposed method
provides an approximately 0.2 improvement in F1-score when
compared to a simple neural network. An online detection
scheme is presented with focus on robust applications. Simu-
lated studies show that the model can predict a failing thruster
with negligible delay under the fresh and strong breezes.
However, it has a 9 seconds delay under the gentle breeze.

Findings suggest that this method offers good performance
for detecting and isolating thruster failures for a DP vessel
without requiring any vessel-dependent model. However, as an
inherited black-box model, this method suffers from difficulty
to interpret its outputs, overfitting, etc. The major drawback
of this method is that it is only expected to be reliable when
the training data is drawn from the same distribution as the
application scenario. In other words, it might not work when
encountered with rare environmental conditions which are not
included in the training data. Besides real-world fault data is
hard to obtain. A reasonable way is to combine simulated
data and real-world data. But it also brings new difficulty
such as transferring the experience from simulator into the
real world. Future research should address these issues and
provide a comparison with model-based residual methods.
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