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4.1 Introduction

Software development projects have a track record of schedule and cost overruns,
and have often faced challenges with delivering expected quality (Flyvbjerg &
Budzier, 2011). In the nineties many expressed concern about software projects and
used the word “crisis” (Kraut & Streeter, 1995). Consequently, project management
professional associations and some authors have proposed that software develop-
ment projects should adopt and implement the traditional risk management ap-
proaches as a contributor to success (Dey et al., 2007). This is quite natural since
risk management has been considered one of the core knowledge areas in project
management for many decades. Literature abounds in this field (Chapman & Ward,
2003; Jaafari, 2001; Johansen et al., 2019; Kendrick, 2015; Persson et al., 2009;
Project Management Institute, 2019; Raz et al., 2002) and most general project man-
agement books include at least a section on risk management (Andersen, 2008;
Dinsmore & Cabanis-Brewin, 2014; Gray & Larson, 2014; Kerzner, 2017; Nicholas,
2017). Risk management has also been shown to bring a number of benefits such as
identification of favourable alternative courses of action, reduced surprises, and
provided more precise estimates (Bannerman, 2008). However, recent research has
also shown that these practices are not widely used in software development proj-
ects (Bannerman, 2008; Odzaly & Des Greer, 2014).

Risk Management is covered in the PMBOK Guide® (Project Management
Institute, 2017) which defines a project risk as: “an uncertain event or condition
that, if it occurs, has a positive or negative effect on a project objective” (p. 720)
with processes for risk identification, risk categorization, risk qualitative and
quantitative analysis, plan risk responses, monitor risks and implement risk re-
sponse. Both the Project Management Institute (PMI) and Association for Project
Management (APM) define a risk as an uncertain “event” which might have posi-
tive effects (opportunities) or negative effects (threats) (Association for Project
Management, 2008). In general, however, project managers and the literature
tend to focus on threats rather than on opportunities (Johansen, 2015). One of
the most used textbooks in software engineering, for example, defines risks as
“something you´d prefer not to happen” (Sommerville, 2016). Several techniques
have been developed to assess the probability of occurrence and the potential
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impacts to projects. A typical classification of risks is based on the level of
knowledge about the possibility for the risk to take place (known or unknown)
and the level of knowledge about the impact (known or unknown).

In projects undertaken in rapidly changing environments where uncertainty may
be unavoidable, such as software development projects, managers need to go beyond
traditional risk management; adopting roles and techniques oriented less towards
planning and more towards flexibility and learning (De Meyer et al., 2002; Loch et al.,
2006; Pich et al., 2002; Platje & Seidel, 1993). Some authors have therefore advocated
for the use of the broader concept of uncertainty management instead of risk manage-
ment (Cleden, 2009; Ibrahim et al., 2009; Perminova et al., 2007, 2008; Ward &
Chapman, 2003). “Uncertainty management is not just about managing perceived
threats, opportunities and their implications. [. . .] It implies exploring and under-
standing the origins of project uncertainty before seeking to manage it, with no precon-
ceptions about what is desirable or undesirable” (Ward & Chapman, 2003, p. 98–99).
An uncertainty management perspective draws attention to the need to understand
variability in future activities; the individual’s inability to assign probabilities to
events, and their inability to predict accurately what the outcomes of a decision might
be (Duncan, 1972). This has been shown to be particularly important in safety-critical
projects (Saunders, 2015a, 2015b; Saunders et al., 2016). Dönmez and Grote (2018) sum-
marize the difference between risk and uncertainty as follows: “risk refers to an un-
known event that leads to one outcome from a set of known outcomes, each of which
can be assigned a probability (however estimated). Uncertainty, in contrast, relates to
a lack of knowledge about which outcomes are possible, including both their nature
and associated probabilities. An ‘uncertainty’ is thus an unknown event from an un-
known set of possible outcomes” (p. 95).

Uncertainty might apply to multiple facets of a project and some authors have
tried to define categories of uncertainties. This ranges from simple models with two
categories such as endogenous vs. exogenous uncertainty (Ahsan et al., 2010), to more
extensive models. A review of uncertainty in project management by Jalonen (2011)
uses the following categories: technology, markets, regulation, social/ political, accep-
tance/legitimacy, managerial, timing, and consequence uncertainty. More suitable to
the software development projects are the three categories requirement uncertainty, re-
source uncertainty and task uncertainty proposed by Dönmez and Grote (2018) or the
model by Ropponen and Lyytinen (2000) which was used in this study as it is widely
used in previous studies to categorize software project risks: scheduling and timing,
system functionality, subcontracting, requirement management, resource usage and
performance and personnel management. Such categorization helps practitioners and
researchers to identify adequate responses and techniques according to the uncertainty
category (Cagliano, 2015).

Through multiple short iterations in conjunction with more frequent and earlier
feedback, agile approaches such as Scrum (Hossain et al., 2009; Schwaber, 2004;
Schwaber & Sutherland, 2013) have attempted to implicitly address the first category
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of uncertainty i.e., requirement uncertainty (Tuunanen et al., 2015). However, a
qualitative study from 2014 (Siddique & Hussein, 2014) reveals that many Agile
practitioners handle risk as in a traditional waterfall approach. Some authors also
claim that, while having addressed the concern with requirement uncertainty, ad-
ditional and new risks have also been introduced by the adoption of agile ap-
proaches such as new development cycle risks, development environment risks
and programmatic risks (Walczak & Kuchta, 2013). Although agile approaches have
brought product owners (or clients) closer to development there remains a separation
of development and operations. Agile has also exacerbated the impact of technical
debt1 (Kruchten et al., 2012).

Agile approaches have initially been developed for small development projects
with one team but recently they have been scaled to include multiple teams in
larger organizations (Leffingwell, 2015; Vaidya, 2014), for example in the oil indus-
try (Grewal & Maurer, 2007), in large software development organizations (Bick
et al., 2018; Gruver & Mouser, 2015; Lindvall et al., 2004), in regulated environ-
ments (Fitzgerald et al., 2013) and in the public sector (Dingsøyr et al., 2018a).
Software development projects might vary from simple one-team development to
very large-scale projects with more than ten teams (Dingsøyr et al., 2014). However,
studies on project success suggest that agile methods outperform traditional meth-
ods in contexts with high dynamism (Butler et al., 2019) and both in small and
large projects (Jørgensen, 2019). Scaling agility have introduced a range of new
challenges which have only been recently studied (Conboy & Carroll, 2019; Hobbs
& Petit, 2017a, 2017b), including approaches to uncertainty management.

In general, we have few recommendations on risk management for large soft-
ware projects. Sommerville´s textbook on software engineering (Sommerville, 2016)
recommends establishing a risk register with consequence analysis and to establish
a risk management plan which should be revisited throughout the project. A prac-
tice which is recommended for risk analysis is to identify and monitor the “top 10
risks”. However, the author notes that in agile development, risk management is
“less formal”. Agile methods are believed to reduce risks related to requirements,
but, on the other hand, increase risks related to staff turnover as documentation is
more limited and communication more informal.

“Agile software development teams rely on high levels of autonomy. This has
implications for the way in which they approach uncertainty. When left without
clear guiding structures, their choice regarding how to deal with uncertainty be-
comes an uncertainty itself” (Dönmez & Grote, 2018). As a consequence, in contexts
of multi-team projects, some additional levels of monitoring and coordination must

1 Technical debt has been introduced as a metaphor in software development, describing the cost
of taking an easy solution now that is cheaper to implement than a solution which will be more
robust over time.
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therefore be introduced. This applies to all types of activities, including risk/uncer-
tainty management. Inter-team coordination could be done by standards (using the
rules by which something is done), by plans (achieved by specifying what is to be
produced, by whom and when), by formal mutual adjustment, and by informal mu-
tual adjustment (Dingsøyr et al., 2018b; McBride, 2008; Sabherwal, 2003).

Many of the strategies to manage risks in Agile development are implicit (Hijazi
et al., 2012; Nyfjord & Kajko-Mattsson, 2007; Odzaly & Des Greer, 2014). Moran argues
that “risk management in agile projects remains a passive and implicit activity that
can be misdirected and often misunderstood [. . .] whilst most developers have little
difficulty explaining which features they are working on (e.g., user stories) or to what
level of quality they should be completed (e.g. definitions of done), few can comment
on the capacity of their work to reduce (or exploit) project risk” (Moran, 2014, p. 33).
There is some disagreement as to whether explicit methods of risk management
should be used in projects which are executed according to Agile methodology or if
the implicit risk management built into Agile methodologies is sufficient (Walczak &
Kuchta, 2013), some authors argue that this might depend on the context (Howell
et al., 2010; MacCormack & Verganti, 2003).

Most software development projects are today using agile methods, including
large projects with multiple development teams. The special issue on large-scale agile
development in IEEE Software (Dingsøyr et al., 2019) describes a transition from first
generation large-scale agile methods such as advice from project management frame-
works like Prince2 combined with Scrum, to second generation frameworks such as the
Disciplined Agile Delivery, Scaled Agile Framework and Large-Scale Scrum. These new
frameworks add practices, roles and new artefacts to manage software development.
An example of a program using a first generation large-scale agile development
method, the “Perform” programme for the Norwegian State Pension Fund was organ-
ised in four main projects focusing on establishing business requirements, the techni-
cal architecture, development and test (Dingsøyr et al., 2018a). The rich description
does not describe explicit practices for risk management, but the programme was or-
ganised into 12 releases, all development teams used three-week iterations and there
were a number of arenas to ensure customer engagement and internal programme
coordination.

Prior studies on uncertainty management in agile software development have
focused on several types of uncertainty as discussed above (Dönmez & Grote, 2015).
But we also find studies which focus on specific areas such as knowledge sharing,
uncertainty in assessing value and cost and management of technical risks: To
manage knowledge sharing risks in agile development, Ghobadi and Mathiassen
(2017) have developed a model with seven risk areas such as “team diversity” and
“project technology” and five areas of resolution strategies such as “strengthen
resources” and “improve processes”. This model is based on studies of four single-
team projects. A practically oriented method to assess value and cost in agile soft-
ware development projects is described in a magazine article by Hannay et al.
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(2019). The method is described as suitable for large projects but does not focus on
organisational layers. We also find studies which suggest models on how to handle
technical risks as expressed in the software architecture by Nord et al. (2014).

The second-generation frameworks for agile development introduce a number
of new practices, roles and artefacts to manage software development. With several
teams working on the same project, new risks are introduced and advice on how to
handle risks in single-team development may no longer be sufficient. We have tried
to search literature for research on risk management at multiple layers i.e., how
risks are managed at project level, release level, team level. Despite the fact that
risk management has been researched for many decades, this specific topic seems
to have been neglected, especially in projects using agile approaches. Nkukwana
and Terblanche observed that “implementation teams value the governance role
that project managers fulfil on agile projects, particularly with regards to project
delivery, risk management, reporting and budgeting” (Nkukwana & Terblanche,
2017, p.6) but they have not tried to assess how this is done in practice.

How risks are managed implicitly and explicitly at multiple levels of agile proj-
ects has not been extensively studied (Nelson, 2008) and there is a need to investi-
gate how risk management can be used in large agile projects (Odzaly & Des Greer,
2014). This is the objective of this exploratory study which investigates the follow-
ing research question: How does a large software/hardware development project
using agile practices manage uncertainty at project/subproject and work package lev-
els? We believe this study of a first-generation agile development project will be im-
portant for researchers addressing uncertainty management in second-generation
frameworks.

4.2 Method

We conducted an exploratory case study (Runeson & Höst, 2009; Yin, 2009) of a
“very large” development project (Dingsøyr et al., 2014) of a new product, the Joint
Strike Missile project at Kongsberg Defence & Aerospace. The case was selected as a
project which combined traditional project management with agile development
methods. The company had a traditional internal risk and opportunity process, and
should be considered a “typical” project with respect to managing uncertainty. The
case involved both hardware and software development. We chose a single-case
study design in order to get a thorough understanding, as we could not find rich
case descriptions on this topic in the literature and we were uncertain about the
volume and range of practices employed. Single-case studies allow for generalisa-
tion of findings (Flyvbjerg, 2006) and can provide significant contributions to scien-
tific development.
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A survey distributed by the company amongst participants in the project indi-
cated that uncertainty management was an area with potential for improved practices,
as the score on the question “the project has plans for uncertainty management” was
particularly low compared to other questions on project management. The survey was
completed by 60 project participants and was followed up with a half-day workshop
on uncertainty management where researchers provided recommendations from soft-
ware engineering and project management literature. Data collection was done when
the project was near completion of the third of four phases. We were granted access
to interview 11 participants (see Table 4.1), three subproject managers, the assistant
project manager (with responsibility for uncertainty management) – we refer to these
in the following as managers. Further, four work package leaders from three subpro-
jects (referred to as work package leaders) and finally three employees working in
work packages in three subprojects (work package team members). This choice of in-
formants, though a small number, allowed us to get diverse opinions on practices at
the two levels.

The semi-structured interviews were conducted by the first author. We used the in-
terview guide in Appendix 1 to get informants to describe their background, ap-
proaches to uncertainty management, and practices used in agile development. We
also focused specifically on how they had managed opportunities so far in the proj-
ect, as prior research has indicated a focus on threats. The interviews lasted from
30 to 45 minutes, a total of 120 pages of text were transcribed and sent back to in-
formants for validation. We also included a quantitative second part, where we
asked interviewees to indicate current and future importance of risk factors in the
Ropponen and Lyytinen (2000) model.

Interview material was imported into NVivo for qualitative analysis, where the
material was coded into groups that described explicit and implicit practices for un-
certainty management at different levels of the project (see Table 4.2 for resulting cat-
egories). The project was located at two development sites, most subprojects were
conducted at the main site, but some subprojects have work packages conducted at

Table 4.1: Overview of informants for study.

Level Assistant project
manager

Subproject
manager

Work package
leader

Work package team
member

Project 

Subproject   

Subproject   

Subproject   

Total    
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the other site which meant that possibilities for informal coordination was limited.
Subprojects 1 and 2 were at the main site, while the work package leader and team
members in Subproject 3 were from the other site.

As the interviews were conducted in Norwegian, the analysis was performed by
the first author of this article with help from one researcher (see acknowledgement).
The second author contributed in writing the theory section and discussing findings
and contrasting this with findings from prior literature. The discussion was devel-
oped in a series of phone meetings. Results from the analysis were presented to
some of the informants for validation.

4.3 Results

4.3.1 Case description

The project developed a product which consists of hardware and software compo-
nents and the development has taken more than ten years and for a long period in-
volved about 200 engineers. Main subprojects were for hardware, for software, and
for integration and testing. The project had more than 50 subcontractors. The product
had strict non-functional requirements for performance, security and safety, and a set
of functional requirements which were mainly known in early phases of development.
Most requirements were defined early in the project and a contract with the client was
written based on these requirements. The project was managed as a traditional project
using a V-model but followed agile development methods primarily for the software
components (a first-generation large-scale agile project). The project was divided into

Table 4.2: Mitigating practices to manage uncertainty at project and work package levels; divided
into explicit practices and implicit practices.

Explicit Implicit

Common Specific Common Specific

Project level/
Subproject

ABCD-reports

Burndown
chart

Issue board

Risk matrix

Progress meeting
with customer
Risk register
Subproject
meetings
Top Five Risks

Ad-hoc
handling of
risks
Code Review
Estimation
Integrations
Project plan
Early testing
Technical debt
Tasks to other
subprojects

Task prioritization

Work package
level

None identified

Problem analysis using
As No Gold plating
Pair design
Retrospective
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six subprojects, with up to six work packages. The work packages had a work package
leader and a team. Some of the software teams used the Scrum development process
with two-week iterations, starting with iteration planning and ending with an itera-
tion review. There were numerous dependencies between the subprojects and these
dependencies were both technical and organisational.

4.3.2 Project risks

When asked to assess risks after the framework suggested by Ropponen and
Lyytinen (2000), the informants rated “scheduling and timing risks” and “system
functionality risks” as the two most important. One respondent stated, “the last two
years, we have been pressed hard on time and cost . . . it has been a large focus on
just implementing what must be implemented” (work package team member).
Another respondent was asked what was most important and stated that it was
“functionality and performance . . . but it is always connected to schedule”.

Risks are mainly interpreted as threats, but sometimes also opportunities.

We have tried to talk about threats and opportunities and uncertainty, but we notice that we eas-
ily fall back on talking about threats. (Manager)

However, some state that the reporting structure of the project focuses on reporting
benefits from work package level and up (see more on ABCD-reporting later), and
people report things like:

this is an opportunity – here we have a chance to work more efficiently. (Work package manager)

4.3.3 Explicit and implicit practices at different levels of the project

We show the mitigation practices to manage risks at the project/subproject level
and show the practices we characterise as explicit and implicit in Table 4.2. The
table also shows which practices were common to both project/subproject and
work package levels, and which were specific. In the following sections, we provide
descriptions of each of these practices.

4.3.4 Explicit uncertainty mitigation

4.3.4.1 Common

ABCD-reports: Every second week the project managers wrote a report, called the
“ABCD-report”, indicating what had been Achieved, resulting Benefits, Concerns
and what they planned to Do next. The subproject managers received the ABCD
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reports from their work package leaders, and risks were reported as concerns. It
was possible to indicate at what level a risk should be handled. Another option was
to present issues requiring concrete actions directly to the project manager in proj-
ect meetings.

Burndown charts: These were used at subproject and work package levels. At
work package level, there were multiple variants of burndown charts – as a board,
in different software tools which changed during the course of the project.

Issue boards: Issue boards were used to register and follow up risks, bugs,
problems and improvement suggestions at subproject and work package levels. In a
work package, one informant stated:

this is something we use for a number of purposes [. . .] we meet once a week and discuss what
has been registered. (Work package manager)

Risk matrix: The risk matrix was established early at project and subproject levels.
The matrix was updated before progress meetings described below, but also on a
need-be basis if something came up. Although it was not mandated by the project
managers, some work package leaders discussed risks at work package level and
would bring them into the risk matrix at subproject level. An informant stated that:

work package leaders are clearly involved in developing the risk matrix at subproject level.
(Work package team member)

4.3.4.2 Specific for project/subproject level

Progress meeting: Three to four times a year, the project had a meeting on progress
with the customer. They walked through the risk matrix and risk register as prepa-
ration for the meeting. This was done on project level, based on preparations in all
subprojects where subproject managers assessed their risk registers.

Risk register: The program established a risk register in the beginning of the
program by brainstorm meetings at subproject level. The items in the register were
given a probability and a consequence. A person was given responsibility of miti-
gating actions. Status of actions were discussed with the customer at the progress
meetings.

Subproject meetings: Risks were discussed in subproject meetings, where the
subproject managers met with work package managers. This was based on discus-
sions between work package team leaders and team members, not necessarily in a
separate meeting on this topic.

Top Five Risks: Every subproject manager brought a list of “top five” internal
risks to a project meeting, and the management discussed the risks and developed
a list of the project “top five”. This list was communicated internally through the
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project Intranet. In our interviews, this was only mentioned by people in manage-
ment positions, the awareness of this list might be low in the project organisation.

4.3.4.3 Specific to work packages

From our interview material, we could not identify explicit practices that were spe-
cific to work packages. There were no obligations for explicit practices at this level.

4.3.5 Implicit uncertainty mitigation

4.3.5.1 Common

Ad-hoc handling of risks: Several informants said risks were handled ad-hoc as they
were discovered.

What can we do when things stop? . . . we find solutions to ensure that we deliver as planned
(Manager).

Another informant stated that at work package level,

if something shows up, we call for a meeting right away, but there is not necessarily any process
or description of it. (Work package manager)

Code Review: Many said they did multiple code reviews both in the work packages
and in subprojects. Sometimes code was reviewed by several peers if it was a large
or complicated part. If it was a minor change then just one person might review it.
One work package had a practice of having at least two people reviewing the code,
as code quality was particularly critical in this part of the project.

Estimation: Because of the complexity and innovations of the tasks, accurate
estimations were one of the major challenges throughout the project. The work
tended to be underestimated, in particular the work regarding integration of hard-
ware and software components. At work package level, tasks were individually esti-
mated in man-hours. In one work package, they tried group estimates, but it was
not a practice that they maintained.

Integrations: The project integrated deliverables from all subprojects at certain
intervals, but because some deliverables include hardware, the increments could
be very large, in the order of one to two years of work (while many of the software
work packages used two-week iterations).

This means that groups that consist of system engineers, software architects and software devel-
opers work on the same functions, but not at the same time. . . . when we pick up a topic, the
system engineers have forgotten what they talked and thought about. (Software developer)
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Although many expressed that integrations were too infrequent, they described in-
tegrations as a major factor to reduce risks:

because you go through the whole process over a short period and can find uncertainties in the
whole V. (Work package team member)

Some said that it had been difficult to integrate at the planned milestone dates, because
of the difficulty to synchronize parts from so many people at an agreed milestone:

We are in a situation now, where we are depending on a delivery from another work package,
they do not know exactly when they can deliver the first version, and we know there will be errors.
So, we need to test, which will take time, and we are unsure about how long. Then someone else
is waiting at the other end to make use of the delivery. (Work package manager)

Project plan: Some risks were identified during planning, for example when the
project team needed to commit to dates and milestones.

Early Testing: Taking up agile practices such as early integration led to much
earlier testing. In previous projects testing was only done at the end of the project.
The early testing led to a reduction of risks.

Technical debt: Previous studies on risk management in agile projects identified
technical debt as one important concern. In our case, the informants expressed a
varying degree of awareness on technical debt. One said that he was not aware of
the term, but has experienced that

we cannot always perform tasks the way we want to, there is not enough time for that. (Work
package team member)

Other informants reported that they had frequent discussions on technical debt and
registered all debt. The debt was then regularly assessed. The technical debt had so
far not been shown in the risk matrix, they talk about technical debt, but had not
identified it as risk.

Tasks to other subprojects: Tasks were regularly assigned from one work pack-
age to another and they tried to make dependencies visible. In particular this was
important when limited resources could be assigned to certain tasks, especially if
they were considered high priority tasks.

4.3.5.2 Specific: Project/subproject level

Task prioritization: Some stated that the project was in a better position to manage
risks compared to previous projects due to the uptake of agile methods and fre-
quent re-prioritization and focus on work tasks. According to the project manager:
“The method makes you have more focus”. A subproject manager explained that
they had influence on prioritisation in other subprojects:

we have worked with getting them to understand what is important to us. (Manager)
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4.3.5.3 Specific: Work package level

Problem analysis using A3s: A technique borrowed from lean manufacturing used to
document a problem on an A3 sheet, including: Background, what has been done
regarding the problem and a conclusion. This practice was used by the work package
teams in this phase of the project. These were stored to give background if a prob-
lem reoccurred.

No gold plating: Most informants expressed that over-investing in quality or
functionality was not a problem in the project.

The last two years, we have been pressed hard on time and costs, so towards the end of the proj-
ect there has been a strict focus on just implementing what needs to be implemented. (Work
package team member)

The work package leader would be informed of the team’s activities and ensured
that activities were within scope. According to a work package member:

we focus on being finished rather than the “nice to have”-stuff. (Work package team member)

Pair design: Both pair design and pair programming have been used to some extent,
but there was no project-wide policy on the use of these techniques. Pair program-
ming allows code review to be done while writing the code, which is believed to
increase the code quality. Also, discussions while doing development could lead to
more optimal design decisions which could reduce risks related to code quality.

Retrospective: Some of the work packages conducted regular retrospectives,
while others did not. Some that did retrospectives combined this with a planning
meeting where most of the time was spent thinking ahead, and little on discus-
sing lessons learned during the last iteration. Retrospectives could be used to dis-
cuss estimation precision, but our informants did not express such use of these
meetings.

4.4 Discussion

We return to our research question, how does a large software/hardware develop-
ment project using agile practices manage uncertainty at project/subproject and work
package levels?

The case studied was a large project developing a product consisting of hard-
ware and software components. The software engineering field has experienced
many changes in recent years due to agile development methods which bring in
new practices and new terminology such as «technical debt». The project has taken
up agile methods through more frequent integration of components than in previ-
ous projects as well as in using agile development methods mainly at work package
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level. We described the case project as a first-generation large-scale agile develop-
ment project.

The results show a total of 21 uncertainty mitigation practices, where we have
classified eight as explicit and 13 as implicit. Further, five practices are specific to
the project and subproject levels (four explicit and one implicit), while four are spe-
cific to the work package level (all implicit). This finding echoes findings on coordi-
nation in large-scale agile development, where studies show that there are far more
practices in use in successful projects than are described in recommendations in ex-
isting frameworks (Dingsøyr et al., 2018b).

Although there were a large number of practices, their use varied much be-
tween work packages and between subprojects. For example, estimation techniques
are used to varying degrees, the awareness of «technical debt» was strong in some
work packages while others were unaware of the term, and the agile practice of ret-
rospectives was used to varying degrees. Some of the explicit practices such as the
risk matrix and risk register were used across the subprojects and also at some
work packages. Our study is to our knowledge the first to identify practices at differ-
ent organisational layers in projects. We also identified a larger variety of practices
than can be seen in empirical studies of small agile development projects (Dönmez
& Grote, 2018; Elbanna & Sarker, 2016; Siddique & Hussein, 2016) or from studies of
uncertainty management in general.

An interesting observation was that at work package level there were no specific
explicit practices. All explicit practices had been deployed at project level and most
of these techniques required some flow up or down between the hierarchy of the proj-
ect. This was different for the implicit practices where multiple specific techniques
were used at the work package level. The specific implicit practices at work package
level were primarily used to manage “system functionality” risks (Ropponen &
Lyytinen, 2000) and consisted of practices from agile development such as retro-
spectives and pair programming and from lean production with the use of A3s to
document problems and solutions. In contrast, the risk management techniques
used at project level were focused mainly on “scheduling and timing risks”
(Ropponen & Lyytinen, 2000).

The interviewees did not make distinctions between risk and uncertainty man-
agement. However, going back to the definitions presented in the literature review
section, it became clear during the data analysis that the project was focusing
mainly on risks (i.e., possible events which might impact the project) using tradi-
tional explicit risk management techniques deployed throughout the project. As in
previous findings, this program focused their risk management primarily on threats
and not on opportunities. In comparison, the work packages were focusing primar-
ily on implicit techniques for uncertainty management (i.e., their inability to deter-
mine the scope and the task durations precisely for the whole project).

Previous studies of risk management in agile development have identified
challenges with separation of development and operations and a growing technical
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debt (Elbanna & Sarker, 2016). The separation of development and operations was
not directly addressed in the mitigation practices identified in our study, while some
brought this topic up in interviews. Technical debt was a topic with varying practices
across work packages. For large projects, a crucial topic identified in previous studies
has been coordination between different teams. This was mainly done through a tra-
ditional project organisation in our case, and for example not through meetings such
as Scrum of Scrums. However, the informants stated that “scheduling and timing”
were the main risks in the project, and this was much related to coordination be-
tween teams. A practice to manage this type of uncertainty was to give “tasks to
other subprojects”.

4.5 Conclusion

This study shows how uncertainty is managed in a large project with several sub-
projects, using a combination of practices from project management and from agile
development methods. In line with previous findings, we found that uncertainty
management practices were mainly focusing on handling threats, and to a smaller
degree on opportunities.

We are not aware of previous studies describing how uncertainty is managed at
the different levels in large projects. The main contribution of this study is that our
case shows the high number of practices in use, some are used on all levels, while
others are used only the project/subproject level or at the work package level.

The use of many of the practices vary, for example some work packages were
very conscious on registering technical debt, while others did not use this term. The
specific practices at project/subproject level are mainly practices that explicitly
handle uncertainty while the practices at work package level are practices that im-
plicitly handle uncertainty. Further, some of the practices link between the layers
in the project, such as the ABCD reports, the issue boards and the registration of
technical debt.

With the increasing importance of software in many large projects, we believe
more projects will have to manage layers of risks with a wide range of practices in
the future. This exploratory study highlights characteristics of uncertainty mitiga-
tion in first generation large-scale agile projects that blend “traditional” project
management and agile methods.
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4.6 Limitations

The major limitation of this study is that it is an exploratory study with a limited data
collection. The case was selected as a “typical” case of a first-generation large-scale
agile development project. An “extreme” case with more effort needed on uncertainty
management might have opened up other topics for further investigation.

The interviews were done during the third of four project phases, rather than lon-
gitudinally over the life of the project. Given the type of study, with semi-structured
interviews of informants on how uncertainty was managed, we do not have detailed
information on use of all practices identified.

4.7 Implications for theory and practice

We have presented findings from a case study of a first-generation large-scale agile
development project and what practices were in use for uncertainty management at
two levels. This study gives important directions when attention is given to second
generation frameworks which are increasingly used in the software industry. In par-
ticular, we would like to highlight five directions:

First, a number of challenges have been identified in large-scale agile develop-
ment (see for example (Bass, 2019)) which includes topics such as interteam co-
ordination, technical architecture and assigning priority to user needs. How do
the resolution strategies suggested in the various second-generation large-scale
agile methods work in practice?
Second, an implicit practice to manage uncertainty in agile development is to
assign work to teams. A team is more robust than individuals but studies of
large-scale development suggests that teamwork in this context is different
from teamwork in single-team settings (Lindsjørn et al., 2018). How can second-
generation frameworks facilitate good teamwork while managing project
uncertainty?
Third, the technical architecture is a major source of uncertainty. Prior studies
of first generation large-scale agile development suggests that the architecture
has been stable (Dingsøyr et al., 2018a) while advice is to work more iteratively
also with architecture (Nord et al., 2014). How do projects address this type of
uncertainty when using second generation methods?
Fourth, large-scale agile development projects are organised as multi-team
projects, often with a structure as in our case with subprojects and work pack-
age teams. What alternative linkage strategies exist, and how are these strate-
gies used in practice?
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Finally, we think there is a need to revise existing published risk frameworks such
as (Ropponen & Lyytinen, 2000) in order to fit needs in large projects both for first-
and second-generation large-scale agile development methods.

Although this is an exploratory study primarily intended to generate directions
for new research, we believe the description of uncertainty management practices
in the case has several implications for practice:

First, the case study shows a large number of explicit and implicit practices in
use to manage uncertainty. Prior studies on coordination in large-scale agile develop-
ment projects have also found a large number of arenas for coordination. It seems
reasonable that large projects will need a large number of practices to manage the
diverse range of uncertainty during project execution.

Second, we believe the list of practices identified in Table 4.2 can be valuable
when planning new large projects or seeking inspiration to manage certain types of
uncertainty during project execution.
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Appendix 1: Interview guide

Will use “uncertainty management” as managing “uncertain event or conditions that,
if they occur, has a positive or negative effect on one or more project objectives such as
scope schedule, cost and quality” (PMI Body of Knowledge).
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Part 1

Background

1. Could you describe your role in the project?
2. Could you describe the work method in your part of the project?
3. Are your tasks affected by other work packages or subprojects? How?
4. Do you work in a distributed team? Hardware or software?

Uncertainty management

[Risks]
5. Do you identify risks to project progress in your part of the project? What hinders

project progress in your part? Are there particular challenges you are facing?
6. How do you work to identify risks? (practices? tools?) what do you normally do

about them (issues/ challenges/ problems)?
7. Are you aware of (implicit) practices that reduce risks to project progress? Is

there something done on the work package/subproject/project level about them?
8. How are risks communicated in the project organization? Do you think your

technical lead or PM is aware of this? Are they on denial or can/do something
about it?

9. How do you work to identify opportunities? (practices? tools?)

[Questions about identified risks in agile projects]
10. Would you say that the product has technical debt? How much debt you think

the team accumulates? Do you think there is a way to pay part of this debt
back during the development? Do you think some could be paid back after the
project? How?

11. Do you have established approached to manage technical debt? Do you keep a
log or any other way to keep track of these debts?

12. Are there challenges in handing over products from development to opera-
tions/maintenance?

13. What PM tools are you using? Is this available for all teams in the organisa-
tion? How are project management tools used in the project? Alignment?

14. Is knowledge regarding work tasks preserved for later maintenance? Have you
been involved in system upgrade or maintenance tasks?

[Opportunities]
15. Are you aware of (implicit) practices to identify opportunities in the project?
16. How is this handled?
17. How are opportunities communicated in the project organization?
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18. Do you estimate the effort involved in work tasks? How? (practices? tools?)
19. How is progress on work tasks communicated to other parts of the project?
20. Do you see potential for improvement for managing

* Risks?
* Opportunities?

Part 2

Questionnaire: Project risks

Please indicate how important the following
risks are in your current project. Use the
following scale:
 – Not important
 – Slightly important
 – Moderately important
 – Important
 – Very important

Please indicate how important you think the
following risks will be in future similar projects.
Use the following scale:
 – Not important
 – Slightly important
 – Moderately important
 – Important
 – Very important

Risks to be assessed (from Ropponen and Lyytinen (2000)):

Scheduling and timing risks
System functionality risks
Subcontracting
Requirement management risks
Resource usage and performance risks
Personnel management risks
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