
ISBN 978-82-471-9645-8 (printed ver.)
ISBN 978-82-471-9760-8 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:8

Christian Øyn Naversen

Modelling Approaches for
Hydro-Dominated System
BalancingD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2021:8
Christian Ø

yn N
aversen

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n 
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ric
 P

ow
er

 E
ng

in
ee

rin
g





Thesis for the Degree of Philosophiae Doctor

Trondheim, April 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

Christian Øyn Naversen

Modelling Approaches for
Hydro-Dominated System
Balancing



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

© Christian Øyn Naversen

ISBN 978-82-471-9645-8 (printed ver.)
ISBN 978-82-471-9760-8 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2021:8

Printed by NTNU Grafisk senter



Preface

The presented research was carried out at the Department of Electric Power
Engineering at the Norwegian University of Science and Technology (NTNU)
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Research has been by co-supervisor.

The work was done as part of the project “Pricing Balancing Services in the
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Summary

The generation mix in many power systems across the world is rapidly shifting
towards higher degrees of variable renewable power generation. Maintaining the
continuous power balance of the system under higher levels of uncertainty and
variability requires better planning and use of the available flexible resources.
Norwegian hydropower is one such flexible resource, and the ongoing construction
of substantial transmission capacity to neighboring areas with high penetration
of wind and solar generation can enable the use of the hydropower as a balancing
resource for the North European region. Understanding the interaction between
hydropower, thermal generation, and variable renewable power sources under
conditions of uncertainty is paramount in order to effectively and securely plan
the operation of the system.

The work conducted in this thesis has investigated the modeling of the short-
term production and reserve scheduling of systems with considerable amounts
of hydropower. A fundamental approach to modeling the different power imbal-
ances that create the need for reserve capacity and subsequent balancing energy
has been adopted in all of the models. Representing large-scale cascaded hy-
dropower in the models has been essential and has motivated the development
and adaptation of several different optimization methodologies. The work has
been disseminated in four scientific papers, three published and one submitted
for review at the time of writing, which constitute the backbone of the thesis.
The thesis includes a thorough discussion and literature review on the core topics
considered in those papers. A summary of the different models created and the
main results of the work performed during this PhD is provided below:

• Two-stage models based on stochastic, robust, and hybrid uncertainty for-
mulations were developed to investigate the impact of reserved capacity on
hydropower plants being activated due to forecast errors in the net-load.
The hybrid stochastic-robust model was found to be a good compromise be-
tween cost optimality and protection from extreme events. The distribution
of reserves among the different hydropower plants is noticeably different in
a deterministic model that does not consider the delivery of balancing en-
ergy, which impacts the cost of balancing the system. This effect is due to
the strong temporal and topological coupling between hydropower plants
created by the cascaded hydropower topology.

• A hydrothermal model formulation using the continuous-time optimization
framework was developed, where several modifications to the previously
published continuous-time unit commitment problem were made to accom-
modate the inclusion of hydropower. The structural imbalances created by
the discrete spot market clearing are not present in the continuous-time for-
mulation since the power balance is kept at all times. The continuous-time
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model can potentially be used to estimate the cost of removing structural
imbalances when compared to a standard discrete-time model. The pos-
sibility of adding continuous ramping constraints for thermal units shows
how Norwegian hydropower can be used to alleviate ramping scarcity in
neighboring areas.

• Combining stochastic optimization and the continuous-time formulation
creates a model that can capture imbalances created by both the mar-
ket structure and forecast errors. The results from a stylized case study of
Northern Europe with uncertain offshore wind power show that Norwegian
hydropower is a principal provider of reserve capacity and balancing energy
in the system. The cost increase compared to an analogous discrete-time
model is roughly 0.4% of the total daily expected system cost, which stems
from balancing sub-hourly wind and load variations and employing more
accurate thermal ramping constraints and startup/shutdown procedures.

In addition to the research published in the papers, the thesis includes Ap-
pendix C, which is a valuable resource for anyone interested in understanding
and implementing the continuous-time formulation. The material in the ap-
pendix is based on the published literature on the topic and personal experience,
and was written because no other comprehensive introduction to continuous-time
unit commitment exists at the time of writing.
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Chapter 1: Introduction

1 Introduction

1.1 System and Market Description

In December 2019, the European Commission presented their plan for a Euro-
pean Green Deal intending to make the European Union (EU) climate-neutral
by 2050 [1]. As an important milestone for this long-term goal, the Commission
later proposed to increase the 2030 emission reduction target from 40% to 55%
compared to the emission levels of 1990. The objective of the first European
Climate Law is to turn the proposals in the European Green Deal into binding
legislation and policy change [2]. This is ongoing work at the time of writing,
and the proposal is scheduled to be revised in June 2021. Large and fundamental
changes to many parts of society are required to reach the emission goals for 2030
and 2050. One of the most important sectors to decarbonize in the transition
to a zero-emission society is the energy sector, which is responsible for 75% of
greenhouse gas emissions in the EU [3]. Renewable energy production plays a
major role in the sector, with existing binding targets of 20% and 32% renewable
energy consumption in the EU by 2020 and 2030, respectively [4].

The green shift is introducing deep penetration of renewable electricity produc-
tion into the European power system. This is also the case for the Nordic syn-
chronous area, which includes the power systems of Norway, Sweden, Finland
and Eastern Denmark. In addition to the wind power production within the
synchronous area, the growing amount of high-voltage direct current (HVDC)
transmission capacity to neighboring power systems will increase the penetration
of variable renewable power production into the Nordic system. Figure 1.1 shows
a map of current HVDC lines connecting the Nordic synchronous area to adjacent
power systems, where several of the connected countries also border the North
Sea. This is one of the most attractive areas for offshore wind development in
Europe due to its shallow waters and excellent wind conditions. In particular,
Germany, the Netherlands, the United Kingdom, and Western Denmark have
high offshore wind power potential [5].

Efficient use of flexible resources is needed in order to cope with the fluctuations
introduced by high shares of variable renewable electricity production. Utilizing
the existing flexibility in the power system is especially important in the tran-
sition phase from a conventional to a fully renewable power system since new
energy storage technologies such as batteries and hydrogen production are still in
the early phases of system scale integration. There are already substantial flexible
power sources in the Nordic power system in the form of hydropower production
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Chapter 1: Introduction

Figure 1.1: The current HVDC cables that create the interface between the
Nordic synchronous area and the adjacent synchronous power systems. The cable
between Norway and Great Britain is under construction at the time of writing,
and is thus shown as a dashed line. The parallel lines between Norway and
Denmark and Sweden and Denmark are represented as single lines. Based on the
ENTSO-E grid map (https://www.entsoe.eu/data/map/) and the geographical
shape file of Europe from [6].

in Norway, Sweden, and Finland. The Norwegian generation mix is particularly
dominated by hydropower, with around 90% of the installed capacity and 91.5%
of the average yearly production [7]. The Norwegian hydropower reservoir capac-
ity of roughly 87 TWh [8] represents a significant potential for long-term energy
storage of energy over the seasons. As hydropower turbines are fast-ramping and
easily controllable, they can also provide short-term flexibility to balance sudden
net-load variations. The flexible qualities of Norwegian hydropower are therefore
of great interest to the larger North European power system interconnected with
HVDC cables. The ongoing harmonization effort of electricity markets for bal-
ancing energy and capacity in the EU is therefore an essential enabler of efficient
cooperation and coordination of flexible resources across country borders.

It is crucial to develop model tools that can aid decision-makers facing the future
challenges of the interconnected North European power system. More uncertainty
and variability in the power system must be addressed by improved cooperation

2



Chapter 1: Introduction

between countries and efficient coordination of the existing resources in the gen-
eration mix. Optimization models that can find the best way of operating the
system as a whole serve as important benchmarks for analyzing the real world.
An example of valuable knowledge that can be obtained from such models is how
different generation technologies interact and complement each other. Finding
ways of incorporating uncertainty and the fundamental causes for system imbal-
ances into the models will be necessary in order to provide a better understanding
of the complex issue of power system operation and planning in the future.

1.2 Power System Imbalances

As the power systems around the world undergo the transition from systems
with conventional generation to hybrid, and finally fully renewable, power sys-
tems, several challenges arise for both the system operators and power producers.
Increased variability from wind and solar power generation is one of the main
challenges that must be tackled, as it potentially threatens system stability. In
the Nordic power system and many other European countries, several successive
electricity markets are used to plan the safe operation of the power system while
ensuring competition between participants. The day-ahead energy market, also
called the spot market, facilitates the matching of the planned energy produc-
tion and consumption in each time interval (hourly in the Nordic system) of the
following day. The intraday market allows for adjustments of commitments in
the spot market closer to real-time. Both of these markets trade energy over a
specified time interval, and are therefore unable to ensure a continuous matching
of the injected and absorbed power in the system. Deviations between produced
and consumed power must therefore be compensated in a different way in order
to avoid large frequency deviations.

In order to maintain a continuous power balance, the responsible transmission
system operators (TSOs) procure several different reserve capacity products from
balancing service providers (BSPs) in advance of real-time energy delivery. The
BSPs are subsequently called upon to increase or decrease their power produc-
tion/consumption. The names and specifications of the different reserve capacity
products have historically varied from country to country. To facilitate coop-
eration across countries, ENTSO-E has defined a set of common standards and
basic requirements for reserve capacity products that are used in Europe [9]. Fre-
quency containment reserves (FCR), automatic and manual frequency restoration
reserves (aFRR, mFRR), and replacement reserves (RR) are the most common
types of reserve capacity procured by European TSOs. FCR is the first line of de-
fence against frequency disturbances as it is automatically activated and directly
governed by the frequency signal. aFRR and mFRR are activated to alleviate
the FCR response and restore the frequency to its nominal value before RR is
potentially called upon for long-lasting disturbances. It is crucial for the TSO

3



Chapter 1: Introduction

to procure sufficient reserve capacity to respond to deviations in the power bal-
ance of the system, and the presence of flexible units with fast response time is
therefore essential.

There are several reasons why power imbalances may occur. It is useful to catego-
rize the imbalance types based on the fundamental phenomena that create them
when looking at the problem from a modeling perspective. There are three pri-
mary sources of imbalances in power systems: contingency events, forecast errors,
and the discrete nature of current electricity markets. In addition to handling
the listed imbalance types, TSOs call upon the reserved production capacity to
balance internal network congestion that is not considered in the market clearing.

Bottlenecks exist in every power grid, and the electricity markets in Europe do
not consider grid constraints within the defined bidding zones. Situations where
TSOs must use reserves to relieve internal congestion will therefore occur. The
cost of this type of “special regulation” for the Norwegian TSO Statnett has been
considerable in recent years, comparable to the cost of procuring FCR [10]. A
detailed grid description with power flow constraints is the only way of accurately
modeling the effects of grid bottlenecks on the reserve procurement process.

Contingency events encompass rare but very impactful incidents where major
system components unexpectedly malfunction. A large power imbalance will oc-
cur if a large generator or transmission line suddenly fails, and reserve capacity
on the remaining units in the system will need to be activated in response. Con-
tingency event considerations are often the basis for determining the amount of
reserves needed in a system [11]. These types of imbalances have been modeled
in contingency-constrained unit commitment models such as [12], where the goal
of the model is to ensure that the system balance can be kept after a contingency
event occurs.

Forecasting the electricity demand and variable renewable power generation in the
near future will never be completely accurate, but it is necessary for planning the
operation of the system through the day-ahead electricity market. The forecast
errors will cause imbalances between the scheduled production and consumption
that have been cleared in the market based on the forecasted values. Figure 1.2
shows an example of the discrepancy between realized and forecasted wind power,
which can be significant. Imbalances caused by forecast errors are stochastic in
nature, as are the contingency imbalances described earlier. The major differences
between these two types of stochastic imbalances are their probability of occurring
and severity. Forecast errors are inevitable and will occur every single day to
some extent, whereas contingency events rarely happen. Stochastic optimization
techniques are often used to incorporate forecast errors into system planning
models [13].
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Figure 1.2: Forecasted and realized aggregated offshore wind power in Western
Denmark on 12/10-2019, data with 5-minute resolution gathered from [14].

Imbalances caused by the market structure are referred to by different names,
such as deterministic imbalances [15], structural imbalances [16], and schedule
leaps [17]. They will be referred to as structural imbalances in this thesis as
it is the most general term. The discrete structure of the electricity markets,
which typically has a granularity of 15, 30, or 60 minutes in Europe, is the source
of the structural imbalances. The day-ahead electricity market assumes a con-
stant schedule through the bidding interval, but this is impossible to achieve in
practice for both the consumer and producer side of the market. The deviations
from the scheduled market-clearing manifest as imbalances, causing noticeable
frequency deviations around the market’s bidding interval shifts, as shown in Fig-
ure 1.3. The structural imbalances are predictable to a much larger extent than
the imbalances caused by forecast errors and contingency events and are therefore
sometimes referred to as deterministic imbalances. The net-load is typically de-
creasing during the night hours, which is shown in Figure 1.3 as under-frequency
at the start, and over-frequency at the end, of the hour. When the net-load in-
creases during the morning and evening peaks, the opposite phenomenon occurs.
However, the exact size of the structural imbalances is not deterministic. Larger
amounts of renewable power production can also worsen structural imbalances by
increasing the net-load ramping. An example of this is the famous “duck curve”
in California [18]. Even if a renewable power generator produces the forecasted
amount of energy over a time interval, the sub-hourly power deviations around
the average value will cause a type of stochastic structural imbalance. The abil-
ity to capture changes in power production and consumption within the market
intervals is necessary to model structural imbalances.
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Figure 1.3: Median frequency in the Continental European power system in
January 2019, data gathered from [19]. Clear frequency deviations around the
hour shifts can be seen.

1.3 The PRIBAS Project

This PhD work is part of, and funded by, the research project “Pricing Balancing
Services in the Future Nordic Power Market” (PRIBAS). In turn, the PRIBAS
project is principally funded by the Research Council of Norway as a Knowledge-
building Project for Industry (KPN) and led and organized by SINTEF Energy
Research in Trondheim, Norway. Part of the funding is also provided by the
industrial project partners, consisting of the Norwegian hydropower producers
Statkraft, Hafslund E-CO, Lyse Produksjon, Agder Energi, and Hydro Energi,
as well as the Norwegian and Swedish TSOs Statnett and Svenska Kraftnät.
Industrial participation is a requirement for receiving financial backing from the
Research Council of Norway in KPN projects, as it shows that the research topic
is highly relevant and interesting for the industry.

The overall goal of the PRIBAS project is to develop model concepts to compute
marginal prices for all physical electricity products in the Nordic power market.
This includes day-ahead electricity prices as well as prices for balancing capacity
and energy. The project’s initial work focused on calculating prices for energy
and reserve capacity in the Nordic power system [20], and the significance of using
more detailed modeling of thermal units for the price signals [21]. A comprehen-
sive list of the published work associated with the project is available online,
see [22].
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1.4 A Brief Overview of Hydro-Dominated Sys-
tem Scheduling

Optimal use of the water for electricity production in a cascaded hydropower
system is a complicated problem with a long history. This section is written to
help situate the work performed during the PhD and is not meant to provide a
complete survey of the formulations and coupling techniques used in hydropower
scheduling models. The changes and uncertainty in hydrology, weather, CO2

prices, fuel costs, and net-load over the seasons are the major drivers that de-
termine the optimal long-term strategy for operating the system. An accurate
physical description and handling of operational constraints becomes more im-
portant from a short-term perspective. Solving a stochastic optimization problem
with high physical detail and a long time horizon quickly becomes intractable.
Therefore, the hydropower planning problem is usually split into a hierarchy of
linked long-term, medium-term, and short-term problems [23]. Information about
the uncertain future is condensed and passed on as input to the next model in
the toolchain, which refines the result over a shorter time horizon but with more
physical detail.

Long-term models take a fundamental approach to system planning, assuming
that a system operator with perfect knowledge of the technical state of the system
and topology performs a central dispatch to minimize the total system cost. The
central dispatch point of view is equivalent to assuming a market setting where
all participants behave as price takers under perfect competition. The funda-
mental approach means that long-term price forecasts can be generated from the
long-term models, which can be used as input to the medium-term models in a
liberalized market setting such as in the Nordic countries [24]. The long-term
models handle the operation of the system over many seasons with a coarse time
resolution and sometimes aggregated hydropower topology. The simplifications of
the physical and temporal model aspects are made to preserve the complexity of
the multi-stage uncertainty modeling. Solution strategies based on stochastic dy-
namic programming (SDP) and stochastic dual dynamic programming (SDDP)
are often used in long-term models, see for instance [25] and [26]. Water val-
ues that describe the opportunity cost of using water now versus saving it for
the future can be calculated by the long-term models as a result of the solution
algorithm. SDP models usually aggregate the hydropower system into a single-
reservoir system capable of coping with the exponential increase in complexity
each state variable introduces. The resulting water values are therefore also ag-
gregated. The SDDP formulation is better suited for including the hydropower
topology, and the linear hyperplanes, often referred to as cuts, generated dur-
ing the nested Benders decomposition scheme used to solve the SDDP problem,
create a detailed water value description that couples all connected reservoirs.
Water values provide an end valuation method for the reservoir contents in the

7
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near future and propagate the long-term strategy to the lower levels of the model
hierarchy. A water value description is not the only way to couple the models
in time, but it is extensively used in the industry and considered as a flexible
method for describing the long-term operational strategy.

The length of the planning horizon is not necessarily the best way to distinguish
long-term from medium-term models, as it is heavily dependent on the size of the
reservoirs in the system and their expected yearly inflow. A better distinction is
the existence of an end valuation of the water in medium-term models, passed
down from a long-term model. In a central dispatch system such as Brazil, the
medium-term model has the same geographical scope and system cost minimiza-
tion perspective as the long-term model [27]. Medium-term models in liberalized
markets usually focus on a smaller geographical region and take into account the
uncertainty in the spot price [28]. The fundamental medium-term models can
calculate prices, while this is no longer the aim of the producer-focused medium-
term models that use exogenous prices as input. A further refinement of the
water values based on more details in the system description and a finer time
resolution is the common factor between the two different perspectives. The
medium-term models are primarily used as a linking tool between the long-term
and short-term problems, and the refined water values are once again used as the
coupling mechanism.

Due to tractability issues, the long-term and medium-term models are mostly
linear programs. However, the hydropower scheduling problem is riddled with
non-linear relationships that should be taken into account in the daily opera-
tions of a hydropower system. The short-term hydropower scheduling models
therefore aim to include binary unit commitment constraints to model forbidden
production zones, head loss due to friction, separate turbine and generator effi-
ciency curves, and many other complicating constraints [29]. Short-term models
such as [30] take on the perspective of a profit-maximizing producer in liber-
alized markets, where both the price and water value description are inputs to
the model. The producer-centric short-term models only include the reservoirs
and plants of a single producer, which significantly reduces the system size and
makes it possible to incorporate many of the non-linear elements mentioned ear-
lier. Fundamental short-term models that aim to minimize the total system cost
and calculate the price, such as [31] and the models referred to in Section 1.3,
still have to model the system as a whole. The large system boundary limits
the number of physical complexities that can be added to the problem without
rendering the model intractable.

8



Chapter 1: Introduction

1.5 Scope and Assumptions

How should the Nordic hydropower resources be used optimally in a future with a
high penetration of variable renewable energy sources and tighter interconnection
to the rest of Northern Europe? This broad question can certainly be explored
in many different directions. The work conducted in this thesis has focused on
developing new methodologies and formulations for the short-term scheduling and
balancing problem for hydropower-dominated systems. The perspective taken in
all of the presented models is that of a central system operator aiming to minimize
the total system cost.

The choice of focusing more on the short-term variations and uncertainty in the
power system means that no long-term effects are directly considered in any of the
research presented. The long-term strategy of operating a cascaded hydropower
system is primarily determined by uncertainty in inflow and net-load over sev-
eral seasons, depending on the size of the reservoirs in the system. The water
value description used as input to the models was calculated by the long-term
hydropower model in [32] and is assumed to describe the long-term strategy in
the short-term problem adequately.

The hydropower topology description used in the developed short-term models is
shown in Appendix A. Reservoirs and power plants connected by the main tun-
nels, bypass gates, and spillage gates are modeled in the cascaded arrangement.
Each hydropower plant in the system has been treated as a single production
unit, ignoring the internal structure of the power plant. Therefore, the charac-
teristics of the individual turbines and generators, possibly connected to different
penstocks inside the power plant, are disregarded. An aggregated hydropower
production function for the whole plant is used instead. Energy loss due to fric-
tion in the tunnels and head dependencies in the turbine efficiency curves have
also not been considered.

Finding a unified way to model all the primary causes for power system imbal-
ances described in Section 1.2 requires the combination of several modeling tech-
niques and detailed system topology information. The imbalances from forecast
errors and structural imbalances have been considered in the work of this thesis,
and including contingency events in the models has been left for future work.
Since special reserve regulation due to internal transmission constraints has not
been considered, the AC transmission grid and power flow constraints have been
omitted from the models. An aggregated zonal representation of the power sys-
tem with HVDC interconnectors has been used instead, which still captures the
interaction between zones dominated by different generation technologies such as
hydropower, wind power, and thermal power.

Since the emphasis of the work has been the modeling techniques, large-scale and
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realistic case studies for the Nordic power system and Northern Europe have not
been conducted.

1.6 List of Publications

The papers listed below constitute the backbone of this PhD thesis and are
reprinted in full in the “Publications” part of this document. In the remainder
of the thesis, these papers will be referred to as Paper I, II, III, and IV. Paper
III was first-authored by Mari Lund Øvstebø as part of her MSc thesis, where
the candidate was her co-supervisor. Paper IV is currently in the first round of
review, and modifications to the current manuscript should be anticipated in the
final version.

I. C. Ø. Naversen, H. Farahmand, and A. Helseth, “Accounting for reserve
capacity activation when scheduling a hydropower dominated system”, in
Int. J. Electr. Power Energy Syst., vol. 119, p. 105864, Jul 2020.
DOI: 10.1016/j.ijepes.2020.105864

II. C. Ø. Naversen, A. Helseth, B. Li, M. Parvania, H. Farahmand, and J. P.
S. Catalão, “Hydrothermal scheduling in the continuous-time framework”,
in Electr. Power Syst. Res., vol. 189, p. 106787, Dec 2020.
DOI: 10.1016/j.epsr.2020.106787

III. M. L. Øvstebø, C. Ø. Naversen, A. Helseth, and H. Farahmand, “Continuous-
time scheduling of a hydrothermal system with integration of offshore wind
power”, in 17th Int. Conf. Eur. Energy Mark. (EEM), Oct 2020.
DOI: 10.1109/EEM49802.2020.9221980

IV. C. Ø. Naversen, B. Li, M. Parvania, A. Helseth, and H. Farahmand,
“Stochastic Flexibility Coordination in Hybrid Hydro-Thermal-Wind Power
Systems”, under review in IEEE Trans. Power Syst., submitted Sep 2020.

Several other publications that are either outside the scope of the thesis or only
contain a minor contribution from the candidate have been published during the
course of the PhD work:
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• A. Helseth, M. Haugen, S. Jaehnert, B. Mo, H. Farahmand, and C. Ø.
Naversen, “Multi-Market Price Forecasting in Hydro-Thermal Power Sys-
tems”, in 15th Int. Conf. Eur. Energy Mark. (EEM), Jun 2018.
DOI: 10.1109/EEM.2018.8469932

• C. Ø. Naversen, S. Bjarghov, and A. Helseth, “Operating a Battery in a
Hydropower-Dominated System to Balance Net Load Deviations”, in 16th
Int. Conf. Eur. Energy Mark. (EEM), Sep 2019.
DOI: 10.1109/EEM.2019.8916534

• H. O. Riddervold, E. K. Aasgard, H. I. Skjelbred, C. Ø. Naversen, and M.
Korp̊as, “Rolling Horizon Simulator for Evaluation of Bidding Strategies
for Reservoir Hydro”, in 16th Int. Conf. Eur. Energy Mark. (EEM), Sep
2019.
DOI: 10.1109/EEM.2019.8916227

• M. Haugen, A. Helseth, S. Jaehnert, B. Mo, H. Farahmand, and C. Ø.
Naversen, “On the importance of detailed thermal modeling for price fore-
casting in hydro-thermal power systems”, in IEEE Electr. Power Energy
Conf. (EPEC), Oct 2019.
DOI: 10.1109/EPEC47565.2019.9074832

1.7 Thesis Structure

This thesis is split into three main parts. The first part includes Chapters 2
and 3, and contains an account of the methodologies and contributions of the
thesis in addition to a discussion of future work and concluding remarks.

The second part of the thesis reprints the four papers listed in Section 1.6 in full.
Each paper is marked in the thumb index of the printed version of the thesis.

Three appendices are included in the last part of the thesis as supplementary
material to help the reader to understand the discussion in Chapters 2 and 3
and the papers themselves. Appendix A provides a brief description of the hy-
dropower system that has been used in the research, while Appendix B goes
through the necessary steps of reformulating and solving a two-stage robust op-
timization model. Appendix C gives detailed derivations and explanations of all
fundamental properties of a continuous-time unit-commitment model.
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2 Methodologies and Contributions

This chapter discusses the methodologies and contributions of the work performed
during this PhD, based on the four papers listed in Section 1.6. Section 2.1 gives
an overview of the research questions addressed in the thesis through the pub-
lished papers. Sections 2.2 to 2.4 discuss the contributions and central modeling
topics of each paper with accompanying surveys of the relevant scientific litera-
ture.

2.1 Research Questions and Paper Overview

Formulating new optimization model concepts to investigate how the flexibility
of hydropower can be used in system balancing is the overarching objective of the
work conducted in this thesis. To narrow the research focus, four more specific
research questions have been examined within the scope of the work defined in
Section 1.5:

RQ 1. How important is it to consider uncertainty of activation when procuring
reserve capacity on cascaded hydropower units?

RQ 2. How can sub-hourly deviations be modeled to avoid structural imbalances?

RQ 3. To what extent can Norwegian hydropower be used for balancing of the
North European interconnected system?

RQ 4. Is there a unified way of modeling both stochastic and structural imbal-
ances?

The first question is central to the topic of efficiently balancing stochastic devia-
tions caused by forecast errors with hydropower. There are several effects specific
to energy storage units in general, and cascaded hydropower specifically, that in-
dicate that considering the possibility of reserve activation could be important
in the reserve procurement phase. This is investigated in Paper I and further
discussed in Section 2.2. As implied in RQ 2, looking into structural imbalances
requires a different approach than forecast imbalances. Paper II deals with this
topic by formulating the standard hydrothermal unit commitment problem in a
fundamentally different way by expressing it as a continuous-time problem. This
is further expanded upon in Paper III, which also looks into RQ 3 by solving the
model for a stylized North European system, see Section 2.3. The final research
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question is tackled in Paper IV, described in Section 2.4, by combining the meth-
ods of the other papers. The paper also contributes to RQ 3 by also looking at a
North European test system. Thus, the four papers presented in this thesis make
a combined modeling effort towards a holistic approach for using hydropower to
balance stochastic forecast errors and structural imbalances. Figure 2.1 shows a
simple schematic of the connections between the papers.
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Structural imbalance modeling

Paper II

Continuous-time formulation

Deterministic model

RQ 2

Paper I

Discrete-time formulation

Two-stage stochastic/robust model

RQ 1

Paper III

Continuous-time formulation

Deterministic model

RQ 2, RQ 3

Paper IV

Continuous-time formulation

Two-stage stochastic model

RQ 3, RQ 4

Figure 2.1: A sketch of the connection between the four papers included in the
thesis. The boxes show which research questions each paper explores in addition
to the methodologies used for describing time-dependent decisions and uncer-
tainty.

The optimization problems described in all four papers are viewed from a cen-
tral system operator’s perspective who attempts to find the optimal schedule
for dispatching the available power generation resources in terms of the system
cost. The different approaches to this problem were formulated as linear pro-
grams (LPs) or mixed-integer linear programs (MILPs) that can be solved with
standard optimization solvers. The commercial CPLEX solver [33] has been used
in the solution procedure for all of the models described in the four papers, al-
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though there are many alternative solvers that can solve such programs. The
formulation of the optimization programs was performed in the open-source Py-
omo framework [34, 35] for the Python programming language, which is flexible
and can interface with most optimization solvers.

2.2 Contributions of Paper I

As mentioned in the previous section, Paper I studies the effect of considering
uncertainty in the activation of reserved capacity when the day-ahead production
and reserve schedules are optimized. There are two main aspects of uncertain
reserve capacity activation that are explored in Paper I:

1. Considering the feasibility and economics of delivering the balancing energy
that is expected to be available based on the reserved capacity.

2. Striking a balance between conservativeness and cost optimality when mod-
eling the uncertain deviations in the net-load leading to reserve activation.

Both of these topics influence the production and reserve capacity decisions for
a cascaded hydropower system in different ways. The first point addresses the
question of having sufficient water stored in the reservoirs to meet real-time en-
ergy delivery corresponding to the reserved capacity, and is a deceptively subtle
topic. The second point concerns the representation of uncertainty in the model,
and resulted in the creation of a new hybrid uncertainty model based on both
stochastic and robust optimization. The following subsections discuss the two
questions in detail.

2.2.1 Feasibility of reserve capacity activation

The amount of scheduled power production (pt) and spinning reserved capacity

(r
↑/↓
t ) for a running unit at time t is clearly constrained by the minimum and

maximum production levels (Pmin/max) of the unit:

pt + r↑t ≤ Pmax (2.1)

pt − r↓t ≥ Pmin. (2.2)

This is a capacity constraint that ensures that it is possible to fully activate the
reserved capacity without violating the most fundamental operational limits of
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the unit. However, the constraints do not take into account any energy-related
concerns for activating the reserved capacity. Conventional thermal generators,
such as gas-fired power plants, are usually assumed to have an infinite supply
of fuel available, but this is not true for energy storage units. Let the scheduled
energy content at the beginning of time interval t be denoted et, which is based on
the production and consumption schedule for the energy storage device. Reserve
capacity activated in time interval t must obey the energy constraints:

et+1 + η↓r↓t∆ ≤ Emax (2.3)

et+1 − η↑r↑t∆ ≥ Emin. (2.4)

In the constraints above, the reserves are assumed to be fully activated for a
period of length ∆ with constant efficiency η↑/↓. The size of the energy storage,
represented with the upper and lower energy limits Emax/min, with respect to
the installed production/consumption capacity of the energy storage device, is
an important factor in determining whether the capacity or energy reserve con-
straints will be binding. If the time it takes to fill or empty the energy storage
is on the scale of a few hours, the energy constraints will likely be significant.
Batteries are usually in the category of being able to fill and empty their en-
ergy storage quickly. In hydropower systems, the size of the reservoirs can vary
greatly. The hydropower topology used in all of the papers presented in this
PhD, see Appendix A and Figure A.1, has both large and tiny reservoirs. With-
out considering any inflow, it takes almost 98 days to empty reservoir M6 with
maximal discharge, while it only takes 21 minutes to empty M2. In such cases,
both the capacity and energy constraints for reserve capacity can be important
for different reservoir-plant pairs.

Note that eqs. (2.3) and (2.4) are simplified in several respects. For instance, the
efficiency is not necessarily constant for the whole production/consumption range,
and therefore depends on the total net production after activation. However, the
most important simplification is the time decoupling. The scheduled energy con-
tent et is based on the integral of the scheduled power production/consumption
over time, which means that activating reserves at time interval t can be within
the bounds set by eqs. (2.1) to (2.4) but still make the energy schedule infeasible
at a later point. This is illustrated in Figure 2.2, where it is shown that the
activation of reserve capacity can cause problems several time periods after it
occurs. Time-linking constraints such as the energy balance therefore affect the
reserve capacity procurement. Ramping constraints on conventional generators
are also time-linking and result in similar issues about the feasibility of reserve
capacity activation.
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Figure 2.2: Shows the scheduled energy content of an energy storage device to-
gether with two possible trajectories after reserve capacity has been activated for
a single hour. The activation does not cause immediate problems but makes the
future production/consumption schedule infeasible as the energy content reaches
either the upper or lower limit before the end of the horizon.

Although large-scale hydropower plants are less prone to reserve energy deploy-
ment scarcity than batteries, there are other challenges specific to cascaded hy-
dropower systems. The cascaded topology that interconnects all hydropower
plants in the system is one aspect that should be considered when reserve ca-
pacity is procured. When reserve capacity is activated, the amount of water
discharged through the turbine of the hydropower plant must be increased or de-
creased to provide the reserve energy. This regulation will also affect the energy
balance of the upstream and downstream reservoirs and could therefore cause
problems of flooding or running dry. The tight coupling between different reser-
voirs drastically increases the complexity of the questions related to sufficient
energy and storage capacity for balancing purposes. The future expected value
of the stored water in the hydropower reservoirs significantly affects the optimal
production decisions in short-term models. Due to the cascaded topology, this
value depends on the end state of all reservoirs in the system. Reserving capacity
on the wrong hydropower unit with respect to the water value could be costly if
it leads to a poor system end state after activating the reserves.

The reasons discussed in this section show that considering the activation of re-
served capacity in the scheduling and procurement phase of a hydropower model
is important. The issues have been addressed in the literature to varying de-
grees. Table 2.1 lists 21 representative papers that have considered the topic
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from different perspectives, and the papers have been selected to show the diver-
sity in the modeling approaches. The taxonomy table labels the papers based
on six different features deemed relevant. The first column separates the papers
based on the energy technology modeled for reserve capacity provision, ranging
from stand-alone batteries to large cascaded hydropower systems. As explained
earlier in this section, the system dynamics can vary dramatically based on the
energy storage technology. The model perspective, listed in the second column,
distinguishes between models that aim to minimize the total system cost and
models focused on individual producers maximizing their profit in the market(s).
A characterization of the type of energy balance constraints for activated reserve
capacity found in the model is listed in the third column. The uncertainty model
type is shown in columns 4 and 5, and the end valuation for stored energy is
included in the final column.

It is difficult to describe the modeling of reserve capacity activation and balancing
energy constraints in only a few words, which is nonetheless attempted in column
3 of Table 2.1. Therefore, a more detailed description of this aspect is warranted.
Papers [36–42] all consider batteries, or some similar form of general energy
storage device, that deliver energy and reserve capacity. The models described
in [36,37] are strategic formulations allowing the battery to act as a price-maker,
while the other listed papers on batteries assume perfect competition and aim
at minimizing cost. The energy balance of the battery in [36] is only satisfied
based on the expected reserve activation over all scenarios, while [37] adds single-
period activation constraints similar to eqs. (2.3) and (2.4) based on a predefined
duration of activation. Similar single-period activation constraints, in addition
to an energy balance considering a predetermined fraction of activated reserves,
are found in [39]. A more conservative approach is taken in [42], where extra
energy balance constraints for maximal upward and downward activation are
added to the problem formulation. The SDDP model in [38] explicitly considers
reserve activation scenarios with a full energy balance for the balancing energy,
although the energy limits of the battery are considered soft constraints. Both [40]
and [41] are stochastic unit commitment models with complete energy balance
constraints for all balancing scenarios. The same is true for the joint electricity
and gas network model in [43] that considers a compressed air system with similar
dynamics to a battery.

The papers in [44–47] consider pumped hydro (PH) plants that are not part of a
larger cascaded hydropower system. Closed PH systems do not receive any natu-
ral inflow and are therefore modeled relatively similar to batteries, although some
PH plants can discharge and pump simultaneously (“hydraulic short-circuit”).
The energy balance of the PH storage is satisfied based on a predetermined
probability of activation in [44], and the model in [45] also considers determinis-
tic reserve activation. Several models are presented in [46], which include both
single-period balancing energy constraints for extreme ramping scenarios and full
energy balance for maximal activation in both the upward and downward direc-
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tions. The work in [47] considers an open PH system with natural inflow into the
reservoir. Activation of reserve capacity is not included directly into the deter-
ministic optimization model, but the authors suggest reserving a portion of the
reservoir content for balancing by tightening the upper and lower reservoir limits
based on ex-post analysis of reservoir level deviations.

The remaining papers listed in the taxonomy table describe cascaded hydropower
systems, except for [48, 49]. The model in [48] disregards the hydropower topol-
ogy as it sequentially solves the scheduling and balancing problem of Northern
Europe and only considers single-period energy constraints in the upward ac-
tivation direction. A total energy limit for the seasonal reservoirs considering
maximal upward regulation is considered in [49], although the energy balance
constraints for these reservoirs are not considered. The physically detailed model
in [50] distributes different reserve products between the generators in the system
but does not consider any energy constraints related to the activation of the re-
serves. The medium-term model in [51] includes both energy and reserve capacity
markets but also disregards reserve activation constraints. Multi-period energy
constraints are added in [52] based on a fixed percentage of reserve activation,
although a full reservoir energy balance for balancing energy is not kept. The
upward reserve capacity sold in the market is constrained in each time interval by
the amount of scheduled water available in [53], similar to eq. (2.4). The model
in [54] accounts for maximal upward activation in the reservoir energy balance,
while [55] and [56] employ single-period reservoir energy balances for balancing
energy that accounts for the cascaded topology. A minimal reservoir content
after balancing energy has been provided is also required in [55].

It is clear that reserve energy constraints are quite common to consider in models
where batteries are used to provide reserve capacity. The models in [40,41] fully
model the reserve activation phase with energy balances for the batteries, which
ensures deployment feasibility for the set of considered balancing scenarios. The
robust model in [42] goes further by requiring feasibility for maximal activation
in both directions. The listed hydropower models do not go as far in ensuring
that the energy balance is preserved after activation. This gap in the literature
was addressed in Paper I, listed at the bottom of Table 2.1, by incorporating
full energy balances considering the cascaded topology for the activated reserve
energy in all scenarios.

2.2.2 Reserve procurement and dealing with uncertainty
modeling

The task of procuring reserves for system balancing should arguably be performed
in a risk-averse way, as failing to balance the system is very costly. The TSOs
in the Nordic countries procure a fixed amount of reserves in each category, and
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Table 2.1: Taxonomy table for energy storage devices providing both energy and
reserve capacity.

Ref Storage type Perspective
Balancing energy
constraints added

Solution strategy Uncertainty type
End valuation

of stored energy

[36] Battery Producer Energy balance in expectation Bi-level stochastic Net-load None, fixed end level

[37] Battery Producer Single-period activation per scenario Bi-level stochastic
Load, wind,

reserve requirement
None, minimum end level

[38] Battery Producer Full energy balance SDP/SDDP PV and reserve activation Cut description

[39] Battery System operator Single-period activation Multi-stage stochastic Wind None

[40] Battery System operator Full energy balance per scenario Two-stage stochastic Load and wind Constant value per MWh

[41] Battery System operator Full energy balance per scenario Two-stage stochastic Load and wind None

[42] Battery System operator
Full energy balance

for worst-case activation
Two-stage robust Wind None

[43] Compressed air System operator Full energy balance per scenario Two-stage stochastic Load and wind None

[44] Closed PH Producer
Full energy balance for
deterministic activation

Point estimate method
Wind, EV availability,

prices, reserve activation
None

[45] Closed PH Producer
Full energy balance for
deterministic activation

Single-stage stochastic Prices None, fixed end level

[46] Closed PH System operator
Single-period activation
and worst-case activation

Two-stage stochastic Wind None

[47] Open PH Producer
Reservoir content reserved

for balancing energy
Deterministic None None, fixed end level

[48] Decoupled hydro System operator Single-period upward activation Deterministic None Constant value per MWh

[49] Decoupled hydro System operator
Energy limit for

worst-case upward activation
Two-stage stochastic Inflow and contingencies Constant value per m3

[50] Cascaded hydro Producer None Deterministic None Several possible

[51] Cascaded hydro Producer None SDDP Inflow and wind Cut description

[52] Cascaded hydro Producer Multi-period activation Two-stage stochastic Inflow and prices None, fixed end level

[53] Cascaded hydro Producer Single-period upward activation Hybrid SDP/SDDP Inflow and prices Cut description

[54] Cascaded hydro Producer
Full energy balance for

worst-case upward activation
SDP/SDDP Inflow and price Cut description

[55] Cascaded hydro System operator
Single-period energy balance
and minimum energy level

Hybrid SDDP/Robust Inflow and contingencies Cut description

[56] Cascaded hydro System operator Single-period energy balance Two-stage stochastic Wind and contingencies None, fixed end level

Paper I Cascaded hydro System operator Full energy balance per scenario Two-stage stochastic/robust Net-load Constant value per m3

simply setting this level high enough will lead to a safe procurement. However,
this can easily lead to an overly conservative solution given the current state
of the system and the nature of the short-term uncertainties. By modeling the
fundamental drivers behind the need for reserve capacity, such as the variabil-
ity in the net-load due to renewable generation, the model finds an endogenous
and dynamic reserve capacity level. An example of this is the battery model
in [40] listed in Table 2.1, which uses a two-stage stochastic formulation to model
deviations in the demand and generation that must be balanced by activating
reserved capacity. The uncertainty is only revealed after some of the decisions,
e.g. production and reserve capacity schedules, have been made in a two-stage
model. Two-stage stochastic models usually consider the expected value of the
cost (or benefit) of the second stage, which usually involves generating a finite set
of scenario realizations of the uncertainty with specified probabilities of occur-
ring [57]. This is a risk-neutral method of incorporating the uncertainty, as the
variance in the objective value over the scenarios is ignored. While risk-averse
stochastic optimization techniques exist, a different point of view of uncertainty
and risk is taken in robust optimization. Instead of finding the optimal solu-
tion given some known probability distribution, the solution is hedged against a
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“worst-case” realization of the uncertain parameters, which naturally leads to a
conservative and robust solution, hence the name. Defining what constitutes a
worst-case realization is a critical part of constructing a sensible and tractable
robust optimization model.

The precursor to robust optimization was proposed by Soyster in [58] from 1973
as a way of dealing with data uncertainty in optimization problems. The tech-
nique was expanded upon in the late 1990s by Ben-Tal and Nemirovski [59, 60]
and El Ghaoui et al. [61, 62], where the conservatism of the solution could be
tuned. This is achieved by constraining the uncertain parameters to be within
an ellipsoidal uncertainty set, limiting the extremity of the realized worst-case
situation. Bertsimas et al. refined and simplified the method in [63] with the in-
troduction of the concept of linear uncertainty sets and a budget of uncertainty.
This leads to robust models that are tractable due to their linearity and mod-
est size. Two-stage or multi-stage robust model formulations, sometimes called
adjustable robust optimization, can describe the same mechanisms as stochastic
models when it comes to the revelation of uncertainty. However, the first-stage
decisions will be influenced by the worst-case realizations of the uncertainty in-
stead of the expected outcome.

Adjustable robust optimization has been employed in many research fields and
has a large presence in power system operation and planning modeling. A fairly
recent and comprehensive review is given in [64]. Especially worthy of mention is
the seminal paper [65], which formulates a two-stage robust optimization problem
for energy and reserve scheduling with unit commitment and uncertain net-load
injections. The paper provides a detailed step-by-step procedure for formulat-
ing simple yet effective uncertainty sets as well as a solution procedure for the
resulting robust model. Other important works include the introduction of dy-
namic uncertainty sets with correlations [66] and their extension to multi-stage
robust models with affine policies [67]. Robust optimization has also been used
in hydropower scheduling models, such as [68–72] and [55] listed in Table 2.1.
Appendix B gives a brief comparison of stochastic and robust two-stage opti-
mization and details the steps of reformulating and solving a two-stage robust
model.

The work in Paper I revolves around how cost optimality under the expected im-
balance conditions can be weighed against protecting the solution from extreme
cases with high variability. A hybrid robust and stochastic model was formu-
lated for this purpose in an effort to potentially temper the conservativeness of
robust optimization while maintaining protection against worst-case situations.
There have been many attempts to combine robust and stochastic optimization
in order to get the benefits of both formulations. Several models combine robust
and stochastic optimization to handle different sources of uncertainty. One ex-
ample is [73], where the expected value over strategic uncertainties is optimized
given that the worst-case realization of the operational uncertainties manifests.
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The important paper [74] handles the same uncertainty by robust and stochastic
optimization in the same model formulation. The expected value over a set of
scenarios and the worst-case value based on a robust uncertainty set are both
included in the objective function, but scaled with factors α and 1 − α, respec-
tively. Setting α = 1 results in an objective function that only includes the
expected cost, while α = 0 gives a robust objective function. The constraints
for the stochastic and robust parts of the model are always included, meaning
the solution will always be feasible in all scenarios and for the worst-case realiza-
tion even though the cost might not be included in the objective. This model is
solved iteratively by a Benders decomposition scheme to handle the robust min-
max-min structure. Another solution procedure known as column-and-constraint
generation (CCG) can also solve the two-stage robust problem. This technique
was first described by Zeng and Zhao in [75,76], and can be described as a primal
decomposition strategy compared to Benders decomposition. Instead of generat-
ing a single constraint for the master problem in each iteration, CCG finds the
current worst-case uncertainty realization and adds all second-stage constraints
for that “robust scenario” to the master problem. The size and complexity of
solving the master problem increases rapidly when using CCG, but this is often
rewarded by a rapid convergence. After solving a robust two-stage model with
CCG, a set of worst-case realizations of the uncertainty contained within the
defined uncertainty set has been generated. In our work in Paper I, these are
viewed as robust scenarios that are then added to a regular two-stage stochastic
model. The expected value of the robust scenarios, assuming they are equiprob-
able, is added to the objective function together with a set of scenarios generated
in a standard way. The same scaling between the stochastic and robust objective
parts is employed as in [74], and so the conservativeness of the hybrid model can
be tuned by giving more or less weight to the robust scenarios.

2.3 Contributions of Papers II and III

While Paper I focused on modeling stochastic forecast imbalances, Paper II and
Paper III look at the structural imbalances caused by the discrete market clear-
ing in the Nordic energy markets for electricity. It is necessary to model the
actual power balance over time instead of the average energy balance per time
interval to investigate structural imbalances on a fundamental level. Perhaps
the most straightforward way of attempting to model structural imbalances is
to formulate a model with a very fine time resolution. However, going from an
hourly resolution to minute or second resolution drastically increases the size
and damages the tractability of the model. A fundamentally different approach
to the problem is to express all time-varying data and decisions as continuous
functions in time, which leads to arbitrarily fine time resolution and the pos-
sibility of asserting a true power balance. The challenge with continuous-time
models is the reformulation to a convex, or mixed-integer, optimization program
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that can be reliably solved in practice. It turns out that it is possible to find
such a tractable reformulation by clever use of a set of basis functions called the
Bernstein polynomials. Appendix C gives a detailed step-by-step description of
how a continuous-time model can be formulated based on the properties of the
Bernstein polynomials. The appendix includes derivations of all of the important
features of the polynomials, a guide to how an analogous continuous-time model
can be created based on a “normal” discrete-time formulation, and a thorough
discussion on complicating constraints such as the binary unit commitment deci-
sions. Therefore, mathematical details on the topic are omitted from this chapter,
but the following subsection gives a detailed literature review of continuous-time
modeling used in power system planning and operation.

2.3.1 Continuous-time optimization

The topic of continuous-time optimization is closely related to the field of control
theory, which deals with the control of dynamic systems. Spectral decomposition
methods to approximately solve non-linear optimal control problems have been
used in many fields for some time [77]. They were first applied to the subject
of optimal unit commitment in 2016 by Parvania and Scaglione in [78], which
has formed the basis for the continuous-time formulations applied in the models
described in this thesis. Note that similar techniques have been applied to related
fields, such as [79–81] modeling the control of natural gas flow in transmission
networks coupled with electricity generation. These works are non-linear models
with most of the attention given to the dynamics of the gas flow and are more
closely related to control theory compared to the unit-commitment model of [78].
The earliest work in [78] and [82] was motivated by ramping scarcity problems
in the Californian power system with high ramping needs during startup and
shutdown of solar power during the morning and evening. The continuous-time
framework for the unit commitment problem established in these papers was used
to more accurately model the ramping capabilities of the thermal generators in
the system to lessen ramping scarcity events.

The later contributions to continuous-time optimization in power system planning
have been focused on a few different directions. The topic is still new, and
a relatively comprehensive overview of the papers published on the subject is
attempted here. Twenty additional papers published after [78, 82] are included,
not counting the papers related to this thesis. Either Parvania or Scaglione is part
of the author list on most of these papers, showing that the research community
working with continuous-time unit commitment is still small. Table 2.2 lists
the papers categorized by the included power generation technologies, solution
strategy with respect to uncertainty, and the overall goal of the model.

Calculating the continuous-time marginal price is one area that has seen some
interest, as it turns out to be a challenging problem. Both [83] and [84] derive
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the continuous-time marginal price for the economic dispatch problem with con-
ventional generators including ramping constraints. This is done by applying
methods of variational calculus and satisfying the Euler-Lagrange equations and
the KKT conditions. The method was first expanded to include flexible loads in
the form of electric vehicles (EVs) in [85], and then energy storage devices in [86].
The continuous-time pricing problem was further augmented in [87] by including
transmission constraints based on unit shift factors and modeling energy storage
devices and conventional generators.

The deterministic unit commitment problem of the original continuous-time for-
mulation in [78] has also been expanded to incorporate uncertainty and other
generation technologies. The work in [88] and [89] formulates continuous-time
unit commitment models including EVs, which consider optimal queuing and
service quality constraints for the EVs. A multi-stage stochastic unit commit-
ment and reserve scheduling problem in continuous-time was formulated in [90].
The model was later extended in [91] to include energy storage devices, DC power
flow constraints, and exact quadratic cost curves in the objective function. En-
ergy storage devices and transmission network constraints under the DC power
flow assumptions are also found in [92]. The two-stage stochastic unit commit-
ment and reserve scheduling model in [41] includes energy storage units and uses
Bernstein polynomials of different degrees in the two stages to model higher vari-
ability in the second stage. Another stochastic two-stage model is found in [93],
which combines reserve capacity for ramping and energy in a single product.

It is also possible to incorporate the frequency dynamics of synchronous gener-
ators into a continuous-time scheduling problem, as shown in [94]. Continuous-
time optimization has also been used in the closely related areas of optimizing a
joint electricity and gas energy system in [95], and distribution network operation
in [96].

Several continuous-time models have also investigated the very short-term oper-
ations in regulation markets by using receding horizon techniques. The model
in [97] specifically looks at the use of energy storage devices in the regulation mar-
kets, and considers the day-ahead continuous-time schedules from conventional
generators as fixed input to the model. The receding horizon look-ahead model
in [98] has a similar structure, but unlike [97] the input day-ahead schedules and
reserve capacity procurement are co-optimized in a separate model. The model
also includes a flexible ramp product first described in [99]. However, it does not
consider energy storage devices, only conventional generators. The model was
extended to include energy storage in [100].

The continuous-time input data in the aforementioned models, e.g. load and wind
power curves, are usually created based on a direct conversion from a discrete-
time data series. Methods such as minimizing the square error between the
continuous-time curve and the discrete-time data can be used to create the input
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data, as in [90]. An alternative way is presented in [101], where forecasting a
continuous and smooth electricity load is done by constructing a continuous-time
Gaussian process, which was later employed in [93].

Paper II formulates a deterministic continuous-time unit commitment model for a
system with hydropower and thermal generation, and shows how the hydropower
scheduling constraints can be formulated in a continuous-time framework. As
described in the paper, modifications to the usual continuous-time constraints and
the standard hydropower scheduling constraints had to be made to accommodate
the modeling of hydropower in continuous-time. Paper II is therefore primarily a
modeling paper, but the topic of structural imbalances in relation to discrete-time
markets and operation of large HVDC cables between countries is also discussed.

Paper III extends Paper II with a larger case study of a simplified North European
system with offshore wind power in the North Sea. The thermal area is modeled
by 104 units of different types based on generator data from the Netherlands and
Northern Germany, while the offshore wind power is based on data from Western
Denmark. The system is scaled so that the proportion of hydropower production
capacity, thermal capacity, offshore wind capacity, and HVDC line transmission
capacity is comparable to the current real system. The continuous-time model in
Paper III was compared to a discrete-time model, and also used to show which
hours are especially problematic in terms of structural imbalances by taking the
discrete-time model unit commitment decisions as fixed input.

2.4 Contributions of Paper IV

It is important to include both stochastic forecast imbalances and structural im-
balances to assess the total balancing need of the system in the short term. The
structural imbalances can be significant in systems with considerable ramping in
the net-load curve, as discussed in Paper II, and the increasing renewable genera-
tion profile in most power systems increases the potential for larger forecast errors.
The cooperation of system operators across balancing regions, countries, and syn-
chronous systems will be an essential element of system balancing in the future.
Germany is an interesting case study in relation to cooperation. Despite the
increase in variable renewable power generation in the German system over the
last few decades, the amount of activated reserves has significantly diminished.
This “German paradox” was described in [17], and later studies have shown that
increased cooperation between TSOs and the introduction of shorter market in-
tervals with trading around the clock have decreased the total balancing need
despite increased imbalances from renewable generation [11, 102]. An accurate
representation of the flexibility of the interconnected system is key to efficient
cross-border cooperation, as well as a holistic approach to balancing all types
of deviations. Investigating the hybrid system dynamic of different generation
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technologies such as hydropower, thermal power, and wind power cooperating to
balance the system is valuable as a benchmark for optimal operation. This is
the goal of Paper IV, which develops an approach to incorporate both stochastic
forecast imbalances and structural imbalances in the same model by combining
the methodologies of Papers I, II, and III for a hybrid hydrothermal system with
uncertain wind power connected by HVDC cables.

The two-stage method of modeling the activation of reserves due to forecast
errors discussed in Section 2.2 was shown to give good results in terms of the
stability of the system balancing cost in Paper I, including the pure stochastic
two-stage model. Formulating the wind power scenarios in continuous-time gives
a more realistic representation of the real-time variations with the possibility
of modeling rapid sub-interval deviations. The structural imbalances can also
be internalized in a two-stage continuous-time model as long as the first-stage
decisions and net-load forecast are also expressed in the continuous-time format.
According to Table 2.2, the combination of stochastic models with several stages
and the continuous-time formulation has previously been performed in [41,90,91,
93], where [91] and [41] include energy storage devices. As briefly mentioned in
Section 2.3.1, it is possible to use polynomial expansions of different degrees in
the different stages of the model, typically to model faster variations in the data
in the later stages. This is conducted in [41] and [93] and called multi-fidelity
continuous-time modeling. Paper IV incorporates the multi-fidelity approach by
formulating the wind power scenarios in the second-stage with polynomials of
degree five, which gives the possibility of more rapid sub-hourly changes than the
first-stage data modeled by third-degree polynomials. The second-stage recourse
actions also have to be modeled with higher fidelity to ensure that it is possible
to balance the deviations.

The continuous-time methodology allows for modeling rapid sub-interval devi-
ations, but another important aspect is the stronger formulation of constraints
derived from differential equations. Examples of important differential relation-
ships in power system models include ramping limitations and the evolution of
the energy storage content in a battery or reservoir, see Appendix C.3 for a more
detailed discussion. The coupling in time for decisions made in a continuous-
time model is generally much stronger than in a discrete-time model. In ad-
dition to applying constraints directly on the analytical derivative or integral
of the continuous-time decision variables connected by differential relationships,
the time-coupling is further tightened by including the continuity constraints de-
rived in Appendix C.1.4. The consequences of strongly time-linked decisions are
important to consider because of the reserve energy deployment scarcity issues
discussed in Section 2.2.1.

Considering both activation of reserves due to forecast errors and enforcing a
smooth and continuous operation makes the stochastic continuous-time model
less likely to overestimate the overall system flexibility compared to a discrete-
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time formulation. At the same time, hydropower units with considerable storage
potential are very flexible and can rapidly change production. To preserve the
flexibility of the hydropower, the continuity constraints are relaxed for the indi-
vidual hydropower plants. The combination of continuous-time and a two-stage
stochastic approach intrinsically highlights the importance of flexibility in the
system. By using this modeling concept, Paper IV is able to demonstrate how
hydropower can be used to relieve both ramping scarcity issues and wind power
uncertainty in a hybrid system without overestimating the available flexibility.
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Table 2.2: Taxonomy table for continuous-time models in power system opera-
tion. Note that [101] is not included in the table due to the different topic being
explored.

Ref Generation technologies Solution strategy Planning task

[78] Thermal Deterministic Optimal unit commitment

[82] Thermal Deterministic Optimal unit commitment

[83] Thermal Deterministic Price calculation

[84] Thermal Deterministic Price calculation

[85] Thermal, flexible load Deterministic Price calculation

[86] Thermal, battery Deterministic Price calculation

[87] Thermal, battery Deterministic Price calculation with network

[88] Thermal, flexible load Deterministic Optimal unit commitment and EV charging

[89] Thermal, flexible load Deterministic Model predictive control of EV charging

[90] Thermal Multi-stage stochastic Optimal unit commitment and reserve schedule

[91] Thermal, battery Multi-stage stochastic Optimal unit commitment and reserve schedule

[93] Thermal, renewables Two-stage stochastic Optimal unit commitment and reserve schedule

[41] Thermal, solar, battery Two-stage stochastic Optimal unit commitment and reserve schedule

[92] Thermal, battery Deterministic Optimal unit commitment

[99] Thermal Deterministic Optimal unit commitment and flexibility reserve schedule

[94] Thermal Deterministic Optimal dispatch under frequency dynamics

[95] Thermal, wind, gas storage
Fuzzy information-gap

decision theory
Joint electricity and gas network dispatch

[96] Distributed generation, battery Deterministic Optimal scheduling of distribution network

[97] Thermal, battery Receding horizon look-ahead Optimal reserve energy dispatch

[98] Thermal Receding horizon look-ahead Optimal unit commitment / reserve energy dispatch

[100] Thermal, battery Receding horizon look-ahead Optimal unit commitment / reserve energy dispatch

Paper II Cascaded hydro, thermal Deterministic Optimal unit commitment

Paper III Cascaded hydro, thermal, wind Deterministic Optimal unit commitment
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3 Conclusion

This thesis has taken a model-technical optimization approach to the research
questions formulated in Section 2.1, and has made contributions towards new
modeling techniques and methodology for power imbalances in hydropower-dominated
systems. The main findings and potential future work are discussed in the fol-
lowing sections.

3.1 Key Takeaways

The effect the activation of reserved capacity can have on a hydropower system is
not a topic that has been investigated in the literature to a great extent. Allocat-
ing reserve capacity on hydropower plants without considering the implications
that a call for activation may have can be a poor decision, as discussed in Pa-
per I. The change in the amount of reserve capacity allocated on the different
hydropower plants in the system is the tangible measure of the impact of consid-
ering uncertain activation, which is shown in Figure 7 of Paper I. The result is a
shift from allocating the majority of the reserve capacity on a single large plant
to distributing it among the different plants. This makes it possible to collec-
tively regulate closely connected plants up and down, which ensures better use of
the water according to the water values when the reserved hydropower capacity
is activated. There is an increased cost for the day-ahead schedule, but Paper
I shows that the cost increase is minor compared to the reduction in balancing
costs in most cases. The method used to model the uncertainty has an influence
on the day-ahead scheduling and procurement cost increase, where a robust op-
timization model was found to be overly conservative in the case study of Paper
I. The proposed hybrid stochastic-robust model was shown to be a good compro-
mise between the low average cost of a stochastic model and the protection from
extreme balancing events found by the robust model. In relation to RQ 1 posed
in Section 2.1, it seems pertinent to include full energy balance constraints for
activated reserve capacity in hydropower systems due to the strong time-coupling
between hydropower plants in cascaded watercourses.

The continuous-time formulation for hydropower scheduling developed in Paper
II gives an opportunity to model the responsiveness and flexibility of hydropower
while imposing a more accurate physical model on the time-dependent operation
of the whole system. Both the hydropower plants and thermal units are less
flexible when modeled in continuous-time because of the increased time-coupling
effects inherent to the formulation, although the thermal units are affected to
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a greater extent due to the thermal ramping and unit commitment constraints.
The continuous-time formulation is stricter overall and will generally increase
the cost of covering the net-load compared to an analogous discrete-time model.
The total cost increase for the single day seen in Paper III and IV is roughly
0.5% and 0.4%, respectively. The higher cost can be interpreted as the price of
removing structural imbalances from the system, assuming that the continuous-
time net-load is the actual net-load and that the physical model imposed by
the continuous-time formulation is accurate. The accuracy of these assumptions
improves as the degree of the polynomial expansion used in the continuous-time
formulation increases. However, using third-degree polynomials often results in
a good fit of the underlying data when it is on an aggregated level. Therefore,
continuous-time modeling is a useful tool for investigating structural imbalances,
which is one possible answer to RQ 2.

The results presented in Paper III and Paper IV both indicate that the over-
all flexibility of the system is perceived quite differently in the continuous-time
and discrete-time models, which has an impact on how the hydropower assets
are utilized. The discrete-time models are able to incorporate more hydropower
and less thermal generation in the day-ahead schedule to achieve an overall lower
cost, as mentioned earlier. The continuous-time models use more constraining
ramping bounds on the thermal units and impose smooth and continuous flow
on the HVDC lines between the areas. The hydropower usage is shifted towards
alleviating ramping scarcity in the thermal area, which is not seen in the discrete-
time models. Abrupt changes in the HVDC line flow from one interval to the
next can be seen in the discrete-time models, which is challenging for the TSOs
to handle in the Nordic system. Avoiding this problem in the continuous-time
models as an integrated part of the formulation is therefore beneficial. When
structural imbalances in the system are considered through continuous-time op-
timization, the hydropower is used for ramping flexibility to a greater extent.
The specific hours where the discrete-time model underestimates the ramping
scarcity in the system are pinpointed in Paper III by using the unit commit-
ment solution from the discrete-time model as fixed input to the continuous-time
model. Hours with high ramping in the net-load are easily underestimated by
the discrete-time model. When both forecast errors and structural imbalances
are considered in Paper IV to address RQ 4, the hydropower is responsible for
providing more than 50% of the necessary reserve capacity despite representing
only a third of the power generation capacity in the system. The hydropower
is responsible for most of the system regulation during the steep ramping hours
before and after the thermal area experiences peak load. The results from the
case studies presented in Paper III and Paper IV are partial answers to RQ 3
and indicates how Norwegian hydropower could be used for balancing in a larger
European setting.

A drawback of the continuous-time formulation is the increase in model size and
solution time seen in Papers II, III, and IV. The deterministic continuous-time
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model in Paper II uses polynomials of degree 3, and the number of binary vari-
ables, continuous variables, and constraints are respectively increased by a factor
of 1.5, 3.4, and 5.7 compared to the analogous discrete-time model. These num-
bers are based on the reduced model size after the automatic presolve routine
in the CPLEX solver. The extra binary variables are primarily due to the for-
mulation of the hydropower production function, which has to be modeled using
binary variables1. The piece-wise linear formulation needs the additional binary
variables to ensure that each discharge segment is used in the correct order in the
continuous-time model. The number of regular variables is expected to increase
by roughly n+ 1 times for a continuous-time model using polynomials of degree
n, while the number of constraints increases more due to the complicated ramp-
ing and reservoir storage constraints in addition to the continuity constraints.
Comparing the solution times of two different mixed-integer linear problems in a
fair way is difficult. There are many parameters available for tuning the perfor-
mance and solution strategy of MILP problems in commercial solvers, and they
can impact the solution time. However, the MIP gap is the most critical setting,
as it determines the numerical tolerance for considering a feasible integer solution
optimal. In order to be certain that the optimal solution has been found, the
MIP gap must be set to zero. As seen in Paper III, demanding a MIP gap of
0% results in the continuous-time model taking almost 30 times longer to solve
than the analogous discrete-time model. The requirement of absolute optimality
is rarely vital in operational settings, and quickly finding a feasible solution with
a reasonable MIP gap is often more valuable. The experience from testing the
different continuous-time models presented in Papers II, III, and IV has been that
a good solution can be found relatively quickly and that it is the small remaining
MIP gap that takes a long time to close. However, it is unquestionable that the
continuous-time formulation increases the complexity, size, and solution time for
all the hydrothermal models created during this PhD work.

The key takeaways from the work conducted in this PhD can be summarized as
follows:

• To avoid inefficient use of water when providing balancing energy, con-
straints related to activation of reserves should be considered when procur-
ing reserve capacity from hydropower plants in a cascaded topology.

• Robust optimization can be used to generate extreme scenarios for a stochas-
tic optimization model, which leads to a hybrid stochastic-robust formula-
tion that maintains some of the risk-averse properties of robust optimiza-
tion. The conservativeness of the hybrid model can be tuned by changing
the weight given to the robust scenarios compared to the regular scenarios.

1Variables part of a special ordered set (SOS) could be used instead to potentially improve
tractability.
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• The enforcement of a continuous power balance constraint in the continuous-
time formulation removes the structural imbalances that are typically left
behind in discrete-time models. The difference in objective function values
between a continuous-time and a discrete-time model is a measure of the
cost of the structural imbalances.

• The stochastic hydrothermal continuous-time formulation is well suited for
assessing the ability of hydropower to deliver short-term ramping flexibility
to thermal zones in periods of local ramping scarcity.

• Computational difficulty and solution time is significantly increased in the
formulated continuous-time hydrothermal models compared to their anal-
ogous discrete-time formulations.

3.2 Future Work

The scope of this PhD thesis, defined in Section 1.5, leaves several directions for
expanding the work on modeling short-term balancing in hydropower-dominated
systems. Some of the most interesting and critical topics for future research are
discussed in the following sections.

3.2.1 Reserve dimensioning

As mentioned in Section 1.2, contingency events are important for reserve di-
mensioning and should be considered in a model that tries to determine the
total system balancing need dynamically. Portraying contingency events through
stochastic or robust optimization as seen in contingency-constrained unit com-
mitment models is possible, although incorporating it into the methodology used
in Paper IV is not straightforward. The exact way in which the uncertain contin-
gency events should be integrated into the model in relation to the forecast error
scenarios is an open question, and the increased complexity of another source
of uncertainty will damage the tractability of the model. However, it is worth
pursuing a holistic approach that considers all major sources of system imbal-
ances to ensure a fundamental modeling level. Representing the AC transmission
grid to capture internal congestion problems within bidding zones is another
crucial aspect that should be included in a complete model for reserve dimen-
sioning. Adding a power flow description for the AC transmission network can
be smoothly incorporated into linear models by using the DC power flow approx-
imation. However, this requires detailed data and further complicates the model
by introducing tighter coupling in space and time.
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3.2.2 Computational performance

The papers comprising this thesis are focused on developing and verifying new
methodologies. To make it easier to compare results and isolate specific behav-
iors and effects of the modeling, simplified test systems have been used in the
different case studies performed in the papers. It is natural to move towards
applying the models on larger and more realistic cases in the future, as this is
a necessary and important step towards adopting the techniques in practice. In
addition to preparing the extra data needed, solution time and computational
efficiency are vital for running an extensive analysis. Solution time is already
an issue for continuous-time models, as discussed in Section 3.1, and developing
decomposition schemes that are tailored for efficiently solving continuous-time
models may become necessary. Preliminary testing of the models in Papers II,
III, and IV indicates that the continuity constraints are to blame for a significant
part of the slow calculation time and are good candidates for relaxation within the
applied decomposition method. Appendix C.2.5 shows that the continuity con-
straints fundamentally change the linear problem structure, and removing them
would remove much of the linking between time intervals. The unit commitment
constraint formulations derived in Appendix C.3.2 also heavily contribute to the
stronger time-coupling in continuous-time models. A Lagrange relaxation proce-
dure targeting these constraints would be a good initial attempt at decomposing
the problem. Note that the extensive form of the two-stage stochastic continuous-
time model presented in Paper IV was solved directly, and that standard decom-
position techniques for stochastic problems such as Benders decomposition could
be applied directly without the need for special modifications.

Other means of reducing the difficulty of solving a large-scale continuous-time
model should also be investigated. Clustering techniques for the standard unit
commitment problem aggregate units into clusters that can be represented with a
single integer variable instead of many binary variables, which can drastically re-
duce the solution time [103]. Adapting the clustering method for the continuous-
time formulation should be possible. However, care must be taken when formu-
lating the ramping and reserve constraints to avoid overestimating the flexibility
of the cluster compared to the sum of the individual units [104,105]. Aggregation
of the hydropower plants and reservoirs is also possible, although this removes
the interesting dynamics of the cascaded hydropower topology in short-term op-
erations.

3.2.3 Pricing in continuous-time models

The dual value of the load balance constraint is the marginal cost of providing
energy to the system in a linear discrete-time model because it is the cost of
incrementally increasing the load. The price cannot be found in such a simple
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way for continuous-time models due to the spectral reformulation that creates
one load balance per Bernstein polynomial used in the expansion. Calculating
the price in a continuous-time model is important for understanding the value of
providing the flexibility needed to keep the sub-interval power balance, especially
during periods of ramping scarcity. Several papers have been published on the
subject of calculating the marginal continuous-time price; these are listed in Sec-
tion 2.3. The procedure relies on complex variational calculus, and an extension
to include hydropower producers with implicit marginal costs defined by a wa-
ter value description does not seem straightforward. A possible way around the
complicated ex-post price calculation explored in the literature is to formulate
the continuous-time model as a mixed complementarity problem (MCP). The
MCP formulation can smoothly incorporate the system price into the problem
by using a bi-level structure where the market is cleared in the upper level and
the producers maximize their profit at the lower level. Replacing the lower-level
optimization problems with their KKT conditions transforms the bi-level struc-
ture to a single MCP. A good reference for the use of MCP models in energy
markets can be found in [106]. The price is directly calculated by solving the
MCP, and it is possible to model both perfect competition and strategic bidding
behavior. Solving MCPs is not straightforward due to the nonlinearities that
arise from the KKT conditions, although specialized solvers such as the PATH
solver [107] can still find a solution relatively efficiently. Exploring MCP formu-
lations of hydrothermal continuous-time models to calculate the price appears
to be an intriguing avenue of future research. It is essential to bridge the gap
between the theoretical continuous-time formulation and a market design that is
implementable in practice, and MCP modeling could be part of the solution.
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[49] C. J. López-Salgado, O. Añó, and D. M. Ojeda-Esteybar, “Energy and
reserve co-optimization within the Short Term Hydrothermal Scheduling
under uncertainty: A proposed model and decomposition strategy,” Electr.
Power Syst. Res., vol. 140, pp. 539–551, nov 2016.

[50] J. Kong and H. I. Skjelbred, “Operational hydropower scheduling with post-
spot distribution of reserve obligations,” in 14th Int. Conf. Eur. Energy
Mark. (EEM), jun 2017.

[51] M. N. Hjelmeland, C. T. Larsen, M. Korp̊as, and A. Helseth, “Provision of
rotating reserves from wind power in a hydro-dominated power system,” in
Int. Conf. Probabilistic Methods Appl. to Power Syst. (PMAPS), oct 2016.
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A R T I C L E I N F O

Keyword:
Activation of reserved capacity
Hydropower scheduling
Hybrid stochastic-robust optimization

A B S T R A C T

As the penetration of variable renewable power generation increases in power systems around the world, system
security is challenged. It is crucial to coordinate the available flexible generating resources, such as hydropower,
to meet the need for system balancing. However, reserved capacity on hydropower plants should only be ac-
tivated if there is sufficient energy or storage capacity to either increase or decrease production. The potential
change in production will also affect all reservoirs and plants connected by the cascaded topology. These issues
are largely ignored or simplified in hydropower reserve scheduling models. To properly account for the possible
activation of reserved capacity, several two-stage model formulations based on stochastic and robust optimi-
zation are presented and compared in this paper. The uncertainty in net load deviations due to forecasting errors
in renewable power generation is considered the source of reserve capacity activation. The case study based on a
real Norwegian watercourse clearly shows the benefit of using any of the two-stage model solutions over the
standard deterministic reserve procurement. A novel hybrid stochastic-robust model formulation is presented
and shown to efficiently increase the robustness of the solution without notably increasing the reserve pro-
curement cost compared to the stochastic and robust models.

1. Introduction

Hydropower is a valuable asset for any power system, as it is flexible
and fast to regulate compared to thermal generation technologies. As
the share of variable renewable energy sources in power systems across
the world increases, so does the need for balancing capacity and energy.
Although hydropower is well suited to help balance the system, the
technical constraints and cascaded topology must be considered to
realistically estimate this balancing capability. A watercourse connects
hydropower plants in space and time. Thus, the balancing actions of a
single plant will impact the operation of the whole system, which is a
challenge when considering spinning reserve capacity allocation. A
hydropower plant delivering spinning reserve capacity in both direc-
tions must have sufficient stored water upstream to increase its pro-
duction, and simultaneously it is beneficial to keep enough upstream
storage capacity available to save unused water, in case the reserved
capacity is activated upward or downward. The same is valid for the
plants connected downstream of the activated plant since the water
released has changed from its scheduled value. Another complicating
aspect is the implicitly defined marginal cost of operating a hydropower
plant. The stored water in each reservoir has an associated opportunity

cost or water value, which in general depends on the stored water vo-
lumes. This makes the cost of procuring reserve capacity on a specific
hydropower plant dependent on the capacity procured on the sur-
rounding plants. Activating poorly coordinated reserve capacity in
complex hydropower systems could lead to needless loss of potential
energy and increased risk of load shedding.

Reserve capacity procurement and system balancing have been in-
corporated into hydropower scheduling models in several ways. These
features can be found in both long-term planning models
[21,13,14,1,18,20,28] and short-term operational models [24,23,9,15].
The fundamental models in [21,13,14] sequentially clear the day-ahead
market, reserve procurement and system balancing steps for Northern
Europe. The activation of reserve capacity is based on the marginal cost
of the hydropower plants in their day-ahead position, but does not in-
clude hydrological constraints nor account for available energy in the
reservoirs. The methods presented in [1] and [18] consider a producer
participating in day-ahead energy and spinning reserve capacity mar-
kets under uncertainty in inflow and market prices within modified
stochastic dual dynamic programming (SDDP) frameworks. Both
methods ensure that enough water is stored in the reservoir to produce
the allocated reserve capacity, although activation is not directly
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modelled. In [20], it is investigated how wind power can contribute to
the provision of rotating reserves in a hydropower-dominated system by
using the SDDP algorithm, but without considering reserve activation.
The deterministic model presented in [24] has a high degree of physical
detail and can model the reservation of all the different reserve capacity
products in Norway. The total amount of reserve capacity to be allo-
cated in the system is exogenously given to the model and is distributed
among the hydropower plants while optimizing the day-ahead market
position. The probability of activation in the balancing markets modi-
fies the expected income in the deterministic model in [23], and the
work in [9] is based on the assumption that a certain percentage of the
reserve capacity sold to the market is activated by the system operator
in every inflow and price scenario. The models in [28] and [15] do not
explicitly model the reserve capacity procurement, but consider system
balancing through bidding into the day-ahead, intraday and real-time
energy markets.

This paper addresses the importance of explicitly representing the
activation of reserved production capacity in the reserve procurement
phase of a hydropower scheduling model. To the best of the authors'
knowledge, this has not been addressed in detail in the literature be-
fore, and so emerges as a gap in the existing research. Related work on
general energy storage devices exists to some degree. The stochastic
unit commitment model with ideal energy storage in [36] balances load
deviations by activating reserve capacity on thermal generators and
energy storage devices. The model in [8] considers individual pumped
storage plants coupled with thermal units, and energy constraints are
applied to the reserve capacity procurement for extreme ramping sce-
narios that are decoupled in time. Bi-level complementarity models can
be used to study the participation of an energy storage unit in day-

ahead and reserve markets [33,35]. The work in [33] considers energy
delivery in both the day-ahead and the real-time markets, but only
satisfies the energy constraints of the storage units on average over a set
of net load deviation scenarios. The bi-level energy storage investment
model in [35] requires that there is sufficient storage and energy
available to activate the reserved capacity at maximum for a single
hour. The model presented in this paper differs from the general energy
storage models in the representation of realistic and large-scale cas-
caded hydropower systems. To this end, note that short-term hydro-
power and hydrothermal scheduling is an active field of research, see
for instance [25] and [12] for recent descriptions of state-of-the-art
formulations.

The uncertain nature of variable renewable power generation and
consumption contributes to the need for balancing services. Forecast
errors in the net load of a power system force the system operator to
activate reserved production capacity to meet the actual net load. There
are several ways of modelling the uncertainty in net load deviations
that cause the system to be unbalanced, such as stochastic and robust
optimization. Stochastic optimization typically yields models which are
risk neutral, while robust optimization hedges the solution against the
worst-case realization of the uncertainty [6]. Robust optimization has
been widely and successfully applied to power system planning and
operation problems in recent years [32]. A large portion of the pub-
lished scientific material has been related to the unit commitment
problem under uncertainty, where the goal typically is to commit a
sufficient number of thermal units to be able to balance real-time de-
viations [39]. These types of models are usually formulated as two-
stage models [22,5,41,2,7], though single-stage [37] and multistage
models [31,30] also exist. Robust optimization has also been used in the

Nomenclature

robust uncertainty set
m
d b o/ / modules that discharge/bypass/spill water into modulem,

index i
robust worst-case scenarios, index j
hydropower modules, index m

m discharge segments in module m, index n [A]
balancing scenarios, index s
time periods, indext
dual feasibility constraints for the balancing stage
scheduling-stage feasibility constraints
balancing-stage feasibility constraints

Parameters

max maximal net load deviation [MW]
budget of uncertainty

t maximal hourly net load deviation in [MW]
s scenario probability
+C penalty for shedding load [mu/MW]

C penalty for dumping power [mu/MW]
Cb penalty for bypassing water [mu/m3]
Co penalty for spilling water [mu/m3]
Emn energy conversion factor [MWs/m3]
Ft length of time period [s]
Imt natural inflow [m3/s]
Lt forecasted system net load [MW]
Pm maximal production capacity [MW]
Qmb maximal flow through bypass gate [m3/s]
Qmnd maximal flow through discharge segment [m3/s]
Qmo maximal flow through spill gate [m3/s]
Rt system reserve requirement [MW]
T number of time periods in

Vm0 initial reservoir volume [m3]
Vm maximal reservoir capacity [m3]
WVm end value of water [mu/m3]

Variables

± auxiliary variables used in “big-M” formulation
t net load deviation [MW]
t dual value of the power balance constraint in the balan-

cing stage [mu/WMh]
auxiliary variable approximating the value of the second-
stage problem [mu]
vector of all dual balancing-stage variables

x vector of all scheduling-stage variables
y vector of all balancing-stage variables
B normalized system balancing cost [mu]
K procurement cost of reserves [mu]
pmt generated hydropower [MW]
qmt
b flow through bypass gate [m3/s]

qmnt
d flow through discharge segment [m3/s]

qmt
in total controlled flow into reservoir [m3/s]
qmt
out total controlled flow out of reservoir [m3/s]

qmt
o flow through spill gate [m3/s]

rmt symmetric spinning reserved capacity [MW]
+st load shedded [MW]
st power dumped [MW]
U normalized total system cost [mu]
+ut load deviation in upward direction

ut load deviation in downward direction
vmt volume at the beginning of the time period [m3]
Wbal dual of second-stage objective function [mu]
Zbal second-stage objective function [mu]
Zda first-stage objective function [mu]
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context of hydropower scheduling under uncertainty, as in [3], where
the energy content of the hydropower system is maximized while ac-
counting for uncertain net load and inflow. In this paper, a combination
of both the stochastic and robust modelling approaches are used to
construct two-stage models that account for the effect of activation of
reserve capacity in a hydropower system.

The combination of robust and stochastic optimization has been
proposed in different ways. Stochastic and robust optimization may
handle separate sources of uncertainty, such as generator availability
and power prices in [11] and variable power generation and power
prices in [27]. Moreover, it is possible to create hybrid models by taking
a stochastic or a robust model and introducing some characteristics
from the other approach. The work in [7] partitions the scenarios in a
stochastic model into bundles where robust optimization is applied
within each bundle, while [2] introduces several robust uncertainty sets
to a robust model by weighting them in the objective function akin to
scenario probabilities. The medium-term hydrothermal model pre-
sented in [38] procures reserve capacity to ensure system security in the
face of a N k security criterion, which is done by incorporating robust
optimization into the SDDP framework itself. The unified stochastic-
robust model presented in [41] models the same source of uncertainty
by both stochastic and robust optimization. This is done by introducing
weight of the average scenario cost and 1 of the robust worst-case
cost in the objective function, which represents a direct integration of
both the stochastic and the robust optimization methods in a single
problem. A novel hybrid model stochastic-robust model is presented in
this paper, which leverages the popular column-and-constraint gen-
eration (CCG) solution technique (see [40,42]) as a scenario generator.
The CCG provides robust scenarios for the mixed stochastic-robust
model, which can be considered as extreme scenarios generated based
on a robust uncertainty set. By tuning the probability given to these
extreme scenarios, a model that is more robust without being overly
conservative compared to its deterministic, robust, and stochastic
counterparts is achieved. The complexity of the mixed stochastic-robust
model is manageable, as the calculation of the robust scenarios is done
before solving the complete model. In short, the contributions of this
paper are considered twofold:

1. A new hybrid mixed stochastic-robust optimization model which is
less complex in construction compared to other hybrid models is
presented. In the numerical case study the new hybrid model im-
proves the robustness of the solution without drastically increasing
the cost compared to the pure robust and pure stochastic models.

2. The impact of considering activation of reserve capacity in complex
and cascaded hydropower systems has been quantified.

The rest of the paper is organized into three parts: Section 2 details
the modelling of the optimization problem formulations, a case study is
presented in Section 3, and concluding remarks are found in Section 4.
Section 2 is split into subsections describing the deterministic day-
ahead scheduling problem (Section 2.1), the system balancing problem
(Section 2.2), the stochastic and robust two-stage problems (Section
2.3), and the new mixed stochastic-robust problem (Section 2.4). The
case study in Section 3 presents results from tuning the mixed sto-
chastic-robust model (Section 3.2) and how the different model for-
mulations compare (Section 3.3).

2. Modelling

The perspective taken in this paper is that of a system operator
aiming at optimally scheduling and balancing a completely renewable
system dominated by hydropower. The system is scheduled to be in
balance according to the net load forecast in the day-ahead planning
stage, and symmetric spinning reserve capacity is procured to ensure
the balancing capabilities of the system. The existence of variable
generation components in the system, such as wind and solar

generation, is not modelled explicitly, but manifests as uncertainty in
the net load. The forecast errors are seen as the main factors of this
uncertainty, and are therefore the drivers behind the need for balancing
services. The forecast errors in the net load become known after the
scheduling step, and so the operator must use the procured reserve
capacity to balance the system in the most efficient way possible.

2.1. Deterministic day-ahead scheduling problem

The deterministic short-term scheduling problem for the system
operator,

Z x

x

min ( )

,

da
x

(1)

aims to minimize the cost of using water to cover the required net load
and spinning reserve requirements while respecting the physical con-
straints of the system. A standard linear definition of the hydropower
scheduling problem, see for instance [19], is formulated as
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All symbols in uppercase are input parameters to the model, while
lowercase symbols represent the decision variables x . The model is
defined for the hydropower modules m over the time periods
t , where the terminology “hydropower module” is used to describe
the combined unit of a reservoir connected to a power plant. The water
may be moved between reservoirs through three different waterways:
flow through the turbine, bypass gate, and spillage, see Fig. 1. The
objective (2) of the model is to minimize the total cost of using water
according to the water value and end volume of all reservoirs, as well as
the small penalties for using the alternative bypass and spillage wa-
terways. These penalties are applied to encourage the use of the main
waterway through the plant. Water values represent the opportunity
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cost of using water now versus storing it for later use, and are calculated
by long-term models such as [19]. The end value of the water generally
depends on the end volume in all reservoirs in the system, typically
described by linear cutting planes. Constant water values are used in
this model formulation for simplicity. Eqs. (3)–(6) preserve the water
balance and topology between the modules in the system. The relation
between water discharged through the turbine and the power produced
by the generator is modelled as a piece-wise linear constraint in Eq. (7),
where the efficiency is decreasing for increasing discharge segment
number to ensure convexity of the problem. The power balance is kept
by Eq. (8), while Eqs. (9) and (10) bound the available symmetric
spinning reserve capacity of the plants. Note that the model is linear,
which allows production down to 0 MW. To make sure the reserved
capacity is spinning, the symmetric requirement is imposed. Enough
reserve capacity must be allocated to satisfy the static reserve re-
quirement in Eq. (11). Eqs. (12)–(16) are the bounds of the variables
based on the physical capacities of the hydropower modules.

2.2. The balancing problem

Balancing the system in real time after a net load deviation has
occurred is necessary to maintain system stability. The decisions x
made in the day-ahead scheduling stage will affect the system's ability
to perform the balancing actions, and so the balancing problem

Z y

y x

min ( )

( , ),

bal
y

(17)

depends on both x and . The formulation is near identical to the day-
ahead scheduling problem described by Eqs. (2) and (16) except for
changes to Eqs. (2) and (8)–(10). All of the variable types found in Eqs.
(2) and (16), except for the reserved capacity r , are found in y and have
an analogous meaning. Let these variables be marked by an overline, so
that p̄ represents the power produced by a plant in the balancing stage
and so on. The power balance constraint in Eq. (8) is augmented to
include the net load deviation as well as non-negative penalty vari-
ables for shedding load and dumping power:

+ = ++p s s L t¯ .
m

mt t t t t
(18)

The penalty costs for using these penalty variables are added to the
objective function formulation of Eq. (2),
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and the production limits, Eqs. (9) and (10), are based on the procured
spinning reserve capacity and production schedule in the day-ahead
stage:

+p p r m t¯ , ,mt mt mt (20)

p p r m t¯ , ,mt mt mt (21)

The constraints defined in the day-ahead scheduling problem, Eqs.
(3)–(7) and (12)–(16), are also included in the balancing problem
constraints y x( , ), but now pertaining to the balancing variables
y . The only connection to the decisions made in the day-ahead sche-
duling stage is through Eqs. (20) and (21).

2.3. Two-stage stochastic and robust problems

To account for the potential cost of activating the procured reserves
in the scheduling phase, a two-stage model combining the day-ahead
scheduling problem described in Section 2.1 with the system balancing
problem in Sectin 2.2 is needed. In this section, two-stage problems
based on traditional stochastic and robust optimization are formulated.
The scheduling of production and procurement of reserve capacity is
the first-stage problem, while balancing the system based on the first-
stage solution and realized net load deviation t is considered as the
second stage.

A stochastic problem is formulated by constructing a set of bal-
ancing scenarios with net load deviations st and probabilities s, and
then introducing a copy of the balancing problem (17) for each scenario
into the deterministic scheduling problem (1). This leads to the ex-
tensive form of the classical two-stage stochastic problem formulation
[32]:

+Z Z

s

x y

x
y x

min ( ) ( )

( , ) .

da
s s

bal
s

s s

x y, s

(22)

The expected cost of balancing the system in all scenarios s by
activating the procured reserve capacity is minimized in this formula-
tion, while also minimizing the cost of scheduling the system to meet
the net load forecast and procuring the reserve capacity. The effect of
activating the reserved capacity is properly captured in this model
formulation, as constraints describing the cascaded hydropower to-
pology and the energy usage of balancing the system are present in the
balancing constraints. Note that the reserve capacity is activated for the
whole time period t , which means the model does not distinguish be-
tween different types of reserves with different activation times.

The two-stage robust optimization formulation represents a more
conservative approach than the stochastic formulation in Eq. (22).
Robustness of the solution is of interest to the system operator, as
keeping the system in balance, also in extreme situations, is a priority.
The robust two-stage counterpart to the stochastic formulation is the
tri-level problem

+Z Zx y

x

y x

min ( ) maxmin ( )

( , ),

da bal
x y

(23)

where the net load deviation is constrained to be part of the un-
certainty set . The robust problem aims to minimize the first-stage
cost and the worst-case balancing cost. In this paper, the simple for-
mulation first proposed in [4] will be used to define:

Fig. 1. Depiction of a hydropower module (reservoir and power plant) with
different waterways for discharging, bypassing and spilling water.
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where the parameters t and are the maximal net load deviation and
the budget of uncertainty, respectively. The binary variables ±ut signify
if a deviation in positive or negative direction has occurred. Note that it
is possible to include both spatial and temporal correlations in the
uncertainty set [29,30]. Since the distribution used to generate the
scenarios for the stochastic model does not include any temporal cor-
relations in the case study presented in Section 3, correlations are not
included in the uncertainty set.

The min-max-min formulation of the robust optimization problem
in Eq. (23) cannot be solved directly. The column-and-constraint gen-
eration (CCG) procedure, first proposed in [40,42], is a popular primal
decomposition scheme to remedy this. Other solution techniques such
as Benders decomposition (see for instance [5]) and affine policy ap-
proximation [31,30] are not considered in this work because the model
presented in Section 2.4 depends on the CCG approach. CCG first re-
quires the inner minimization problem of Eq. (23) to be transformed to
its dual maximization form, so that the maximization steps may be
combined:

Z Wy x

y x

maxmin ( ) max ( , , )

( , ) .

bal bal
y ,

(25)

Let the dual variables of the power balance constraints in the bal-
ancing stage, Eq. (18), be denoted as t . Bi-linear terms

= +u u·( )t t t t t t t appear in the objective functionWbal when Eq.
(18) is dualized. The binary definition of t in Eq. (24) allows for an
exact reformulation of the bi-linear problem to a mixed integer linear
program (MILP) by using a “big-M” approach. This is done in for in-
stance [22], though other options are available for solving the problem.
An alternating direction method was used in [29], while a cutting plane
outer approximation was implemented in [5]. In this paper the exact
MILP reformulation will be used, as it can be solved directly with a
standard MILP solver. With the introduction of the penalty costs ±C for
shedding load and dumping power in Eq. (19) through the non-negative
variables ±st , the dual variables t will be constrained by these values:

+C C t .t (26)

Using the bounds on t in the big-M expansion allows the bi-linear
terms ± ±ut t to be replaced by the new variables ±

t and the additional
constraints

++ +C u t(1 )t t t (27)

+ + +C u tt t (28)

+ +C u t(1 )t t t (29)

C u t .t t (30)

The CCG technique is based on repeatedly solving the dual form of
Eq. (25) for iteratively updated first-stage solutions x . The solution
yields the realization of the worst-case net load deviation j, which is
iteratively added to the master problem

+Z
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y x
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bal
j

j j

x y, ,j

(31)

The set represents the worst-case net load deviation scenarios
that have been identified by the inner maximization problem, and the
auxiliary variable is an outer approximation of Eq. (25). Solving the
master problem results in an updated first-stage solution x , which is
used to solve Eq. (25) in the next iteration. When the current value of
andWbal have converged within a specified tolerance, the procedure is

complete as the optimal solution of Eq. (23) has been found.

2.4. Mixed stochastic-robust problem

In an effort to combine the advantages of the stochastic and the
robust problem formulations presented in Section 2.3, a novel mixed
stochastic-robust formulation that utilizes the solution of the pure ro-
bust problem formulated in Eq. (23) is proposed here. Solving the ro-
bust problem with the CCG algorithm results in a set of worst-case net
load deviations , as explained in Section 2.3. These deviations are
realizations of the net load that maximizes the cost of balancing the
system in the robust formulation. Therefore, the CCG algorithm can be
seen as a generator of extreme scenarios that are contained within the
uncertainty set . The mixed stochastic-robust model is formed in Eq.
(32) by extending the stochastic problem formulation in Eq. (22) with
the set of robust scenarios:
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Note that the probabilities of the original scenarios s have been
scaled so that

+ = 1.
s

s
j

j
(33)

All original scenarios are scaled down with the same factor
0 1,

= s .s s (34)

The robust scenarios are considered to be equiprobable, which re-
sults in the robust probabilities

= j(1 )/| | .j (35)

Choosing a scaling of = 1 will put zero weight on the robust
scenario balancing costs, and similarly = 0 removes the cost of bal-
ancing the original scenarios. The constraints x( , ) associated with
the original and robust scenarios will persist regardless of the choice of
. The formulation in Eq. (32) is similar to the unified stochastic-robust

model in [41], as the robust and stochastic components of the problem
is weighted in the objective function in both models. However, there
are two main differences between Eq. (32) and other hybrid models;

Firstly, the robust scenarios are computed by solving the robust
model in Eq. (23) before the mixed model is solved. In contrast, the
unified stochastic-robust model must be solved in an iterative way with
the presence of the scenarios in every iteration, which can be pro-
blematic regarding the tractability of the problem. The mixed model
presented here may be solved directly in its extensive form, or by any
other suitable decomposition technique for stochastic optimization
problems. The reusability of the robust scenarios are also higher in
the mixed model formulation since they are completely independent of
the original scenarios . For instance, if the mixed model is solved for
successive days, the scenarios can be used as a good initial set of
constraints in the solution of the robust model. This sharing of con-
tingency events between time periods has also been proposed for the
long-term hydrothermal planning model in [38], which incorporates
CCG in a SDDP framework.

The second important difference is that the expected value of the
robust scenarios is added to the objective function in Eq. (32) instead of
the max-min robust formulation. If only the maximal cost of the robust
scenarios was minimized, the mixed model would be little more than an
approximation of the unified model of [41] with pre-generated robust
scenarios. As pointed out in Section 2.2, the only direct connections
between the first and second stages are the production limits Eqs. (20)
and (21). For the hydropower scheduling problem, this turns out to be a
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very weak coupling in the sense that including the constraints
y x( , ) alone do not have a big impact on the first-stage decisions.
It is important to include the balancing cost Z y( )bal of a scenario to the
objective function to actually influence the scheduling decisions. This
effect is clear in the numerical calculations in Section 3.2 for the edge
case = 1. Directly including all robust scenarios in the objective
function through their expected cost instead of only minimizing the
maximal balancing cost leads to a tighter connection between the
stages, and a more efficient way of propagating the conservative nature
of the robust scenarios to the reserve capacity procurement decision.
The coupled model proposed in [26] also minimizes the expected value
of robust scenarios, but in their case the robust scenarios are iteratively
added to the set through the CCG procedure. The approach still has
the potential tractability issues of the unified problem formulation,
especially since the convergence of the CCG algorithm is unproven in
their proposed framework.

3. Case study

The focus of this case study is on the quality of the solution of the
deterministic, stochastic, robust, and mixed model formulations pre-
sented in Section 2. The solution quality is measured in terms of the cost
of procuring the reserve capacity and the subsequent cost of activating
the reserves to balance the system. The topic of solution times of the
different models is not discussed directly, as this will be heavily de-
pendent on the solution parameters and techniques used to solve the
models, especially the robust and, by extension, the mixed models. All
optimization models have been implemented in the Pyomo modelling
package for Python [16,17] using the MILP solver CPLEX 12.8 [10].

The hydropower system used in the study is shown in Fig. 2. It is
based on a real watercourse in Norway, and consists of 12 modules with
a total production capacity of 537.4 MW. The initial reservoir volume of
every module is set to 65% of its maximal storage capacity, which re-
presents a normal hydrological situation during the winter in Norway.
Water values are calculated by the long-term hydropower scheduling
model described in [19], and are measured in monetary units (mu) per
Mm3 in the range of 1200–9000 mu/Mm3. The penalty for shedding
load and dumping power is chosen to be 3000 mu/MW and 1000 mu/
MW, respectively. Note that the results in the case study is not overly
affected by the choice of these values due to the way the net load de-
viation scenarios are generated. The time horizon is set to 24 h with
hourly resolution, and the forecasted net load profile is shown in Fig. 3.
The profile is based on the amount of energy sold in the day-ahead
market in the Norwegian NO3 bidding zone on 1/1-2019 [34], with
values scaled down to get a peak of 420 MW. The maximal forecast
error possible is considered to be = 42max MW, 10% of the peak load,
in either direction in every hour. No temporal correlations between net
load forecast errors are assumed for simplicity.

To generate scenarios for the stochastic and mixed models, the
forecast errors t are chosen to be normally distributed with =µ 0t and
= =/2.5 16.8t

max MW. However, to ensure that the values drawn to
generate the scenarios are within the postulated maximal forecast error
band, any values outside this band are truncated to its outer limits. In
other words, | |st max is enforced for all scenarios.

There are two measures that are used to quantify the quality of a
production and reserve capacity procurement schedule; The cost of
procuring the reserves K and the following cost of balancing the system
B. The cost of procuring reserves is defined as the increase in the first-
stage objective function Zda relative to the cost of the deterministic
model in Eq. (1) solved without any reserve requirement, Zda

0 :

=K Z Z .da da
0 (36)

This cost represents the opportunity cost of procuring the reserves.
For a given realization of the net load deviation i, the cost Bi of bal-
ancing this deviation is calculated by solving the primal balancing
problem in Eq. (17) for the given production schedules p and allocated

reserve capacity r . This yields the objective function Zibal, which is
normalized by the objective function given perfect foresight, ZiPF , to
produce the balancing cost:

=B Z Z .i i
bal

i
PF (37)

The perfect foresight cost is found by relaxing the production limit
constraints of the balancing problem, Eqs. (20) and (21), to let every
plant produce between zero and maximum capacity. The sum of the
procurement cost and the normalized balancing cost is the total system
cost,

= +U K B .i i (38)

K is easily found by direct calculation, whereas the balancing costs Bi
must be estimated by simulation. In this case study, 5000 different
sampled net load deviations were used to measure the balancing cost of
the given schedule. The robustness of the different model solutions was
tested by generating two different batches of 5000 balancing scenarios.
The first batch, from now on referred to as “the normal scenario batch”,
was generated based on the same truncated normal distribution used
when generating scenarios for the stochastic and mixed models. A dif-
ferent seed for the random number generator was used when generating
the normal scenario batch to avoid redrawing the same scenarios gen-
erated for the solution of the stochastic and mixed models. The second
batch of scenarios was generated from a uniform distribution drawing
values in the range | |t max. This uniform scenario batch gives bal-
ancing scenarios that are more extreme compared to the normal sce-
nario batch. The system is guaranteed not to experience any net load
deviation larger than max in any of the scenarios in the two batches,
and so penalties for load shedding and dumping power can be avoided
given that enough energy and storage capacity is available when the
reserves are activated.

3.1. Sensitivity analysis of the budget of uncertainty in the robust model

The parameters of the robust uncertainty set are chosen to be
comparable to the scenarios generated from the truncated normal dis-
tribution. The maximal deviation is set to =t max so that the worst-
case deviation contained in does not exceed the maximal hourly net
load deviation. The budget of uncertainty heavily influences the so-
lution of the robust model. According to the formulation in Eq. (24),
limits the maximal number of hours with a worst-case deviation. To
gauge the robustness of the solution of the robust model in Eq. (23), a
sensitivity analysis of in the range from 1 to 24 was performed. The
robust model was solved for the 24 different values of to an absolute

Fig. 2. Sketch of the hydropower topology. Reservoirs (triangles), power plants
(rectangles), and water routes for discharge (solid lines) and bypass (dashed
line) are shown together with maximal values for discharge (m3/s), production
(MW) and reservoir volumes (Mm3).
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convergence tolerance of 5 mu, with an absolute MIP gap of 5 mu and
integer tolerance of 10 9 for the second-stage problem. The CCG algo-
rithm on average converged in 15 iterations, and always within 29
iterations. The procurement cost K was determined based on Eq. (36)
and balancing cost Bi was then calculated for all of the scenarios in the
normal and uniform scenario batches according to Eq. (37). The nu-
merical results are shown in Fig. 4.

The sensitivity analysis shows that the value of has a big impact on
both the procurement cost and simulated balancing cost of the robust
model. As expected, K increases almost monotonically as a function of
. The balancing cost is generally higher for low values of for both

batches of simulation scenarios, but the trend is not monotone. There is
a distinct drop in the variability of Bi for > 10, but the variability
starts to increase again when close to the maximal value of = 24. This
shows that simply choosing a high budget of uncertainty does not ne-
cessarily result in a more robust solution. Fig. 4 shows that choosing
= 1 results in the lowest average total cost Umean when simulating

with the normal scenario batch but the highest Umean in the uniform
scenario batch. In terms of robustness, the best choice is arguably
= 15. The 95th percentile of the total cost is lowest for this value of

for both simulation scenario batches, and its average total cost is also
the lowest in the uniform scenario batch.

3.2. Sensitivity analysis of the robust weight b in the mixed stochastic-
robust model

The scaling factor of the mixed stochastic-robust model in Eq. (32)
is considered a tuning parameter in this case study, and its optimal
value is estimated in this section based on a similar type of sensitivity
analysis as in Section 3.1. It was determined that = 15 gave the most

robust solution when the pure robust model was considered, which was
reached after 12 iterations of the CCG algorithm. The corresponding 12
robust scenarios form the set for the mixed model. An additional 50
equiprobable scenarios were generated to form the set of balancing
scenarios based on the truncated normal distribution described in
Section 3. The mixed model was solved for a range of different values of
to find the procurement cost K before the balancing cost Bi was si-

mulated based on the 5000 scenarios in the normal and the uniform
scenario batches. The numerical results are visualized in Fig. 5. When
determining the range of to consider in the mixed model, it is useful
to calculate the value of that results in equal weights for the scenarios
in and . Based on Eqs. (34) and (35), this value is

=
+
| |

| | | |
0.8060 (39)

given the number of robust and regular scenarios used. A value of
< 0 will result in a mixed model where the individual robust sce-

narios are given a higher weight than the scenarios in , which is likely
to give an overly conservative solution. This turned out to be true in this
case study, so only values in the range 0.8 1.0 are presented in
this analysis.

The results show that a lower value of gives a lower standard
deviation U( )i at the expense of a higher base procurement cost K .
Interestingly, the standard deviation increases noticeably for the edge
case = 1. Only adding the constraints related to the balancing pro-
blem without considering the associated balancing cost in the objective
causes this effect, and the balancing constraints alone do not impact the
model sufficiently to increase its robustness. The value of that
achieves the lowest average total cost is 0.99 and 0.91 when using the
normal and uniform simulation scenario batches, respectively. The
most robust solutions occur at = 0.93 and = 0.84 in the two simu-
lation cases when the 95th percentile of the total cost as a measure for
robustness. This finding shows that it is possible to gain both robustness
and lower average costs at the same time by adding robust scenarios to
a stochastic optimization problem. The “best” choice of depends on
the preferences of the system operator, and most choices in the region
0.84 0.99 can be justified based on a trade-off between robustness
and low average cost. However, it is clear that giving zero weight to the
robust scenarios ( = 1) is a sub-optimal choice either way.

3.3. Model comparison

To compare the mixed model and the robust model with the de-
terministic (Eq. (1)) and stochastic (Eq. (22)) formulations, the same
simulation run of 5000 balancing scenarios drawn from the truncated
normal distribution and the uniform distribution was used to simulate

Fig. 3. Forecasted system net load with the region of possible deviations and
the total generation capacity of the system.

Fig. 4. Cost simulation for the robust model solution for different values of Γ. The simulation in (a) used balancing scenarios drawn from a normal distribution, while
(b) used uniformly distributed scenarios. The procurement cost and the average total cost are shown as black and red points, respectively. The 5th and 95th
percentiles of the total cost are shown as error bars for each value of Γ. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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the costs. The deterministic model was solved with a static reserve re-
quirement of = =R 42t

max MW. The stochastic model was solved with
50, 200 and 1000 scenarios drawn from the truncated normal dis-
tribution, where the 50 first scenarios are identical to the ones used in
the mixed model. The results of the simulation are shown in Fig. 6 with
accompanying numerical details given in Table 1. There are no in-
stances of load shedding or power dumping penalties being used in any
of the simulation runs for any of the models.

The first observation to note is the advantage of considering the
activation of reserves in a cascaded hydropower system. The determi-
nistic model procures the 42 MW of reserve capacity and does not shift
the production schedule of any module from the schedule obtained
when not procuring reserve capacity. This gives a low procurement cost
of =K 0, but it is evident that the cost of actually balancing the system
after the net load has been realized is high compared to all of the two-
stage models. The average cost is 7–8 times higher for the deterministic
model solution compared to the stochastic and mixed model solutions.
The robust model with = 15 is considered overly conservative in this
comparison due to a high procurement cost. Note that the least con-
servative robust model with = 1, see Fig. 4, also performs sig-
nificantly worse than the other two-stage models. The stochastic model
with 50 scenarios performs well in the simulation using the normal
scenario batch but has high variability in the balancing cost and low
robustness when the simulation is based on the uniform scenario batch.
By increasing the number of scenarios in the stochastic model to 200
and 1000, the average total cost, variability, and robustness improve.

Fig. 5. Cost simulation for the robust model solution for different values of β. The simulation in (a) used balancing scenarios drawn from a normal distribution, while
(b) used uniformly distributed scenarios. The procurement cost and the average total cost are shown as black and red points, respectively. The 5th and 95th
percentiles of the total cost are shown as error bars for each value of β. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. Cost simulation comparing the robust, stochastic and mixed model solutions. The simulation in (a) used balancing scenarios drawn from a normal dis-
tribution, while (b) used uniformly distributed scenarios. The procurement cost and the average total cost are shown as black and red points, respectively. The 5th
and 95th percentiles of the total cost are shown as error bars for each model. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Numeric values of the procurement cost, average total cost, 95th percentile of
the total cost and the standard deviation of the total cost for the different model
formulations. The simulation in (a) used balancing scenarios drawn from a
normal distribution, while (b) used uniformly distributed scenarios.

(a) Normally distributed simulation scenarios

Model K Umean U95% U( )i

Deterministic 0.00 84.69 144.65 32.99
Robust, = 15 28.82 31.06 35.45 2.11
Stochastic, 50 scen. 3.37 11.24 31.60 8.24
Stochastic, 200 scen. 3.12 10.06 23.11 6.58
Stochastic, 1000 scen. 3.11 9.72 21.99 5.91
Mixed, = 0.84 11.50 15.19 22.36 3.37
Mixed, = 0.99 3.43 10.35 23.99 6.23

(b) Uniformly distributed simulation scenarios

Model K Umean U95% U( )i

Deterministic 0.00 208.92 300.38 51.52
Robust, = 15 28.82 35.74 42.44 3.59
Stochastic, 50 scen. 3.37 26.50 47.46 11.38
Stochastic, 200 scen. 3.12 24.38 42.31 9.82
Stochastic, 1000 scen. 3.11 23.68 40.48 9.28
Mixed, = 0.84 11.50 22.49 32.29 5.42
Mixed, = 0.99 3.43 24.58 42.25 9.58
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However, this comes at the expense of model size and complexity, and
the marginal improvement per scenario is low when going from 200 to
1000 scenarios. The mixed model only adds 12 new scenarios, but still
manages to provide robust solutions without being overly conservative.
The mixed model with = 0.84 yields the most resilient solution when
simulating with the uniform scenario batch, with a 95th percentile cost
that is considerably lower than the other models. The increased pro-
curement cost results in a higher average total cost in the normal sce-
nario batch simulation, but the 95th percentile cost is still only slightly
higher than the stochastic model with 1000 scenarios. When the mixed
model is solved with = 0.99, the result is a model which behaves si-
milarly to the stochastic model with 200 scenarios. This model com-
parison shows that using robust scenarios in a stochastic model can
drastically reduce the number of scenarios needed to improve robust-
ness and average total cost.

To better understand the effect and importance of considering re-
serve capacity activation in the scheduling phase, Fig. 7 shows how
some of the different models allocate and distribute the reserve capacity
among the 12 hydropower plants. The deterministic model relies
heavily on plant 4 for reserve capacity throughout the day, and fills the
remaining reserve capacity need with reserves arbitrarily allocated on
other plants that operate between 0 and Pmax . There is no spatial co-
ordination between plants that are selected for reserving capacity in the
deterministic model. In this case, module 4 has ample energy stored
upstream and additional storage space to ramp up or down production
without issue, but this is purely by chance. The module is also located at
the bottom of the cascaded system, and so any change in water dis-
charged does not cause problems downstream. As seen in Table 1, the
deterministic reserve procurement still turns out to be costly when it
comes to balancing the system. Using plant 4 to balance most of the net
load deviations results in poor water management according to the

water values. All of the two-stage models also rely on plant 4 for their
reserve capacity, but to a lesser extent. The shape of the forecasted net
load curve, with a valley in hours 2–6 and a peak in hours 14–20, can be
seen in the allocation of the reserve capacity, which reflects the fact
that it is better to use different hydropower modules for balancing at
different times of the day. Modules 1, 2 and 3 are located in a string
with very limited storage capacity and are used for reserve capacity
during the peak hours. Reserve capacity is allocated on these plants at
the same time so that they can ramp up or down together to avoid issues
caused by the low storage capacity in between them. The robust model
allocates significantly more reserve capacity on plants 1, 2 and 3
compared to the stochastic and mixed models. This forces an increased
use of the bypass gate from module 4 to module 3 to feed the three
modules with additional water so that they can increase their produc-
tion and deliver more spinning reserve capacity. Using the bypass gate
incurs a small penalty, which increases the procurement cost of the
robust model. It is clear that the robust model values protection in the
peak hours. The worst-case system costs occur when positive deviations
manifest in the peak hours since this forces the hydropower system to
produce closer to its maximal capacity. The mixed model with = 0.84
inherits the protection of the peak hours. It procures between 50 and
55 MW of reserve capacity in several hours in the peak period, which is
over the necessary 42 MW to avoid load shedding and power dumping.
The additional reserve capacity gives increased flexibility in the bal-
ancing stage, as different combinations of modules can be used to
produce or retain the required balancing energy, even in the case where
a maximal net load deviation is realized. Except for the peak hours, the
stochastic and mixed models produce a similar reserve capacity pro-
curement. This is to be expected since most of the weight is still allo-
cated to the scenarios used in the stochastic model.

Fig. 7. Reserve allocation on the 12 hydropower modules for the different models. The minimal reserve required to avoid load shedding is shown as a red dashed line.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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4. Conclusion

In this paper, the importance of considering the activation of re-
served capacity in the scheduling phase for hydropower has been
highlighted. If activation is not considered, having sufficient amounts of
both stored energy and energy storage capacity can become issues in
real-time operations. Cascaded hydropower systems have the added
problem of being physically connected, and therefore, many plants will
be affected by a single plant ramping up and down its production. In the
presented case study, inefficient water management was the source of
the high balancing cost of the deterministic model. Several two-stage
formulations, which considers activation of reserves in combination
with energy and topology constraints in the balancing stage, were
proposed to solve this issue. One of these models is a new mixed sto-
chastic-robust optimization model, which was shown to yield high-
quality solutions compared to its pure stochastic and pure robust model
ancestors. The mixed model can be viewed as a stochastic model aug-
mented with extreme scenarios identified by solving a robust model
with the CCG algorithm. The fact that a non-zero robust weight mini-
mizes the total costs in the mixed model signifies a benefit of
strengthening the stochastic model with robust scenarios. This is
especially valid when the probability distribution used to generate the
scenarios for the stochastic model is different from the actual dis-
tribution of the uncertainty, which can be the case when the underlying
data is of poor quality.

The case study presented in this paper is based on a moderate case
regarding the initial state and energy available in the system. Solving
the daily scheduling problem over a longer period that captures the
seasonal variations in the hydropower system, for instance by using a
rolling horizon simulator, will give a complete picture of the effects of
spatially coordinating the reserve capacity allocation based on ac-
counting for activation.
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A B S T R A C T   

Continuous-time optimization models have successfully been used to capture the impact of ramping limitations 
in power systems. In this paper, the continuous-time framework is adapted to model flexible hydropower re
sources interacting with slow-ramping thermal generators to minimize the hydrothermal system cost of op
eration. To accurately represent the non-linear hydropower production function with forbidden production 
zones, binary variables must be used when linearizing the discharge variables and the continuity constraints on 
individual hydropower units must be relaxed. To demonstrate the performance of the proposed continuous-time 
hydrothermal model, a small-scale case study of a hydropower area connected to a thermal area through a 
controllable high-voltage direct current (HVDC) cable is presented. Results show how the flexibility of the hy
dropower can reduce the need for ramping by thermal units triggered by intermittent renewable power gen
eration. A reduction of 34% of the structural imbalances in the system is achieved by using the continuous-time 
model.   

1. Introduction 

The Norwegian power system is in an interesting state of transition 
towards tighter integration to the rest of Europe. New high-voltage 
direct current (HVDC) cable interconnections to Germany and Great 
Britain are under construction, which increases the potential of cross- 
zonal trading of both energy and balancing services. Hydropower 
dominates the Norwegian generation mix and is well suited to provide 
system balancing services due to its flexibility. A larger share of inter
mittent renewable generation means that hydropower will play an in
creasingly important role in providing flexibility to the interconnected 
North European system in the future. However, propagating the flex
ibility across HVDC cables is challenging with current practices related 
to the hourly day-ahead market structure. According to the Norwegian 
transmission system operator Statnett, changing the HVDC cable flow 
between areas on an hourly basis has the potential of increasing the 
structural (or deterministic) imbalances caused by the mismatch in the 
scheduled hourly production and real-time load [1]. In this paper, a 
modified version of the continuous-time optimization framework is 
proposed to impose a smooth and continuous flow of power between a 
hydropower area and a thermal area connected by an HVDC cable. 

Continuous-time optimization was originally used to accurately 
describe the cost of ramping scarcity in thermal systems with large 
amounts of renewable power generation, such as the power system in 
California [2]. Ramping restrictions can be directly applied to the de
rivatives of the decision variables when they are allowed to be con
tinuous and smooth functions of time instead of the usual piece-wise 
constant formulation. The continuous-time formulation relies on lim
iting the decision variables to be polynomials of degree r, which allows 
the variables to be expressed by the Bernstein polynomials of the same 
degree. The optimization problem can then be defined in terms of the 
coefficients of the Bernstein polynomials, which is a mixed-integer 
linear program (MILP) in the case of the unit commitment problem. The 
continuous-time framework has lately been expanded in several direc
tions. The existence of a continuous-time marginal price for the eco
nomic dispatch problem was proven and calculated in [3] for a thermal 
system. This work was later extended to include energy storage devices 
in [4], which has applications in optimal control of charging electric 
vehicles according to queue theory [5,6] and the scheduling of batteries 
in balancing markets [7]. A stochastic continuous-time model was 
formulated for unit commitment and reserve scheduling problem in [8], 
with the inclusion of energy storage in [9] and a method for load 
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estimation and scenario generation in [10]. Applications to other areas 
within the power system operations field are also emerging, such as the 
active distribution network model in [11]. 

Hydrothermal scheduling has been an active field of research for 
decades, which in turn has contributed to the advanced mathematical 
models used for system and operational planning in hydropower- 
dominated systems. Good examples of this are the models used in 
Norway [12–14] and Brazil [15,16]. Previous hydrothermal scheduling 
models have been based on the standard discrete-time formulation, 
which assumes piece-wise constant values for time-dependent variables 
and model input parameters. This paper concerns the novel integration 
of hydrothermal scheduling and the continuous-time framework. In 
particular, the integrated modeling of continuous-time operation of 
complex hydropower cascades poses several new challenges to both 
hydropower scheduling and continuity constraints. The novel con
tributions of this paper are outlined as follows: 

• A continuous-time model including hydropower, thermal genera
tion, and HVDC cables is formulated and studied. To the best of the 
authors’ knowledge, this has not been published previously. 

• A method for modelling the forbidden production zone of the hy
dropower production curve in the continuous-time framework is 
presented. This involves enforcing the continuity constraints on the 
sum of generated hydropower instead of on the individual plants.  

• The issue of correct uploading of piece-wise linearized variables in 
the continuous-time framework is highlighted in relation to the 
hydropower production function, and a binary variable solution is 
presented. 

Section 2 presents the novel continuous-time model in detail, which 
is then solved for a two-area system and compared to a discrete-time 
(hourly) model in Section 3. Concluding remarks are given in Section 4. 

2. Model 

2.1. Fundamentals of a continuous-time model 

The core idea of the continuous-time framework is to represent 
time-dependent input and decision variables as polynomials of time 
instead of piece-wise constant functions. This increases the complexity 
of the model formulation, but sub-hourly effects and constraints related 
to derivatives with respect to time are easily captured. The motivation 
behind the original continuous-time unit commitment model in [2] was 
precisely to incorporate the impact of ramping scarcity into the market 
clearing. The time-dependent decision variables in the typical con
tinuous-time optimization framework are defined through the Bernstein 
polynomials of degree r, Br(t), which form a basis for any polynomials 
of at most degree r on the time interval [0,1]. By splitting the time 
horizon of the model into N intervals h of length δh, the time- 
dependent decision variables can be expressed as polynomials of the 
form 

= x Bx t( ) · ( ) ( ),
h

h
T

r h h
(1) 

where τh and Π(τh) are defined as follows: 

=
<

t h1 ,h
h i h

i
(2)  

= h( ) 1, 0 1
0, otherwise .h

h

(3)  

The vectors xh contain the +r 1 coefficients of the Bernstein poly
nomials in each time interval, which become the decision variables of 
the continuous-time model. It is necessary to use the scaled time τh and 
the operator Π to project the Bernstein polynomials into the correct 

Nomenclature 

Sets and indices 

Thermal generators, index j 
Water value cuts, index k 
HVDC cables, index l 
Hydropower plants and reservoirs, index m 
Areas in the system, index a 

m
d b o/ / Reservoirs that discharge/bypass/spill into m, index i 
m Discharge segments in plant m, index n 

Time intervals, index h 

Variables 

α Future expected system cost [mu] 
s t¯ ( )m

/ Startup/shutdown of hydropower plant [MW] 
fl(t), flh Flow on HVDC cable [MW] 
gj(t), gjh Generated thermal power [MW] 
pm(t), pmh Generated hydropower [MW] 
q t( ),m
b qmh

b Flow through bypass gate [m3/s] 
q t( ),m
d qmh

d Flow through turbine [m3/s] 
q t( ),m
net qmh

net Net flow into reservoir [m3/s] 
q t( ),m
out qmh

out Total controlled flow out of reservoir [m3/s] 
q t( ),m
in qmh

in Total controlled flow into reservoir [m3/s] 
q t( ),m
o qmh

o Flow through spill gate [m3/s] 
q t( ),m
rel qmh

rel Total flow released out of reservoir [m3/s] 
q t( ),mn
s qmnh

s Flow through discharge segment [m3/s] 
s t( )j
/ Startup/shutdown of thermal generator [MW] 

uj(t) State of thermal unit, on/off 

vm(t) Reservoir volume [m3] 
wmn(t) Discharge segment commitment decision 
zm(t) State of hydropower unit, on/off 

Parameters 

δh Length of time interval [s] 
ηmn Energy conversion factor [MWs/m3] 
Cb Penalty for bypassing water [mu/m3] 
Co Penalty for spilling water [mu/m3] 
Cj Marginal cost of thermal generator [mu/MW] 
Cj

/ Thermal unit startup/shutdown cost [mu] 
Dk Water value cut constant [mu] 
Flmax Maximal flow limit on HVDC cable [MW] 
Gj
max min/ Maximal/minimal thermal capacity [MW] 

Gla Line flow direction coefficient 
I t( )m
u Natural inflow from creek intakes [m3/s] 

Im(t) Natural inflow into reservoir [m3/s] 
La(t) Net area load [MW] 
N Number of time intervals in 
Pmmax min/ Maximal/minimal hydropower capacity [MW] 
Qmb Maximal flow through bypass gate [m3/s] 
Qmd Maximal flow through turbine [m3/s] 
Qmns Maximal flow through turbine segment [m3/s] 
Rj / Thermal ramping gain for starts/stops [MW/s] 
Rju d/ Ramping limits of running thermal unit [MW/s] 
Rlu d/ Ramping limits of HVDC cable flow [MW/s] 
Vm0 Initial reservoir volume [m3] 
Vm Maximal reservoir capacity [m3] 
WVmk Water value cut coefficient [mu/m3]   
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time interval while maintaining their property as basis functions. One 
of the main reason for using Bernstein polynomials is the convex hull 
property, which makes it possible to impose inequality constraints on x 
(t) for all times t by directly bounding the coefficients xh [2]. This paper 
uses Bernstein polynomials of degree 3 as the basis: 

=B t t t t t t t( ) [(1 ) , 3 (1 ) , 3 (1 ), ] .T3 3 2 2 3 (4)  

This is a popular choice in the literature, as it keeps the size of the 
model reasonable without sacrificing the ability to model complex time 
dependencies. Another advantage is the linear relationship to the cubic 
Hermite splines H(t), which can be used as an equivalent basis: 

=H B W Bt t t( )

1 1 0 0
0 0 0
0 0 1 1
0 0 0

· ( ) · ( ).
1
3

1
3

3 3

(5)  

The coefficients of the Hermite splines have a physical interpreta
tion as the value of x(t) and its derivative x t( ) at the start and end of the 
time interval h: 

= =x W x x x x x( ) · [ , , , ] .H
h

T
h h

start
h
start

h
end

h
end T1 (6)  

This interpretation is useful for expressing the continuity of x(t) 
across the time intervals h. The reader is referred to [2] for a more 
detailed introduction to the continuous-time formulation with further 
references to the properties of the Bernstein polynomials mentioned in 
this section. 

2.2. Objective function 

The objective of the proposed hydrothermal model is to minimize 
the future expected cost of the system, the penalties for bypassing and 
spilling water, and the operational, startup and shutdown costs of the 
thermal generators: 

= + +

+ + +

Z C q t C q t dt

C g t dt C s C s

( ( ) ( ))

( ) ( ).

m

t b
m
b o

m
o

j

t
j j

j h
j jh j jh

0

0

end

end

(7)  

Note that startup and shutdown cost are assumed to be negligible 
for the hydropower plants. The definite integral of the Bernstein poly
nomials of the third degree is =B 1t dt( ) ,0

1
3

1
4 which simplifies the 

integrals in (7) to the sums 

= + +

+ + +

1 q q

1 g

Z C C

C C s C s

1
4

·( )

1
4

· .

m h
h

T b
mh
b o

mh
o

j h
h j

T
jh j jh j jh

(8)  

As this paper focuses on modelling hydropower generation in the 
continuous-time framework, a simplified linear formulation of the 
thermal generation cost function is used in (8). More advanced mod
eling of quadratic and piece-wise linear cost functions in continuous- 
time unit commitment are available in the literature [2,9], and their 
integration in the model proposed in this paper is straightforward. 

2.3. Hydropower topology constraints 

The cascaded topology constraints dictate how water moves be
tween the reservoirs. These constraints are equality constraints, see for 
instance [14], which means that equating the polynomial coefficients 
are sufficient to satisfy them in the continuous-time framework. The 
convex hull property of the Bernstein polynomials and the fact that 

=1 B t· ( ) 1T
3 is used to enforce the physical bounds on the variables: 

= +q I q q m h, ,mh
net

mh mh
in

mh
out (9)  

= + m hq q q , ,mh
out

mh
rel

mh
o (10)  

= + + m hq q q q , ,mh
in

i
ih
d

i
ih
b

i
ih
o

md mb mo (11)  

= + m hq q q I , ,mh
rel

mh
d

mh
b

mh
u (12)  

Q m h0 q 1 , ,mh
d

m
d (13)  

Q m h0 q 1 , ,mh
b

m
b (14)  

m h0 q , ,mh
o (15)  

m h0 q , , .mh
rel (16)  

There are three waterways that connect reservoirs; discharge 
through the turbine, the bypass gate and the spill gate. Fig. 1 shows the 
relationship between the different waterways in addition to where 
natural inflow enters the system. 

2.4. Volume constraints 

The rate of change in the reservoir content is described by the dif
ferential equation: 

=dv t
dt

q t m( ) ( ) .m
m
net

(17)  

The integral of Bernstein polynomials of degree 3 can be expressed 
using Bernstein polynomials of degree 4 using a linear mapping matrix  
[4,9]: 

=B B N Bt dt t t( ) 1
4

0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

( ) · ( )3 4 4

(18) 

which is further utilized to show the volume increase within a time 
interval h as follows: 

= =

=

v t v dv t
dt

dt dtq B

q N B

( ) ( ) ( ) · ( )

( ) · · ( ).

m mh t h

t
mh
net T

t h

t
h

h mh
net T

h

( )

’

’
’

( ) 3
’

4 (19)  

Here, = <t h( ) i h i and the fact that =N B 0· (0)4 was used. Note 
that the volume variables vmh denotes the volume at the start of interval 
h. Based on equation (19), the following volume balance constraints can 

Fig. 1. Depiction of the different waterways for discharging, bypassing and 
spilling water between reservoirs. All waterways may lead to different down
stream reservoirs or out of the system. Natural inflow enters the system in two 
different ways, either into the reservoir (triangle shape) or directly into the 
main tunnel of the plant (rectangle shape). 
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be added to the optimization problem: 

=v V mm m0
0 (20)  

=+ 1 qv v m h1
4

· , ,m h mh h
T

mh
net

, 1 (21)  

+v V m h0 1 N q 1· , , .mh h
T

mh
net

m (22)  

Constraint (20) sets the initial volume of each reservoir and (21) 
calculates the volume change from one time interval to the next by 
inserting =N B 1· (1)4

1
4 . Constraint (22) uses the convex hull property to 

bound the volume within the limits of the reservoir for all times t. 

2.5. Future cost bounds 

The future expected cost of the system is represented by a set of 
Benders cuts created by a hydrothermal long-term model such as [14]. 
The expected future cost depends on the state of all hydropower re
servoirs in the system at the end of the last time interval N: 

++WV v D k .
m

mk m N k, 1
(23)  

2.6. Hydropower production 

The conversion from discharge through the turbine to generated 
power is a non-linear function which depends on the effective plant 
head and the efficiency curves of the turbine and generator [17]. By 
assuming a constant head for the planning horizon, the hydropower 
production function can be approximated as a single piece-wise linear 
curve, where the discharge variable is split into n m segments with 
constant gradient ηn. In an discrete-time model, the discharge segments 
will usually be uploaded in the correct order as long as the gradient is 
decreasing for increasing segment number. The exception is extreme 
situations where it is beneficial to dump as much water as possible 
while limiting the power produced, which can be the case in high in
flow and low load scenarios. A similar effect of incorrect uploading of 
discharge segments has been observed in this work when the con
tinuous-time framework was implemented. Segments with high effi
ciency are still favoured but there is no guarantee that segment n is at 
its maximal capacity for all times that segment +n 1 is being used. The 
model will often start using the next segment too early to be able to 
fulfill the continuous-time power balance described in Section 2.7. To 
remedy this problem, binary variables  

= 1 Bw t w( ) · ( ) ( )mn h mnh
T

h h3 are used in this work to force the 
segments to be fully utilized before the next segment can be used: 

=q q m h, ,mh
d

n
mnh
s

m (24)  

=p q m h, ,mh
n

mn mnh
s

m (25)  

Q w Q m h n1 q 1 , , , ,mn
s

mnh mnh
s

mn
s

m (26)  

Q w m h nq 1 , , , , {0}.mnh
s

mn
s

m n h m, 1, (27)  

This modelling choice of the hydropower production function has 
the unfortunate effect of introducing additional binary variables into 
the model but also enables the use of non-concave linearizations of the 
hydropower production function. It is also possible to incorporate for
bidden production regions within the operating range of the turbine by 
modifying (26) to =q 1Q wmnh

s
mn
s

mnh for the segment representing the 
forbidden region. 

2.7. Power balance and HVDC power flow 

The power balance constraints must be satisfied in each node of the 
system. In this work, each node represents a larger market area 

assuming no internal power flow limits. The areas are connected with 
HVDC cables where the flow can be controlled by the system operator. 
The power balance constraints are formulated as 

+ =G a hp g f L , , .
m

mh
j

jh
l

la lh ah
a a (28)  

The coefficient Gla dictates the positive and negative direction of 
flow on each cable l by taking the values   ±  1, or zero if cable l is 
not connected to area a. a and a are the sets of hydropower and 
thermal units located in area a, respectively. The flow on the HVDC 
cables is constrained by maximal flow limits 

1 f 1F F l h, , ,l
max

lh l
max (29) 

and additional limitations on the change of flow is imposed on the 
derivative f t( )l to stay within the specified HVDC cable ramping limits 
used in the Nordic system [18]. By using the following property of the 
Bernstein polynomials, 

=B B K Bd t
dt

t t( ) 3
1 0 0
1 1 0
0 1 1
0 0 1

· ( ) · ( ),3
2 2

(30) 

the minimum and maximum ramping limits can be expressed as: 

1 f K 1R R l h1 · , , .l
d T

h
lh
T

l
u T

(31)  

2.8. Thermal generation constraints 

The thermal generators are subject to unit commitment decisions 
which signify if a generator is offline or producing between the minimal 
and maximal production limits. The thermal unit commitment con
straints are modelled by the use of the binary decision variables uj(t): 

G G j hu g u , ,j jh jh j jh
min max

(32)  

= + +u u u u j h Nu [ , , , ] , , { }jh jh jh j h j h T, 1 , 1 (33)  

= u ju 1jN jN (34)  

= +s s u u j h N, , { }jh jh j h jh, 1 (35)  

+s s j h1 , ,jh jh (36)  

u s j h, {0, 1} , , .jh jh
/

(37)  

The constraints closely follow the implementation used in [2] and  
[8], which are in turn adapted from the standard discrete-time unit 
commitment formulation found in for instance [19]. The choice of the 
commitment decision vector in (33) and (34) allows the thermal gen
erator to use time interval h to ramp up from zero to above Gmin, or 
conversely ramp down production to zero. The smooth transition is 
necessary for the continuity constraints that will be applied to the 
thermal production variables in Section 2.10. Constraint (35) captures 
the startups and shutdowns of the generators, which are accounted for 
in the objective function (8). The up and down ramping constraints of 
thermal generators, taking into account the startup and shutdown ramp 
limitations, are modeled as follows: 

+g K 1R R s j h1 · ( ) , ,
h

jh
T

j
u

j jh
T

(38)  

+g K 1R R s j h1 · ( ) , , .
h

jh
T

j
d

j jh
T

(39)  

The minimum up and down time constraints of thermal generation 
is not considered in this paper, and the readers are referred to our 
previous works for details on modeling these constraints in the con
tinuous-time unit commitment model [2]. 
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2.9. Hydropower unit commitment 

Due to operating characteristics such as mechanical vibration or loss 
of efficiency, hydropower turbines usually have one or several for
bidden production regions depending on the turbine type. It is im
portant to model these regions when looking at short-term scheduling 
of a hydropower system to have an accurate representation of the op
erating range of the hydropower plants. The unit commitment con
straints of the hydropower plants in the continuous-time optimization 
model must account for the forbidden production region so that the 
flexibility of the plant is not overestimated. The hydropower unit 
commitment decisions zm(t) are used to model this in the following way: 

P P m hz p z , ,m mh mh m mh
min max (40)  

= z m hz 1 , ,mh mh (41)  

= +s s z z m h N, , { }mh mh m h mh, 1 (42)  

+s s m h1 , ,mh mh (43)  

z s m h, {0, 1} , , .mh mh
/ (44)  

In contrast to the choice of the thermal unit commitment vector in  
(33), the formulation in (41) forces the hydropower unit commitment 
decisions to be constant for the whole time interval so that the pro
duction is never between 0 and Pmin. However, this formulation is in 
opposition to the normal continuous-time formulation, as discontinuous 
jumps in power production must be allowed. If not, the hydropower 
plants will be unable to start and stop at all. These issues are addressed 
in Section 2.10. 

2.10. Continuity constraints 

The standard continuous-time optimization framework builds on 
the C1 continuity of all decision variables x(t). This requires both the 
value x(t) and the value of the derivative x t( ) to be continuous over the 
change of time intervals h . Such constraints are enforced by using 
the relationship between the Bernstein polynomials and the cubic spline 
functions, shown in (5). The interpretation of the coefficients of H(t) 
described in (6) simplifies the implementation of the C1 continuity 
constraints. By labelling the components of the vector x as x[i] for 
i ∈ {0, 1, 2, 3}, the continuity constraints become: 

= +x x h N[2] [0] { }H H
h h 1 (45)  

= +x x h N[3] [1] { }.H H
h h 1 (46)  

These constraints are applied to the thermal generation and HVDC 
flow variables: 

= +g g j h N[2] [0] , , { }H H
jh j h, 1 (47)  

= +g g j h N[3] [1] , , { }H H
jh j h, 1 (48)  

= +f f l h N[2] [0] , , { }H H
lh l h, 1 (49)  

= +f f l h N[3] [1] , , { }.H H
lh l h, 1 (50)  

As mentioned in Section 2.9, discontinuous jumps in power pro
duction are required to model the forbidden production region of hy
dropower plants. Therefore, enforcing the C1 continuity constraints on 
the variables related to the hydropower production is not possible. In 
addition, requiring continuous derivatives for water flow and hydro
power production is strict when δh is longer than a few minutes. To 
avoid conservative solutions underestimating the ramping capabilities 
of hydropower, (46) is not implemented for any variable related to 
hydropower. The bypass and overflow variables are C0 continuous: 

= +q q m h N[2] [0] , , { }H H
mh
b

m h
b,
, 1
,

(51)  

= +q q m h N[2] [0] , , { },H H
mh
o

m h
o,
, 1
,

(52) 

and the reservoir volume continuity is already secured by (21). The 
hydropower production is forced to be C0 continuous unless a startup or 
shutdown happens in the time interval. This is modelled by replacing  
(45) by the following two inequalities: 

+ P s m h Np p[2] [0] , , { }mh m h m mh
H H

, 1
max

(53)  

+ P s m h Np p[0] [2] , , { }m h mh m mh
H H
, 1

max
(54) 

which is consistent with the unit commitment constraints imposed in  
(40) to (44). Note that this relaxation produces a more constrained 
problem, as production in the forbidden region is impossible. Due to the 
connection between production and discharge in (25), the discharge 
variables qs must also be allowed to have discontinuous jumps. How
ever, the binary definitions of the discharge bounds in (26) and (27) 
take care of continuity when the hydropower plant is producing, so 
there is no need to apply any further constraints to the discharge 
variables. The continuity properties of the derived flow variables qnet, 
qout, qin, and qrel are also implicitly accounted for through (9) to (12). 

It is important to note that even though the individual hydropower 
plants may have discontinuous jumps and discontinuous derivatives in 
the power production curve between time intervals, their sum is still 
forced to be C1 continuous through the power balance constraint (28) 
since all other quantities in the equation are C1 continuous. The C1 

continuity constraints of the flexible hydropower have effectively been 
lifted from the individual plant to the sum on an area level. The hy
dropower model formulation presented in this paper can be seen as an 
approximation of a fully C1 continuous model where short time inter
vals have been inserted around every major time interval shift. By 
forcing the hydropower plants to only start or stop in these short in
tervals, an accurate production profile spending minimal time in the 
forbidden production zone would be achieved. By letting the length of 
short intervals go to zero, the partially C0 continuous hydropower 
formulation used in this paper is recovered. Therefore, the alterations 
made to the continuity constraints for the hydropower-related variables 
will not drastically impact the operation of the hydropower, as long as 
δh is long compared to the time it takes to ramp up and down a hy
dropower plant, which is usually only a few minutes. 

3. Case study 

A small scale case study with two areas connected by a single HVDC 
cable is presented in this section. The continuous-time model proposed 
in Section 2 and an analogous discrete-time hourly model are both 
solved to show and compare the interaction between fast and slow 
ramping components in the system. Both models have been im
plemented in Pyomo and solved with CPLEX 12.8. One area contains 
only hydropower, while the other only contains thermal generation. 
The hydropower topology is based on a real Norwegian water course 
consisting of 12 reservoirs and plants which is described in more detail 
in [20], and the future expected cost of the hydropower system is cal
culated based on the long-term model described in [14]. The inflow is 
considered piece-wise constant within each hour in the entire hydro
power area, which has a total hydropower production capacity of 537 
MW. The thermal area contains four thermal generators with a total of 
256 MW of production capacity and varying ramping capabilities and 
marginal, startup and shutdown costs. The areas are connected by an 
HVDC cable with a flow limit of 50 MW in either direction. The 
ramping limitations of the cable are based on the current practice of 
how fast the flow on an HVDC cable can be changed in the Nordic 
market, which is 600 MW/h [18]. The flow change is performed in a 
20 min window around hourly shifts, which gives an effective ramping 
rate of 30 MW/min or 1800 MW/h [1]. The time horizon is set to 24 
hours with hourly time intervals for both the hourly and the con
tinuous-time model. 
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The scaled net load profiles for the two areas are shown in Fig. 2. 
The peak net load value in each area is used as a scale in the figure, 
which is 450 MW and 160 MW in the hydropower and thermal areas, 
respectively. The net load profiles are based on measured data from 
NYISO and CAISO from 1/1-2019, available at [21,22] with a 5-minute 
resolution. The CAISO net load has been used for the thermal area, 
which experiences significant ramping events in the morning and 
afternoon as solar plants start and stop producing power. The con
tinuous-time load was calculated from the raw data by a standard least- 
squares error fit to the Bernstein polynomials, while the hourly load is 
the average load for each hour. The structural imbalances in both areas 
go down in the continuous-time model compared to the hourly model, 
with a reduction of 34% on system level. This represents 97 MWh of 
saved balancing energy, which is 0.9% of the total daily net system 
load. The reduction of imbalances is higher in the thermal area (87%) 
than the hydropower area (20%) because B3(t) provides a better fit to 
the CAISO load data. 

The size and solution times of the models are listed in Table 1, 
which shows the initial model size and the reduced size after CPLEX 
performs an automatic presolve routine. The number of continuous and 
binary variables and constraints are considerably higher in the con
tinuous-time model compared to the hourly model, also after the pre
solve. The larger model size of the continuous-time model results in a 
longer solution time on a standard office laptop, i7-7600 CPU at 
2.8 GHz with 4 cores, though solution time in MIP models can vary 
greatly based on the parameter settings given to the solver. A small 
relative MIP gap of 0.28% was reached in 60 seconds for the con
tinuous-time model, but solving it to zero gap like the hourly model 
takes about 10 hours on a server with 36 cores. Upon investigation, it is 
clear that the hydropower production continuity constraints, (53) and  
(54), are the complicating constraints. If these constraints are removed, 
which means the hydropower production variables are discontinuous 
over the interval changes, the continuous-time model can be solved to 
zero MIP gap in 22 seconds. This is a trade-off between realistic 

physical modelling and tractability that should be considered when 
solving larger systems. 

The resulting sum production of hydropower and thermal gen
erators are shown in Fig. 3. The figure shows that the hourly model 
overestimates the ramping capabilities of the thermal system during the 
extreme ramping events. Thermal production is shut down in the 
morning and turned back on in the afternoon, while the hydropower 
producers increase their production to cover the load in both areas in 
the meantime. This is not the case in the continuous-time model, as 
shutting down all thermal generators is either infeasible or very costly 
when following the net load during the ramping events. The cheapest 
and slowest thermal generator stays on for the whole 24 hours in the 
continuous-time model, contributing to the ramping in a modest way. 

Most of the ramping is carried out by the hydropower system 
through the HVDC cable, which can be seen in Fig. 4. The figure shows 
how the hydropower system is able to mitigate the ramping in net load 
in both directions while keeping the thermal generator online. The 
power flow is kept close to 50 MW throughout the day in the hourly 
model since the hydropower is generally cheaper than the thermal 
generators. However, two major changes in flow occur when the 
thermal generators are shut down and then started back up in the 
thermal system. This behaviour is undesirable, as it can increase the 
structural imbalances in the system [1]. 

4. Conclusion 

Hydropower is considered an important balancing resource due to 
its flexibility. A continuous-time hydrothermal unit commitment model 
with HVDC cables was formulated in this paper to show how excessive 
ramping in the thermal system can be avoided by hydropower and 

Fig. 2. The continuous-time load profiles of the thermal and hydropower areas 
are shown together with the hourly constant load approximations (solid and 
dashed lines, respectively). The profiles have been scaled by the value of the 
peak load. 

Table 1 
Model size comparison of the continuous-time and hourly models. The problem 
size after the CPLEX presolve routine is listed under reduced model.       

Parameter Initial model Reduced model  

Hourly Cont.-time Hourly Cont.-time  

Binary variables 1152 2040 1106 1706 
Continuous variables 2474 8954 2179 7371 
Constraints 2706 16,962 2316 13,107 
Solution time [s]   2.2 60.0 
MIP gap [%]   0.0 0.28 

Fig. 3. The sum production in the thermal and hydropower areas relative to 
their respective load peaks in the hourly and continuous-time solution. The 
hourly and continuous-time solutions are shown as dashed and solid lines, re
spectively. 

Fig. 4. The HVDC cable power flow from the hydropower area to the thermal 
area in the hourly (dashed line) and continuous-time (solid line) models. 
Negative values indicate flow in the opposite direction. 
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active use of the HVDC cables. The structural imbalances in the system 
are reduced by 34% in the continuous-time model compared to the 
hourly discrete-time model since sub-hourly effects are captured by the 
polynomial expansion. Several modelling issues related to in
corporating hydropower into the continuous-time framework have been 
uncovered in the process. The linearization of the hydropower pro
duction curve requires binary variables to avoid unphysical uploading, 
and modelling the forbidden production zone requires the relaxation of 
the continuity constraints of the individual hydropower plants. The 
overall continuity of the model is still preserved on a system level, as 
the power balance forces the sum of hydropower production to be C1 

continuous. Investigating other potential modelling choices of the hy
dropower production curve, calculating system prices, and expanding 
the model to cover cross-zonal reserve capacity procurement are in
teresting avenues of further research. 
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Abstract—In this work, a continuous-time unit commitment
formulation of a hydrothermal system with integration of offshore
wind power is used to model the North European system opera-
tion. The cost of covering the structural imbalances in the system
is quantified by a cost comparison to an analogous discrete-
time model. If the discrete-time unit commitment is implemented
for real-time operation, 55 MWh (0.22%) load shedding should
be introduced since the demand in periods with high net-load
ramping cannot be met. The simulation results demonstrate that
the proposed framework reduces system balancing cost and the
events of ramping scarcity in the real-time balancing.

Index Terms—Continuous-time optimization, Hydrothermal
scheduling, Offshore wind power, Unit commitment

I. INTRODUCTION

A significant amount of offshore wind power is expected to
be integrated into the European power system in the coming
years [1]. The variable nature of wind power generation
challenges the security of the power system as the flexibility
of conventional generators are pushed to their limits. Cascaded
hydropower is an existing flexible energy storage technology
which can provide energy and flexibility on a system scale,
and the Nordic countries have considerable amounts of hy-
dropower installed in their current power systems. Several
high voltage direct current (HVDC) cables between Norway
and continental Europe (Netherlands and Denmark) have been
constructed in recent years, and new interconnectors to Ger-
many and Great Britain are under construction. The increased
transmission capacity makes it possible to use Norwegian
hydropower resources to help balance the wind power in the
North European power system. Hydrothermal coordination in
the presence of uncertain wind power generation has been
studied in the literature, which includes both models with long
time horizons [2]–[5] and short-term studies [6].

The discrete structure of the European day-ahead electricity
markets cannot prevent the occurrence of a mismatch between
the market cleared volumes and the actual production and
consumption. These structural imbalances must be balanced
in real-time by activating procured reserve capacity. As wind
power can vary quickly and unpredictably within the span
of a few minutes, the structural imbalances and need for
balancing can be worsened by a high wind power penetration.
Continuous-time optimization is a way of formulating the
standard unit commitment and economic dispatch problems
with continuously varying time-dependent variables and input
data, originally formulated for a purely thermal system in [7].

The continuous-time framework has lately been extended to
incorporate energy storage technology in [8], and multi-stage
stochastic unit commitment and reserve scheduling models are
developed in [9] and [10]. In previous work, we have derived
the formulation of the cascaded hydropower constraints in the
continuous-time framework [11]. This paper extends the model
presented in [11] to include wind power generation. The main
contributions of the paper are:

• Quantifying the cost of structural imbalances in a test
system resembling the Northern European power system
by comparing the costs obtained by a continuous-time
unit commitment model and an analogous discrete-time
model.

• Identifying specific periods where the discrete-time
model overestimates the flexibility of the system. This
is done by simulating operation with a continuous-time
model, setting the binary commitment decisions equal to
the discrete-time solution.

Section II defines the continuous-time model in detail, while
the case study and results are presented in Section III. A
concluding summary is found in Section IV.

II. MODEL

The mathematical formulation of the continuous-time model
is based on [11]. In this paper, the model is extended to
include offshore wind power, hence constraints for wind power
production and wind curtailment are added to the model.

A. Continuous-time optimization framework

The continuous-time optimizations framework directly mod-
els sub-hourly variations by representing all time-varying data
and variables as polynomials of time, which allows ramping
and other inter-temporal constraints to be enforced contin-
uously. Several spline models can be used to approximate
the continuous-time trajectory curve of a data set, where the
accuracy of the spline model is dependent on the order of the
basis. A convenient spline model is the Bernstein polynomials,
where the time dependent decision variables will be defined
by using the Bernstein polynomials of degree n, which form
a basis for any polynomials of degree equal or less than n
on the interval t ∈ [0, 1]. For a given time interval h ∈ T
with length δh, a time-varying decision variable x(t) can be
expressed as:



x(t) = xTh · Bn

(
t− Th

δh

)
, Th ≤ t ≤ Th+1, (1)

where Th =
∑

i<h δi is the start time of interval h, xh
is a vector of n + 1 Bernstein polynomial coefficients and
Bn(t) is the vector of Bernstein polynomials of degree n.
This definition gives a piece-wise polynomial description of
time-dependent variables where the polynomial coefficients xh
become the decision variables in the optimization problem.
Choosing Bernstein polynomials of degree zero recovers the
usual discrete-time formulation of piece-wise constant vari-
ables.

In this paper, the Bernstein polynomials of degree three will
be used as a basis for each time interval h:

B3(t) =
[
(1− t)3, 3t(1− t)2, 3t2(1− t), t3

]
. (2)

This degree of freedom allows the application of C1 con-
tinuity constraints between time intervals without drastically
increasing the number of decision variables in the model. The
C1 continuity constraints can be expressed with the use of
the Bernstein coefficients of the decision vector x, where the
coefficients can be labeled as xi for i ∈ {0, 1, 2, 3}. With this
in mind, the continuity constraints can be expressed as:

x3
h = x0

h+1 ∀h ∈ T \{N} (3)

x3h − x2
h = x1

h+1 − x0h+1 ∀h ∈ T \{N}. (4)

The result of integrating and differentiating Bn(t) can be
represented by Bernstein polynomials of degree Bn+1(t) and
Bn−1(t), respectively. These relationships are described by the
linear matrices K and N for B3(t) in eqs. (5) and (6). Another
useful relation is the definite integral of the polynomials over
the whole interval, shown in eq. (7).

Ḃ3(t) = K · B2(t) (5)∫
B3(t)dt = N · B4(t) (6)

∫ 1

0

B3(t)dt =
1

4
· 1 (7)

These properties, together with the convex hull property, are
some of the main reasons for using Bernstein polynomials in
the continuous-time optimization framework. The convex hull
property makes it possible to impose inequality constraints
on the decision variable x(t) by directly bounding the coeffi-
cient xh. For a more detailed introduction to continuous-time
optimization in power systems, the reader is referred to for
instance [7].

B. Mathematical formulation of continuous-time UC

1) Thermal constraints: The following constraints are de-
fined for all thermal units i ∈ I over time intervals h ∈ T .
ui(t), SUi(t) and SDi(t) are binary variables describing the
commitment status, startup and shutdown of thermal generator
i, respectively. Constraints (8) and (9) ensure that the thermal

generator can ramp up the production,gi(t), from zero to above
Gmin

i , or ramp down production to zero, during time interval
h. This smooth ramping of the production is necessary when
the continuity constraints for the thermal production variable
will be applied in II-B4. Limitations on the derivative ġi(t)
are imposed in (10) and (11) such that the ramping of the
thermal production stays within specified limits Ru

i and Rd
i by

utilizing property (5). When there is a startup or a shutdown,
the ramping limit is increased to Gmax

i . Constraints (12) and
(13) counts the number of startup and shutdown events.

Gmin
i ui,h ≤ gi,h ≤ Gmax

i ui,h (8)

ui,h = [ui,h, ui,h, ui,h+1, ui,h+1]
T (9)

1

δh
gTi,h · K ≤ (Ru

i + (Gmax
i −Ru

i )SUi,h)1T (10)

1

δh
gTi,h · K ≥ −(Rd

i + (Gmax
i −Rd

i )SDi,h)1T (11)

SUi,h − SDi,h = ui,h+1 − ui,h (12)
SUi,h + SDi,h ≤ 1 (13)
ui,h, SUi,h, SDi,h ∈ {0, 1} (14)

2) Hydropower constraints: The constraints from (15) to
(30) are added to the optimization problem for the hydro area
and are defined for all hydropower plants m ∈ M over time
intervals h ∈ T .

Fig. 1. A rotated illustration of the waterways between reservoirs together
with regulated and unregulated natural inflow.

vm0 = V 0
m (15)

vm,h+1 − vm,h =
1

4
δh1T · qnet

m,h (16)

0 ≤ vm,h1 + δhNT · qnet
m,h ≤ Vm1 (17)

qin
m,h =

∑

j∈J d
m

∑

n∈Nj

qd
j,n,h +

∑

j∈J b
m

qb
j,h +

∑

j∈J o
m

qo
j,h (18)

qnet
m,h = Im,h + qin

m,h − qrel
m,h − qo

m,h (19)

qrel
m,h =

∑

n∈Nm

qd
m,n,h + qb

m,h − Ium,h (20)

0 ≤ qb
m,h ≤ Qb

m · 1 (21)

0 ≤ qo
m,h (22)

0 ≤ qrel
m,h (23)

pm,h =
∑

n∈Nm

ηm,nqd
m,n,h (24)



Qd
m,nwm,n,h1 ≤ qd

m,n,h ≤ Qd
m,n1 (25)

qd
m,n,h ≤ Qd

m,nwm,n−1,h1 (26)

Pmin
m zm,h1 ≤ pm,h ≤ Pmax

m zm,h1 (27)

SUm,h − SDm,h = zm,h+1 − zm,h (28)
SUm,h − SDm,h ≤ 1 (29)
zm,h, SUm,h, SDm,h ∈ {0, 1}. (30)

vmh is the instantaneous volume at the beginning of interval
h for reservoir m, and constraint (15) sets the initial volume
for each reservoir. Constraint (16) calculates the change in
volume between two time intervals by integrating the net
inflow, qnetm (t), over the entire time interval by the use of (7).
Constraint (17) bounds the reservoir volume within the time
interval, found by using property (6), between zero and the
maximal reservoir volume Vm. Figure 1 shows that the wa-
terways of the cascaded system is modelled by three separate
routes: the spill gate, qom(t), the bypass gate, qbm(t), and the
discharge through each turbine segment n ∈ Nm, qdm,n(t). The
hydropower topology constraints, expressed in (18) to (23),
implement this system description. Im(t), Ium(t) and qnetm (t)
represents regulated and unregulated natural inflow, and net
flow into the reservoir, respectively. qinm (t) is the sum of the
controlled flow into the reservoir from the upstream system,
while qrelm (t) is the total released flow out of the reservoir.
Qb

m denotes the maximal bypass flow. The constraints for
hydropower production and commitment is expressed in (24)
to (30), where pm(t) is the generated hydropower. The con-
version from discharge through the turbine to generated power
is a non-linear function depending on the plant head and the
efficiency curves of the generator and the turbine. In (24),
this non-linear function is approximated as a piece-wise linear
curve, where each segment of the discharge variable has a
constant efficiency ηn. As discussed in [11], binary variables
wm,n(t) are necessary in the continuous-time formulation to
ensure that the discharge segments are uploaded in physically
correct order. Constraint (25) and (26) bound the flow through
each discharge segment within an upper and lower limit with
the use of the binary variable, and these two constraints are
defined for all discharge segments n ∈ Nm.

Constraint (27) to (30) expresses the hydropower unit
commitment constraints, where zm(t), SUm(t) and SDm(t)
are binary variables describing the commitment status, startup
and shutdown of a hydropower unit m, respectively. From
constraint (27), it can be seen that all the Bernstein coefficients
in the decision variable pm(t) for a given hour are related to
the commitment of the generator in that given hour. This forces
the hydropower unit commitment decision to be constant
during a time interval h, and will ensure that the production
never is between zero and Pmin

m . Unlike the smooth operation
enforced on the thermal generators, discontinuous jumps in
the hydropower production curve when there are startups and
shutdowns are therefore permitted.

3) Wind Power and System constraints: Area and system
wide constraints in the model are the following:

0 ≤ sa,h ≤ Wa,h (31)
ρc
a,h = Wa,h − sa,h (32)

α ≥
∑

m∈M
WVm,kvm,N+1 +Dk (33)

− Fmax
l 1 ≤ fl,h ≤ Fmax

l 1 (34)∑

m∈Ma

pm,h +
∑

i∈Ia

gi,h + sa,h −
∑

l∈L
Gl,afl,h = La,h − ρs

a,h.

(35)

Constraint (31) and (32) expresses the wind power gen-
eration sa(t) and the wind curtailment ρca(t), respectively,
where both constraints are defined over time intervals h ∈ T
and areas a ∈ A. Generated wind power is bound within
zero and the maximal available wind power curve W (t). The
future expected operating cost for the system, α, which is
directly added to the objective function in (37), is bounded by
constraint (33), which are a set of linear Benders cuts k ∈ K.
The cut coefficients WVm,k and the cut constants Dk can be
calculated by long-term hydrothermal models such as the one
in [12], and the future expected system cost ultimately depends
on the end volume of water in each reservoir. The power flow
on the HVDC cables, fl(t), is bound by a maximal flow limit
Fmax
l in (34), defined for all lines l ∈ L over time intervals

h ∈ T . Constraint (35) shows the power balance, which needs
to be satisfied for each area a ∈ A over time intervals h ∈ T .
Ma and Ia are the sets of hydropower and thermal units
located in area a, and Gl,a is the adjacency matrix of the
HVDC grid. La(t) is the area load and ρsa(t) is the amount
of load shedding within each area.

4) Continuity constraints: One important aspect of the
continuous-time optimization framework is that the value of
the decision variable and its derivative can be continuous
over time interval shifts. The continuity constraints in (3) and
(4) are added to the optimization problem for the thermal
production decision variable gi,h, the offshore wind production
decision variable sa,h and for the power flow decision variable
fl,h for all times h ∈ T . This enforces C1 continuity,
meaning that the curves have continuous values and derivatives
for all points in time. Less strict continuity constraints are
added for the variables connected to the hydropower units
m ∈ M over time intervals h ∈ T , which is discussed in
more detail in [11]. The C0 continuity constraint in (3) is
applied to the flow through the bypass gate and spill gate,
qb
m,h and qo

m,h. As there is need for discontinuous jumps
in the hydropower production during startups and shutdowns,
enforcing C0 continuity on pm,h will not be possible. Instead,
constraint (3) is replaced with the inequality constraints in
(36), which makes the hydropower production C0 continuous
over time interval changes except if a startup or shutdown
occurs:

−Pmax
m SUm,h ≤ p3

m,h − p0
m,h+1 ≤ Pmax

m SDm,h. (36)



5) Objective function: The objective function for the pro-
posed model, presented in (37), is to minimize the total cost of
the system. The total cost includes the future expected cost of
the hydro system, α, the cost of spilling and bypassing water,
and the operational, startup and shutdown costs for the thermal
generators. In addition, a negligible penalty for curtailment
of wind power and a high penalty for load shedding are
included in the last line. Both startup and shutdown costs for
the hydropower plants and the wind farms are assumed to be
negligible in this model.

Z = α+
1

4

∑

m∈M

∑

h∈T
δh1T ·

(
Cbqb

m,h + Coqo
m,h

)

+
∑

i∈I

∑

h∈T

(1
4
δhCi1T · gi,h + Cstart

i SUi,h + Cstop
i SDi,h

)

+
1

4

∑

h∈T
δh1T ·

(
Ccρc

h + Csρs
h

)
(37)

III. CASE STUDY

A case study of a stylized three-area system resembling
Northern Europe is presented in this section. The continuous-
time model presented in Section II and an analogous discrete-
time model are both solved to compare how the different
components in the system reacts when variable offshore wind
power is integrated into the power system. Both models have
been implemented in Pyomo and solved with CPLEX 12.10.

A. System topology and input data

The stylized three-area system contains a hydro dominated
Norwegian area, a thermal dominated Central European area
and an offshore wind area in the North Sea, connected through
HVDC cables. The hydropower area is based on a real Nor-
wegian cascaded system containing 12 reservoirs and plants
with a total hydropower production capacity of 535 MW. A
detailed description of the hydropower topology can be found
in [13]. The ratio between the capacity of the cascaded system
and the total installed capacity in Norway (32 257 MW at
the beginning of 2019 [14]), here referred to as the system
scaling rate, is used to scale the capacities for the rest of
the generation units and cables in the three-area system. The
installed capacity of the offshore wind area and the wind series
used in the case study is based on wind data from Denmark,
found in [15], and scaled to match the total offshore wind
capacity provided by Denmark, Germany and the Netherlands
in the North Sea. The wind farms in the offshore wind area are
clustered together as one big wind farm, with a total installed
capacity of 172 MW after it is scaled down with the system
scaling rate. The thermal area contains 104 thermal generators,
divided into five groups after the primary-fuel; fossil gas,
fossil hard coal, lignite, nuclear and fossil oil generators. The
ramping capabilities, installed capacity and marginal, startup,
and shutdown costs are based on operating thermal generators
in Germany and the Netherlands [16], [17]. The total capacity
of the thermal area is 921 MW after scaling. The three-area
system is connected through two HVDC cables, where the

Fig. 2. The continuous-time load profiles of thermal and hydro areas scaled
by the value of the peak load (left axis) together with the continuous-time
wind power series for the offshore wind area (right axis).

hydro and the thermal area are connected by a 63 MW cable
and the offshore wind area and the thermal area are connected
by a 172 MW cable. The capacity of the cable connecting
the thermal and the hydro area is based on the total installed
capacity of the interconnectors between Norway and mainland
Europe today [18], [19], including the 1400 MW Nordlink
cable, which will be installed during 2020 [20]. This results
in 63 MW of transmission capacity after it is scaled down with
the system scaling rate. The interconnector capacity between
the thermal area and the offshore wind area is assumed to
be equal to the installed capacity of the offshore wind area,
to ensure no limitations on the utilization of the possible
offshore wind power production. The time horizon is set to
24 hours, with hourly time intervals in the continuous-time
model. The discrete-time model has quarterly time intervals
but hourly commitment decisions. The case study is based on
data from 22/4-2019 where the reservoir volume in Norway
was at 31.6%, its lowest during 2019 [21]. Fig. 2 shows the
wind series for the offshore wind area and the load profiles
for the demand in the other areas. For the thermal area, it is
assumed that the peak load is 85% of the installed capacity,
which implies a peak load of 783 MW. The hydro area has a
peak load of 400 MW which is 75% of the installed capacity.
The load profiles are based on data from Nord Pool [22]
and ENTSO-E [23]. The offshore wind area has a peak wind
production of 163.54 MW, where the wind series is based
on data from [15]. The continuous time load and wind series
are calculated from the data by a least-squares error fit to the
Bernstein polynomials. For the piece-wise constant load and
wind series, the average quarterly values are used.

B. Continuous-time and discrete-time model comparison

Both the discrete-time model and the continuous-time model
are solved to optimality, meaning an absolute mip-gap of 0%
was reached. The discrete-time model was solved within 80
sec., while the continuous-time model used 2 378 sec. to reach
optimality on a single core 2.4 GHz machine. A breakdown
of the objective function costs is listed in Table I.



Fig. 3. Power flow on the HVDC cable from the hydro area to the thermal
area.

For the thermal area, the discrete-time model schedules 51
generators to be committed during the whole optimization
horizon. All fossil hard coal, lignite and nuclear generators
are operating to cover the base load, while three fossil gas
generators and zero oil-fired generators are committed. Six
additional gas-fired generators are committed to meet the net-
load variations in the continuous-time model. This result high-
lights that the continuous-time model sees the need to commit
extra flexible units to cover sub-hourly net-load variations and
peaks. This results in a 3.68% higher thermal cost and a 2.12%
higher scheduled thermal production than in the discrete-time
model. From Fig. 3 it can be seen that the power flow from the
hydro area to the thermal area is higher for the discrete-time
model during periods when the total load of the system is high,
especially at the end of the scheduling period. This results in
a 3.15% higher scheduled hydropower production and 2.15%
higher hydropower related costs in the discrete-time model.
Also note the rapid flow change in hour 23 in the discrete-
time model caused by the drop in wind power production,
which is not seen in the continuous-time solution. It is clear
that such an abrupt change in flow is either infeasible or very
costly when thermal generation and line flow continuity is
enforced. The offshore wind power utilization is high entire
scheduling period for both models, though a small amount of
wind power is curtailed in the continuous-time model. Overall,
the total cost of the system will be higher for the continuous-
time model, with a 3 774.6 e /day (0.53%) increase compared
to the discrete-time model.

TABLE I
COMPARISON OF THE TOTAL SYSTEM COSTS. ROW 3-5 REPRESENTS THE

COST OF LINE 1-3 IN (37), RESPECTIVELY.

Cost Discrete-time Continuous-time

Objective value [e ] 713 092.4 716 867.1
Hydro related costs [e ] 388 795.7 380 623.0
Thermal related costs [e ] 324 296.7 336 241.8
Curtailment and shedding costs [e ] 0.0 2.3

Fig. 4. Load shedding when the continuous-time model is solved with the
fixed commitment solution from the discrete-time model.

C. Continuous-time simulator for real-time operation

To investigate where the discrete-time model overestimates
the flexibility of the system, the continuous-time model is used
as a simulator for real-time operation. The unit commitment
decisions from the discrete-time model is used as input to
the continuous-time model to identify in which periods the
discrete-time model overestimates the system flexibility. From
Fig. 4, it can be seen that the discrete-time model fails to
commit enough units in periods when there are rapid changes
in load and wind power. In these periods, an imbalance
between the generated power and the actual load will occur,
which will manifest as load shedding in the presented model.
In total, 55 MWh load shedding will take place during the
entire scheduling period, where the largest amount occurs in
the hydropower area. This means that 0.22% of the total
load will not be covered by the committed generators. In
real system operations, the system operators need to activate
reserves in these periods to balance the power system.

IV. CONCLUSION

We assess the structural imbalances in the interconnected
North European power system by solving a continuous-time
hydrothermal model with offshore wind power, and compare
the results to an analogous discrete-time model. The increased
cost of balancing the sub-hourly variations in the net-load
was found to be 0.53% of the discrete-time model system
costs per day. This cost increase is due to the overestimation
of the system flexibility in the discrete-time model. The
specific periods where the discrete-time model formulation
overestimates the system flexibility were pinpointed by fixing
the binary unit commitment decisions of the continuous-time
model to be equal to the optimal discrete-time commitment
solution. This resulted in a total of 55 MWh of load which
could not be covered by the committed units and represents
an additional requirement for fast system reserves that are not
needed in the continuous-time solution.
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Stochastic Flexibility Coordination in Hybrid
Hydro-Thermal-Wind Power Systems
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Abstract—Using flexible resources to efficiently balance the
fluctuations of variable renewable energy production is a crucial
challenge for the operation of modern power systems. However,
deterministic imbalances caused by the discrete day-ahead elec-
tricity market structures also takes away a substantial part of the
balancing resources. This paper develops a stochastic continuous-
time optimization model for coordinating the flexible operation of
a hybrid power system with hydropower and thermal generation
to compensate the uncertainty and variability of wind power in
the system. The continuous-time model captures the sub-hourly
variations of the wind power and load and accurately models the
ramping capability of the system while enforcing a continuous
power balance on the system. When compared to the prevailing
hourly discrete-time model on a Northern European test system,
the hydropower resources in the continuous-time model provides
ramping flexibility to a greater extent. This helps the hybrid
power system stay in balance during hours with quick ramping
in the net-load but slightly less hydropower energy is produced.

I. INTRODUCTION

A. Background and Literature Review

THE transition from traditional power systems dominated
by conventional power generation to hybrid energy sys-

tems with significant amounts of variable renewable energy
sources (VRES) is well underway in many power systems
around the world. Such a fundamental shift is an important part
of eventually reaching a zero net-emission and climate-neutral
society, which is currently the stated long-term goal of the
European Union [1]. There are several new challenges related
to operating a hybrid system, mainly related to the variability
of the renewable resources. The optimal coordination between
different resources to mitigate the low flexibility of VRES
is a central issue, which requires detailed modelling of the
responsiveness of each generation type to fairly estimate the
system flexibility. The stochastic nature of VRES must be
considered in the scheduling of production and reserve capac-
ity, as forecast errors will inevitably cause deviations between
scheduled production and actual net load. Such imbalances can
be modelled through stochastic optimization techniques, and
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are an essential driver behind the advancement of stochastic
scheduling models in the last decades [2].

In addition to the issue of resource flexibility scarcity,
hybrid systems are faced with the challenge of adapting to the
current electricity market structure to handle ramping scarcity
in real-time balancing. Structural imbalances are created by
the granularity of the electricity markets [3], [4]. The day-
ahead electricity markets in Europe typically have a time
resolution of 15, 30, or 60 minutes, which results in piece-
wise constant production schedules for each time interval after
the market is cleared [5]. As the power output of VRES can
change quickly within the span of a few minutes, reserved
flexible resources must be used to balance high-ramping events
even if they are anticipated in the forecasts. Another factor
which could increase structural imbalances is increased HVDC
transmission capacity between synchronous systems [6]. This
effect reduces the number of flexible resources available to
balance uncertain imbalances, causing additional strain on
the system. Regulatory changes such as finer market trading
granularity could alleviate some of the structural imbalances
[7], though moving from trading energy to power profiles
should be considered [8].

An example of a large hybrid system is the interconnected
power system in Northern Europe, which contains flexible
hydropower in Norway with large reservoirs, conventional
thermal generation in Continental Europe, and considerable
emerging offshore wind power resources in the North Sea [9].
The growth in HVDC transmission capacity from Norway to
continental Europe and Great Britain increases the potential for
utilizing the hydropower flexibility to help balance the larger
system. The operational planning of hydrothermal systems has
been investigated over several decades, resulting in various
well-established models ranging from long-term scheduling
[10], [11] to medium-term [12] and short-term operation [13].

B. Contribution and Paper Structure

Understanding the interaction between flexible resources,
conventional thermal generation, and VRES on a system
scale is of the utmost importance when it comes to efficient
balancing of both structural and stochastic imbalances. There
is need of a holistic approach to the complicated issue of
dealing with these types of imbalances at the same time, and
new modelling tools are required to evaluate the flexibility
resources and limitations intrinsic to the system. In this
context, this paper presents a novel stochastic continuous-time
optimization model for optimal coordination of hydrothermal
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flexibility to compensate the uncertainty and variability of
VRES. Continuous-time optimization for power system op-
eration was initially developed in [14], which models time-
dependent input parameters and decision variables as contin-
uous and smooth functions of time. Since a continuous power
balance is enforced instead of an average energy balance, the
approach internalizes the structural imbalances of the system.
Stochastic multi-stage [15], [16] and multi-fidelity [17], [18]
continuous-time models have been formulated previously in
the literature. The model presented in this work builds on
our previous formulation of hydrothermal coordination in
[19], [20] to formulate a two-stage stochastic reserve pro-
curement and scheduling model for a hybrid power system
with hydro, thermal and wind power generation, an example
of which is based in the Northern European power system.
The model addresses both the resource and market flexibility
issues caused by high variability and quick ramping of the
offshore wind power. The mathematical formulation of the
proposed model represents the short-term operation of a hybrid
system comprising cascaded hydropower, thermal generation
and wind power. The model considers system dispatch under
wind power uncertainty, followed by real-time balancing. The
model enables the assessment of additional system operation
costs associated with structural imbalances in the system. This
assessment is based on comparing the continuous-time model
with an analogous stochastic discrete-time model on a sim-
plified equivalent data description of the Northern European
power system.

The rest of this paper is organized as follows: the proposed
stochastic continuous-time flexibility coordination model is
formulated in Section II, the cases study based on the Northern
European power system is presented in Section III, and the
conclusions are drawn in Section IV.

II. THE PROPOSED FLEXIBILITY COORDINATION MODEL

A two-stage continuous-time unit commitment and re-
serve procurement model for a hydrothermal system with
offshore wind power joined by HVDC cables is formulated
in Sections II-A to II-C. The fundamental properties of the
continuous-time framework with an explanation of the notation
is found in Appendix A. The goal of the model as a whole is to
find the generation schedule and reserve capacity procurement
for both the thermal and hydropower units which gives the
lowest expected operational costs given the load and uncer-
tainty in wind power. The most important first-stage decisions
are thus to determine the unit commitment, production and
reserve capacity schedules of all units, and the scheduled flow
on the cables between the areas. The uncertainty in wind
power generation is realized in the second stage, and so the
procured reserve capacity from the first stage is activated to
balance the deviation. Respecting the physical constraints of
the system and individual units, such as ramping on thermal
units and the water balance of the hydropower system, is
essential in both the scheduling and balancing stages. The
wind power is considered to be known for a short period at
the beginning of the optimization horizon before branching
into several possible scenarios, giving rise to the two-stage

formulation. The variables of the model are written as lower
case Latin letters, and variables and other symbols in bold
signify a column vector representing the coefficients of the
underlying Bernstein polynomials.

A. Objective Function

The objective function Ω for the stochastic model is to min-
imize the total expected cost of operating the interconnected
hydrothermal system. It is defined for the time intervals h ∈ T
of length δh, hydropower units m ∈ M, thermal units j ∈ J ,
and balancing scenarios s ∈ S . The first-stage variables are
expressed with Bernstein polynomials of degree three, while
the second-stage variables are of fidelity five:

minΩ =
1

4
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δh
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(
Cbqb

mh + Coqo
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∑
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j su

th
jh + C th
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+
∑

s∈S
πs∆Ωs. (1)

The first line of the objective is the total incurred spillage
(qo

mh) and bypass (qb
mh) penalties, and the scheduled cost of

the thermal generation (gjh). As in [17], an explicit cost for the
reserved hydropower capacity (rhyd,↑/↓

mh ) and thermal capacity
(rth,↑/↓

jh ) is added in the second line. The cost is assumed to be
constant over the optimization horizon and equal for upward
and downward reserve. The resulting objective function cost
has been calculated by integrating the time-varying continuous
curves of third degree over the whole optimization horizon by
use of eq. (16) in Appendix A. The startup (suhyd

mh, suth
jh) and

shutdown (sdhyd
mh, sdth

jh) costs of the thermal and hydropower
plants are summed up in the third and fourth lines, while
the last term in line four of eq. (1) is the expected cost of
the balancing stage. The cost ∆Ωs is the sum of penalties
and operational cost of the thermal and hydropower plants in
scenario s with probability πs:

∆Ωs = zs +
1
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)

+
∑

a∈A

(
Cshdyshd
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)]
(2)

The expected future cost of the system (zs) and the de-
ployment cost of the activated hydropower reserves (∆p±

smh)
make up the terms in the first line of eq. (2). The cost
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of activating hydropower reserves ρhyd is the same in both
directions and considered equal for all the hydropower units.
The operational and deployment cost of the thermal reserves
(∆g±) is found in the second line, where the cost coefficients
C±

j are related to the marginal cost Cj of the thermal units so
that C−

j < Cj < C+
j . This means that a deployment cost is

paid when reserves are deployed in either direction in addition
to the change in operational cost of the thermal units. Line
three and four of the second-stage objective function apply
the same cost structure to changing the bypass (∆qb±

smh) and
spillage (∆qo±

smh) flows in the second stage. This is done to
discourage the model from unnecessary changes in the bypass
and spillage decisions in the balancing stage. Finally, the last
line of eq. (2) is the cost of shedding load (yshd

ah ) and curtailing
wind (ycrt

ah) in all areas a ∈ A.

B. First-Stage Constraints

The first-stage constraints model the unit commitment de-
cisions, reserve procurement, and scheduling decisions of the
interconnected system using a continuous-time formulation of
third degree.

1) Thermal production constraints: All thermal generators
j ∈ J are scheduled for time intervals h ∈ T according to
the following unit commitment and ramping constraints:

gjh + rth,↑
jh ≤ Gmax

j uth
jh (3a)

gjh − rth,↓
jh ≥ Gmin

j uth
jh (3b)

0 ≤ r
th,↑/↓
jh ≤

(
Gmax

j −Gmin
j

)
1 (3c)

uth
jh =

[
uth
jh, u

th
jh, u

th
j,h+1, u

th
j,h+1

]ᵀ
(3d)

F0(gjh) = 0, h 6= N (3e)

F1(gjh) = 0, h 6= N (3f)

suth
jh − sdth

jh = uth
j,h+1 − uth

jh (3g)

−R↓
jh ≤ 1

δh
K

ᵀ
3 · gjh ≤ R↑

jh (3h)

R↑
jh = R↑

j

[
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jhsu
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jh, u
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j,h+1

]ᵀ
(3i)

R↓
jh = R↓

j

[
uth
jh, u

th
jh + γ↓

jhsd
th
jh, u

th
j,h+1

]ᵀ
(3j)

uth
jh ∈ {0, 1} (3k)

0 ≤ suth
jh ≤ 1 (3l)

0 ≤ sdth
jh ≤ 1 (3m)

{suth
jh, sd

th
jh} of SOS type 1 (3n)

Theses constraints are primarily based on the formulation
of [14]. The thermal generation gjh and the procured reserve
capacity r

th,↑/↓
jh in the upward and downward direction must

obey the minimum and maximum generation limits of the gen-
erator in eqs. (3a) to (3c). Note that the convex hull property in
eq. (13) in Appendix A is used to ensure that the continuous
curves represented by the coefficient vectors are within the
generator bounds. The binary commitment variable uth

jh can
be interpreted as the commitment status of the generator at the
beginning of interval h, and is incorporated into the generation
limit constraints by the vector in eq. (3d). Note that this

formulation requires N + 1 commitment variables for each
generator, as the commitment status at the end of the horizon
is included. The formulation allows the thermal units to use the
whole interval h to smoothly start up or shut down production,
which is necessary since the generation trajectory is required
to be C1 continuous in eqs. (3e) and (3f). The startups (suth

jh)
and shutdowns (sdth

jh) of the generators are counted in eq. (3g).
The ramping constraints for the generators is formulated in
eq. (3h), which is based on taking the derivative of the thermal
production trajectory gj(t) and using the relation in eq. (14) in
Appendix A. The upper and lower ramping trajectory bounds
are formulated in eqs. (3i) and (3j). The commitment variables
are used to make a tight formulation of the ramping constraint.
Extra care must be taken for the middle vector component to
ensure that the ramping constraints do not interfere with the
upper and lower generation bounds when a unit is starting up
or shutting down. Additional ramping capability γ

↑/↓
jh R

↑/↓
j is

used to relax the ramping constraint in this case, and must
satisfy γ

↑/↓
jh ≥ 3Gmin

j

δhR
↑/↓
j

−1 for the unit to be able to start up or

shut down. The startup and shutdown variables are formulated
as continuous variables which are part of a special ordered set
(SOS) of type 1 in eqs. (3l) to (3n), which means that at most
one of the variables for each j ∈ J and h ∈ T can be nonzero.

2) Hydropower constraints: The constraints governing the
management of the hydropower plants and reservoirs m ∈ M
for time intervals h ∈ T are given in eqs. (4a) to (4v) and
based on the formulation in [19]:

vm0 = V 0
m (4a)
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1

4
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F0(qb
mh) = 0, h 6= N (4l)

0 ≤ wmh ≤ Vm1 (4m)

0 ≤ qd
mh ≤ Qd

m1 (4n)

0 ≤ qb
mh ≤ Qb

m1 (4o)
0 ≤ qo

mh (4p)

0 ≤ qrel
mh (4q)

0 ≤ r
hyd,↑/↓
mh ≤

(
Pmax
m − Pmin

m

)
1 (4r)

uhyd
mh ∈ {0, 1} (4s)

0 ≤ suhyd
mh ≤ 1 (4t)

0 ≤ sdhyd
mh ≤ 1 (4u)
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{suhyd
mh, sd

hyd
mh} of SOS type 1. (4v)

The volume balance of the reservoirs are kept by eqs. (4a)
and (4b), where the volume variables vmh is the volume at
the start of interval h. The change in volume over a time
interval is found by integrating the net flow into the reservoir,
qnet
m (t), by using the relation in eq. (16) in Appendix A .

The time-varying volume within time interval h is found by
using eq. (15) in Appendix A, and is described by wmh in
eq. (4c). Equations (4d) to (4f) describes how water can flow
through the three different waterways between reservoirs. It is
possible to discharge water through the turbine (qd

mh), bypass
water around the power plant (qb

mh), or spill water out of the
reservoir (qo

mh), see Figure 1 for an illustration. All waterways
may lead to different downstream reservoirs or directly out
of the system. The regulated flow into the reservoir (qin

mh) is
found by summing up the discharge, bypass and spillage flows
from the connected upstream reservoirs contained in the sets
Id
m, Ib

m, and Io
m, respectively. It is necessary to introduce the

water released from the reservoir (qrel
mh) to properly model the

unregulated inflow Iumh which enters the system between the
reservoir and plant. Regulated inflow Imh enters directly into
the reservoirs and may therefore be stored. The power output
of the generator pmh is approximated as linearly related to
the discharged water through the turbine in eq. (4g). Due to
the large problems size we assume a concave hydropower
production function, see [13] for more accurate treatment.
The unit commitment and startup/shutdown constraints are
found in eqs. (4h) to (4j), which includes the spinning reserve
capacity procurement r

hyd,↑/↓
mh and the binary commitment

status uhyd
mh. Note that the upper and lower generation limits of

the hydropower units are not modelled in the same way as the
thermal units in eqs. (3a) and (3b). Since starting a hydropower
unit usually takes less than a minute, the hydropower produc-
tion trajectories are not required to be continuous over the time
intervals. Consequently, the hydropower units are allowed to
instantaneously start up or shut down production from one
interval to the next. The bypass and spillage variables are
still forced to be C0 continuous in eqs. (4k) and (4l). The
remaining constraints from eqs. (4m) to (4v) are the imposed
physical bounds for the variables.

Fig. 1. Depiction of the different waterways for discharging, bypassing and
spilling water between reservoirs. Natural inflow enters the system in two
different ways, either into the reservoir (triangle) or directly into the main
tunnel of the plant (rectangle).

3) System constraints: System wide constraints for the
areas a ∈ A connected by HVDC transmission lines l ∈ L

for all time intervals h ∈ T are the following:
∑

m∈Ma

pmh +
∑

j∈Ja

gjh −
∑

l∈L
Glaf lh = Lah −Wah (5a)

− Fmax
l 1 ≤ f lh ≤ Fmax

l 1 (5b)

F0(f lh) = 0, h 6= N (5c)

F1(f lh) = 0, h 6= N (5d)∑

j∈J
F0(r

th,↑/↓
jh ) = 0, h 6= N (5e)

∑

m∈M
F0(r

hyd,↑/↓
mh ) = 0, h 6= N. (5f)

The load Lah and forecasted wind power Wah are C1

continuous input parameters, and must be balanced by the total
thermal and hydropower generation in each area in addition
to the imports and exports f lh on the transmission lines in
eq. (5a). The coefficient Gla is either ±1 or 0, and dictates
the positive flow direction on line l if it is connected to area a.
Equation (5b) bounds the maximal and minimal flow on each
transmission line, and eqs. (5c) and (5d) forces the line flow
to be C1 continuous. Even though the individual hydropower
production variables are discontinuous over the time intervals,
the C1 continuity of all other components of the power balance
constraint force the sum of the hydropower production to also
be C1 continuous. The total reserved thermal and hydropower
capacity in both directions is also required to be C0 continuous
in eqs. (5e) and (5f).

C. Second-Stage Constraints

The uncertain wind power generation is realized in the
second stage, and the reserved capacity of the generators of the
system is deployed to keep the system in balance. The first
h0 time intervals of the optimization horizon is considered
deterministic with known wind power output, and the second-
stage variables are therefore only defined for the time periods
h ∈ {h0, . . . , N} ≡ Tscen. The second-stage variables are
formulated as deviations from their first-stage values where
applicable, signified by a preceding ∆ symbol. The connec-
tion to the first-stage production schedule, reserve capacity
procurement, and unit commitment decisions make up the
tightest coupling between the stages. However, the first-stage
water flow and reservoir volume plans also affect the second-
stage hydropower operation, as shown in Section II-C2. The
constraints listed in the following subsections are valid for all
scenarios s ∈ S , and scenario dependent data and decision
variables are marked by a scenario subscript s. The time-
dependent scenario variables are modelled using 5th degree
Bernstein polynomials to capture the fast variations of the wind
power production.

1) Thermal production constraints: The constraints dictat-
ing the change in thermal production as reserve capacity is
deployed are valid for all thermal generators j ∈ J and time
intervals h ∈ Tscen:

−X
ᵀ
3,5 · rth,↓

jh ≤ ∆gsjh ≤ X
ᵀ
3,5 · rth,↑

jh (6a)
1

δh
K

ᵀ
5 ·
(
X

ᵀ
3,5 · gjh +∆gsjh

)
≤ X

ᵀ
2,4 ·R↑

jh (6b)
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1

δh
K

ᵀ
5 ·
(
X

ᵀ
3,5 · gjh +∆gsjh

)
≥ −X

ᵀ
2,4 ·R↓

jh (6c)

F0(∆gsjh) = 0, h 6= N (6d)

F1(∆gsjh) = 0, h 6= N (6e)

∆gsjh = ∆g+
sjh −∆g−

sjh (6f)

0 ≤ ∆g±
sjh (6g)

The deployed thermal reserve power ∆gsjh is bound to
be within the limits determined by the first-stage reserve
procurement in Section II-B1. The elevation matrix X3,5 is
used to lift the first-stage reserve variables to the higher fidelity
of the second-stage variables. Ramping constraints are applied
to the entire second-stage generation in eqs. (6b) and (6c)
which enforce the same upper and lower ramping trajectories
as in the first-stage eqs. (3i) and (3j). The second-stage change
in production is required to be C1 continuous in eqs. (6d)
and (6e), and is explicitly split into positive and negative
parts ∆g±

sjh in eqs. (6f) and (6g) to distinguish upward and
downward reserve activation.

2) Hydropower constraints: The second-stage hydropower
related decisions for all plants m ∈ M and time intervals
h ∈ Tscen are also formulated as deviations from the first-
stage solution governed by the constraints in Section II-B2:

∆vsm,h0
= 0 (7a)

∆vsm,h+1 −∆vsmh =
1

6
δh1

ᵀ ·∆qnet
smh (7b)

∆wsmh = ∆vsmh1+ δhN
ᵀ
5 ·∆qnet

smh (7c)

∆qnet
smh = ∆qin

smh −∆qrel
smh −∆qo

smh (7d)

∆qin
smh =

∑

i∈Id
m

∆qd
sih +

∑

i∈Ib
m

∆qb
sih +

∑

i∈Io
m

∆qo
sih (7e)

∆qrel
smh = ∆qd

smh +∆qb
smh (7f)

∆psmh = ηm∆qd
smh (7g)

−X
ᵀ
3,5 · rhyd,↓

mh ≤ ∆psmh ≤ X
ᵀ
3,5 · rhyd,↑

mh (7h)

F0(∆qo
smh) = 0, h 6= N (7i)

F0(∆qb
smh) = 0, h 6= N (7j)

0 ≤ X
ᵀ
4,6 ·wmh +∆wsmh ≤ Vm1 (7k)

0 ≤ X
ᵀ
3,5 · qd

mh +∆qd
smh ≤ Qd

m1 (7l)

0 ≤ X
ᵀ
3,5 · qb

mh +∆qb
smh ≤ Qb

m1 (7m)

0 ≤ X
ᵀ
3,5 · qo

mh +∆qo
smh (7n)

0 ≤ X
ᵀ
3,5 · qrel

mh +∆qrel
smh (7o)

∆qo
smh = ∆qo+

smh −∆qo−
smh (7p)

∆qb
smh = ∆qb+

smh −∆qb−
smh (7q)

∆psmh = ∆p+
smh −∆p−

smh (7r)

0 ≤ ∆qo±
smh (7s)

0 ≤ ∆qb±
smh (7t)

0 ≤ ∆p±
smh. (7u)

The change in volume and flow between the reservoirs,
eqs. (7a) to (7g), are analogous to the first-stage constraints
eqs. (4a) to (4g). Note that the inflow is deterministic and
is therefore not a part of the second-stage volume and flow
deviation constraints. The change in hydropower production

is constrained to be within the bounds of the procured reserve
capacity in eq. (7h), and the spillage and bypass is forced
to remain C0 continuous in the second stage by eqs. (7i)
and (7j). The total volume, discharge and bypass in the second
stage must still be within their respective physical bounds,
which is ensured by constraining the sum of the first-stage
and second-stage variables in eqs. (7k) to (7m). Similarly,
the total spillage and reservoir release is kept non-negative
by adding eqs. (7n) and (7o). The change in spillage, bypass
and hydropower production are split into positive and negative
parts in eqs. (7p) to (7u). As was the case for the change in
thermal generation, the split of the second-stage hydropower
production variables is done to correctly identify upward and
downward reserve deployment.

3) System constraints: The deviation between realized wind
power and forecasted wind power, ∆Wsah, must be balanced
in the second stage for all areas a ∈ A and time intervals
h ∈ Tscen. In addition, the future expected cost of the system,
zs, is taken into account for all Benders cuts k ∈ K:

zs ≥
∑

m∈M
WVmk(vm,N+1 +∆vsm,N+1) +Dk (8a)

∑

m∈Ma

∆psmh +
∑

j∈Ja

∆gsjh −
∑

l∈L
Gla∆fslh

= −∆Wsah − yshd
sah + ycrt

sah (8b)

− Fmax
l 1 ≤ X

ᵀ
3,5 · f lh +∆fslh ≤ Fmax

l 1 (8c)

F0(∆fslh) = 0, h 6= N (8d)

F1(∆fslh) = 0, h 6= N (8e)∑

m∈Ma

F0(∆psmh) = 0, h 6= N (8f)

∑

m∈Ma

F1(∆psmh) = 0, h 6= N (8g)

0 ≤ ycrt
sah ≤ max{0,∆Wsah} (8h)

0 ≤ yshd
sah (8i)

The future expected cost of the hydrothermal system zs is
defined by the linear Benders cuts k ∈ K in eq. (8a), which
depends on the total final volume of all hydropower reservoirs
in scenario s. The cut coefficients WVmk and constant term
Dk are calculated by the use of long-term hydrothermal
scheduling models that consider the operation of the system
on a time horizon of several seasons, such as [10]. Using
more or less water in a given scenario results in higher or
lower future expected costs according to the cuts. The power
balance in eq. (8b) allows the change in wind to be balanced
by deploying thermal and hydropower reserves and changing
the flow on the HVDC lines. In addition, wind curtailment
ycrt
sah and load shedding yshd

sah are possible options for keeping
the balance. Note that eq. (8h) only allow the curtailment of
wind down to the forecasted wind power value. The total flow
on the HVDC lines are bound by the transmission capacity in
eq. (8c), and is still required to be C1 continuous in eqs. (8d)
and (8e). The C1 continuity of the sum of the hydropower
production is enforced directly by eqs. (8f) and (8g).

4) Initial continuity constraints: The continuity constraints
applied to the second-stage variables in the previous subsec-
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tions do not ensure a smooth transition from the schedule in
the initial deterministic period to the real-time operation in
each scenario. To remedy this, the following constraints based
on eqs. (19) and (20) in Appendix A are added:

∆g
(0)
sj,h0

, ∆g
(1)
sj,h0

= 0 ∀j ∈ J (9a)

∆f
(0)
sl,h0

, ∆f
(1)
sl,h0

= 0 ∀l ∈ L (9b)

∆q
b,(0)
sm,h0

= 0 ∀m ∈ M (9c)

∆q
o,(0)
sm,h0

= 0 ∀m ∈ M (9d)
∑

m∈M
∆p

(0)
sm,h0

,
∑

m∈M
∆p

(1)
sm,h0

= 0. (9e)

Constraint eq. (9a) force the thermal production and ramp-
ing in all scenarios to be continuous at time t = h0 with
respect to the scheduled first-stage production. The other
constraints have a similar effect of enforcing C0 and/or C1

continuity at time t = h0.

III. CASE STUDY

A. System Description

The hydrothermal system used in the following sections is
based on a simplified version of the Northern European sys-
tem. An area containing only hydropower production is con-
nected to a thermal area with an HVDC line, while a third wind
power area is connected to the thermal area. This represents the
coupling of the hydropower-dominated Norwegian system to
the continental European system (Netherlands, Germany and
Denmark) with considerable offshore wind power resources.
A cascaded hydropower topology is used in the hydropower
area, which is based on a real Norwegian watercourse with a
total of 535.3 MW installed capacity divided among 12 linked
reservoir-plant pairs, see [21] for a more detailed description of
the hydropower system. The hydropower area is considered to
represent the total Norwegian hydropower capacity of roughly
32 GW. The thermal units, HVDC cables, and installed wind
power in the rest of the system are scaled down by an
equivalent amount to resemble a miniature Northern European
system. The thermal area consists of 20 units (one nuclear, one
oil, 9 gas and 9 coal) picked from the 2019 update of the IEEE
reliability test system [22]. After scaling the thermal units, a
total of 921.2 MW thermal capacity is located in the thermal
area. The transmission capacity between the hydropower and
thermal areas amounts to 63 MW, while the offshore wind
power capacity is 172 MW.

B. Input Data and Wind Power Scenario Generation

The Benders cut description used in eq. (8a) was calculated
by the long-term hydropower scheduling model in [10] by
optimizing the use of the hydrothermal system over a period
of 156 weeks, and the initial volumes of every reservoir is
set to 60% of its maximal volume. Inflow to the hydropower
system are based on historic inflow data during winter, and
is considered to be deterministic and is kept as a discrete
hourly time series in the continuous-time model. The thermal
marginal costs Cj were calculated based on the data in [22],
and the same is true for the thermal startup and shutdown costs.

The other cost parameters of the objective function are listed
in Table I. The hydropower reserve capacity and activation
costs are 40% and 30%, respectively, of an estimated "marginal
cost" for the hydropower system based on the coefficients of
the binding cut when the end volume is assumed to be the
same as the initial volume. Similarly, the thermal reserve costs
parameters are based on the marginal costs, in accordance with
[17].

TABLE I
OBJECTIVE FUNCTION COST PARAMETERS

Cost parameter Symbol Value

Bypass Cb 100 e/Mm3

Spillage Co 200 e/Mm3

Bypass change Cb± (1± 0.1)Cb

Spillage change Co± (1± 0.1)Co

Hydropower startup, shutdown C
hyd
m , C

hyd
m 100 e

Hydropower reserve capacity K
hyd
m 9 e/MWh

Hydropower reserve activation ρhyd 6.75 e/MWh
Thermal reserve capacity K th

j 0.4Cj

Thermal reserve activation C±
j (1± 0.3)Cj

Load shedding Cshd 4500 e/MWh
Wind curtailment Ccrt 60 e/MWh

The generated wind power production scenarios, see Fig-
ure 2, are based on forecasted and realized wind power time
series from western Denmark from October 2019 to April 2020
[23]. The stochastic model has a 6 hour period in the beginning
which is deterministic, while the remaining 24 hours have
uncertain wind power production. The piece-wise constant
forecast error for each day was calculated in 15 min resolution,
and this data was then fitted to a multivariate Gaussian kernel
density function of 96 random variables. 200 equiprobable
discrete-time scenarios of 15 minute resolution and 24 hour
length was generated from the estimated distribution and added
to the discrete-time wind power forecast. Values exceeding
the wind power capacity or falling below zero were truncated
to these limits. The scenarios were then reduced down to
20 by the standard backward scenario reduction algorithm
[24]. The deterministic wind power data is based on realized
wind power from 18:00 to 24:00 on October 13th, while the
forecasted wind is based on the forecasted wind power for the
following day. The continuous-time data is created by using
the discrete-time data as input to a constrained least square
error optimization program with the Bernstein coefficients as
variables. Continuity constraints and bounds on the coefficients
are included in this program, and all scenarios are forced
to have the same value and derivative as the forecast at the
beginning of the stochastic period.

The load for the hydropower area and thermal area is
considered deterministic for the whole period, and is calculated
based on load data from Norway and Germany from January
2nd 18:00 to January 3rd 24:00 in 2020 [25], [26]. The load
series for the two areas are scaled down to have peaks of 85%
of the installed thermal and hydropower capacity, respectively.

C. Model Results
The stochastic continuous-time hydrothermal model is im-

plemented and solved using Pyomo and CPLEX 12.10. The
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Fig. 2. Wind power input data used in the stochastic continuous-time model.
The wind power production in the first 6 hours are deterministic (blue line),
while the forecasted wind power (red line) and wind power scenarios (black
lines) apply for the following 24 hours.

extensive form of the stochastic model contains about 680k
constraints and 420k variables, including 980 binary and 948
SOS 1 variables. A MIP gap of 0.09% (768 e) was reached
after 72 hours on a machine with 24 CPUs at 3.50 GHz and
128 GiB RAM, though a reasonable gap of 0.78% is found
after 16 hours. The long calculation time can likely be reduced
by employing decomposition techniques instead of solving the
extensive form directly. Such performance enhancement issues
are not the focus of this paper, though it is an important factor
in broadening the appeal of stochastic models in general. For
comparison, an hourly stochastic discrete-time model based on
the same input data was also solved. This model is significantly
smaller with 102k constraints and 74k variables (960 binary
and 928 SOS 1), and can be solved to a MIP gap of 100 e,
or 0.01%, in 10 hours. This discrete-time model is equivalent
to the continuous-time model when using Bernstein polyno-
mials of degree zero in both stages and omitting continuity
constraints.

TABLE II
OBJECTIVE FUNCTION COST COMPARISON. THE LAST COLUMN IS THE
COST DIFFERENCE BETWEEN THE MODELS WITH THE DISCRETE-TIME

MODEL AS REFERENCE.

Cost Disc.-time Cont.-time Change

Total objective [e] 839 172.4 842 592.4 3 420.0
Hydro reserve capacity cost [e] 9 988.2 11 199.7 1 211.5
Thermal reserve capacity cost [e] 6 801.0 7 732.3 931.3
Hydro operational costs [e] 525 803.5 524 251.1 -1 552.4
Thermal operational costs [e] 295 337.2 297 696.0 2 358.8
Load shedding [e] 0.0 407.7 407.7
Wind curtailment [e] 1 242.5 1 305.6 63.1

An objective function cost breakdown comparing the mod-
els is listed in Table II, which shows that the total system
cost in the continuous-time model is 3 420 e higher than
in the discrete-time model, corresponding to an increase of
0.4% of the total system costs. Note that the cost difference
at optimum is somewhere in the range 2 652 e to 3 520
e given the absolute MIP gaps of both solutions. The cost
increase is mainly due to more procured reserve capacity on
both hydro and thermal units, slightly higher wind curtailment
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Fig. 3. The left and right columns show selected results of the discrete-time
and continuous-time models, respectively. The red lines represent the first-
stage schedule and black lines show the second-stage adjustments. The blue
dashed lines are the boundaries of the second-stage solution, which is the
procured reserve capacity for hydropower and thermal generation, and the
transmission capacity for the flow on the HVDC line. Note that positive flow
on the line is out of the hydropower area.

and load shedding, in addition to increased operational costs,
which include both first-stage scheduling costs and expected
second-stage deployment costs. If the continuous-time load
and wind power series are assumed to be the actual real-time
values of the data, the objective cost increase is the cost of
implicitly balancing all structural imbalances in the system in
all considered realizations of the uncertain wind power. The
stochastic discrete-time model overestimates the flexibility of
the system, as it is able to utilize more hydropower and less
thermal generation compared to the continuous-time model.
The amount of expected curtailed wind power is 5.1% higher
in the continuous-time model, which again suggest an overes-
timation of the flexibility and wind power absorption potential.
The hydropower is the major contributor of balancing in the
system, providing about 62% of the upward reserve capacity
and 51% of the downward reserve capacity in the continuous-
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time model. 12.3% (21.8 MWh) of the expected downward
regulation energy is also provided by wind curtailment in the
continuous-time model. Compared to the discrete-time model,
the continuous-time model procures 9.8% and 14.5% more
total reserved capacity in the upward and downward directions,
respectively. The increase in upward reserve capacity is split
fairly equally between the hydropower (53%) and thermal
units, while most (66%) of the additional downward reserve
capacity is covered by the hydropower units.

The sum hydropower and thermal production in the system
in the two models, as well as the flow on the HVDC line,
are shown in Figure 3. The flow on the line between the
hydropower and thermal areas shows that the hydropower
area imports close to the maximal transmission capacity from
hour 6 to 12 while providing upward balancing reserves in
both models. The activation of hydropower reserves in hour
6 to balance the lowest wind power scenario in Figure 2
is handled very differently in the two models, which shows
the importance of handling the sub-hourly variations. The
discrete-time model rapidly increases hydropower production
and export to the thermal area in the following hours 12 to 16
to keep thermal generation low. These high-ramping hours are
handled differently in the continuous-time model, as both the
thermal units and line flow are smoothly ramped up to meet
the continuously increasing net load. The same situation arises
towards the end of the horizon when load is decreasing while
wind power production is picking up. This means that the
hydropower provides ramping flexibility in addition to cheap
energy to the system in the continuous-time model.

IV. CONCLUSION

A stochastic continuous-time hydrothermal model with un-
certain wind power was presented in this paper to model both
stochastic and structural imbalances in the power system. The
case study of operating a simplified Northern European system
shows that the total objective function cost is increased by
0.4% in the continuous-time model compared to an hourly
discrete-time model. This represents the additional expected
cost of maintaining a power balance compared to an hourly
energy balance with a more accurate model of the system flex-
ibility. The continuous-time model more accurately estimates
the flexibility of the combined system, which results in using
the hydropower resources for alleviating ramping scarcity in
the thermal system to a greater extent. The presented model
serves as a benchmark for optimal coordination of flexible
hydropower units, conventional thermal generation, and inter-
mittent wind power generation when it comes to scheduling
and subsequently balancing an interconnected system.
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APPENDIX
FUNDAMENTAL PROPERTIES AND NOTATION

For further reading and references concerning the proper-
ties mentioned here, the reader is directed to [14]. In the
continuous-time framework, time-dependent input data and
variables are described by Bernstein polynomials of a finite
degree n. There are n+ 1 of these polynomials:

Bin(t) =

(
n

i

)
ti(1− t)n−i, i ∈ {0, 1, ..., n}, (10)

and they form a basis for polynomials of positive degree
less than or equal to n on the time interval t ∈ [0, 1]. Vector
notation simplifies further definitions, denoted using bold text:

Bn(t) =
[
B0n(t), B1n(t), ..., Bnn(t)

]ᵀ
. (11)

A continuous curve x(t) on the interval t ∈ [0, 1] can be
constructed by finding the vector of appropriate polynomial
coefficients x such that

x(t) = x
ᵀ ·Bn(t). (12)

The curve x(t) is easily bounded by the use of the convex
hull property, which guarantees that the curve is confined
within the limits of the coefficients:

x ≤ xmax1 ⇒ x(t) ≤ xmax. (13)

Note that 1 denotes a constant vector of ones with appro-
priate length, which is used to describe the constant xmax

in polynomial space since 1
ᵀ · Bn(t) = 1. When using the

representation in eq. (12), the derivatives and integrals of x(t)
can be described by the linear relationships

dBn(t)

dt
= Kn ·Bn−1(t) (14)

∫
Bn(t)dt = Nn ·Bn+1(t), (15)

where Kn and Nn are matrices of size (n + 1) × n and
(n+ 1)× (n+ 2), respectively. Note that the definite integral
over the whole interval reduces down to

∫ 1

0

Bn(t)dt =
1

n+ 1
1. (16)

As the Bernstein polynomials form a basis, Bernstein poly-
nomials of degree n can be represented as Bernstein polyno-
mials of any higher degree m by using the (n+1)× (m+1)
elevation matrix Xnm:

Bn(t) = XnmBm(t), n ≤ m. (17)

The definition in eq. (12) can be extended to form a piece-
wise polynomial representation of the curve x(t) on a longer
time horizon t ∈ [0, N ]. The time horizon is first discretized
into several time intervals h ∈ T of length δh, then the curve
can be represented as

x(t) = x
ᵀ
h ·Bn

(
t− th
δh

)
, th ≤ t ≤ th+1. (18)

Here, th represents the start time of interval h. To enforce
continuity on x(t) in the change from interval h to h+1, two
functions F0 and F1 are defined as follows:

F0(xh) = x
(n)
h − x

(0)
h+1 (19)

F1(xh) = x
(n)
h − x

(n−1)
h − x

(1)
h+1 + x

(0)
h+1, (20)

where the notation x
(j)
h represents the jth vector component.

The constraints F0(xh) = 0 and F1(xh) = 0 impose
continuous values and derivatives on x(t) over the interval
change, respectively.

The time-dependent input data and decisions of the
continuous-time model formulated in Section II are based
on the definition in eq. (18) and the properties in eqs. (13)
to (17) as well as the continuity requirements of eqs. (19)
and (20). The decision variables of the model become the
vector coefficients of the Bernstein polynomials in addition to
binary unit commitment variables, and a mixed integer linear
problem formulation is recovered.
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Appendix A: Hydropower System
Topology

The same cascaded hydropower system has been used in all of the papers included
in this thesis. The system is based on the Nea-Nidelv watercourse, primarily
located in Trøndelag in Norway and stretching over the Swedish border. This
watercourse has been regulated for a long time, with the first power station being
built at the start of the 20th century. Figure A.1 shows a schematic representation
of the cascaded system as implemented in the optimization models. The system
was chosen since it is complex enough to exhibit interesting behavior, as it consists
of both large and small interconnected reservoirs with different dynamics. On
the other hand, the system is simple enough to be solved efficiently in most
cases. Using the same system across all models also gives a better framework for
comparing results.
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Figure A.1: The cascaded hydropower topology used as a test system, figure
originally published in [108]. Reservoirs are shown as triangles and power stations
as rectangles. A bypass gate from M4 to M3 is marked by a dashed line, while
the main water routs are shown as black solid lines.
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Appendix B: Robust Optimization

This appendix provides a short introduction to two-stage robust optimization
and how it can be reformulated and solved efficiently.

B.1 The Two-Stage Robust Formulation

A two-stage stochastic optimization program generally aims at minimizing the
expected value of the first-stage and second-stage cost functions f and g [57]:

min
x∈X

[
f(x) + min

y∈Y(x,z)
Ez∈Ω

(
g(y)

)]
. (B.1)

The first-stage decisions x are taken before the uncertain variables z are realized,
while the second-stage recourse decisions y are made after the actual realization
of the stochastic process. The decisions are bounded by the constraints in the
sets X and Y(x, z), where the second-stage decisions are affected by both x and z.
The random variables are in turn contained within the known probability space
Ω. A standard way to solve the stochastic program in practical terms is to create
a finite set of scenario realizations S of the uncertain variables by sampling from
Ω. The solution of eq. (B.1) can then be approximated by solving the extensive
form of the problem:

min
x∈X

ys∈Y(x,zs)

[
f(x) +

∑

s∈S
πsg(ys)

]
. (B.2)

Here, πs is the probability of the sampled scenario s ∈ S occurring. The dis-
cretization of Ω into a finite set of scenarios allows the expected value to be
represented by a summation. Equation (B.2) may be solved directly as a single
optimization program or by decomposition techniques. In contrast to stochas-
tic optimization, two-stage robust optimization tries to minimize the cost of the
worst-case realization of the uncertainty [65]:

min
x∈X

[
f(x) + max

z∈Z
min

y∈Y(x,z)
g(y)

]
. (B.3)

Protecting against the edge cases of the uncertainty realization is likely to give an
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overly conservative solution, as the model considers only extreme events with a
very low probability. To temper the conservativeness of the robust model and help
tractability, the complete probability space Ω is replaced by a simpler uncertainty
set Z in eq. (B.3).

B.2 The Uncertainty Set

The concept of the uncertainty set in robust optimization is key to achieving a
tractable formulation. For a thorough introduction to uncertainty sets, the reader
is referred to [63]. This section will provide a simple example to help visualize
the idea.

Consider a single-period optimization problem where the goal is to minimize
the operational cost of a power system with two wind generators with uncer-
tain power production, W1 and W2. The wind power output is guaranteed to
be within the technical production boundaries of 0 and 1 for both W1 and W2,
but assume that it also follows a two-dimensional normal distribution1 with some
mean and standard deviation. Solving the stochastic problem in eq. (B.2) can be
done by generating scenarios based on sampling the normal distribution and pos-
sibly applying scenario reduction techniques to reduce the computational burden
subsequently. It is possible, albeit very improbable, that the wind power out-
put is close to the technical boundaries of zero or maximal production, which
can be seen from the illustrations of the sample space in Figure B.1. Without
a specified uncertainty set in the robust case, the worst-case realization of the
uncertainty will lie in one of the vertices on the technical maximum/minimum
production border. To reduce the conservativeness, the uncertainty set Z can be
defined in several ways in order to more closely mimic the underlying uncertainty
distribution. Figure B.1a shows an elliptical uncertainty set, illustrated as a blue
elliptical curve in W1 −W2−space, which is described as

Z :=

{
W1,W2

∣∣∣
(
W1

r1

)2

+

(
W2

r2

)2

≤ 1

}
. (B.4)

The minor and major axes of the ellipse are set to 3 times the standard deviation
in each dimension in the figure. The uncertainty set forces the robust model
to only consider realizations of the uncertainty within the elliptical curve. The
quadratic constraints involving W1 and W2 are complicated constraints that in-
crease computational effort. The linear uncertainty set in Figure B.1b represents
a significantly simpler way of constructing the uncertainty set as a collection of

1The support of the normal distribution is infinite, so the folded normal distribution that
projects all points outside the technical boundary to lie on the boundary can be used instead.
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(a) Elliptical uncertainty set

0.0 0.2 0.4 0.6 0.8 1.0
W1

0.0

0.2

0.4

0.6

0.8

1.0

W
2

(b) Linear uncertainty set
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Figure B.1: Shows a simple 2D example of elliptical and linear uncertainty sets in
robust optimization. The black dots are 20000 samples of a folded normal distri-
bution that are contained within the sample space of the red lines, representing
wind power production between 0 and max for two wind power plants. The blue
lines constitute possible robust uncertainty sets.

linear inequality constraints i:

Z :=

{
W1,W2

∣∣∣ aiW1 + biW2 ≤ ci ∀i
}
. (B.5)

By introducing the uncertainty set Z, the random variable z has become a deci-
sion variable of the robust optimization model in eq. (B.3). The two-stage robust
model aims to minimize the total cost given that z is realized as the worst-case
outcome contained in Z. The construction of the uncertainty set is therefore
essential for the conservativeness of the robust model.

B.3 Reformulation and Solution Strategies

The solution of the min-max-min formulation of eq. (B.3) cannot be computed
directly by any standard optimization solver, and it is therefore necessary to
reformulate and decompose the problem. There are two standard ways of refor-
mulating such two-stage robust problems, either with a Benders decomposition
technique or by column-and-constraint generation (CCG). Both of the procedures
follow the same initial steps, and the following explanation is based on the de-
tailed guide in [65]. For clarity and without much loss of generality, let the inner
minimization problem be written in matrix form as:
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min
y

g(y) : c
ᵀ · y

A · y +B · x∗ +C · z∗ ≤ d (λ) (B.6)

y ≥ 0.

The objective is assumed to be linear in the recourse decisions with cost vector c.
The constraint matrices A, B, and C represent the coupling between the stages,
and λ is the vector of dual variables related to the constraints. The vectors of the
first-stage decisions x∗ and the realization of the uncertainty z∗ are fixed in the
recourse problem and therefore marked by an asterisk. For simplicity, the recourse
problem in eq. (B.6) is assumed to have complete recourse, which means that it is
feasible for every value of x∗ ∈ X and z∗ ∈ Z. Having complete recourse can be
ensured by including penalty variables for all potentially problematic constraints.
Since eq. (B.6) is assumed to be a simple linear and convex problem with respect
to y, its dual form can be constructed as [109]:

max
λ

w(x∗, z∗, λ) : λ
ᵀ · (d−B · x∗ −C · z∗)

A
ᵀ · λ ≤ c (B.7)

λ ≤ 0.

As discussed in [65], the maximization step in eq. (B.7) can be merged with the
outer maximization over z:

max
z∈Z

min
y∈Y(x∗,z)

g(y) ⇐⇒ max
z∈Z
λ∈Λ

w(x∗, z, λ). (B.8)

The solution of the dualized second-stage problem is a function of x:

W (x) = max
z∈Z
λ∈Λ

w(x, z, λ). (B.9)

The constraints of the dual problem in eq. (B.7) are represented as λ ∈ Λ in the
above formulations for compactness. Note that solving eq. (B.9) is complicated
due to the fact that the objective w(x∗, z, λ) contains bi-linear terms of z · λ. A
special case where z is expressed through binary variables allows the bi-linear
terms to be reformulated into binary constraints so that eq. (B.9) becomes a
mixed-integer linear program. In the general case of continuous z variables, other
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approximation techniques or non-linear solvers must be employed. Either way,
the min-max-min structure of the original problem in eq. (B.3) has been turned
into a min-max problem:

min
x∈X

[
f(x) + max

z∈Z
λ∈Λ

w(x, z, λ)
]
. (B.10)

Note that even though finding the solution of eq. (B.9) involves solving a non-
convex problem, the function W (x) is still convex in x since it is the result of a
maximization of a set of affine functions in x [65]. This means that it is possible
to approximate the second stage by an outer approximation algorithm such as
Benders decomposition and CCG.

B.3.1 Benders decomposition

Benders decomposition, also referred to as the L-shaped method, has been used to
efficiently solve many different types of optimization problems for many decades
[57]. The Benders decomposition solution approach for eq. (B.10) involves de-
composing the problem into a master problem:

min
x,θ

f(x) + θ

x ∈ X (B.11)

θ ≥ w(x, zi, λi) ∀i,

and the sub problem in eq. (B.9). The auxiliary variable θ approximates the value
of W (x) in eq. (B.9) as it is bound from below by the second-stage objective w
for a set of solutions (zi, λi). The overall solution procedure is as follows:

1. Find an initial feasible first-stage solution x ∈ X .

2. Solve eq. (B.9) for the fixed value of x to obtain a solution (zi, λi).

3. Add a new constraint for θ to the master problem eq. (B.11) given (zi, λi),
and solve for updated values of x and θ.

4. If the value of θ is within the wanted numerical tolerance with respect to
the most recent objective value of eq. (B.9), the problem has converged. If
not, go back to step 2 with the new value of x.
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A benefit of Benders decomposition is that only a single constraint for bounding
θ is added to the master problem in each iteration. The modest size increase
over the iterations ensures that the tractability of eq. (B.11) is not worsened
drastically over the course of the solution procedure. A potential drawback is
that all of the second-stage dynamics that impact the objective function are
propagated by a single constraint, which can lead to slow convergence for some
model formulations.

B.3.2 Column-and-constraint generation

The CCG solution procedure is similar to the Benders decomposition scheme
but adds primal constraints to the master problem instead of the dual-based
constraints seen in eq. (B.11). The method is relatively new, first published by
B. Zeng and L. Zhao in 2012 and 2013 [75,76]. The master problem for CCG is

min
x,yi,θ

f(x) + θ

x ∈ X (B.12)

θ ≥ g(yi)

yi ∈ Y(x, zi) ∀i.

The second-stage cost approximated θ is bounded by the primal objective g(y) in
eq. (B.12). In addition, several sets of the primal second-stage variables and con-
straints are added for different worst-case realizations zi. The solution algorithm
is similar to the Benders strategy:

1. Find an initial feasible first-stage solution x ∈ X .

2. Solve eq. (B.9) for the fixed value of x to obtain a new worst-case realization
zi.

3. Add new variables yi and all primal second-stage constraints from eq. (B.6)
to the master problem eq. (B.12) based on zi. Also add a new constraint
for θ, and solve the master problem to get updated values for x and θ.

4. If the value of θ is within the wanted numerical tolerance with respect to
the most recent objective value of eq. (B.9), the problem has converged. If
not, go back to step 2 with the new value of x.

The size of the master problem grows much quicker in the CCG algorithm com-
pared to Benders decomposition, as many new variables and constraints are added
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in each iteration. This slows down the solution time of each iteration. However,
the number of iterations needed for CCG to converge can in many cases be rela-
tively low, as the feasible region of the master problem is tightened significantly
by the addition of the second-stage constraints. The best choice of solution algo-
rithm will vary based on the problem at hand, although the CCG algorithm was
found to be significantly faster for the robust formulation used in Paper I.
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Appendix C: The Continuous-time
Optimization Framework

It is always challenging to find enough space in a paper to give the fundamen-
tal mathematical concepts of the continuous-time optimization framework the
attention they deserve. Even simple optimization models quickly turn quite ab-
stract and difficult to understand at first glance, and continuous-time models
doubly so. This appendix aims to give a thorough and detailed description of
how the continuous-time framework for optimization models is constructed from
the bottom-up but is hopefully still accessible for anyone interested in formulat-
ing their own continuous-time model. Appendix C.1 derives all of the essential
properties of the so-called Bernstein polynomials, which are then applied to con-
vert a simple discrete-time optimization model to a continuous-time model in
Appendix C.2. More complicated time-linking constraints and constraints deal-
ing with binary variables are finally discussed in Appendix C.3, with examples
from the field of power system planning and operation.

The formulations and derivations of the different features of a continuous-time
model found in this appendix are based on the fundamental properties of the
Bernstein polynomials, where [110] is a good reference. The application to power
system optimization models discussed in Appendix C.3 is based on the original
model formulations of the literature listed in Section 2.3.

C.1 Properties of the Bernstein Polynomials

At the heart of any continuous-time model formulation lies a spectral decom-
position into polynomial space. This means that time-varying input data, e.g.
load, is approximated as polynomials of some finite degree, and the time series
is therefore fully defined by a set of basis functions with accompanying coeffi-
cients. The time-varying variables in the optimization model, such as generated
power, must also be represented as polynomials. If not, there will be no hope
of satisfying the equality constraints of the model. The Bernstein basis poly-
nomials are vital for successfully transitioning the polynomial representation of
all time series and decision variables into a tractable optimization model. The
Bernstein polynomials are named after their creator, the Russian mathematician
Sergei Natanovich Bernstein (1880 - 1968), who was central in the creation of the
constructive theory of functions [111].
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C.1.1 Definition

The simplest choice of basis functions for representing a polynomial f(t) of degree
n ≥ 0 is the set of functions {1, t, t2, ..., tn}. It is obvious that these functions
form a basis for polynomials of degree n, as they are linearly independent and
any polynomial can be constructed by them through linear combination. By
introducing the vector of these basis functions,

τn(t) =
[
1, t, t2, ..., tn

]ᵀ
, (C.1)

the polynomial f(t) can be expressed as

f(t) = a
ᵀ · τn(t) =

n∑

i=0

ait
i. (C.2)

The vector a of the n+ 1 coefficients ai fully determines the shape of f(t) when
τn(t) is used as a basis. Although eq. (C.1) might seem the simplest basis to
use, it turns out to be difficult to work with in constrained optimization models.
Finding simple ways of expressing inequality constraints for f(t) when using
eq. (C.1) is one of the biggest difficulties. The Bernstein polynomials of degree n
have several advantages in this regard since they are easily bounded, which will
be derived in Appendix C.1.2. They are defined as [110]

Bin(t) =

(
n

i

)
ti(1− t)n−i, i ∈ {0, 1, ..., n}, (C.3)

where
(
n
i

)
= n!

i!(n−i)! is the binomial coefficient, and are represented in vector
notation as

Bn(t) =
[
B0n(t), B1n(t), ..., Bnn(t)

]ᵀ
. (C.4)

The functions Bn(t) form an equivalent basis to that of τn(t) for polynomials of
positive degree n, which means it is possible to express f(t) in terms of Bn(t).
To be convinced of this, it is sufficient to show that they are linearly independent
and that a linear combination of them can be used to express the polynomial
f(t). No rigorous mathematical proof will be attempted here, but rather a direct
explanation based on basic linear algebra. Using the binomial expansion formula
[112]
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(x+ y)n =

n∑

i=0

(
n

i

)
xiyn−i (C.5)

on the definition in eq. (C.3), Bin(t) can be written as

Bin(t) =

(
n

i

)
ti

n−i∑

j=0

(
n− i

j

)
(−t)j1n−i−j =

n−i∑

j=0

(−1)j
(
n

i

)(
n− i

j

)
ti+j

≡
n−i∑

j=0

Mijt
i+j . (C.6)

The expression in eq. (C.6) shows that the polynomial Bin(t) only includes terms
of degree from i and up to n. The matrix Mn in the relationship

Bn(t) = Mn · τn(t), (C.7)

is therefore an upper triangular matrix. Such matrices are always invertible if
all of the diagonal elements are non-zero1, which is the case for matrix Mn with
diagonal elements

(
n
i

)
≥ 1. As the matrix is invertible, the Bernstein polynomials

must be linearly independent. The polynomial f(t) can be written as a linear
combination of Bn(t) by using the basis property of τn(t) defined in eq. (C.1)
and the invertibility of Mn:

f(t) = a
ᵀ · τn(t) = a

ᵀ ·M−1
n ·Bn(t) ≡ b

ᵀ ·Bn(t). (C.8)

The Bernstein polynomials of degree n are therefore an equivalent basis to τn(t)
by modifying the coefficient vector.

The basis property of Bn(t) means that the Bernstein polynomials of a certain
degree can always be expressed as Bernstein polynomials of a higher degree:

Bn(t) = Xnm ·Bm(t), m ≥ n. (C.9)

The elevation matrix Xnm of size (n+ 1)× (m+ 1) can be calculated in several
ways, for instance by direct calculation through eq. (C.7):

1The determinant of an upper triangular matrix can be shown to be the product of its diagonal
elements by direct calculation, which means that the matrix is singular only if there is a zero
along the diagonal.
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Bn(t) = Mn · τn(t) = Mn · Jnm · τm(t)

⇒ Mn · Jnm · τm(t) = Xnm ·Mm · τm(t)

⇒ Xnm = Mn · Jnm ·M−1
m . (C.10)

The elevation matrix Jnm for the basis functions τn is straightforward to calcu-
late, and is essentially the identity matrix In+1 appended with columns of zeros
to reach size (n+ 1)× (m+ 1).

C.1.2 Convex hull property

The Bernstein polynomialsBn(t) form a basis for the whole interval t ∈ (−∞,∞),
but are only useful in the context of optimization models when limited to the
interval t ∈ [0, 1]. From the definition in eq. (C.3), it is clear that both factors ti

and (1− t)n−i are non-negative on the interval from 0 to 1, which means that

Bin(t) ≥ 0, t ∈ [0, 1]. (C.11)

In addition to the non-negativity, Bn(t) are bounded from above on this interval.
First note that the sum of Bin(t) can be calculated by the binomial expansion
formula in eq. (C.5), which turns out to be constant:

n∑

i=0

Bin(t) =

n∑

i=0

(
n

i

)
ti(1− t)n−i =

(
t+ (1− t)

)n
= 1. (C.12)

Combined with the non-negativity shown in eq. (C.11), the property in eq. (C.12)
means that

Bin(t) ≤ 1, t ∈ [0, 1]. (C.13)

Figure C.1 shows a plot of B3(t) which visualizes the bounded nature of the
polynomials. Since the Bernstein polynomials are bounded between 0 and 1 on
the interval t ∈ [0, 1], any polynomial f(t) expressed with Bn(t) is also bounded
by its expansion coefficients:
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f(t) = b
ᵀ ·Bn(t) =

n∑

i=0

biBin(t) =

n∑

i=0

(bmax −∆i)Bin(t)

= bmax −
n∑

i=0

∆iBin(t) ≤ bmax. (C.14)

The highest coefficient bmax = max{bi} is used to express all coefficients bi with
some deviation ∆i ≥ 0 in eq. (C.14). Since all ∆i and Bin(t) are non-negative
when t ∈ [0, 1], the function f(t) will always be bounded by its highest coefficient
on this interval. It can be shown in a similar way that f(t) is bounded from
below by its smallest coefficient, so that:

f(t) = b
ᵀ ·Bn(t) =⇒ bmin ≤ f(t) ≤ bmax, t ∈ [0, 1]. (C.15)

Equation (C.15) is known as the convex hull property [78], which is very useful
for enforcing inequality constraints in continuous-time optimization models. This
is further discussed in Appendix C.2.
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t
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B23
B33

Figure C.1: The four Bernstein polynomials of third degree plotted on the interval
t ∈ [0, 1].
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C.1.3 Differentiation and integration

Differentiating the Bernstein polynomials can be performed directly based on
eq. (C.3):

dBin(t)

dt
=

(
n

i

)(
iti−1(1− t)n−i − (n− i)ti(1− t)n−i−1

)

= n
(
Bi−1,n−1(t)−Bi,n−1(t)

)
. (C.16)

Note the convention of defining Bin(t) = 0 for i < 0 and i > n. The derivatives of
Bn(t) can thus be described by a linear combination of Bn−1(t). Equation (C.16)
can be formulated in vector notation as

dBn(t)

dt
= Kn ·Bn−1(t) (C.17)

Kn = n




−1 0 0 . . . 0 0
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 −1
0 0 0 . . . 0 1



, (C.18)

where Kn is a matrix of dimensions (n+ 1)× n.

The indefinite integrals Iin(t) of Bin(t) can also be directly calculated. It is
simple to evaluate in the case of Inn(t):

Inn(t) =

∫
Bnn(t)dt =

∫
tndt =

1

n+ 1
tn+1 + cn

=
1

n+ 1
Bn+1,n+1(t) + cn. (C.19)

It is possible to find a recursive relationship between the integrals for i < n by
performing an integration by parts and then substituting in the value found in
eq. (C.19):
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Iin(t) =

∫ (
n

i

)
ti(1− t)n−idt

=

(
n

i

)(
1

i+ 1
ti+1(1− t)n−i +

n− i

i+ 1

∫
ti+1(1− t)n−i−1

)

=

(
n
i

)

(i+ 1)
(
n+1
i+1

)Bi+1,n+1(t) +
n− i

i+ 1

(
n
i

)
(

n
i+1

)Ii+1,n(t)

=
1

n+ 1
Bi+1,n+1(t) + Ii+1,n(t) =

1

n+ 1

n∑

k=i+1

Bk,n+1(t) + Inn(t)

=
1

n+ 1

n+1∑

k=i+1

Bk,n+1(t) + ci. (C.20)

The constant of integration was omitted from eq. (C.20) until the end for sim-
plicity. Another equivalent integral representation can be found by reversing the
order of the integration by parts in eq. (C.20) to obtain

Iin(t) = − 1

n+ 1

i∑

k=0

Bk,n+1(t) + ci. (C.21)

The two formulations are only separated by a constant of integration, which
can be seen by equating eqs. (C.20) and (C.21) and applying eq. (C.12). Using
the convention in eq. (C.20), the integral relationship can be written in vector
notation as

∫
Bn(t)dt = Nn ·Bn+1(t) + c (C.22)

Nn =
1

n+ 1




0 1 1 . . . 1 1
0 0 1 . . . 1 1
0 0 0 . . . 1 1
...

...
... . . .

...
...

0 0 0 . . . 1 1
0 0 0 . . . 0 1



, (C.23)

where Nn is of size (n + 1) × (n + 2). Note that the definite integral over the
interval t ∈ [0, 1] is:
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∫ 1

0

Bin(t)dt =
1

n+ 1

n+1∑

k=i+1

(
Bk,n+1(1)−Bk,n+1(0)

)
=

1

n+ 1
. (C.24)

Only the term for k = n + 1 participates in the summation in eq. (C.24), as all
the other polynomials present have roots at both t = 0 and t = 1. In vector
notation the definite integral becomes

∫ 1

0

Bn(t)dt =
1

n+ 1
1, (C.25)

where 1 is a vector of ones of length n+ 1.

The application of the derivative and integral relationships presented here is
useful in the context of optimization models when describing time-linking con-
straints. This issue is discussed in Appendix C.3.

C.1.4 Discretization and continuity

The Bernstein polynomials can also be used to describe piece-wise polynomial
functions with smooth transitions over the breakpoints. If the whole time horizon
t ∈ [0, T end] is split into h time intervals of length δh, a piece-wise polynomial
function f(t) can be expressed as

f(t) = b
ᵀ
h ·Bn

(
t− th
δh

)
, ∀h, t ∈ [th, th+1]. (C.26)

Here, the times th =
∑

j<h δj are the points where the time intervals are sepa-
rated. Note that a scaled time parameter is given to the Bernstein polynomials
so that they are defined over the interval 0 to 1. The function f(t) is described
by a linear combination of Bernstein polynomials for each time interval h with
separate coefficients bh. It is possible to avoid discontinuous jumps over the time
interval changes by relating the coefficients bh and bh+1. This can be derived by
requiring the following continuity limit to hold:
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lim
∆→0

(
f (th+1 −∆)− f (th+1 +∆)

)
= 0

⇒ b
ᵀ
h ·Bn(1)− b

ᵀ
h+1 ·Bn(0) = 0

⇒ b
ᵀ
h ·
[
0, 0, . . . , 1

]ᵀ
= b

ᵀ
h+1 ·

[
1, 0, . . . , 0

]ᵀ

⇒ bhn = bh+1,0 (C.27)

The limit states that the value of f(t) on both sides of the interval breakpoint
th+1 must be the same, and that this is achieved if the two coefficients bhn and
bh+1,0 are equal. A similar limit can be applied to ensure continuous derivatives,
which leads to the relationship

bhn − bh,n−1 = bh+1,1 − bh+1,0. (C.28)

When both eq. (C.27) and eq. (C.28) are enforced, the curve f(t) is continuous
and smooth over interval change h → h+1, and is said to be C1 continuous over
the interval shift [78]. If only the continuity constraint eq. (C.27) holds, f(t) is C0

continuous over the interval change with a potentially discontinuous derivative.
Some of the different possible levels of smoothness over interval transitions is
shown in Figure C.2.

C.2 Formulating a Simple Continuous-time Op-
timization Model

Roughly speaking, a continuous-time optimization model is an optimization model
where the input time series data and time dependent decision variables are de-
scribed by continuous functions of time. It is the natural extension of a “normal”
discrete-time model with piece-wise constant time series and variables, but some
additional steps are required to transform the model into a linear problem which
can be solved by standard optimization tools. Converting the original continuous-
time model formulation to a tractable optimization program is covered in this
section. As a basis, assume that a discrete-time model is defined as below:
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0 1 2 3 4
t

1

2

3

4

5

6

Figure C.2: A piece-wise polynomial function with one polynomial representation
in each time interval. The first interval transition at t = 1 is discontinuous, while
the transitions at t = 2 and t = 3 are C0 and C1 continuous, respectively.

min
xhi

Zdisc =
∑

i,h

δhchixhi (C.29)

s.t.
∑

i

ajixhi = uhj ∀j, h
∑

i

dkixhi ≤ vhk ∀k, h.

The optimization horizon is split into intervals h with length δh, and the piece-
wise constant decision variables are denoted as xhi. The objective function Zdisc

is the total cost associated with decisions xhi based on the cost rate chi. Time-
dependent input data uhj and vhk are part of equality constraints j and inequality
constraints k, respectively. The coefficients aji and dki are constants. The model
in eq. (C.29) can be converted into a continuous-time model in a few steps, which
are covered in the following subsections.
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C.2.1 Input data and variables

Some or all of the time dependent input data in the discrete-time model in
eq. (C.29) are assumed to be continuous and smooth functions of time instead of
piece-wise constant values in reality. The electrical load at each node in a power
system is an example of a continuous function of time which is approximated
to be a piece-wise constant value in discrete-time models. Using the Bernstein
polynomials as a basis for a piece-wise polynomial representation as in eq. (C.26),
the input data are transformed:

chi ⇒ c
ᵀ
hi ·Bn

(
t− th
δh

)
∀i, h (C.30)

uhj ⇒ u
ᵀ
hj ·Bn

(
t− th
δh

)
∀j, h (C.31)

vhk ⇒ v
ᵀ
hk ·Bn

(
t− th
δh

)
∀k, h (C.32)

To ensure smoothness, the equations eq. (C.27) and eq. (C.28) must hold for the
input data and should be incorporated into the polynomial fitting tool used to
calculate the Bernstein coefficients. Note that it is still possible to have piece-
wise constant values without smooth interval transitions by choosing Bernstein
polynomials of degree n = 0 as a basis for specific input parameters. It is common
for the bounds of the inequality constraints vk(t) to be constant, such as the
maximal power generation limit for a generating unit. These special cases are
easily handled by using eq. (C.12), as any constant y can be expressed as

y = y · 1 = y

n∑

i=0

Bi,n(t) = y 1
ᵀ ·Bn(t). (C.33)

The time-dependent variables must be transformed in the same way:

xhi ⇒ x
ᵀ
hi ·Bn

(
t− th
δh

)
∀i, h. (C.34)

Note that the variables in the continuous-time model will be the Bernstein poly-
nomial coefficients xhi, increasing the number of variables by a factor of n+1. It
is now possible to add eq. (C.27) and eq. (C.28) as constraints to the optimization
problem to force xi(t) to be C1 continuous curves. Otherwise, there will be a
discontinuous jump in xi(t) at the interval changes.
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C.2.2 Equality constraints

After transforming the input data and variables to a piece-wise polynomial defi-
nition, the equality constraints of eq. (C.29) become:

∑

i

ajix
ᵀ
hi ·Bn

(
t− th
δh

)
= u

ᵀ
hj ·Bn

(
t− th
δh

)
∀j, h. (C.35)

The only way for the equality to hold for all times t ∈ [th, th+1] is to equate the
coefficients of the same Bernstein polynomials on both sides. This results in the
new equality constraints

∑

i

ajixhi = uhj ∀j, h. (C.36)

All the non-linearity of the Bernstein polynomials is removed from the constraints
by simply matching coefficients, and the remaining constraints in eq. (C.36) are
still entirely linear. However, the number of equality constraints has increased
by a factor of n+ 1. It is possible to enforce the equality even if uj(t) and xi(t)
use different degrees of Bernstein polynomials as a basis, but only if the variables
are defined using a higher degree than the input data. The elevation relationship
in eq. (C.9) is used in such cases, and the constraints remain linear.

C.2.3 Inequality constraints

To ensure that the inequality constraints in eq. (C.29) remain valid after the
transformation to continuous-time, it is necessary to use the convex hull property
of the Bernstein polynomials shown in eq. (C.15). Bounding the coefficients of
Bn(t) is sufficient to bound the function as a whole for all times:

∑

i

dkix
ᵀ
hi ·Bn

(
t− th
δh

)
≤ v

ᵀ
hk ·Bn

(
t− th
δh

)
∀k, h

=⇒
(∑

i

dkix
ᵀ
hi − v

ᵀ
hk

)
·Bn

(
t− th
δh

)
≤ 0 ∀k, h

=⇒
∑

i

dkixhi ≤ vhk ∀k, h. (C.37)

This step is the most important reason for using Bernstein polynomials as a basis,
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as it results in linear inequality constraints.

C.2.4 Objective function

The objective function used in eq. (C.29) defines the cost of using each variable for
the whole optimization horizon. This is equivalent to an integral in continuous-
time:

Zcont =

T end∫

0

∑

i

ci(t)xi(t)dt. (C.38)

There is nothing stopping the polynomial expansions of ci(t) and xi(t) beeing of
different degrees n1 and n2. In the general case, the objective in eq. (C.38) can
be calculated to be

Zcont =
∑

i,h

th+1∫

th

c
ᵀ
hi ·Bn1

(
t− th
δh

)
· xᵀ

hi ·Bn2

(
t− th
δh

)
dt

=
∑

i,h

δh

1∫

0

c
ᵀ
hi ·Bn1

(t) · xᵀ
hi ·Bn2

(t)dt

=
∑

i,h

δh

1∫

0

∑

p,q

chipxhiqBpn1(t)Bqn2(t)dt

=
∑

i,h

δh

1∫

0

∑

p,q

chipxhiq

(
n1

p

)(
n2

q

)
(
n1+n2

p+q

) Bp+q,n1+n2
(t)dt

=
1

n1 + n2 + 1

∑

i,h,p,q

δhchipxhiq

(
n1

p

)(
n2

q

)
(
n1+n2

p+q

) . (C.39)

The definite integral property in eq. (C.24) was used in the above expression,
in addition to the fact that the product of two Bernstein polynomials can be
expressed as a Bernstein polynomial of a higher degree:
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Bin ·Bjm =

(
n

i

)
ti(1− t)n−i ·

(
m

j

)
tj(1− t)m−j

=

(
n

i

)(
m

j

)
ti+j(1− t)n+m−(i+j) =

(
n
i

)(
m
j

)
(
n+m
i+j

) Bi+j,n+m (C.40)

Even when the cost function and variables are described by Bernstein polynomials
of different degrees, the integral reduces down to a linear sum over the variables.
The cost ci(t) is often constant over time, which means that n1 = 0 and chip = ci
in the above calculation. This greatly simplifies the objective function to

Zcont =
1

n+ 1

∑

i,h,q

δhcixhiq =
1

n+ 1

∑

i,h

δhcix
ᵀ
hi · 1. (C.41)

Note that the normal discrete-time objective function of eq. (C.29) is recovered
if n1 = n2 = 0. The objective function was in this instance linear in xi(t), but
quadratic cost functions are quite common in many types of optimization models.
This poses a challenge when using Bernstein polynomials, as bi-linear cross terms
appear in the objective function from integrals of the form:

∫ 1

0

x(t)2dt =

1∫

0

∑

p,q

xpxqBpn(t)Bqn(t)dt =
1

2n+ 1

∑

p,q

xpxq

(
n
p

)(
n
q

)
(

2n
p+q

) . (C.42)

To avoid the non-convex bi-linear terms, a transformation from the Bernstein
polynomials to an orthogonal basis is necessary. This idea is described in [91] with
the use of the shifted Legendre polynomials. The orthogonality of the Legendre
polynomials means that the coefficient of the bi-linear terms of the transformed
variables will be zero, and a purely quadratic objective function remains.

C.2.5 Analogous continuous-time model

The continuous-time model which is analogous to eq. (C.29) is found by combining
the results of Appendices C.2.1 to C.2.4. In addition, C1 continuity is enforced
on the decision variables by adding constraints eqs. (C.27) and (C.28) to xhi.
Assuming that ci(t) is constant over time:
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min
xhi

Zcont =
1

n+ 1

∑

i,h

δhcix
ᵀ
hi · 1 (C.43)

s.t.
∑

i

ajixhi = uhj ∀j, h
∑

i

dkixhi ≤ vhk ∀k, h

xhin = xh+1,i0 ∀i, h 6= T

xhin − xhi,n−1 = xh+1,i1 − xh+1,i0 ∀i, h 6= T

The simple model in eq. (C.29) does not include any time-linking constraints and
can be solved independently for each time interval. The continuity constraints
added to eq. (C.43) do not only break the model’s separability in time, they also
couple variables related to different Bernstein polynomials. Without these con-
straints, the continuous-time model could be separated and solved for each time
interval and Bernstein polynomial coefficient number, and would be equivalent
in complexity to solving n + 1 separate versions of eq. (C.29). This shows that
the continuity constraints fundamentally change the model structure compared
to a discrete-time model, as the other constraints remain equal in shape and
form. The imposed continuity on the variables xi(t) also require continuity of
the functions uj(t) due to the equality constraints.

C.3 Complicated Constraints

It might seem straightforward to convert a discrete-time model to a continuous-
time model by following the procedures in Appendix C.2. However, there are
several complicated types of constraints that need special attention. Time-linking
constraints must be carefully considered as they often stem from differential equa-
tions. Binary variables used to model non-convexities in discrete-time models can
also require a different implementation in continuous-time to avoid breaking con-
tinuity. The following sections focus on the most common time-linking and binary
constraints found in power system operation and planning models, and are based
on the models cited in Section 2.3.1 and Paper II, III, and IV.

C.3.1 Time-linking constraints due to differential equations

Differential equations are abundant in nature, and are therefore also found as
constraints in optimization models trying to describe physical processes in the
real world. The differential equations of special interest in continuous-time opti-
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mization models deal with derivatives with respect to time. Such derivatives must
be approximated in discrete-time models but can easily be expressed analytically
in the continuous-time framework. The simplest example of a constraint dealing
with time derivatives from the realm of power system operation and planning
is the ramping restriction often imposed on slow-ramping thermal units. The
ramping is the rate of change of the power p(t) generated by a unit. To keep the
ramping within safe or realistic limits R↑/↓ in the optimization model, inequality
constraints of the following form should be added:

−R↓ ≤ dp(t)

dt
≤ R↑. (C.44)

In discrete-time models, the derivative is approximated as the change in produc-
tion between two neighbouring time intervals h and h+ 1 of length δh:

−R↓ ≤ ph+1 − ph
δh

≤ R↑ ∀h. (C.45)

By applying the relationship between the Bernstein polynomials and their deriva-

tives from eq. (C.17), the derivative of p(t) = pᵀ
h · Bn

(
t−th
δh

)
can be bounded

directly:

−R↓1ᵀ ≤ 1

δh
p
ᵀ
h ·Kn ≤ R↑1ᵀ ∀h. (C.46)

Note the factor of 1/δh appearing from the differentiation of Bn

(
t−th
δh

)
. This is a

more accurate and restrictive formulation of the ramping constraints compared to
eq. (C.45), as the derivative is bounded for all points in time. See Appendix C.3.3
for a more detailed and careful ramping constraint formulation.

The energy content of an energy storage device, such as a hydropower reservoir,
is another example of a differential equation needed as a constraint in an opti-
mization model. The rate of change of the volume v(t) in a reservoir is the net
inflow of water qnet(t):

dv(t)

dt
= qnet(t). (C.47)

Similarly to the approximation in eq. (C.45), the discrete-time constraint reads:

vh+1 = vh + δhq
net
h , ∀h, (C.48)
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where vh is the volume at the start of time interval h. An initial condition is also
required here, which is the start volume in the reservoir. In a continuous-time
model, it is clear that v(t) must be expressed by Bernstein polynomials of one
degree higher than the decision variables qnet(t). It is possible to use eq. (C.17)
to formulate the continuous-time constraint as in eq. (C.46), but a more intuitive
formulation is reached by integrating both sides of the equation from the start of
an interval h. Using eq. (C.22) and eq. (C.25) results in the following formula:

∫ t

th

dv(u)

du
du =

∫ t

th

qnet(u)du.

=⇒ v(t)− v(th) =

∫ t

th

(qnet
h )

ᵀ ·Bn

(u− th
δh

)
du

=⇒ v(t)− v(th) = δh(q
net
h )

ᵀ ·
∫ t−th

δh

0

Bn(x)dx

=⇒ v(t)− v(th) = δh(q
net
h )

ᵀ ·Nn ·
(
Bn+1

( t− th
δh

)
−Bn+1(0)

)
. (C.49)

The volume v(th) is the same as vh used in eq. (C.48). Due to the definition

of Nn in eq. (C.23) and the fact that Bn+1(0) =
[
1, 0, . . . , 0

]ᵀ
, the last term of

eq. (C.49) vanishes: Nn ·Bn+1(0) = 0. The evolution of the volume within the
time interval h is therefore:

v(t) =

(
vh1+ δhN

ᵀ
n · qnet

h

)ᵀ

·Bn+1

( t− th
δh

)
, th ≤ t ≤ th+1, ∀h. (C.50)

The start volumes of each interval vh are found by integrating over the whole
time interval and using eq. (C.24):

vh+1 = vh +
1

n+ 1
δh1

ᵀ · qnet
h , ∀h. (C.51)

Bounds on the volume can now be applied to eq. (C.50) by using the convex
hull property, while eq. (C.51) calculates the start volumes of each interval. In
addition to an initial volume condition, these relations determine the volume
content progression of the reservoir.
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C.3.2 Unit commitment constraints

The most typical constraints involving binary variables in a power system opera-
tion model are the unit commitment constraints. These constraints replicate the
fact that most generators have a minimum production level for safe and efficient
operation, and that running the unit between zero and the minimum production
level should not occur for prolonged periods of time. Binary variables to signify
if the unit is “on” or “off” are used for each time interval to force each generator
to either produce above the minimum production level or not produce at all. In
a discrete-time model, the constraints may look like:

Pminuh ≤ ph ≤ Pmaxuh ∀h (C.52)

suh − sdh = uh+1 − uh ∀h 6= T (C.53)

uh, suh, sdh ∈ {0, 1} ∀h (C.54)

The binary variable uh is used to constrain the upper and lower bounds of the
production variable ph, while the number of startups and shutdowns are counted
by the binary variables suh and sdh, respectively. Extra care must be taken to
model the behavior of starting and stopping the generator when implementing
these constraints in a continuous-time model. If continuity constraints eqs. (C.27)
and (C.28) are applied to the production variable p(t), it will be impossible to
start or stop the generator if eq. (C.52) is directly translated as

Pminuh1 ≤ ph ≤ Pmaxuh1. (C.55)

Since the continuity constraints couple some of the components of ph to ph+1,
the above implementation will force the commitment variables uh and uh+1 to
always be equal. This results in the generator either being on or off for the
entire optimization horizon. The solution to the problem is to allow a smooth
and continuous startup or shutdown procedure, which requires modifications of
the upper and lower bounds of eq. (C.55). Note that the naive formulation in
eq. (C.55) is perfectly acceptable if the production variable is not required to be
continuous, which is the case in the hydropower formulation used in Papers II,
III, and IV.

In a discrete-time model, the binary variable uh is interpreted as the on/off status
of the unit for the whole time interval h. It is useful to think of these variables
slightly differently in continuous-time models. The commitment variable now
signifies the instantaneous commitment status of the unit at the start of interval
h, which can be different from the commitment status at the end of the interval,
captured by uh+1. Note that this requires an additional binary variable for the
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commitment status at the end of the last interval, uT+1, to be consistent. The
unit commitment constraints can now be formulated based on the implications of
the continuity constraints and some basic requirements for the upper and lower
boundaries for the production variable. Table C.1 shows the desired bounds on
the production variable given the commitment status at the start and end of the
time interval. If the unit is off at the start and the end of the interval, the unit
should be off and not produce anything for the whole interval. In the opposite
case where the unit is on at both interval edges, the unit should produce in the
legal domain between the minimum and maximum production. Whenever the
commitment status is different at the start and end of the time interval, p(t) is
allowed to also be in the forbidden region between 0 and Pmin to make a smooth
startup/shutdown possible.

Table C.1: Desired bounds on the production variable p(t) in time interval h
given the commitment status of the unit at the start and end of the interval.

Value of uh+1

Value of uh 0 1

0 p(t) = 0 0 ≤ p(t) ≤ Pmax

1 0 ≤ p(t) ≤ Pmax Pmin ≤ p(t) ≤ Pmax

The C0 continuity constraint eq. (C.27) applied to p(t) reads

ph,n = ph+1,0 h 6= T, (C.56)

which means that the production at the end of interval h and at the start of
interval h+ 1 is the same. The following constraints for ph,0 and ph,n will be in
line with the requirements in Table C.1 without interfering with continuity:

Pminuh ≤ ph,0 ≤ Pmaxuh (C.57)

Pminuh+1 ≤ ph,n ≤ Pmaxuh+1. (C.58)

Similarly, the C1 continuity constraint eq. (C.28) for p(t) gives rise to the unit
commitment constraints

Pminuh ≤ ph,1 ≤ Pmaxuh (C.59)

Pminuh+1 ≤ ph,n−1 ≤ Pmaxuh+1. (C.60)

The clue to formulating the constraints in eqs. (C.57) to (C.60) is to ensure
that the variables related by the continuity constraints are bounded by the same
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binary variable. Note that in the common case of using Bernstein polynomials
of degree n = 3, eqs. (C.57) to (C.60) bound all four vector components of p(t):

Pminuh ≤ ph ≤ Pmaxuh (C.61)

uh =
[
uh, uh, uh+1, uh+1

]ᵀ
. (C.62)

For the general case where n ≥ 4, the upper and lower bounds for the remaining
vector components ph,2 to ph,n−2 can be formulated as a linear combination of uh,
uh+1, suh and sdh. There are several possible formulations that satisfy Table C.1
to different levels of strictness. The least constraining bounds can be formulated
as:

Pmin(uh − sdh) ≤ ph,i ≤ Pmax(uh + suh), i ∈ {2, . . . , n− 2}. (C.63)

The use of the startup and shutdown variables allows the middle vector com-
ponents, which are not implicated in the continuity constraints, to satisfy the
description in Table C.1. A stricter formulation would be to extend eq. (C.62)
to the appropriate dimension by letting the first half2 of the vector components
be constrained by uh and the second half by uh+1. Such a formulation leaves
the generator with less freedom in how to start up and shut down as it narrows
the upper and lower bound trajectories, as shown in Figure C.3. However, the
tighter lower bound also pushes the generator to spend less time in the forbidden
region between 0 and Pmin. Both formulations are valid in terms of the continu-
ity constraints as long as eqs. (C.57) to (C.60) are in place, and so choosing the
relaxed upper bound and tight lower bound formulations is a possibility. This
topic is not explored in the literature since Bernstein polynomials of degree three
are commonly used. The unit commitment constraint formulation in continuous-
time models is concluded by defining the startup and shutdown variables in the
same way as in eq. (C.53).

C.3.3 Tight ramping constraint formulation

The discrete-time and continuous-time ramping constraints formulated in Ap-
pendix C.3.1 are potentially problematic, as they do not consider the possibility
of R↑/↓ being so low that a startup or shutdown is impossible. The formulation is
also loose in the sense that it is unnecessary when the unit is off. Therefore, it is

2In cases where the degree of the Bernstein polynomials used is an even number, the very center
component can be constrained by 1

2
(uh + uh+1).
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Figure C.3: Two possible choices for the upper and lower generation bounds in
a continuous-time model during a shutdown. Bernstein polynomials of degree
seven are used in the figure.

common to formulate the ramping constraints by using the binary commitment
variables discussed in the previous section to tighten the ramping bounds when
the unit is off and relax them when the unit is starting/stopping.

Consider a very slow ramping unit attempting to start up, meaning that uh = 0
and uh+1 = 1, that follows the generation boundaries set by eqs. (C.57) to (C.60)
and eq. (C.63). The ramping constraints in eq. (C.46) can be written in compo-
nent form as:

−R↓ ≤ n

δh
(ph,i+1 − ph,i) ≤ R↑ i ∈ {0, 1, . . . , n− 1}. (C.64)

According to eqs. (C.57) to (C.60), the two first vector components must be
zero while the two last must be at least Pmin. Since ph,1 = 0, the maximal
value for ph,2 within the ramping trajectory would be ph,2 = 1

nδhR
↑. This logic

can be repeatedly applied to the other vector components to find the maximal
value ph,n−1 = n−2

n δhR
↑. If R↑ is sufficiently small it is possible for the ramping

constraints to be in conflict with the unit commitment constraints for ph,n−1

during a startup. The break-point is
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R0
h =

n

n− 2

Pmin

δh
, (C.65)

where R↑ < R0
h makes it impossible for the unit to start up. The same value is

found for the minimal downward ramping capability during a shutdown. Note
that eq. (C.65) is only valid for n ≥ 3, and the simple cases of n ≤ 2 are left
out here. In the case of R↑/↓ < R0

h, the ramping constraints must be relaxed to
allow startups/shutdowns. A simple way to achieve this is to uniformly give ad-
ditional upward/downward ramping capability to the unit if a startup/shutdown
is occurring:

−R↓
(
1 + γ↓

hsdh

)
≤ n

ph,i+1 − ph,i
δh

≤ R↑
(
1 + γ↑

hsuh

)
. (C.66)

Note that only the middle ramping constraints for i ∈ {2, . . . , n− 2} need to be
relaxed in this way. The additional ramping capabilities must satisfy

γ
↑/↓
h ≥ R0

h

R↑/↓ − 1. (C.67)

It is also possible to tighten up the ramping constraints by incorporating the
binary commitment variables to change the ramping capability depending on the
commitment status. In particular, the upward and downward ramping bound-
aries can be set to zero when the unit is off. This is fairly simple for the first and
last ramping constraints, as the connected production variables are constrained
by the same binary variable in the unit commitment constraints:

−R↓uh ≤ n
ph,1 − ph,0

δh
≤ R↑uh (C.68)

−R↓uh+1 ≤ n
ph,n − ph,n−1

δh
≤ R↑uh+1. (C.69)

The middle vector components of ph are forced to be zero in eq. (C.63) by the sum
uh + suh. The following ramping constraints are then valid for i = {2, . . . , n− 2}

n
ph,i+1 − ph,i

δh
≤ R↑

(
uh + (1 + γ↑

h)suh

)
(C.70)

n
ph,i+1 − ph,i

δh
≥ −R↓

(
uh+1 + (1 + γ↓

h)sdh

)
. (C.71)
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The ramping constraint formulation in eqs. (C.68) to (C.71) tightens the upper
and lower ramping bounds to zero when the unit is off for the whole period
(uh = uh+1 = 0), and relaxes the constraints to allow slow ramping units to start
up and shut down. An example of the unit commitment and ramping constraints
for a slow-ramping unit is given in Figure C.4.
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(a) Production
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Figure C.4: The top figure shows the production schedule and bounds for a unit
starting up and shutting back down. The bottom figure shows the derivative of
the production with ramping constraints according to eqs. (C.68) to (C.71).
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