
Stability Analysis of a Virtual Synchronous
Machine-based HVDC Link by Gear's Method

Jalal Khodaparast
Department of IEL

NTNU
Trondheim, Norway

jalal.khodaparast@ntnu.no

Olav Bjarte Fosso
Department of IEL

NTNU
Trondheim, Norway
olav.fosso@ntnu.no

Marta Molinas
Department of ITK

NTNU
Trondheim, Norway

marta.molinas@ntnu.no

Jon Are Suul
Department of ITK
NTNU and SINTEF
Trondheim, Norway
Jon.A.Suul@sintef.no

Abstract—Declining equivalent inertia caused by the massive
integration of converter-based technologies can increase the
risk of stability problems in the future power system. Control
of HVDC systems as Virtual Synchronous Machines (VSMs)
for providing emulated inertia is a promising countermeasure
against this development. However, low inertia converter-
dominated power systems are raising new challenges for
stability analysis. Thus, new numerical techniques and tools
are needed for efficient and accurate analysis of small- and
large-signal stability issues in complex power systems with
different kinds of generation units, converter systems and control
loops that can experience potential interactions, internally or
with the network. Gear's method with a variable time step,
offers the possibility to obtain fast and flexible procedures for
large-signal stability analysis. Additionally, it can make stability
analysis efficient by combining the small-signal and large-signal
analysis into the same process. This paper will show how the
stability of a power system with a VSM-based HVDC link
can be evaluated by the method and presents an approach for
simultaneous small- and large-signal stability assessment.

Keywords-Gear's method, HVDC transmission, Large-signal
stability, Small-signal stability, Virtual Synchronous Machines.

I. INTRODUCTION

Growing energy consumption and concerns about envi-
ronmental issues are contributing to an intensive attention
on renewable energy resources. In recent years, there is an
ongoing growth in utilization of different renewable energy
sources, and power electronics converters are usually ap-
plied to integrate them to the main power system. For the
power electronics-fed renewable energy resources, converters
decouple the electrical system from the mechanical system.
This may decrease the total equivalent inertia of converter-
dominated power systems [1].

Inertia is an inherent property of any system that resists
changes in its speed or rotation. In classical power systems,
the rotating generation units provide the inertia which pre-
vent instantaneous changes in frequency. While synchronous
condensers can be utilized to compensate for reduced system-
level inertia due to reduced share of traditional synchronous
generators (SGs), this is a costly solution for large power
systems. However, converters for High Voltage Direct Current
(HVDC) transmission can be controlled to emulate the inertial
response of SGs [2]–[4]. If the converter control system
includes a simulation of an SG swing equation, it is commonly

labelled as a Virtual Synchronous Machine (VSM) [5]. Such
control methods can also provide damping for oscillations in
the power system [4], [6]. Additionally, VSM-based control
of converters is suitable in a smart grid context since it
is not relying on synchronization to a stiff power system.
However, small- and large-signal stability analysis of such
systems need development of new numerical techniques and
tools. While electrical power systems models are becoming
more and more complex, simulation of the system becomes
prone to numerical instability. Therefore, appropriate time
steps should be carefully adopted [7]. Traditional methods for
fixed time-step numerical integration requires the time step to
be smaller than the smallest time constant in the dynamics
of the power system. This requirement makes it difficult to
address the stability issues of a complex large-scale power
system. Variable time steps will enable a procedure of stability
analysis by reducing the computation time. Gear’s method
implements an algorithm based on a predictor and corrector
scheme which is a promising method to automatically adjust
the step size of the numerical analysis [8]. Although variable-
time-step methods are also available in MATLAB and EMT-
like (ElectroMagnetic Transients ) programs, they are limited
by the fundamental frequency of the system, since all dynamic
models are implemented in a stationary frame. However,
Gear's method deals with a dynamic-algebraic system, which
in addition to the combined EMT-like and phasor-based sim-
ulation, takes advantage of a dq-representation. Therefore, the
way of implementing variable-time step simulation of hybrid
dq and phasor models by the Gear's method has advantages
compared to methods implemented in the stationary frame.

AC/DC power systems are typically complex systems that
can be labeled as a stiff system in numerical analysis. Stiffness
is an efficiency concept that shows there is a wide range of
time constants in the system [9]. A stiff system needs a stiff
solver where the numerical stability is ensured. The proposed
method in this paper is a second-order predictor-corrector
method and performs the integration efficiently by adapting
the step size automatically [10]. Moreover, this method has the
potential to perform the small- and large-signal analysis as a
unified procedure. Additionally, it is a hybrid method that can
deal with both phasor models and detailed (dynamic) models
of the power system components. For a large-scale power



Fig. 1. Electrical and control parts of a VSM-based HVDC link

system with many elements, the hybrid capability improves
the efficiency of the stability analysis [11], [12].

II. MODELS OF GENERATOR AND VSM-CONTROLLED
HVDC

In this paper, generators and VSM-controlled HVDC con-
verters are modeled dynamically. The system equations are
used by the Gear's method to evaluate dynamic performance of
the system subjected to non-severe and severe disturbances. A
brief description of the dynamic models (generator and VSM-
controlled HVDC link) is represented in this section.

A. Generator model
In classical model of a generator, it is represented by a

voltage source (constant-amplitude and time-varying-angle)
behind a transient reactance (x′d). The generator is then
represented by the swing equation as

d

dt
∆ωr =

0.5

Hint
(Pm − Pe −KD∆ωr)

d

dt
δ = ω0 ∆ωr (1)

where ωr is rotor’s angular frequency, Hint is inertia constant,
Pm and Pe are mechanical and electrical powers, δ is load
angle, ω0 is nominal angular frequency.

B. Model of VSM-controlled HVDC link

The VSM-controlled HVDC link consists of electrical (AC
and DC) and control parts, of which the dynamic models are
presented here. The HVDC converter terminals are represented
by a traditional Voltage Source Converter (VSC) modeled by
equations as:

d

dt
iLd =

ωgωb

Lc
vLd −

ωgωb

Lc
vod −

ωgωbRc

Lc
iLd + ωgωbiLq

d

dt
iLq =

ωgωb

Lc
vLq −

ωgωb

Lc
voq −

ωgωbRc

Lc
iLq − ωgωbiLd

d

dt
vdc = ωgωbCdc(±idc ∓ idc−line) (2)

Parameters and variables presented in (2) are represented in
per-unit quantities, and are identified in Fig.1, where parame-
ters and variables of the rectifier-side are labeled by ’1’ while
the inverter-side variables are labeled by ’2’. However, in
(2), the rectifier- and inverter-side equations are defined by
± and ∓, respectively. The grid and base angular frequencies
are denoted as ωg and ωb. In addition to the electrical part,
control part of VSM-controlled HVDC link should be modeled
dynamically. The applied VSM-based control strategy includes
cascaded current and voltage controllers as shown in Fig.1



[13]. The equations defining the current controller are:

vLd−ref = kpc(iLd−ref − iLd) + kicγid + vod − ωvsmLciLq

vLq−ref = kpc(iLq−ref − iLq) + kicγiq + voq + ωvsmLciLd

d

dt
γid = iLd−ref − iLd (3)

d

dt
γiq = iLq−ref − iLq

where γid and γiq represent the integrator states of the PI-
controllers. Parameters and variables presented in (3) are
shown in Fig.1. The voltage controller is modelled as:

iLd−ref = kpv(vod−ref − vod) + kivγvd + iod − ωvsmCfvLq

iLq−ref = kpv(voq−ref − voq) + kivγvq + ioq + ωvsmCfvLd

d

dt
γvd = vLd−ref − vLd (4)

d

dt
γvq = vLq−ref − vLq

where γvd and γvq represent the integrator states. Parameters
and variables presented in (4) are shown in Fig.1. The reactive
power control and the virtual impedance presented in Fig.1 are
modeled as:

d

dt
qm = −ωfqm + ωfQcal

Qcal = voqiod − vodioq
V ∗r = vref −Kq(Qref −Qcal)

vod−ref = V ∗r − rviod + ωvsmlvioq

voq−ref = 0− rvioq − ωvsmlviod (5)

Contrary to the conventional control of VSC- HVDC systems,
where a Phase Locked Loop (PLL) is used to specify the angle
reference for the converter, control based on VSM creates the
reference angle based on simulating the dynamic model of
synchronous machine (similar to equation presented in (1)) for
the converter. The dynamic equations of the rectifier converter
for the VSM-based control are:

d

dt
∆ωvsm1 =

0.5

Hvsm
×

(Pref − Pcal −Kds∆ωvsm1 +Kw(ωref1 − ωvsm1))

d

dt
δθvsm1 = ωb ∆ωvsm1

Pcal = vodiod + voqioq (6)

where the parameters are shown in Fig.1 and Kds∆ωvsm1

represents the damping. On the other hand, the inverter of the
VSM-based HVDC link is modeled as [4]:

d

dt
∆ωvsm2 =

0.5

Hvsm
×

(vdc−ref − vdc −Kds∆ωvsm2 +Kw(ωref2 − ωvsm2))

d

dt
δθvsm2 = ωb ∆ωvsm2 (7)

Therefore, generator and VSM-based HVDC link are modeled
by the equation presented in section II (A,B).

C. Integration of VSM-based HVDC link to a power system

The current injection method is used in this paper to
integrate the dynamic model of the VSM-based HVDC link to
the power system [14], [15]. According to the injected current
method, the injected currents (Ig for generator buses and Ix for
non-generator buses) and voltages of buses (Vg for generator
buses and Vx for non-generator buses) are related as:(

Ig
Ix

)
=

(
YK YL
Y T
L YM

)(
Vg
Vx

)
(8)

Since the interactions of the VSM-based HVDC link with the
whole system is investigated in this paper, the Ix is a nonzero
vector (it is zero in a classical power system without HVDC),
and two nonzero arrays (io1 and io2) are formed in the vector.
These are injected currents by the VSM-based HVDC link at
two points of common couplings (PCCs). Therefore, with the
VSM-controlled HVDC link connecting Bus k (conv1) and
Bus j (conv2), the bus voltages and generator currents are
calculated as:(

ioD
ioQ

)
=

(
cos(δθpll) −sin(δθpll)
sin(δθpll) cos(δθpll)

)(
iod
iod

)
Ix = [0, 0, ..., io1, io2, 0, ...0]

Vx = Y −1M (Ix − Y T
L Vg)

VBus−k = Vx(k) , VBus−j = Vx(j)

Ig = YKVg + YLVx (9)

III. GEAR'S METHOD

The equations presented in the previous section model the
whole system as an Differential-Algebraic Equation (DAE)
system. The Gear's method as a numerical integration method
is applied to the DAE system to approximate the excursion
of state variables during severe and non-severe disturbances.
The method is a second-order numerical integration method
that operates on prediction and correction stages. It adjusts the
integration step size based on the instantaneous stiffness of the
equations to fulfill the desired accuracy. It uses second-order
Taylor expansion to predict the variables in the prediction stage
and uses a Newton-Raphson method to correct the predictions
in the correction stage [8], [10]. A general nonlinear DAE
system has the form as

y′ = f(y, x, t)

0 = g(y, x, t) (10)

where y and f are differential variable and function, x and
g are algebraic variable and function and t is time. In the
prediction stage of the method, the next step solution yn+1

and its first and second derivatives are predicted by the Taylor
expansion as [16]

yPn+1 = yn +Hn+1 y
′
n +H2

n+1 y
′′
n/2

y
′P
n+1 = y′n +Hn+1 y

′′
n

y
′′P
n+1 = y′′n (11)



where H is the integral step size, y′ and y′′ are first and second
derivatives. In the correction stage of the method, the predicted
values are corrected as

yn+1 = yPn+1 + ∆y

y
′

n+1 = y
′P
n+1 + ∆y I1/Hn+1

y
′′

n+1 = y
′′P
n+1 + 2∆y I2/H

2
n+1 (12)

where I1 = (2Hn+1 + Hn)/(Hn+1 + Hn) and I2 =
(Hn+1)/(Hn+1 + Hn) are constant values, which depend
on the integral step size. ∆y is the difference between the
predicted and the corrected values. To solve the differential
equation presented in (10), the method defines a new function
U based on (10) and (12). Un+1 is extracted from the
main nonlinear differential equation presented in (10) and the
corrected value of first derivative (y

′

n+1) presented in (12) as

Un+1 = y
′

n+1 − f(yn+1, xn+1, tn+1) = 0 (13)

Un+1 = Hn+1 y
′P
n+1 + I1 ∆y + ...

...−Hn+1 f(yPn+1 + ∆y, xPn+1 + ∆x, t+Hn+1) = 0

A system of DAEs (where U is a new defined differential
equation presented in (13) and g is the algebraic equation
presented in (10)) can be converted to a system of Ordinary
Differential Equation (ODE) by differentiating it with respect
to the variables as

(
Un+1

gn+1

)
=

 I1 −H
∂f

∂y
−H ∂f

∂x
∂g

∂y

∂g

∂x

(∆y
∆x

)
(14)

where ∆x is the difference of predicted and corrected values
of the algebraic variable. The only unknown variables in (14)
are ∆y and ∆x, which are computed by finding the roots
of the system (Un+1 = 0, gn+1 = 0). Newton-Raphson
is a well-known method for finding the roots of coupled
nonlinear equations. Thus, changes of variables (∆x and ∆y)
to approximate the next step solution are calculated by solving
(14). The partial derivatives of the differential and algebraic
functions with respect to the variables (∂f∂x , ∂g∂x ,∂g∂y ) presented
in (14) can form the time-varying state matrix (A-matrix) of
nonlinear system as:

A =
∂f

∂y
− (

∂f

∂x
(
∂g

∂x
)−1

∂g

∂y
) (15)

This characteristic of the proposed method makes it a more
powerful solver capable of providing small-signal stability
analysis as an additional function during numerical integration
for large-signal stability analysis.

In the updating stage of the method, the integral step size
is adjusted by an internal loop based on the approximation
error. According to the adaptive step size strategy, accuracy

Fig. 2. Single Machine to Infinite Bus (SMIB) with VSM-based HVDC link

of the approximation is checked by the Truncation Error (TE)
defined by (16).

TE = |z(tn+1)− zn+1| = 2K2 I2 ||∆z|| (16)

where z = [y, x] is a global variable including both dif-
ferential and algebraic variables and K2 = (1/6)(Hn+1 +
Hn)2/(Hn+1(2Hn+1 + Hn)). Based on the calculated TE,
the integral step size of the algorithm is adapted as [16]

Hnew = Ksc

√
TEds

2K2 I2 ||∆z||
Hold (17)

where TEds is the desired accuracy. Ksc is a scaling that
is set to lower than one when decreasing the step size and
is bigger than one when increasing the step size. According
to the internal procedure of the method, it introduces a new
approach to detect large-signal instability in the numerical
simulation of a power system. TE of a stable system is always
lower than TEmax, but it exceeds this limit during unstable
conditions due to the divergence of the numerical solutions.
Therefore, monitoring the truncation error is utilized in this
paper to discriminate the stable from the unstable conditions.

IV. SIMULATION RESULTS

A Single Machine to Infinite Bus (SMIB) with VSM-
controlled HVDC link is used in this section to evaluate the
performance of the proposed method in a converter-based
power system. The power system without the HVDC link is
presented in [9]. The generator (G1) shown in Fig.2 produces
an apparent power SBus1 = 0.9+j0.436 (in per-unit) at Bus1
with voltage VBus1 = 1.0∠28.340 during steady state. The
generator is presented by a second-order model with an inter-
nal voltage (E′∠δ) behind a transient reactance X ′d = 0.3p.u.,
inertia constant Hint = 3.5s and damping factor KD = 2. It
is connected to an infinite bus (VBus3 = 0.90081∠0) through
the network, which is shown in Fig.2.

One of two transmission lines in the network is the VSM-
controlled HVDC link from section II.B. Reference values
of the Rectifier-side (Conv1, Bus2) of the HVDC link are:
Pref1 = −0.5853, Qref1 = −0.1860 , Vref1 = 1 and
ωref1 = 1 and the reference values of the Inverter-side (Conv2,
Bus3) of the HVDC link are: vdc−ref2 = 1, Qref2 = −0.0255
, Vref2 = 0.90081 and ωref2 = 1 (all in per-unit). The
operating point is selected based on the steady-state condition
of the SMIB system in [9] without the HVDC link. The
parameters of the VSM-controlled terminals are: kpv = 5.9,
kiv = 70.36, kpc = 2.54, kic = 28.6, Hvsm = 0.01, kds = 25,
kω = 0.2, kq = 0.4, ωf = 1000, rv = 0.1,lv = 0.1.



TABLE I
SMALL SIGNAL ANALYSIS OF HVDC LINK WITH CONVENTIONAL AND

VSM-BASED CONTROL

Number Eigenvalue (conv. control) Eigenvalue (VSM-controlled )
1 103 × ( -0.0190 + 1.2155i) 103 × (-0.4862 + 7.0959i)
2 103 × (-0.0190 - 1.2155i) 103 × (-0.4862 - 7.0959i)
3 103 × (-0.0003 + 0.5713i) 103 × (-0.6298 + 2.5037i)
4 103 × (-0.0003 - 0.5713i) 103 × (-0.6298 - 2.5037i)
5 103 × (-0.0125 + 0.8826i) 103 × (-0.8230 + 1.9710i)
6 103 × (-0.0125 - 0.8826i) 103 × (-0.8230 - 1.9710i)
7 103 × (-0.0117 + 0.8081i) 103 × (-0.6308 + 3.4783i)
8 103 × (-0.0117 - 0.8081i) 103 × (-0.6308 + 3.4783i)
9 103 × (-0.0425 + 0.0000i) 103 × (-1.0176 + 3.2144i)
10 103 × (-0.0299 + 0.0000i) 103 × (-1.0176 - 3.2144i)
11 103 × (-0.0295 + 0.0000i) 103 × (-1.8620 + 0.0000i)
12 103 × (-0.0243 + 0.0000i) 103 × (-2.1337 + 0.0000i)
13 103 × (-0.0211 + 0.0000i) 103 × (-0.1541 + 1.3482i)
14 103 × ( -0.0217 + 0.0000i) 103 × (-0.1541 - 1.3482i)
15 103 × (-0.0202 + 0.0000i) 103 × (-1.2163 + 0.0000i)
16 103 × (-0.0029 + 0.0001i) 103 × (-1.2501 + 0.0000i)
17 103 × (-0.0029 - 0.0001i) 103 × (-0.4253 + 0.0000i)
18 103 × (-0.0004 + 0.0021i) 103 × (-0.0302 + 0.0000i)
19 103 × (-0.0004 - 0.0021i) 100 × (-1.0630 + 5.8054i)
20 103 × (-0.0022 + 0.0000i) 100 × (-1.0630 + 5.8054i)
21 103 × (-0.0017 + 0.0000i) 102 × (-0.00025 + 0.0619i)
22 103 × (-0.0017 - 0.0000i) 102 × (-0.00025 - 0.0619i)
23 100 ×(-0.0766 + 5.3803i) 103 × (-0.0127 + 0.0000i)
24 100 × (-0.0766 - 5.3803i) 103 × (-0.0127 + 0.0003i)
25 103 × (-0.0000 + 0.0001i) 103 × (-0.0127 - 0.0003i)
26 103 × (-0.0000 - 0.0001i) 103 × (-0.0122 + 0.0000i)
27 103 × (-0.0002 + 0.0000i) 103 × (-0.0115 + 0.0000i)
28 103 × (-0.0002 + 0.0000i) 103 × (-0.0112 + 0.0000i)
29 - 103 × (-0.0111 + 0.0002i)
30 - 103 × (-0.0111 - 0.0002i)

Gear's method is applied to the power system and the
A-matrix of the system is extracted in every step time by
the proposed method. The eigenvalues of the A-matrix in
steady state condition are calculated and tabulated in Table I
(Eigenvalue (VSM-controlled)). Since there are 30 differential
equations in the whole model of the VSM-based HVDC link,
30 eigenvalues are calculated.

To compare the operation of the studied system with a
VSM-based and a conventional control strategy for the VSC
HVDC link , the eigenvalues for both cases are shown in Table
I. The 28 eigenvalues are obtained from the dynamic model
of the system with conventional control since the system is
modeled with 28 differential equations. The dynamic model of
the conventional control is presented in [17]. The rectifier-side
(Conv1) of HVDC controls the active (P1) and the reactive
power (Q1), while the inverter-side (Conv2) controls the DC
voltage (vdc2) and reactive power (Q2). In steady-state condi-
tions, reference values of the HVDC are: Pref1 = −0.5853,
Qref1 = −0.1860, vdc2 = 1 and Qref2 = −0.0255 (all
are in per unit). According to the Table I, the eigenvalue 19
and 20 in VSM-controlled HVDC , which is associated to
the electro-mechanical oscillation has a bigger negative real
value compared to the eigenvalue 23 and 24 in conventional
PLL-based HVDC (also associated to the electro-mechanical
oscillation of the power system).

Fig. 3. VSC-HVDC with VSM-based and conventional control

To clarify the appropriate performance of the VSM-
controlled HVDC in SMIB, the system is simulated for
different values of Kds (Kds = 5s and 20s) and the results
are shown in Fig.3. A three-phase fault occurred at Bus 2
at t = 2s and is cleared by removing the transmission line
with impedance j0.93. Additionally, the same disturbance is
also applied to the power system with conventional HVDC
control and the result are shown in the same figure. The
simulation results show that the VSM-controlled HVDC link
provides more damping for the oscillations compared to the
conventional HVDC control.

The proposed method in this paper detects the instability
by the TE and by this evaluates the large signal stability
of the power system. According to the proposed technique,
the transient performance of the power system subjected to
a severe disturbance is evaluated numerically. The power
system is simulated for three different fault duration (TFC =
0.1, 0.16, 0.17s), and the results are shown in Fig.4. A three-
phase fault occurred at Bus 2 at t = 2s and is cleared after
the fault duration.

The results presented in Fig.4 show that the system is stable
with TFC = 0.10s and TFC = 0.16s, but is unstable with
TFC = 0.17s. Therefore, the critical clearing time (CCT) is
0.16s for this disturbance. The TE for different conditions are
also shown in Fig.4. The detection of the unstable conditions
is based on the TE by monitoring the accuracy of numerical
integration. Indeed, TE is always smaller than TEmax (except
in the instant of fault occurrence and the disconnection)
when the system is stable, but it will be bigger when the
system is unstable. Finally, the critical clearing time for the
conventional HVDC control is also evaluated and presented in
Table II. According to the Table II, VSM-based HVDC control



Fig. 4. Performance of VSM-based HVDC under severe disturbances

TABLE II
CRITICAL CLEARANCE TIME

system TFC

HVDC with conventional PLL-based control 0.1s
HVDC with VSM-based control 0.16 s

increases the critical clearing time and thereby improves the
large-signal stability of the system. The presented results show
that the proposed method can unify the small-signal and large-
signal stability analysis of a power system into the same
process and therefore increase the efficiency of the analysis.

V. CONCLUSION

A power systems with HVDC interconnections is a stiff
system with a wide range of time constants, which needs a
stiff solver for simulation-based large-signal stability analysis.
Gear's method is proposed in this paper to analyze the stability
efficiently by using a self-adaptive step size strategy. Analysis
based on the self-adaptive time step is a promising concept that

can be used to reduce computation time. With time-varying
time step, dynamics with significantly different time constants
can be evaluated, and the speed of the calculations can be
increased while the accuracy is preserved. Unified stability
analysis (simultaneous small- and large-signal stability) of the
system is achieved by the method in this paper. The small-
signal analysis is performed during numerical integration by
extracting the A-matrix of a power system and calculating
the eigenvalues in the steady state conditions. Additionally,
a new method for detecting unstable conditions is proposed
by shedding light on the internal procedure of a numerical
integration solver. Two cases of HVDC links with VSM-
controlled and conventional PLL-controlled are simulated by
the method, and the results show the appropriate performance
of the proposed method in the stability analysis of a complex
power system.
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