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Abstract. Identifying individual salmon can be very beneficial for
the aquaculture industry as it enables monitoring and analyzing fish
behavior and welfare. For aquaculture researchers identifying indi-
vidual salmon is imperative to their research. The current methods of
individual salmon tagging and tracking rely on physical interaction
with the fish. This process is inefficient and can cause physical harm
and stress for the salmon. In this paper we propose FishNet, based on
a deep learning technique that has been successfully used for identi-
fying humans, to identify salmon.We create a dataset of labeled fish
images and then test the performance of the FishNet architecture. Our
experiments show that this architecture learns a useful representation
based on images of salmon heads. Further, we show that good perfor-
mance can be achieved with relatively small neural network models:
FishNet achieves a false positive rate of 1%and a true positive rate
of 96%.

1 Introduction

The Atlantic salmon farming industry in Norway has experienced
a massive growth in the past four decades. The industry has gone
from producing 4.300 tonnes of salmon in 1980, to almost 1.240.000
tonnes in 2017 [16]. In 2017, the total economical results from
salmon production was calculated to be over 61 billion Norwegian
kroner (NOK) [16]. This makes salmon farming one of the most prof-
itable industries in Norway, and it is considered as one of the most
important industries in a post oil Norway [14]. However, the industry
is still largely driven by manual labor. For example, the total number
of lice in a breeding cage is indicative of fish welfare and an impor-
tant metric for deciding whether delousing measures should be initi-
ated. Today’s method for lice counting relies on manually inspecting
individual fish and then estimating the total number of lice in the
cage from these numbers. Other measurements such as disease and
weight measurements also use similar methods, based on a few in-
dividual fish measurements. These methods are highly reliant on the
fish inspected to be representative for the total population within the
cage. However, salmon is a schooling fish and organize themselves
according to hierarchical structures [10, 5]. This means that different
types of individuals will be present at different layers of the school.
As the sampling methods used in the industry relies on small samples
the methods are prone to selecting the same type of individuals for
inspection every time. This could result in skewed estimations and
lead to wrong operations being performed. As these operations are
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often both costly and harmful for the fish, large economic gains can
be made from more precise estimates.

To improve measurement quality, a method of ensuring that differ-
ent individuals are measured every time is needed. Previous attempts
at solving this problem have included a variety of techniques. How-
ever, the techniques have almost exclusively relied on physical en-
gagement with the salmon. The techniques include surgical implan-
tation of tags and external mutilation, such as fin-clipping, freeze
brands, tattoos, visible implant tags, and external tag identifiers at-
tached by metal wire, plastic, or string [12]. This is a problem both
from an animal welfare and product quality perspective. Bacterial
growth and unpleasant sensory properties has shown to increase more
quickly in salmon experiencing stress in their lifetime prior to being
slaughtered. This results in reduced shelf life of the finished product
[2]. A computer vision method for uniquely identifying individuals
would solve this problem by minimizing the impacts from invasive
techniques.

In this paper, we introduce an approach for accurately identifying
individual salmon from images, using a deep neural network called
FishNet. By accurately identifying individual salmon, we can ensure
that no salmon is measured multiple times, thereby guaranteeing a
more accurate estimation of the total population. Our approach is
based on FaceNet [15] and DeepFace [18] which have been proven to
work well in the field of face verification in humans. These networks
are able to verify the identity of people in images with human levels
of accuracy. They have also been shown to be robust to noise in terms
of changing lighting conditions. By training a similar architecture
on images of fish rather than humans, we enable accurate identity
predictions without physical interaction.

Being able to track salmon at an individual level could enable
tracking a single individual throughout its lifespan, from salmon
spawn to finished product, linking salmon fillets to the life-story
of the individual. Other opportunities include monitoring individual
weight development, treating salmon only when the need arise and
delousing only the individuals that suffer from lice, thereby prevent-
ing unnecessary harm to healthy salmon. Individual salmon tracking
could also enable new research areas that require monitoring of indi-
viduals over time such as feeding behavior, detection of diseases and
social behavior. FishNet can facilitate such research through offering
a non-invasive and efficient approach to identifying salmon.

The rest of this paper is structured in the following way. In Section
2 we outline the current state of the art within the problem area of in-
dividual recognition of salmon. And as a results of the method chosen
to solve the problem we also outline the current state of the art of us-
ing machine learning to identify individuals from pictures. Following
this, we present our approach to the problem of individually recog-
nizing salmon in Section 3. The dataset used for evaluation and the
evaluation of our proposed solution are presented in 4. We present



a discussion of our results in Section 5. Finally Section 6 presents
our conclusions and thoughts on future directions of research for this
work.

2 Related Work
Since the problem we address is inter-disciplinary, related work is
two-fold: one area of research covers the detection and identifica-
tion of fish and salmon in particular while the other one focuses on
the classification of images. In this section we’ll discuss the relevant
work representing the state-of-the-art.

There has only been very limited work conducted to identify
unique fish/salmon without engaging directly with the fish. Earlier
attempts of uniquely identifying salmons have relied on insertion
of RF-ID chips or other physical marking systems [7]. This is ap-
proach is only feasible in research settings and should be minimized
as it potentially injures the fish. In real-world deployments with hun-
dreds of cages and millions of fish a more scalable approach is de-
sirable. Throughout the recent years the field of automatically iden-
tifying salmon has grown as the fish-farming industry collaborate
more and more with data-driven approaches. Especially in Norway,
projects such as the Exposed Aquaculture Operations Center for re-
search based innovation3 or the Seafood Innovation Cluster4 empha-
size on applying Internet of Things, Big Data and Artificial Intelli-
gence methods.

Figure 1: Melanin patterns on a salmon head.

SINTEF SalmID [7] is a study that investigated the possibility of
recognizing individual salmon based on the assumption that each in-
dividual has an unique pattern. They found that there was done little
work on this area regarding Atlantic salmon, but point at other work
using the melanophore pattern of different animals to uniquely iden-
tify them. The constellation of such melanin patterns on the head of
the fish can be utilized for identification. In the SalmID approach the
recognition part is based on manually selected features of the salmon
rather than learned representations.

Additional work utilizing melanophore patterns has been pre-
sented by Hammerset [8] who apply deep neural networks to dis-
cover the location of salmon heads and eyes. In this work a simple
blob detection algorithm is used to discover the melanophore spots.
The locations of the spots and the eye are then translated into a po-
lar representation which is saved in a database with the identity of
the salmon. On the test set with images from 333 individuals the
algorithm recognized 40.4% (5922 of 14652 images) of the images
as belonging to an individual salmon, of these 40.4% the algorithm
correctly identified the individual with an accuracy of 99.7% (5902
of 5922). Thus the total test accuracy was 40.2% (5902 of the total
14652 images classified as the correct individual)

Identifying individuals among humans has been an active research
field for a long time. Earlier work has been based on eigen value

3 https://exposedaquaculture.no/en/
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analysis of data matrices such as EigenFaces [19] and its successors
in FisherFaces [3] and Laplacianfaces [9].

More recent woork on individual recognition is based on deep
learning approaches such as the model presented in the DeepFace pa-
per [18] in which they are making the images of faces more uniform
(frontalization). These frontalizations are fed into a convolutional
layer followed by a max pooling layer and another convolutional
layer. According to the authors, these three layers mainly extract low
level features and make the network robust to local translations. The
last convolutional layer is followed by three locally connected lay-
ers. This is done because the different regions of an aligned image
have different characteristics, so the spatial invariance assumption of
convolution does not hold. An example of this is that the eyes of a
person will always be above the nose. The final two layers of the net-
work they use are fully connected. These layers are able to identify
relations between features in different locations in the feature maps.
The first fully connected layer is used as the face representation vec-
tor, and the output of the second one is fed into a softmax which
produces a class distribution for an input image. To verify whether
two images are of the same person, the authors propose three ap-
proaches: (1) an unsupervised method in which the similarity of two
images is simply defined as the inner product of the two represen-
tation vectors, (2) a weighted χ2 distance in which the weight pa-
rameters are learned using a linear support vector machine and (3) a
siamese network, in which the network (except the top layer used for
softmax classification) is duplicated. One image is fed into each part
of the network and the absolute difference between the feature vec-
tors is computed. A fully connected layer is added and the network
is trained to predict a single logistic unit (whether the images are of
the same person). Training is only enabled for the new layers, and
they are trained using standard cross entropy loss. All three methods
yielded good results compared to the state-of-the-art at the time. The
siamese network approach required a lot more training data to avoid
overfitting compared to the other approaches.

A related approach has been presented as FaceNet [15] which de-
scribes a system that learns and optimizes a vector representation
directly, rather than extracting the representation from a bottleneck
layer (like DeepFace). FaceNet learns a 128-dimensional feature vec-
tor (embedding) that represents a face. Unlike the DeepFace ap-
proach there is no 2D or 3D alignment done on the images. FaceNet
is a variant of a Siamese Neural Network (SNN) originally proposed
by Bromley [4]. In contrast with the original SNNs FaceNet uses
triplet loss to train the network. The network is presented with three
images (the anchor image, the positive image (same person, but dif-
ferent image and the negative image (image of any other person). Ac-
cording to the authors, it is important to select triplets that are hard
for the model to correctly discriminate, to ensure that the network
converges as quickly as possible during training. The triplets are cho-
sen from within each mini-batch, and all anchor-positive pairs are
used in combination with negative examples. The authors describe
several different deep neural network architectures, where the ma-
jor differences between them are the number of trainable parameters.
The number of parameters in the networks range from about 4 mil-
lion to 140 million. When evaluating the networks the L2-distance
between two images is compared. If the distance is above a certain
threshold they are classified as different. According to the authors
they are able to reduce the error reported by the DeepFace paper by
a factor of seven. The smaller inception networks perform nearly as
good as the very deep networks.

https://exposedaquaculture.no/en/
http://www.seafoodinnovation.no/


3 The FishNet Approach
To recognize individual salmons we adapt the FaceNet [15] archi-
tecture and training method. FaceNet is a type of Siamese neural
network[4, 11] which has two datapoints as input, and the output is
the distance between them. This can also be extended to work on e.g.
triplets of data points, outputting more than one distance. FaceNet is
trained on a dataset consisting of triplets consisting of a anchor data
point, a positive data point and a negative data point. The anchor
data point with a given label, the positive data point is a different
data point with the same label, in contrast the negative data point has
a different label. Figure 2 illustrates this with three example images
of salmon, two of which are from the same individual salmon, while
the third image is of another individual salmon.
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128-dimensional dense layer

Anchor Input 
(175 × 175 × 3)

Anchor Embedding
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128-dimensional dense layer

Positive Input 
(175 × 175 × 3)

Positive Embedding

Convolutional
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128-dimensional dense layer

Negative Input 
(175 × 175 × 3)

Negative Embedding

Triplet Loss Layer
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Figure 2: Generic architecture with triplet loss. Parts of the network
with shared weights are colored green. the input size is the size of
the images (175x175x3) and the output is the 128-length embedding
vector. The differences between the model architectures tried in our
experiments is how the convolutional architecture is modeled, and
the size of that convolutional model. This figure shows an example of
salmon heads, with the anchor input to the left, positive input (same
individual as the anchor input) in the center and finally the negative
input (different indivdual than the anchor input).

The goal of training FaceNet is to minimize the distance between
the anchor and positive data point, while maximizing the distance to
the negative data point. This training process is illustrated in Figure
3.
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Figure 3: Triplet loss minimizes the distance between images of the
same salmon and maximizes the distance to images of other salmon
(adapted from [15]).

- To compute the loss during the training, a custom triplet loss

layer was used. Equation 1 defines how the loss L is computed for a
minibatch of size m.

L =

m∑
i

[
‖x̂ai − x̂pi ‖

2
2 − ‖x̂

a
i − x̂ni ‖22 + α

]
+

(1)

Here x̂ = f(x) is the embedding of image x, xa is the anchor data
point, xp is the positive data point, xn is the negative datapoint and
α is a parameter that encourages better learning.

This is identical to how the triplet loss is defined in the FaceNet
[15]. The loss computes the distance between the anchor and the pos-
itive, and the anchor and the negative. The goal is to have the pos-
itive distance be smaller than the negative distance. The difference
between the positive and negative distance are summed. To encour-
age larger distances the margin α is added to the loss function. To
avoid negative loss, the loss is set to the maximum of the loss of the
triplet and 0.

Careful triplet selection is important [15] for the training process
of the network. The training goal of the algorithm is to ensure that the
embeddings of two images (anchor and positive) of the same salmon
are closer to each other than any images of other salmon (negatives)
by a margin α. In our experiments, the value for α was set as 0.2, the
same as used in the FaceNet paper.

To ensure effective training, it is important to select triplets
that violate this constraint. To do this, the method computes the
embeddings for images during training, and then select samples only
among the triplet that violate this training samples. For efficiency
purposes, this is done within each batch. First, a random set of
salmon images are sampled from the training dataset. Then the
images are fed through the network to generate embeddings. Finally,
the embeddings are used to select triplets where the difference be-
tween the negative and positive embeddings are within α. Algorithm
1 describes this process.

Algorithm 1: Triplet selection
Input: embedding vectors
Input: number of fish
Input: number of embeddings per fish
Input: α
Data: triplets = []
foreach fish do

for anchor in embeddings of current fish do
negative distances = L2-distances from anchor to

embeddings of other fish
for positive in remaining embeddings of current fish

do
compute distance between anchor and positive
negatives = find all negative embeddings where
negative dist− positive dist < α

select a random negative from negatives and
append (anchor, positive, negative) to triplets

end
end

end
shuffle triplets
return list of triplets

Using Algorithm 1 to select the triplet used for training, we en-
sure that training is performed on triplets the network can learn from.



Using triplets that already satisfy the constraint of α would not con-
tribute to further training, and only slow down the process. Calcu-
lating the hardest triplets for the entire dataset every epoch would
be computationally very slow. Additionally, if we were to select the
hardest triplets every time it could cause poor training. This is be-
cause selection of hardest triplets would be dominated by for exam-
ple mislabeled or low quality images.

3.1 Neural Network Architectures
During our experiments, we trained different neural network archi-
tectures to produce embeddings. All the networks shared a general
architecture of a convolutional neural network where the top layer
(classification layer) was replaced by a 128-dimensional dense layer
to represent the embedding of the input image. Figure 2 shows an
illustration of this architecture, which is used to compute the embed-
ding for one image. Table 1 we show the different types of architec-
tures we evaluated as part of this work. This was done to investigate
the effect of using different convolutional architectures and model
sizes to produce embeddings. The corresponding results to the archi-
tectures listed in this table is listed in Table 2.

Network Architecture # Parameters Pretrained with
FishNet1 (Inception ResNet v2) 55M ImageNet
FishNet2 (MobileNet v2) 2.4M ImageNet
FishNet3 (VGG-16) 15M ImageNet

Table 1: The different neural network architecture models used in
the experiments. From a large model (FishNet1 based on Inception
ResNet v2) to a model that is 20 times smaller (FishNet2 based on
MobileNet v2) that can be deployed on a mobile device.

To train the network using triplet loss, the network needs to use
more than one image at once. To achieve this, the convolutional and
embedding parts need to be replicated once for each image. Note
that the weights are shared between the instances. The output from
the embedding layers is fed into a custom layer that computes the
triplet loss, which in turn is used to train the model. Figure 2 illus-
trates the model used for training. Table 1 shows the neural network
architectures used in the experiments.

All models were initialized with the convolutional weights pre-
trained on the ImageNet dataset [6]. The assumption being that fea-
tures learned for image classification may be a useful starting point
for learning how to distinguish salmon from each other, thereby re-
ducing the amount of training data needed to train the models.

4 Dataset and Evaluation
As far as we know, there is currently no data set of labeled fish to use
for training and evaluating methods for identity recognition. Thus,
to evaluate the FishNet method we needed to create a dataset of la-
beled pictures of salmon heads. To do this we aquired a video clip of
salmon swimming from SeaLab5.

The original data was a video stream of salmon swimming across
the view of the camera. The video was filmed at 30 FPS (frames per
second) meaning we had 30 images per second of video. Figure 4a
shows a frame captured from this video. Salmon heads in the im-
ages were marked manually with a bounding-box tool. After manu-
ally labeling approximately 500 bounding-boxes as salmon heads the
bounding-boxes were used to train a YOLOv3 ([13]) network to rec-
ognize salmon heads. This YOLOv3 model was then used to create

5 https://www.sealab.no/

(a) An example of a frame from the original
video.

(b) An example of bounding-boxes of salmon
heads detected by the YOLOv3 model trained
to detect salmon heads.

Figure 4: Overview of different stages the dataset creation.

bounding-boxes on every salmon head in all video frames, as seen
in Figure 4b. Figure 2 and Figure 14 shows examples of the result-
ing cropped bounding-boxes of two salmon heads. These bounding
boxes is then extracted as a 175x175 image. These images are then
clustered to achieve clusters of images for each individual salmon.
Equation 2 describes the distance function used in the clustering al-
gorithm. If two bounding-boxes are in the same frame, the distance
is set to an arbitrarily high value. If the bounding-boxes are not in
the same frame, the intersection over union is measured to check
how closely the bounding-boxes overlap. Then a temporal distance is
added by computing a weighted distance of the frame numbers. This
is done to ensure that overlapping bounding-boxes in frames next to
each other receive a low distance value. These distance metrics are
combined into one single distance (Equation 2) metric which is used
by DBSCAN[20] to cluster the images. This process produces clus-
ters of images of the same individual salmon. This approach works
fairly well except in cases where a salmon disappears behind a dif-
ferent salmon and then reappears again. In those cases it is frequently
misidentified as a new salmon. This problem was solved by manu-
ally reviewing the labels, and replacing the labels for misidentified

Figure 5: Augmenting images during the dataset creation. The top
right and top left images show tilting augmentation. Centre bottom is
color shifting (making the image brighter).

https://www.sealab.no/


salmon.

D(b1, b2) =

{
∞ : δf = 0
1−IOU(b1,b2)+

2
: otherwise

(2)

Here δf = b1frame − b2frame and

IOU(b1, b2) =
Intersection Area

Union Area

Figure 6: Illustration of IOU. The top image is frame 61 in the video,
the middle is from frame 73, and the bottom image shows the two
images stacked on top of each other. Despite being 12 frames apart,
the IOU is still quite high. The red and blue area is the union between
the bounding boxes, and the blue area alone is the intersection.

After the salmon heads are extracted they were clustered and fi-
nally labeled. This resulted in a dataset of 15000 images of 715 indi-
vidual salmon. The images were then augmented by tilting the image,
moving the image vertically and shifting the brightness of the image.
Examples of these augmentations can be seen in Figure 5. Five aug-
mented images were created for each original image, resulting in a
data set containing a total of 225 000 images divided over 715 in-
dividuals. The data set was then divided into test and training sets,
with 90% of the images being used for training and the remaining
10% being used for testing.

4.1 Evaluation
The experimental setup consisted of a single computer containing an
AMD Ryzen Threadripper 2920x 12-core CPU, two GeForce RTX

Figure 7: The loss curves during training for FishNet1.

2080Ti GPUs and 128 GB of RAM. The models were implemented
using Tensorflow [1]. Figures 7, 8, and 9 show the loss curves dur-
ing the training of the three models presented in section 3.1. One
notable observation in the loss curves for FishNet1 is that both the
training and validation loss start to fluctuate and increase greatly to-
wards the middle and end of training. This occurs due to the nature
of the triplet selection algorithm used during the training phase. The
algorithms only uses triplets that fail the triplet constraint test de-
scribed in section 3. This means that if the model learns to separate
salmon well, there are fewer triplets available for training as the train-
ing progresses. By examining the training logs we can see that this
in fact happens. Figure 10 shows show many of the sampled triplets
the network was able to use for training.

Figure 8: The loss curves during training for FishNet2.

Figure 9: The loss curves during training for FishNet3.



As seen in Figure 7, when the models become increasingly good at
recognizing individuals the loss starts to fluctuate. This is most likely
due to the fact that the training process is down to a very small set of
triplets that is very hard to discriminate. When the training process
seeks for a model that can discriminate these last triplets, the loss
value of the rest of the dataset increases.

Figure 10: Number of triplets available for training each epoch for
FishNet1. Towards the end of the training only about 100 samples
were available for training.

The goal of the face verification task is to easily be able to sepa-
rate the embeddings generated by different identities in the euclidean
space. Figure 11 and Figure 12 illustrates how the embeddings are
distributed in the space before and after training. The points in the
plots are of 6000 images from 29 different salmon from the test set.
The models used are FishNet1 before and after 200 epochs of train-
ing. As we can see from the t-SNE-reduced plots the grouping of
embeddings from salmon of the same identity is far better after train-
ing. This indicates that the model is able to learn some mapping from
the images to embeddings.

Figure 11: T-SNE clustering of embeddings produced by a untrained
FishNet1 model. The slight clustering visible in the figure is an effect
of the inherent clustering done by T-SNE.

To compute metrics such as true positive rate, false positive rate,
accuracy etc., a similarity threshold needs to be set. To compare the
models we can examine what the true positive rate (the sensitivity)
of the system is at a set false positive rate. We have compared the
models where the false positive rate is 0.01, that is, where 1% of the
negative samples are misclassified as positive. As we can see in Table
2 FishNet1 and FishNet2 perform approximately equally with a true
positive rate of about 96%. FishNet3 performs significantly worse
with a true positive rate of 87%.

Network Architecture AUC TPR @ FPR = 10e-3
FishNet1 (Inception ResNet v2) 0.9977 0.964
FishNet2 (MobileNet v2) 0.9974 0.961
FishNet3 (VGG-16) 0.9919 0.870

Table 2: The area under the curve and true positive rate (measured
when the false positive rate is 10e-3) of the models.

Figure 13 shows the ROC curve for the three models we tested.
By comparing the area under the curve we can compare the perfor-
mance of the models across all thresholds. As we can see FishNet1
and FishNet2 perform better than FishNet3, with FishNet1 being the
best of the models tested in our experiments. It is interesting to note
that the improved results of FishNet1 come at quite a high computa-
tional cost compared with FishNet2, a network designed to be able
to run on mobile devices.

Lastly Figure 14 shows an example of a visual evaluation of 2 im-
ages of 3 different salmon individuals (“Simen”, “Eirik” and “Egil”).
This shows us that the calculated distances between different indi-
viduals are at least three (on average 3.88) times bigger than the dis-
tances between two images of the same individual in this example.

Figure 12: T-SNE clustering of embeddings produced by a trained
FishNet1 model. This is clearly a better clustering than shown in Fig-
ure 11, illustrating that the embedding process extracts useful signals
for identifying individuals.



Figure 14: An illustration of the distances between six images from
salmon with three different identities. Each row contains two images
of the same salmon: “Simen” at the top, “Eirik” in the middle and
“Egil” at the bottom. The average distance between the same salmon
is 0.36 while comparisons between different salmon average at 1.40.

Figure 13: The ROC curves of FishNet1 (blue), FishNet2 (orange),
and FishNet3 (green). The true positive rate and false positive rate is
computed across similarity thresholds in the range [0.0, 2.0] in incre-
ments of 0.2. The model with the largest area under the curve has the
best overall performance (FishNet1, with InceptionResnetV2). Note
that the axes in the plot are in logarithmic scale.

5 Discussion
The results shown in the Section 4 demonstrate that machine learning
methods successfully applied for identifying humans from pictures
can also be used to identify individual salmon. However it should be
noted that this was done with frames extracted from a single video
captured over a short period of time. Thus the different frames repre-
senting the same individuals in the data set created for this work are
very similar. This is somewhat amended by the augmentation done to
the frames as described in Section 4. However, the results from eval-
uating the method on a data set with these augmentations does not
enable us to conclude that the method works under all conditions, or
over longer periods of time. The video used in this work is a video
with very favorable conditions, both in terms of light and water clar-
ity. Training FishNet in more challenging conditions might reduce
the performance of the architecture. Thus adversarial regularization
using both artificial noise and adversarial examples could be benefi-
cial or even necessary for the architecture to handle such conditions,
as this has been shown to increase robustness of deep architectures
[17]. The fish may also be damaged mechanically or contract dis-
eases which changes the way individual fish looks over time. This
could drastically affect the performance of FishNet on such individ-
uals.

6 Conclusion
In this paper we presented FishNet, a novel approach for individual
fish recognition using a convolutional deep neural network as part
of a Siamese neural network architecture based on FaceNet [15]. We
trained this model using images of salmon to make the model identify
individual salmon. FishNet achieves a false positive rate of 1% and a
true positive rate of 96%.

As future work we would like to investigate the model’s ability to
recognize individuals from spawn to grown fish. We would also like
to test if we can increase performance by employing other variants
of Siamese neural networks such as eSNN[11]. Finally, we would
like to investigate what the architecture is actually looking at when
recognizing individuals.
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