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Abstract—This work studies the impact of Wireless Sensor
Networks (WSNs) for oil spill detection in subsea Oil&Gas
applications. The case study is the Goliat FPSO where one
WSN with passive acoustic sensors is assumed to be installed
on each subsea template to monitor the manifold. Sensors
take local binary decisions regarding the presence/absence of
a spill by performing an energy test. A Fusion Center (FC)
collects such local decisions and provides a more reliable global
binary decision. The Counting Rule (CR) and a modified Chair-
Varshney Rule (MCVR) are compared. An objective function
derived from the Receiver Operating Characteristic (ROC) is
used for threshold design. The considered methodology requires
the knowledge of the involved subsea production system, in
particular of its hotspots whose failure could cause an oil spill.

Index Terms—Data fusion, leak detection, oil spill, subsea
production system, wireless sensor network

I. INTRODUCTION

The Oil&Gas industry over the last few decades has de-
veloped new technologies for the exploitation of offshore
resources that were once technologically inaccessible or eco-
nomically unfeasible. One of these is the use of Subsea
Production Systems (SPS) which can be connected to a close
fixed platform, a floating system, or directly to the shore. This
allows the oil extraction in deep waters which are normally
out of range of standard fixed platforms, as well as exploiting
fields more efficiently due to the versatility of such systems
[1]. On the other hand, one of the disadvantages related to this
technology is that the presence of a SPS in deep water makes
the detection of oil spills less effective resulting in delayed
production shutdowns with a consequent risk for workers’
safety and the environment. For this reason, the presence of a
Leak Detection System (LDS) able to quickly detect oil spills
is of critical importance.

Current technologies rely on both internal methods (based
on measurements of process variables) and external methods
(monitoring the SPS’s surrounding environment). More specif-
ically, an underwater oil spill is known to cause an acoustic
signal that can be sensed via passive acoustic sensors [2],
[3]. Although the use of WSNs for leak detection has been
considered mainly in the monitoring of Oil&Gas pipelines [4],
[5], recent works have focused on monitoring of a SPS through
a WSN [6]–[8]. This work investigates the use of Wireless
Sensor Networks (WSNs) as an external method for leakage
detection and illustrates results on a realistic case-study based
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Fig. 1. Wireless Sensor Network

on the Goliat FPSO. This approach has the advantage of being
able to detect (and eventually localize) oil spills with a small
number of sensors and limited power consumption.

The remainder of the paper is organized as follows. Sec. II
provides a system overview, including assumptions related to
signals characterizations. Data processing for leak detection
is described in Sec. III, which includes local detection at
sensor location and global detection at the Fusion Center (FC).
Numerical results on the considered case study are presented in
Sec. IV in terms of Receiver Operating Characteristic (ROC).
Finally, conclusions and further works are addressed in Sec. V.

II. SYSTEM MODEL

A. Wireless Sensor Network Model

The proposed WSN architecture (see Fig. 1) is made of K
acoustic sensors1 used to detect the presence (H1) or absence
(H0) of an oil spill. The kth sensor (where k = 1, . . . ,K)
individually performs a test on the received amplitude yk and
takes a local decision dk = i ∈ {0, 1} if Hi is declared.
The local decisions are collected and combined at the FC
for a global decision Ĥ ∈ {H0,H1}. Such a system is
extremely energy efficient when On-Off Keying is considered
for decision reporting from the sensors to the FC.

1Sound pressure is sensed. Analysis concerning the sampling frequency is
not treated in the present work.



B. Signal Model

The model of the received signal at the kth sensor, depend-
ing on the corresponding hypothesis (presence/absence of a
leakage), is the following:{

H0 : yk = wk

H1 : yk = ξ · g(xk,xT ) + wk
, (1)

where ξ ∼ N (0, σ2
s) and wk ∼ N (0, σ2

w,k) are independent
Gaussian random variables representing the emitted sound
pressure produced by the leakage at a reference length (`ref)
and the Additive White Gaussian Noise (AWGN) at the kth
sensor, respectively. Also, g(xk,xT ) is the Amplitude Atten-
uation Function (AAF) depending on the distance between the
kth sensor and the leakage, whose positions are denoted xk
and xT , respectively. The signal power σ2

s and the noise power
σ2
w,k are assumed to be known (for all K sensors). The AAF,

here treated as the contribution of the sea-water absorption
and the geometrical spreading, has the following form:

g2(xk,xT ) =

(
`ref

‖xk − xT ‖

)ksc

10(`ref−‖xk−xT ‖)α10−4

, (2)

where `ref and ‖xk − xT ‖ are measured in meters, the
seawater absorption coefficient α is measured in dB/km, and
ksc is the spreading coefficient. It can be noticed that if
`ref = ‖xk − xT ‖, then g(xk,xT ) = 1.

III. LEAK DETECTION

A. Local Detection

Given Eq. (1), the uniformly most powerful test [9] to be
performed by the kth sensor is the energy test [10]:

dk =

{
0, y2k < τk

1, y2k ≥ τk
, (3)

where τk is a local threshold. The local performances, in terms
of probability of detection and probability of false alarm, of
this test are defined and computed as follows:

Pd,k = Pr(y2k ≥ τk|H1) = 2Q

(√
τk

g2(xk,xT )σ2
s + σ2

w,k

)
,

(4)

Pf,k = Pr(y2k ≥ τk|H0) = 2Q

(√
τk
σ2
w,k

)
, (5)

where Q(·) is the complementary cumulative distribution
function of the standard normal random variable. However,
since the leakage position is unknown, Eq. (4) cannot be used
directly. One possibility to overcome the issue is to refer to
average performances with respect to the SPS’s hotspots2 and
their positions hm (where m = 1, . . . ,M ), i.e.

Pd,k =
1

M

M∑
m=1

Pd,k,m , Pf,k = Pf,k , (6)

2The hotspots are those components within the SPS that could be the source
of a spill in case of failure.

where Pd,k,m is obtained replacing xT with hm in Eq. (4). By
using the arithmetic mean, Eq. (6) assumes that the hotspots
have equal failure rates and that their leakages would cause
signals having equal power σ2

s .
We define the reference Signal-to-Noise ratio (SNR) and the

sensing SNR at the kth sensor respectively as

Γref,k =
σ2
s

σ2
w,k

, Γk =
Γref,k

M

M∑
m=1

g2(xk,hm) . (7)

B. Global Detection

The FC assesses the presence of a leakage based on a test
statistic (Λ) depending on the local decisions dk:

Ĥ =

{
H0, Λ < T

H1, Λ ≥ T
, (8)

where T is a global threshold.
Two different fusion rules are considered for computing

the test statistic at the FC: (i) the Counting Rule (CR), and
(ii) a modified version of the Chair-Varshney Rule (MCVR).
MCVR is adapted to work using the mean performances in
Eq. (6). More specifically, the corresponding test statistics are
computed as follows:

ΛCR =

K∑
k=1

dk , (9)

ΛMCVR =

K∑
k=1

[
dk ln

(
Pd,k

Pf,k

)
+ (1− dk) ln

(
1− Pd,k
1− Pf,k

)]
.

(10)

Global system performances for each fusion rule are ex-
pressed in terms of Global Probability of Detection and
Global Probability of False Alarm at the FC, defined as
Qd = Pr(Λ ≥ T |H1) and Qf = Pr(Λ ≥ T |H0), respectively.
It is worth noticing that Qd will depend on the position of the
leakage, then the same approach used in the previous section
for local performances is considered:

Qd =
1

M

M∑
m=1

Qd,m , Qf = Qf . (11)

C. Threshold Selection

Local thresholds τk are hyper-parameters that ideally should
be optimized based on the global performance. Such a task
does not exhibit an easy solution, then sub-optimal solutions
are usually considered. Here we consider to select the thresh-
olds based on the optimization of the Youden Index (J) [11]:

τ∗ = arg max
τ

J(τ) = arg max
τ

{Pd(τ)− Pf (τ)} . (12)

In Eq. (12), the variables τ , Pd, and Pf are replaced with τk,
Pd,k, and Pf,k (respectively T , Qd,k, and Qf,k) when tuning
the sensors (respectively the FC).
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Fig. 2. Goliat’s subsea template: the grey elements are the structure and the
Christmas Trees, the blue lines are the main streamlines, the green dots are
the sensors, and the red dots are the hotspots

IV. CASE STUDY (GOLIAT FPSO)

The Goliat FPSO is a production platform located in the
Norwegian Barents Sea relying on eight subsea templates.
Each template has its manifold monitored by three passive
acoustic sensors as part of the external LDS [12], [13]. Twenty
hotspots (corresponding to the main valves and connections)
have been highlighted in Fig. 2. Hotspots and sensors are
assumed to be at the same height.

Numerical performances have been obtained via simulation
with 108 Monte Carlo runs using the software MATLAB. The
parameters used for the case study can be found in Table I. The
seawater absorption coefficient α in Eq. (2) has been computed
using Francois & Garrison equation [14], [15], where the
underwater speed of sound was obtained using the updated
Chen & Millero equation [16]. Table II shows the average SNR
for each sensor in case of Γref = 13.0 dB and Γref = 14.8 dB.

Fig. 3 shows the ROC curves of the LDS in the two SNR
cases comparing the two fusion rules. It is apparent how both
CR and MCVR perform almost similar in the considered case.
The reason is the symmetrical topology of the considered
case study. Asymmetrical setups would show the advantage of
MCVR over CR. Also, it is worth noticing that the ROC of the
MCVR exhibits more flexibility than the CR in terms of global
performance since a larger number of possible thresholds is
admitted (7 vs. 3 in the specific case study). Also, Table III
shows the maximum Youden Index and the corresponding
global probabilities of detection and false alarm, to highlights
the incremental improvement of MCVR with respect to CR.

V. CONCLUSIONS

This work investigated the use of Wireless Sensor Networks
(WSNs) for subsea oil spill detection, using Goliat FPSO as
a case study. Local sensors’ decisions are collected at the FC,
where CR and MCVR are considered for data fusion. ROC
performances have been obtained through realistic numerical
simulations, showing the potential benefit of the considered
approach. Future works will include a more extended analysis
on the local and global threshold selection as well as the

TABLE I
PARAMETERS USED TO SIMULATE A LEAK SCENARIO

Parameter Value Note / Reference

Reference Frequency 2.5 kHz [17]
Temperature 3.8 °C [18]

Salinity 3.5 % [18]
Depth 350 m [12]

pH 8 [19]
Spreading Coeff. (ksc) 1.5 [20]

Ref. Length (`ref) 1 m –
Noise Variance (σ2

w) 1 σ2
w = σ2

w,k ∀k
Γref 13.0 dB; 14.8 dB Γref = Γref,k ∀k

TABLE II
AVERAGE SNR AT THE DIFFERENT SENSORS

Γref Γ1 Γ2 Γ3

13.0 dB 2.4 dB 3.4 dB 1.4 dB
14.8 dB 4.1 dB 5.2 dB 3.2 dB

Fig. 3. ROC curves at the Fusion Center

TABLE III
LEAK DETECTION SYSTEM PERFORMANCES

Γref Fusion Rule J(Λ∗) Qd(Λ∗) Qf (Λ∗)

13.0 dB MCVR 0.269 0.493 0.224
CR 0.255 0.361 0.106

14.8 dB MCVR 0.328 0.530 0.202
CR 0.314 0.403 0.089

localization of the subsea component responsible for the spill
which is crucial for quicker and more efficient maintenance.
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