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Abstract: A simplified model is developed to conveniently evaluate the peak vortex-induced vibration (VIV) 6 

amplitudes of a bridge deck at various mass-damping conditions. As a simplified form of the describing 7 

function-based model previously developed by the authors, the key innovation of the new model is the 8 

introduction of an envelope curve of the aerodynamic describing functions (or amplitude-dependent flutter 9 

derivatives), which determines the maximum negative aerodynamic damping versus vibration amplitude in the 10 

lock-in range. Based on the envelope curve, the peak VIV amplitudes at different mass-damping conditions 11 

can be obtained directly without calculating all the VIV amplitudes in the entire lock-in range. The new model 12 

is more practical for engineers in the bridge engineering community since it only contains a single group of 13 

aerodynamic parameters which don’t vary with the reduced wind speed. The envelope curve can be either 14 

identified based on the VIV decay-to-resonance and/or grow-to-resonance signals at a single mass-damping 15 

condition, or based on the VIV steady amplitudes at different mass-damping conditions. Numerical examples 16 

involving the VIV analyses of a rigid rectangular cylinder and a bridge deck sectional model are utilized to 17 

validate the simulation accuracy of the proposed model, and the model is applied to calculate the peak VIV 18 

amplitudes of two flexible bridge decks at various mechanical damping levels. The proposed model is capable 19 

of accurately and conveniently predicting the peak VIV amplitudes of a bridge deck sectional model at various 20 

mass-damping conditions. For a flexible bridge deck, the peak VIV amplitude calculated by the proposed 21 

model is slightly conservative due to the overestimated negative aerodynamic damping at some span-wise 22 

segments of the bridge deck. The superiority of the proposed model relative to the conventional van der Pol-23 

type model is also demonstrated. 24 
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1. Introduction 26 

Long-span, flexible bridges are vulnerable to vortex-induced vibrations (VIVs), which may seriously 27 

impact the structural fatigue life and/or the traffic safety. In the past two decades, VIVs with relatively large-28 

amplitude limit cycle oscillations have been reported for a lot of operational bridges, e.g., the Trans-Tokyo 29 

Bay crossing Bridge [1], the Volgograd Bridge [2], the Jindo Bridge [3], the Xihoumen Bridge [4], and mostly 30 

recently, the Humen bridge [69]. The frequent occurrences of VIVs therefore call for great attentions to assess 31 

the VIV of a bridge in the preliminary design stage. 32 

The most direct approach to evaluate the VIV performance of a design scheme is to conduct wind tunnel 33 

tests on a scaled full-bridge aeroelastic model with the same structural dynamic property and aerodynamic 34 

configuration as the prototype. However, full-bridge aeroelastic test is not only time consuming but also 35 

expensive in terms of the investment of large-size wind tunnel and the energy consumption. More importantly, 36 

due to the very small scaling ratio (e.g., 1/100 ~ 1/200) of the aeroelastic model, the experimental results may 37 

be unreliable as a result of the Reynolds number effect and other unsatisfied similarity rules (e.g., the 38 

aerodynamic configuration) [5-9]. On the other hand, wind tunnel tests can be conducted on a bridge deck 39 

sectional model with larger scaling ratio in order to obtain more accurate results with reduced experimental 40 

efforts [10-15]. To assess the VIV response of the full bridge, a mathematical model for the vortex-induced 41 

force is thereby required since the sectional model tests cannot consider the effects of mode shape, structural 42 

nonlinearity, and non-uniform flow condition, etc. The aerodynamic parameters of the mathematical model 43 

can be extracted based on the sectional model tests. 44 

Extensive investigations on modeling the VIV of circular cylinders have led to several well-known semi-45 

empirical mathematical models, among which the most famous ones are the wake-oscillator model [e.g., 16-46 

22] and the force decomposition model [e.g., 23-28]. To simulate the VIV of bridge decks, Scanlan [29] 47 

suggested a van der Pol-type oscillator to model the vortex-induced forces acting on bridge decks. In Scanlan’s 48 
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model, the limit cycle oscillation of VIV is essentially due to the nonlinear aerodynamic damping with a 49 

prescribed expression. Following this suggestion, a number of studies have been carried out to enhance the 50 

model parameter identification procedure [30-32]. However, the parameters in Scanlan’s model may vary 51 

irregularly and significantly with the mechanical damping ratio (and hence the dimensionless mass-damping 52 

parameter, i.e., Scruton number, Sc) of the bridge deck [30, 33, 67]. As a result, Scanlan’s model may fail to 53 

predict the VIVs of a bridge deck at various Sc [33, 34]. To improve the predictive capability of the van der 54 

Pol-type model, several studies have been conducted to improve the nonlinear aerodynamic damping 55 

expression [35-39]. Other recent attempts to model the VIV of bridge decks can be found in [40-44]. Although 56 

the aforementioned models are more accurate than Scanlan’s model in simulating the VIV of bridge decks, 57 

they are definitely more complicated in terms of both model expressions and parameter identifications. 58 

Furthermore, the applicability of these models in calculating the VIV of a real bridge in complex wind 59 

environment requires in-depth validation. 60 

Indeed, the most important concern in practical VIV analysis of a bridge deck is to evaluate the peak 61 

amplitude, while the lock-in range can be roughly estimated according to its modal frequencies and Strouhal 62 

number. However, since the peak VIV amplitudes occur at different reduced wind speeds for various Sc, it is 63 

generally necessary to calculate all the VIV amplitudes in the entire lock-in range in order to determine the 64 

peak amplitudes of a bridge deck. To this end, a simplified model is developed in the present paper to more 65 

conveniently evaluate the peak VIV amplitudes of a bridge deck at various Sc. The new model is essentially a 66 

simplified form of the describing function-based model developed in [34]; the key innovation is the 67 

introduction of an envelope curve of the aerodynamic describing functions, by which the peak VIV amplitudes 68 

at various Sc can be conveniently evaluated without calculating all the VIV amplitudes in the entire lock-in 69 

range. The new model is more practical for engineers in the bridge engineering community since it only 70 

contains a single group of aerodynamic parameters which don’t vary with the reduced wind speed. 71 
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The following part of the present paper is organized as follows: the governing equations for the VIVs of a 72 

spring-suspended bridge deck sectional model and a flexible bridge deck are presented in Section 2; details of 73 

the proposed VIV model are introduced in Section 3; Section 4 discusses the identification of aerodynamic 74 

parameters; numerical examples involving the VIV analyses of a rigid rectangular cylinder and a bridge deck 75 

sectional model are presented to validate the accuracy of the proposed model, and the model is utilized to 76 

calculate the peak VIV amplitudes of two flexible bridge decks at various mechanical damping levels in 77 

Section 5; finally, some conclusions are summarized in Section 6. 78 

2. Governing equation for vertical VIV of a bridge deck 79 

This paper focuses on the engineering modeling of the vertical VIV of a bridge deck in two-dimensional 80 

flow. A spring-suspended bridge deck sectional model immersed in two-dimensional flow is schematically 81 

shown in Fig. 1, in which m is the mass per unit span length, k0 is the spring stiffness constant, c0 is the 82 

mechanical damping coefficient, U is the mean wind speed, α0 is the initial wind angle of attack; y is the vertical 83 

displacement; F is the vortex-induced force acting on the bridge deck per unit span length, which is to be 84 

modeled in this paper. The governing equation for the vertical VIV of the bridge deck sectional model can be 85 

expressed as 86 

2

0 0 0( 2 ) ( )m y y y F t  + + =  (1) 

where overdot represents the derivative with respect to time t; ω0 =(k0/m)0.5 is the natural circular frequency; 87 

ξ0 = c0/(2mω0) is the mechanical damping ratio. 88 

Field measurements on full-scale bridges and wind tunnel tests on aeroelastic models suggest that the VIV 89 

of a flexible bridge is dominated by a single mode. Accordingly, the VIV analysis of a flexible bridge can be 90 

simplified as a single-mode dynamic analysis, where the structural response of the flexible bridge deck can be 91 

approximated as 92 
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( ,  ) ( ) ( )x t x y t =  (2) 

where x represents the coordinate along the span-wise location; φ(x) is the dimensionless mode shape vector; 93 

y(t) is the generalized coordinate of the mode. 94 

Assuming that the vortex-induced force is fully correlated along the span-wise direction of the bridge deck, 95 

the governing equation for the single-mode dynamic analysis is then expressed as 96 

2

0 0 0( 2 ) ( )M y y y Q t  + + =  (3) 

where M is the modal mass and Q is the generalized vortex-induced force, which can be respectively expressed 97 

as 98 

2

0
( )

L

M m x dx=   (4a) 

0
( ) ( ) ( )

L

Q t F t x dx=   (4b) 

where m is equivalent mass of the bridge deck per unit span length; L is the length of the bridge deck. It should 99 

be mentioned that the non-fully span-wise correlation of the vortex-induced force on the flexible bridge deck 100 

is not considered in the present paper. 101 

3. A simplified model to evaluate peak vertical VIV amplitude 102 

An appropriate expression for the vortex-induced force F is of great significance to accurately evaluate the 103 

VIV response of a bridge deck. A physical sound modeling scheme is to simulate the nonlinear vortex-induced 104 

force with an amplitude-dependent function of the time-varying displacement and velocity of the bridge deck 105 

[e.g., 24, 34, 41, 68], which is essentially based on the describing function theory [45, 46]. Recently, Zhang et 106 

al. [34] showed that the describing function-based model can satisfactorily predict the VIV amplitudes of a 107 

rigid cylinder in a wide range of Sc 108 

2 2

1 4( ,  ) ( ,  ) ( )sin( )L s

y
F U D KH A K K H A K y C K t

U
    

= + + + 
 

 (5) 

where ρ is the air density; K = ω0D/U is the reduced frequency; A is the amplitude of the dimensionless 109 
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displacement y/D; 1H 
  and 4H 

  are aerodynamic describing functions (or amplitude-dependent flutter 110 

derivatives) characterizing the motion-induced contribution in the vortex-induced force; CL represents an 111 

aerodynamic parameter characterizing the forcing term in the vortex-induced force; ωs = 2πStU/D (where St 112 

represents the Strouhal number) and θ are the circular frequency and initial phase of the forcing term, 113 

respectively. Experimental observations show that, for large-amplitude vibration responses in the lock-in range, 114 

the forcing term is negligible compared to the motion-induced force [30]. In addition, the aerodynamic stiffness 115 

term is known to have insignificant effect on the VIV response for a structure with large mass ratio (between 116 

structure and displaced air). As a result, Eq. (5) can be simplified as 117 

2

1 ( ,  )
y

F U D KH A K
U

  
=  

 
 (6) 

The governing equation of the bridge deck sectional model, i.e., Eq. (1), is then expressed as 118 

2 2

0 0 0 1( 2 ) ( ,  )
y

m y y y U D KH A K
U

     
+ + =  

 
 (7) 

which can be re-arranged as  119 

2

0 1 0( ,  ) 0
2

Sc D
y H A K y y

B
 



 
+ − + = 

 
 (8) 

where B is the deck with; μ = ρBD/m is a dimensionless variable characterizing the mass ratio between the 120 

displaced air and the structure; Sc = 4πmξ0/(ρBD) is the Scruton number. 121 

As indicated by Eq. (8), the key parameters that determine the VIV amplitude of a bridge deck are Sc and 122 

1 ( ,  )H A K . For a pre-determined Sc, the VIV amplitude at a specific K (or reduced wind speed Ur = 2π/K) 123 

corresponds to the intersection point between the 
1 ( ,  )H A K  curve and the horizontal line Sc(A) [34]. As 124 

schematically illustrated in Fig. 2, for Sc > Sc1, the Amax occurs at Ur, 1; for Sc2 < Sc ≤ Sc1, the Amax occurs at 125 

Ur, 2; for Sc ≤ Sc2, the Amax occurs at Ur, 3. Since the Amax occurs at different Ur for various Sc, it is generally 126 

necessary to obtain all the VIV amplitudes in the entire lock-in range to determine the Amax for a specific bridge 127 

deck. On the other hand, it is useful to develop a simplified model in order to more conveniently evaluate the 128 
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Amax of a bridge deck at various Sc. To this end, the maximum value of 
1 ( ,  )H A K  at various K (or Ur) can be 129 

merged together to form a 1, max ( )H A
 curve, as illustrated by the red line in Fig. 2. It is noted that Fig. 2 is a 130 

schematic diagram to show the determination of 1, max ( )H A
  based on 

1 ( ,  )H A K   at various Ur. Practically, 131 

1 ( ,  )H A K  at more Ur (i.e., preferably distributed densely in the entire lock-in range) should be included. It is 132 

noted that 1, max ( )H A
 is the upper envelop of 

1 ( ,  )H A K , and 1, max ( )H A
 reflects the maximum negative 133 

aerodynamic damping versus A in the lock-in range. Accordingly, the following expression for the vortex-134 

induced force can be utilized to conveniently evaluate the Amax of a bridge deck at various Sc 135 

2

1, max ( )
y

F U D KH A
U

  
=  

 
 (9) 

The governing equations for the VIVs of a bridge deck sectional model and a flexible bridge deck 136 

respectively become 137 

2 2

0 0 0 1, max( 2 ) ( )
y

m y y y U D KH A
U

     
+ + =  

 
 (10a) 

2 2 2

0 0 0 1, max
0

( 2 ) ( ) ( )
L y

M y y y U D K H A x dx
U

     
+ + =  

 
  (10b) 

Once the 1, max ( )H A  is identified for a cross-section, the peak VIV amplitudes for rigid and flexible bridge 138 

decks with the same cross-section at various Sc can be conveniently obtained according to Eqs. (10a) and (10b), 139 

respectively. For a rigid bridge deck, it is obvious from Fig. 2 that the Amax at any Sc determined by 1, max ( )H A  140 

and that determined by the describing functions are the same. Therefore, Amax calculated by Eq. (10a) are 141 

consistent with those calculated by the describing function-based model. However, it will be demonstrated 142 

later that, for a flexible bridge, Eq. (10b) always results in slightly conservative (i.e., larger) Amax than the 143 

describing function-based model. The new model [i.e., Eq. (9)] is more convenient than the describing 144 

function-based model since the new model can directly obtain the Amax at various Sc without calculating all the 145 

VIV amplitudes in the entire lock-in range. Furthermore, the new model is more practical for engineers in the 146 

bridge engineering community since it contains a single group of aerodynamic parameters which don’t vary 147 
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with the reduced wind speed. The identification of 
1, max ( )H A  will be discussed in the following section. A 148 

similar model may be utilized to calculate the peak torsional VIV amplitude of a bridge deck, while the 149 

torsional cases are not considered in the present paper. 150 

It is worth mentioning that there exist some other mathematical models to directly calculate the peak VIV 151 

amplitude [47, 48] of a line-like structure without calculating all the VIV amplitudes in the entire lock-in range. 152 

The models in [47] and [48] are indeed special cases of the present model: in the former one, 1, maxH 
  is 153 

assumed as a linear function of 1/A; in the latter one, 1, maxH 
 is fitted as an explicit function of A based on the 154 

aerodynamic damping envelope of a circular cylinder. In the following part, these models will not be further 155 

discussed since none of them can outperform the present model. 156 

4. Identification of 

1, max
( )H A  based on sectional model tests 157 

As mentioned in the preceding section, 1, max ( )H A
 is the upper envelop of 

1 ( ,  )H A K  and hence it is 158 

necessary to obtain the 
1 ( ,  )H A K   in the A and K ranges of interests in order to determine 1, max ( )H A

 . 159 

1 ( ,  )H A K  is indeed an improved version of the traditional flutter derivative [49] with amplitude-dependent 160 

feature. Accordingly, the existing methods for extracting flutter derivatives based on sectional model tests (or 161 

numerical simulations) may be extended to identify 
1 ( ,  )H A K   [50-52]. The common experimentally or 162 

numerically forced vibration-based method (with sinusoidal displacement input) is time consuming because 163 

for a specific K, wind tunnel tests (or numerical simulations) with a number of different vibration amplitudes 164 

are required. Displacement inputs with continuously varying amplitudes may be utilized in forced vibrations 165 

to reduce the experimental/computational cost of 
1 ( ,  )H A K  identification [53]. 166 

On the other hand, since the VIV performance a bridge deck is commonly studied through free vibration 167 

wind tunnel tests, in which only the decay/growth-to-resonance displacement signals are recorded, it is of 168 

significant interests to extract 
1 ( ,  )H A K  based on the displacement signals recorded in free vibration tests. 169 
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Several procedures [34, 39, 41, 54] have been developed to extract 
1 ( ,  )H A K  according to the amplitude-170 

dependent damping ratios of the VIV displacement signals. The 
1 ( ,  )H A K  in the A and K ranges of interests 171 

can be identified based on the obtained VIV displacement signals at a single Sc. 172 

Furthermore, 
1 ( ,  )H A K  for a specific K can be extracted based on the VIV steady amplitudes at various 173 

Sc. At the VIV steady amplitude, the equivalent negative aerodynamic damping ratio balances the mechanical 174 

damping ratio. Accordingly, 
1H   at the VIV steady amplitude for a specific Sc can be obtained as 175 

1
2

Sc B
H

D

 =  (11) 

Due to the increasing application of advanced additional damping devices in wind tunnel tests, e.g., the 176 

eddy current damper [55, 56], it is now convenient to adjust the mechanical damping ratio (and hence Sc) 177 

during wind tunnel tests. As a result, for a specific K, the A at various Sc can be obtained conveniently, and 178 

hence the 
1H   at various A can be determined according to Eq. (11). Finally, the 

1 ( ,  )H A K  curve for this 179 

specific K can be obtained through curve fitting based on the available values of 
1H   at various A. In practical 180 

applications, the steady amplitudes-based method and the transient response-based method can be utilized in 181 

combination to improve the identification accuracy and efficiency. 182 

Once 
1 ( ,  )H A K  are obtained in the A and K ranges of interests, 1, max ( )H A

 can be further determined 183 

through curve fitting based on the available data on the upper boundary of 
1 ( ,  )H A K . In the present paper, 184 

the following expression is suggested since it works satisfactorily for several cross-sections 185 

1, max 0

  1

( ) exp( )
n

i i

i

H A P P A c

=

= + −  (12) 

where P0, Pi, and ci (i =1 ~ n) are constants of the fitting results. It is found that n = 1 or 2 is sufficiently 186 

accurate for the cross-sections considered in this paper. 187 

5. Numerical examples 188 

To validate the simulation accuracy of the proposed model, numerical examples involving the VIV analyses 189 
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of a rigid rectangular cylinder and a bridge deck sectional model are presented in this section. The proposed 190 

model is then utilized to calculate the Amax of two flexible bridge decks at various ξ0. 191 

5.1. VIV of a rigid rectangular cylinder 192 

The first example analyzes the vertical VIV of a rigid rectangular cylinder with side ratio B/D = 4 (B is the 193 

deck width). The aerodynamic performance of this cross-section is of significant interests in the wind 194 

engineering community because the cross-section is widely adopted in various types of structures and can be 195 

regarded as a simplified bridge deck section. The experimental VIV responses in [33] are utilized to extract 196 

the 
1 ( ,  )H A K   and 1, max ( )H A

  of the considered cross-section. The main modal parameters of the wind 197 

tunnel tests are m = 7.09 ~ 7.29 kg/m, ω0 = 49.45 ~ 50.07 rad/s, ρ = 1.19 ~ 1.22 kg/m3, and D = 0.075 m; ξ0 is 198 

varied in 0.058% ~2.34%, resulting in a Sc = 4πmξ0/(ρBD) range of 1.9 ~ 78.1. The initial wind angle of attack 199 

is α0 =0°. The lock-in ranges and VIV amplitudes at various Sc = 4πmξ0/(ρBD) are presented in Fig. 3(a), in 200 

which the Amax are highlighted by red star markers. It is noted that the Amax at various Sc occur at different Ur. 201 

The decay-to-resonance displacement signal for Sc = 78.1, Ur = 8.14 (corresponds to the Amax at Sc = 78.1) is 202 

shown in Fig. 3(b) as a representative. The displacement signal decays after a large initial excitation and finally 203 

becomes steady limit cycle oscillation with increasing time. The signal will be utilized to identify the 204 

1 ( ,  )H A K  for Ur = 8.14. 205 

Fig. 4 presents the 
1 ( ,  )H A K  results for Ur = 8.14 identified based on the steady amplitudes at various 206 

Sc and based on the decay-to-resonance displacement signal at Sc = 78.1. It is observed that the results of the 207 

two methods agree satisfactorily, indicating that the 
1 ( ,  )H A K   [and hence 1, max ( )H A

 ] can be either 208 

identified based on the VIV decay-to-resonance and/or grow-to-resonance signals at a single Sc, or based on 209 

the VIV steady amplitudes at various Sc. However, the identification results of the two methods exhibit slight 210 

discrepancies for A > 0.03. The discrepancies may be mainly ascribed to the identification errors of the transient 211 

response-based method, where the fitted instantaneous amplitude of the displacement signal may be not 212 
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accurate enough to extract the instantaneous damping ratio for the rapidly decaying response within Ut/D < 50 213 

in Fig. 3 [34]. The VIV amplitudes at Ur = 8.14 calculated by the two sets of 
1 ( ,  )H A K  are shown in Fig. 5 214 

together with the experimental measurements in [33]. The satisfactory agreements between the experimental 215 

and calculated amplitudes prove that the identification results of 
1 ( ,  )H A K  are fairly accurate. It is noted 216 

that since the slope of the 
1 ( ,  )H A K   curve is very small for A > 0.03, the slight identification error in 217 

1 ( ,  )H A K  leads to remarkable errors in the simulated VIV amplitudes. In addition, the 
1 ( ,  )H A K  result 218 

based on steady VIV amplitudes seems more reliable since the predicted VIV amplitudes are more accurate. 219 

1

H  for various Ur are identified based on the VIV steady amplitudes in Fig. 3(a), and the identification 220 

results are presented in Fig. 6. It is noted that, for different A, 
1

H  achieves the maximum value at different 221 

Ur, and hence the envelope [i.e., 1, max ( )H A
] cannot be determined by the 

1

H  at any single Ur. 1, max

H  is 222 

fitted using Eq. (12) based on the available data on the upper boundary of 
1

H . The fitting result in Fig. 6 223 

suggests that the format of Eq. (12) works very well for the B/D = 4 rectangular section. In this example, n = 224 

2 is used, since further increasing n does not contribute to a betting fitting. In addition, a polynomial with linear 225 

and third order nonlinear terms (which represents the amplitude-dependent aerodynamic damping curve 226 

deduced from the widely-used van der Pol-type model [25, 29]) is also utilized to fit the experimental boundary 227 

of 
1

H . The fitting result in Fig. 6 suggests that the van der Pol-type model fails to correctly capture the 228 

nonlinear aerodynamic damping of the VIV system. 229 

The Amax of the rectangular cylinder at various Sc are calculated based on the two fitted 
1, max

H  curves in 230 

Fig 6, and the results are presented together with available experimental measurements [32, 33, 41, 57-61] in 231 

Fig. 7. The main modal parameters of the wind tunnel tests in these literatures are summarized in Table 1. For 232 

a rigid cylinder, the Amax at various Sc calculated by the describing function-based model are consistent with 233 

those calculated by the proposed model, and hence the describing function-based results are not shown for 234 

brevity. It can be seen that the data of various tests with different modal parameters collapse very well to the 235 
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curve calculated by the proposed model, while the van der Pol-type model fails to simulate the Amax in the 236 

considered Sc range. The results suggest that the proposed model is capable of accurately and conveniently 237 

predicting the peak VIV amplitudes of a bridge deck sectional model at various mass-damping conditions. 238 

It should be stated that the very good predicative capability of the proposed model shown in Fig. 7 are 239 

indeed because the experimental data used to identify the aerodynamic parameters are enough to characterize 240 

the VIV behavior of the rigid cylinder, i.e., the data in the same range of Sc are used to identify the aerodynamic 241 

parameters and validate the mathematical models. If the aerodynamic parameters of the transient response-242 

based method are used to calculate the steady amplitudes (i.e., if the aerodynamic parameters are identified 243 

based on the VIV displacement histories at a single Sc, and then used to predict the steady amplitudes at other 244 

Sc), the accuracy of the model may decrease, as shown in Fig. 5. In subsection 5.2, it will be further proved 245 

that, with the 
1, max

H  identified based on the VIV displacement signals at a signal Sc, the proposed model is 246 

capable of conveniently predicting the peak VIV amplitudes at other Sc. Indeed, for a rigid cylinder, it is 247 

unnecessary to calculate the VIV amplitudes by a mathematical model in case that the experimental results at 248 

various Sc are available. However, for of a flexible cylinder, a mathematical model is always necessary since 249 

the experimental results based on a rigid sectional model cannot consider the effect of mode shape. 250 

5.2. VIV of a bridge deck sectional model 251 

The second example analyzes the vertical VIV of a centrally slotted box deck sectional model tested in 252 

[38]. Geometry of the considered cross-section is available in Fig. 1(b) of [38]. The main modal parameters of 253 

the wind tunnel tests are m = 50.45 kg/m, ω0 = 27.38 rad/s, B = 1.70 m, D = 0.175 m, and ξ0 = 0.26% and 0.45% 254 

(Sc = 4.5 and 7.8). The initial wind angle of attack is α0 =0°. The lock-in ranges and VIV amplitudes at two Sc 255 

are presented in Fig. 8, in which the Amax are highlighted by red star markers. The VIV displacement signals 256 

are not shown for brevity. 257 

1

H  for various Ur are identified based on the VIV displacement signals at Sc = 4.5, and the identification 258 
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results are presented in Fig. 9. 
1, max

H   is fitted using Eq. (12) based on the available data on the upper 259 

boundary of 
1

H . The fitting result in Fig. 9 suggests that the format of Eq. (12) works very well for the slotted 260 

box deck section.  261 

The Amax of the rectangular cylinder at various Sc are calculated based on the two fitted 
1, max

H  curves in 262 

Fig 9, and the results are presented together with the experimental measurements in Fig. 10. The comparison 263 

again suggests that the proposed model is capable of accurately and conveniently predicting the peak VIV 264 

amplitudes of a bridge deck sectional model at various mass-damping conditions. 265 

5.3. VIVs of two flexible bridge decks 266 

After validating the capability of the proposed model in calculating the Amax of bridge deck sectional 267 

models at various Sc, the model is then utilized to calculate the Amax of two flexible bridge decks at various ξ0. 268 

The example bridge decks are a cable-stayed bridge deck with span arrangement of 100 × 2 + 300 + 1088 + 269 

300 + 100 × 2 m, and a suspension bridge deck with span arrangement of 576 + 1650 m. The modal frequencies 270 

and modal masses (ω0 and m) of the first five vertical modes of two bridge decks are calculated by previously 271 

developed finite element models (see Appendix), as shown in Tables 2 and 3, respectively, and the 272 

corresponding mode shapes [denoted as φi(x) (i = 1 to 5)] are presented in Figs. 11 and 12, respectively. Since 273 

the aerodynamic parameters for the example bridge decks are unavailable, they are supposed to have the same 274 

1 ( ,  )H A K  and 
1, max

H  curves with those of the B/D = 4 rectangular section, and it is assumed that B = 24 m 275 

and D = 6 m in the following analyses. 276 

Since the present model is a simplified form of the describing function-based model, it is useful to compare 277 

the results of the two models in order to partly validate the capability of the present model in calculating the 278 

Amax for flexible bridge decks. The Amax for two bridge decks at various ξ0 are calculated using the present 279 

model, as shown in Figs. 13(a) and 14(a), respectively. For two selected modes of each bridge deck, the Amax 280 

at various ξ0 are also calculated using the describing function-based model for comparison. The describing 281 
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function-based results can be also calculated for other modes, while the results are not given herein for brevity. 282 

It is noted that the results of the present model are slightly larger than those of the describing function-based 283 

model. The phenomenon can be explained as follows: for a flexible bridge deck, the vibration amplitude varies 284 

continuously along its span-wise direction; to calculate the Amax for a specific Sc, the 
1

H  curve at the Ur that 285 

Amax occurs should be utilized in the expression of the vortex-induced force (indeed, the describing function-286 

based model correctly expresses the vortex-induced force with the 
1

H  curve at this specific Ur); however, 287 

the present model utilizes the envelope of 
1

H  [i.e., 
1, max ( )H A ] to calculate Amax, and hence the negative 288 

aerodynamic damping (as well as the absorbed energy) at some span-wise segments is overestimated; as a 289 

result, the present model always leads to a slightly overestimated Amax than the describing function-based 290 

model. For a case with lower ξ0 (and hence larger Amax), the aerodynamic damping of longer segments of the 291 

flexible bridge deck is overestimated, and hence the error of the present model becomes larger with decreasing 292 

ξ0. The results in Figs. 13(a) and 14(a) and the preceding discussions suggest that the present model always 293 

results in slightly conservative Amax in the VIV analysis of flexible bridges. Compared with the results of the 294 

describing function-based model, the largest relative errors of the present model for the cable-stayed bridge 295 

deck and the suspension bridge deck are 11.7% and 7.3%, respectively. From an engineering point of view, the 296 

results of the present model are considered to be acceptable for the example bridge decks. 297 

It is well known that the VIV amplitude of a flexible bridge deck deviates from its rigid counterpart due to 298 

the effect of the mode shape and the non-fully span-wise correlation of the vortex-induced force [62-66]. For 299 

fully correlated cases analyzed in this example, the ratio between the Amax of a flexible bridge deck to that of 300 

a rigid one is often known as a mode shape correction factor λ. For two selected modes of each bridge deck, 301 

the λ at various ξ0 are calculated by the conventional van der Pol-type model, the present model, and the 302 

describing function-based model, as shown in Figs. 13(b) and 14(b), respectively. It is noted that the λ 303 

determined by the van der Pol-type model is independent of ξ0, while those determined by the present model 304 
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and the describing function-based model decrease with increasing ξ0. The results of the present model are 305 

slightly higher than those of the describing function-based model since the Amax determined by the present 306 

model is higher, as shown in Figs. 13(a) and 14(a). On the other hand, the results of the van der Pol-type model 307 

are remarkably lower than those of the other two models. To explain these observations, the effective 308 

aerodynamic damping ratio ξaero for Mode 1 of the cable-stayed bridge deck calculated by the present model 309 

[i.e., ρD2
1, max ( )H A /(2m)], and the ξaero at Ur = 8.14 and 8.66 calculated by the describing function-based model 310 

and the van der Pol-type model (with aerodynamic parameters given in [33]) are shown in Fig. 15. As discussed 311 

earlier, the ξaero calculated by the describing function-based model can be taken as the reference values, while 312 

the present model slightly overestimates the negative aerodynamic damping ratios in some amplitude ranges. 313 

It can be seen that the van der Pol-type can only accurately reproduce the aerodynamic damping ratios in a 314 

very limited amplitude range, while highly underestimates the negative aerodynamic damping ratios in other 315 

amplitude ranges. As a result, the van der Pol-type model underestimates the negative aerodynamic damping 316 

ratios (as well as the absorbed energy) at some span-wise segments of the flexible bridge deck, and hence 317 

yields underestimated Amax and λ. For a case with lower ξ0 (and hence larger Amax), the aerodynamic damping 318 

ratios of longer segments of the flexible bridge deck are underestimated, and hence the error of the van der 319 

Pol-type model becomes larger with decreasing ξ0. The results in Figs. 13(b) and 14(b) and the preceding 320 

discussions suggest that the Amax of a flexible bridge deck calculated by the van der Pol-type is unsafe, and the 321 

error increases with decreasing the mechanical damping ratio of the bridge deck. 322 

6. Conclusions 323 

The paper develops a simplified model to conveniently evaluate the peak VIV amplitudes of a bridge deck 324 

at various mass-damping conditions. The key innovation of the new model is the introduction of an envelope 325 

curve of the aerodynamic describing functions, i.e., the 1, max ( )H A  curve, which determines the maximum 326 

negative aerodynamic damping versus vibration amplitude in the lock-in range. The new model is more 327 
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practical for engineers in the bridge engineering community since it only contains a single group of 328 

aerodynamic parameters which don’t vary with the reduced wind speed. The 
1, max ( )H A  curve can be either 329 

identified based on the VIV decay-to-resonance and/or grow-to-resonance signals at a single mass-damping 330 

condition, or based on the VIV steady amplitudes at various mass-damping conditions. Numerical examples 331 

involving the VIV analyses of a rigid rectangular cylinder and a bridge deck sectional model are utilized to 332 

validate the simulation accuracy of the proposed model, and the model is applied to calculate the peak VIV 333 

amplitudes of two flexible bridge decks at various mechanical damping levels. Some major conclusions are 334 

summarized as follows: 335 

(1) The proposed model is capable of accurately and conveniently predicting the peak VIV amplitudes of 336 

a bridge deck sectional model at various mass-damping conditions without calculating all the VIV amplitudes 337 

in the entire lock-in range; 338 

(2) For a flexible bridge deck, the peak VIV amplitude calculated by the proposed model is slightly 339 

conservative due to the overestimated negative aerodynamic damping at some span-wise segments of the 340 

bridge deck; 341 

(3) The conventional van der Pol-type model may remarkably underestimate the peak VIV amplitude for 342 

a flexible bridge deck. 343 
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Fig. A1. Finite element model of a cable-stayed bridge356 
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Fig. A2. Finite element model of a suspension bridge  358 
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Table 1. Modal parameters of B/D = 4 rectangular cylinders in literatures 507 

Literature B (m) D (m) m (kg/m) ω0 (rad/s) Sc 

Marra et al. [32] 0.3 0.075 6.09  84.4  6.0 

Marra et al. [33] 0.3  0.075 7.30  49.5  1.9 ~ 78.1 

Mashnad and Jones [41] 0.152 0.038 2.52  21.7  11.9 

Washizu et al. [57] 0.4 0.1 un un 2.0 

Miyata et al. [58] un un un un 3.0 

Scanlan [59] 0.38 0.095 7.80  un 3.2, 8.1, 9.7 

Sun et al. [60] 0.4 0.1 10.31  23.8  12.7, 29.1, 52.4 

Shimada and Ishihara [61] 0.12  0.03  0.85  64.7  3.2 

un: unavailable  508 
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Table 2. Modal frequencies and modal masses of a cable-stayed bridge deck 509 

Mode ω0 (rad/s) m (t/m) 

1 1.245  30.70 

2 1.519  31.11 

3 2.149  33.60 

4 2.530  35.41 

5 2.837  38.92 

  510 
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Table 3. Modal frequencies and modal masses of a suspension bridge deck 511 

Mode ω0 (rad/s) m (t/m) 

1 0.638  26.68 

2 0.838  26.08 

3 1.126  25.35 

4 1.167  26.43 

5 1.447  25.66 

  512 
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 513 

Fig. 1. Schematic diagram of a spring-suspended bridge deck sectional model immersed in two-514 

dimensional flow. m is the mass per unit span length, k0 is the spring stiffness constant, c0 is the 515 

mechanical damping coefficient, U is the mean wind speed, α0 is the initial wind angle of attack; y is 516 

the vertical displacement; F is the vortex-induced force acting on the bridge deck per unit span length, 517 

which is to be modeled in this paper.  518 
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Fig. 2. Schematic diagram of aerodynamic describing functions 
1 ( ,  )H A K  and aerodynamic 520 

envelope 1, max ( )H A
 (red line). A is the dimensionless vibration amplitude, K = ω0D/U is the reduced 521 

frequency, where ω0 represents the natural circular frequency, D is the depth of the deck cross-section, U is 522 

the mean wind speed. For a specific mass-damping condition Sc, the steady VIV amplitude at a specific 523 

reduced wind speed Ur = U/(ω0D/2π) corresponds to the intersection point between the 
1 ( ,  )H A K  524 

curve and the horizontal line Sc(A); the intersection point between the 1, max ( )H A
 curve and the 525 

horizontal line Sc(A) determines the peak VIV amplitude.  526 
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Fig. 3. VIV responses of a B/D = 4 rectangular cylinder: (a) dimensionless VIV amplitudes A at 529 

various mass-damping conditions Sc; (b) dimensionless displacement time history y/D at reduced 530 

wind speed Ur = 8.14 and Sc = 78.1. The peak VIV amplitudes Amax at various Sc are highlighted by 531 

red star markers.  532 
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Fig. 4. Aerodynamic describing functions 
1

H  of a B/D = 4 rectangular cylinder for Ur = 8.14 534 

identified based on VIV steady amplitudes at various mass-damping conditions, and based on 535 

displacement history at a single mass-damping condition, Sc = 78.1.  536 
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Fig. 5. Comparison between experimental and predicted VIV amplitudes A of a B/D = 4 rectangular 538 

cylinder at various mass-damping conditions Sc for reduced wind speed Ur = 8.14.  539 
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Fig. 6. Aerodynamic describing functions 
1

H  and aerodynamic envelope 1, maxH   (red line) of a 541 

B/D = 4 rectangular cylinder. 
1

H  for various Ur are identified based on the VIV steady amplitudes 542 

in Fig. 3(a). 
1, max

H  are fitted using Eq. (12) according to the present model, and using a polynomial 543 

with linear and third order nonlinear terms according to the van der Pol-type model.  544 
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Fig. 7. Comparison between experimental and predicted peak VIV amplitudes Amax of a B/D = 4 546 

rectangular cylinder at various mass-damping conditions Sc. Experimental data are obtained by 547 

various authors with different modal parameters. Amax are predicted by the present model and van der-548 

Pol type model.  549 



 

33 

6 7 8 9 10
0

2

4

6

8
 Sc = 4.5

 Sc = 7.8

 Amax

A
 (

%
)

Ur  550 

Fig. 8. Dimensionless VIV amplitudes A of a centrally slotted box deck at two mass-damping 551 

conditions Sc. The peak VIV amplitudes Amax are highlighted by red star markers.  552 
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Fig. 9. Aerodynamic describing functions 
1

H  and aerodynamic envelope 1, maxH   (red line) of a 554 

centrally slotted box deck. 
1

H  for various Ur are identified based on the displacement signals at the 555 

lower tested mass-damping condition, Sc = 4.5. 
1, max

H  is fitted using Eq. (12) according to the 556 

present model.  557 
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Fig. 10. Comparison between experimental and predicted peak VIV amplitudes Amax of a centrally 559 

slotted box deck at various mass-damping conditions Sc. Amax are predicted by the present model 560 

using the aerodynamic envelope 
1, max

H  presented in Fig. 9.  561 
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Fig. 11. Vertical mode shapes of a cable-stayed bridge deck with span arrangement of 100 × 2 + 563 

300 + 1088 + 300 + 100 × 2 m.  564 
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Fig. 12. Vertical mode shapes of a suspension bridge deck with span arrangement of 576 + 1650 m.  566 
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Fig. 13. Peak VIV amplitudes Amax and mode shape correction factors λ (i.e., ratio between the Amax 569 

of a flexible bridge deck to that of its rigid counterpart) of a cable-stayed bridge deck at various 570 

mechanical damping levels ξ0: (a) Amax at various ξ0; (b) λ at various ξ0. DF: describing function.  571 
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Fig. 14. Peak VIV amplitudes Amax and mode shape correction factors λ (i.e., ratio between the Amax 574 

of a flexible bridge deck to that of its rigid counterpart) of a suspension bridge deck at various 575 

mechanical damping levels ξ0: (a) Amax at various ξ0; (b) λ at various ξ0. DF: describing function.  576 
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Fig. 15. Equivalent aerodynamic damping ratios ξaero of present model, describing function (DF)-578 

based model, and van der Pol-type model. A is the dimensionless vibration amplitude. Results of the 579 

present model is constructed from the aerodynamic envelope, while results for the DF-based model 580 

and van der Pol-type model are constructed from the aerodynamic parameters at two different reduced 581 

wind speeds, Ur = 8.14 and 8.66. 582 


