
1

Controlled Direct Liquid Cooling of Data Servers
Riccardo Lucchese, Damiano Varagnolo, Andreas Johansson

Abstract—We formulate a modelling and control
framework aimed at direct liquid cooling of data
servers. In our application scenario, the server’s heat-
load is rejected into a liquid cooling circuit that extends
to the individual chips. We start with a comprehensive
discussion of our modelling derivations and then we
show how to manipulate the coolant’s flow while 1)
regulating the temperatures of any self-heating compo-
nents within a safe operational envelope, 2) minimizing
the coolant supply cost and 3) increasing the server
outflow temperature (a key performance objective to-
wards heat reuse systems). We confirm experimentally
the benefits of the proposed controlled cooling strat-
egy over several realistic scenarios corresponding to
different inlet coolant temperatures and computational
loads.

Index Terms—Controlled Liquid Cooling, Thermal
Networks, Thermal Management, Heat Reuse, Direct
Liquid Cooling, Data Servers.

I. Introduction
Modern data centers are energy intensive processes

that can accommodate millions of computing cores and
hundreds of thousands of data servers. While the energy
efficiency of computing units has doubled every 18 months
(a fact known as Koomey’s law [1]), deployments have
witnessed an increase in both total power loads and power
densities (up to 120MW and 30kW/m2 respectively).
This state of practice presents a number of technolog-
ical challenges concerning the design of the electronic
equipment, its packaging and thermal management [2],
[3]. In particular, the heat loads have approached the
limits of traditional air-cooling solutions, exacerbating
the power consumption and reliability issues. Indeed, air-
cooling operates with high temperature gradients between
air and the active components. This produces two main
effects: first, the necessity to pre-cool the air, decreasing
the overall energy efficiency; second, it results into low
exergetic gains at the server outlet which hinder the
repurposing of waste heat [4].

With acquisition costs being overwhelmed by the run-
ning costs, data center operators seek for more cost-
effective cooling solutions [5]. A continuous development
is thus focused on both making a more efficient use of

Submitted on the 17th July 2018. This work is partly funded
by the Celtic Plus project SENDATE-Extend (C2015/3-3). We
moreover acknowledge support from the Swedish research council
Norrbottens Forskinsråd project DISTRACT to acquire the liquid
cooling parts. All the authors are with the Department of Com-
puter Science, Electrical and Space Engineering, Luleå University
of Technology, Luleå, Sweden. E-mails: riccardo.lucchese@ltu.se,
damiano.varagnolo@ltu.se, andreas.johansson@ltu.se.

air [6] and heat reuse systems [7], [8], [9], [10]. In this
latter respect, a compelling alternative is to deploy liquid
cooling loops that extend to the individual electronic chips
(“direct liquid cooling”). Liquid coolants exhibit both
higher thermal capacitance and lower thermal resistance
then air. This allows compact designs that match higher
power densities and result in generally smaller rates of
exergy destruction. Furthermore, the cooling loops can
run hotter, opening to both free-cooling and heat reuse
implementations. Examples of the latter scenarios are
supplying the basic heat load needs to indoor complexes,
greenhouses [11], district heating [7], desalination and
refrigeration processes [4], preheating of boiler feed water
in power plants [12]. Remarkably, using hot water coolant
enables heat recovery systems with efficiencies (up to 85
percent) which are not possible in air-cooled settings [4].
Air-cooled server enclosures have been subject to a

substantial modelling effort with state of the art con-
trol strategies being based on economic polynomial op-
timization problems, see [13], [14], [15], [16], and refer-
ences therein. However, to our current best knowledge,
direct “on-chip” liquid cooling solutions have not been
thoroughly investigated from a control perspective. In
particular, there is a lack of studies evaluating the heat
quality benefits of dynamical provisioning in this setting.
A large part of the existing body of works focuses on
energy efficiency at the data center level. For instance, [7],
[17], [18], [19] pursue to quantify the prospective efficiency
gains of direct liquid cooling over other liquid-cooling and
air-cooling technologies. In hybrid air-and-liquid cooling
problems, a portion of the compute capacity is upgraded
with direct liquid cooling to address computer room hot-
spots. Reducing the overall cooling cost corresponds then
to 1) an off-line selection of the machines to be retrofitted
and 2) the on-line optimal job allocation over the mix of air
and liquid cooled platforms [20], [21]. We stress that, in the
above liquid cooling studies, the coolant supply is matched
to the peak heat load and thus not adaptive. This work,
instead, sets out to assess specifically the performance
of dynamical coolant provisioning whilst keeping a focus
on heat recovery. To this aim, we first devise a thermal
networks framework to describe the temperature dynamics
of direct liquid cooled electronics. Then, on top of this
modelling, we design a feedback provisioning law in the
form of an optimizing supervisor.
We notice that temperature models that are similar in

spirit to ours have been proposed at the chip level. [22] uses
resistor-capacitor networks to capture heat conduction,
generation and storage within a single chip. In addition,
convective liquid cooling has been investigated for 3D
stacked architectures where using air as the advection

2

medium becomes inadequate due to the manifold increase
in the power consumption [23], [24], [25]. Notice, however,
that these approaches focus on a single package and
disregard any dynamical interactions with other passive
and active components. Network-oriented heat transfer
models have moreover found application in other settings.
For instance, describing how heating or cooling a room
influences the temperatures of neighboring zones of a
building is instrumental to derive holistic Heating, Ven-
tilation, and Air Conditioning (HVAC) control strategies.
In the this line of works, however, there is a lesser focus on
the advection phenomena and practical implementations
are limited to linear and bilinear models [26], [27]. Heat
Exchange Networks (HENs) have been studied within the
context of heat recovery systems in chemical processes [28].
This modelling approach is tailored to investigating the
structural properties of the recovery systems (such as the
energetic and exergetic yields) given their topology. The
main focus is then on the synthesis problem of maximizing
the HEN’s performance subject to constraints on the
heat sources and sinks and while minimizing the number
of heat exchanger units [29]. At the same time, these
settings marginalize the importance of deriving accurate
temperature dynamics of other nodes in the network.

A. Statement of contributions
We propose to model the temperature dynamics of a

liquid cooled data server using thermal networks: a graph
theoretic formalism that concisely encodes which devices
interact by exchanging heat and by which mechanism.
The network’s nodes correspond to thermal entities that
can locally store, inject or transfer heat to and from
any neighboring nodes. Our treatment is tailored to data
servers since this is where the bulk of a data center heat-
load is produced. At this level, we contribute a strategy
to model the transient temperatures of characteristic parts
such as the liquid cooled heat exchangers.

We then consider that implementing cost-effective heat
reuse systems depends on the data center’s ability to sys-
tematically act as a stable source of high quality heat, that
is, to sustain outlet flows with high temperatures [18], [12].
Building on the thermal network model, we thus propose a
dynamic provisioning strategy that achieves lower coolant
supply costs and higher quality heat harvests. Finally we
assess the performance benefits of dynamical versus static
provisioning laws using a liquid cooled Open Compute
Windmill V2 server as an experimental test bed.
Remark 1: We stress our present focus on the server

level. In this work we thus neglect to treat explicitly other
technological components that are necessary to operate
the cooling circuits such as purifiers, pre-heaters and the
Coolant Distribution Units (CDUs).

B. Organization of this manuscript
Section II introduces our thermal modelling framework

in terms of networks of components with local thermal
dynamics and heat exchange interactions described by

Figure 1: The IBM BladeCenter R© QS22, a water cooled
platform investigated in [4]. A symmetric cooling circuit
extends to all the electronic parts with a power consump-
tion above 3 Watts. Reproduced with permission.

graph overlays. Section III specializes our thermal model
into a library of reusable nodes aimed at the server
level. Section IV introduces a model-based strategy for
regulating the volumetric flow rate of the liquid coolant
dynamically. Section V accomplishes a validation of our
modelling choices using a water cooled test server; then it
characterizes the heat reuse performance of our dynamical
control strategy on the same platform. Finally, Section VI
collects concluding remarks and future directions.

II. A thermal modelling framework for
controlled liquid cooling

We model a data server as a network of interacting
components endowed with lumped thermal properties and
local temperature dynamics. To this aim we introduce a
graph-theoretic formalism where N = {1, 2, . . . , n} de-
notes the set of participating nodes/components (n =̇ |N |
being the network size) and where the topology of the
heat transfers is captured by two directed graph over-
lays Ecd, Ecv ⊂ N × N : Ecd (Ecv respectively) encodes
which components interact by exchanging heat through
the mode of conduction (convection). Notice that the
semantic meaning of a link in the two overlays differs (see
the detailed discussion later in Sections II-A and II-B).
A link (j, h) ∈ Ecd indicates a directed heat flow from
node j to node h; a link (j, h) ∈ Ecv establishes instead
a liquid cooling interconnection between node j and node
h, indicating the flow of both heat and mass between the
two nodes. For the generic graph overlay E on N ×N , we
define the in-neighborhood and out-neighborhood sets of
node j ∈ N respectively as

δE−(j) =̇ {h : (h, j) ∈ E} , δE+(j) =̇ {h : (j, h) ∈ E} .

Example 1: Figure 1 shows a direct liquid cooled server
in which a cooling network harvests the heat-load from

3

several on-board components using top-mounted heat ex-
changers. The generation of thermal energy is predomi-
nantly confined to small portions of space and the heat
exchange phenomena are localized in the same volumes.

A. The heat conduction overlay
The heat transfer rate among a pair of neighbors (j, h)

in Ecd is approximated given the thermal state of the pair
and the material/geometrical properties of the physical
interaction medium.
Example 2: Consider the simple case of a thermal net-

work with two electrical components connected through
a solid thermal bridge. Let j, h be two generic and fixed
indices and define N = {j, h}. The thermal bridge in-
duces two links in the heat conduction overlay, that is,
Ecd = {(j, h), (h, j)}. Let t 7→ xcj(t) and t 7→ xch(t) be
the continuous time trajectories of the proxy temperatures
for the first and the second component respectively. We
model the conduction heat flow from h to j as a one-
dimensional phenomenon and describe the corresponding
heat rate using Fourier’s law:

qcdj (t) = −khj
(
xcj(t)− xch(t)

)
. (1)

The constant khj ∈ R>0 above is then the lumped, overall,
thermal conductivity of the bridge1.

For a generic thermal network with size n = |N | we
collect the thermal conductivity parameters in the matrix
K ∈ Rn×n≥0 and set kjh = 0 whenever (j, h) 6∈ Ecd. The
rate of heat transfer due to conduction at the generic node
j ∈ N can then be written as

qcdj (t) = −
∑

h∈δEcd
− (j)

khj
(
xcj(t)− xch(t)

)
. (2)

We stress that the conduction overlay Ecd is directed.
This asymmetry reflects situations in which a component
rejects heat to an environmental node, that is, a specific
node type describing heat reservoirs and thus charac-
terized by a constant temperature. In particular, for an
environmental node j ∈ N we have δEcd

− (j) = ∅ and thus
qcdj (t) = 0 at all times t. Finally, not all node types need to
participate in the conduction overlay: for instance, supply
and collector nodes (discussed in the next section) model
the entry and exit points for the coolant in the liquid
cooling circuit and have empty in- and out-neighborhoods
in Ecd.

B. The heat convection overlay
The heat convection overlay serves as a means to

describe the flow of the coolant within the network: a
directed link (j, h) ∈ Ecv models an actual interconnec-
tion (or pipe) where the liquid coolant can flow. We let
ϕ : t×N×N → R be the continuous time trajectory of the
volumetric coolant flow rates over Ecv: ϕ(t, j, h) is then the
(volumetric) flow rate of liquid coolant through link (j, h)

1Notice that we let the term khj subsume also all the geometrical
properties of the system and thus measure it in J/[s · K].

at time t if (j, h) ∈ Ecv, and is equal to zero otherwise.
In the following, for the sake of a compact notation, we
identify ϕjh(t) =̇ϕ(t, j, h).
The coolant enters the network at the supply nodes S ⊂
N and exits it at the collector nodes C ⊂ N . We consider
networks with a generic number m ≥ 1 of supply nodes

S = {s1, . . . , sm}, |S| = m (3)

and a generic number p ≥ 1 of collector nodes

C = {c1, . . . , cp}, |C| = p. (4)

Notice that supply nodes cannot act as collector nodes and
vice versa: S ∩C = ∅. Moreover, supply nodes do not have
inflows and, specularly, collector nodes have no outflows:

δEcv
− (j) = ∅ ∀j ∈ S, δEcv

+ (j) = ∅ ∀j ∈ C. (5)

Instead, each supply node j ∈ S is univocally associ-
ated to a control variable uIs(j) through the bijection
Is : S 7→ {1, . . . ,m}. The order on N induces an order on
the control variables such that they can be orderly stacked
to form the control vector

u =̇
[
uIs(s1) . . . uIs(sm)

]T
∈ Rm≥0. (6)

The control input t 7→ u(t) sets the supply flow rates to
the liquid cooling network through∑

h∈δEcv
+ (j)

ϕjh(t) = uIs(j)(t), ∀ j ∈ S. (7)

We assume that the liquid cooling circuit has no leaks
and that the flow rates are conserved at all nodes except
for the supply and collector nodes:∑
h∈δEcv

− (j)

ϕhj(t) =
∑

h∈δEcv
+ (j)

ϕjh(t), ∀ j ∈ N \ (S ∪ C) .

(8)
In light of (5) and (8) we define the total flow crossing the
j-th node at time t as

fj(t) =̇

∑
h∈δEcv

+ (j)

ϕjh(t) if j ∈ S

∑
h∈δEcv

− (j)

ϕhj(t) otherwise
(9)

and define the network’s flow vector by stacking the
individual flows:

f(t) =̇
[
f1(t), . . . , fn(t)

]T
. (10)

We assume that the flow splitting ratios at nodes with
multiple outflows are time-constant parameters of the
physical system and independent from the flow rate. This
independence from the working condition is motivated on
a practical basis: a typical server platform accommodates
the components (Central Processing Units (CPUs), Dual
In-line Memory Modules (DIMMs), companion chips) in
pairs leading to liquid cooling circuits with purposefully

4

symmetric designs (see, for example, the platform in Fig-
ure 1). The ratios are formally encoded in the matrix
Λ =̇ (λjh) ∈ Rn×n≥0 defined through∑

h∈δEcv
+ (j)

λjh = 1, ϕjh(t) = λjhfj(t), ∀ j ∈ N . (11)

The following result relates the control input in (6) and
the flow vector in (10). For its proof (here omitted in the
interest of space) we require two additional assumptions
of both a practical and technical nature:
• Ecv induces a Directed Acyclic Graph (DAG). In

particular, the DAG has no self-loops and admits a
topological ordering;

• For each node j ∈ N such that δEcv
− (j) 6= ∅ or

δEcv
+ (j) 6= ∅ there exists a directed path over Ecv
starting from j and reaching a collector node in C.
That is, the flow through each liquid cooled node must
be able to reach a collector and exit the circuit.

Proposition 1: The instantaneous volumetric flow rate
vector f(t) in (10) can be written explicitly as a linear
function of the control vector u(t). In particular there
exists a constant matrix Φ ∈ Rn×m, function of the liquid
cooling network topology and Λ, such that

f(t) = Φu(t). (12)

Finally, we stress that not all nodes connected in the
heat convection overlay will exchange heat with the liquid
coolant (and thus influence its temperature); as discussed
later in Section III-A, pure manifold nodes, devoid of local
temperature dynamics, are used to model piping joints and
splitters in the cooling circuit.

C. The nodes’ thermal model
The temperature dynamics of the network are captured

in a low order state space representation. We do not
explicitly account for complex three dimensional geome-
tries and non-heterogeneous thermal properties; instead,
we consider lumped models that explain the average effect
of the distinct heat contributions. To write the dynamics
of the generic j-th node we first introduce the following
temperature variables (see Figure 2):
• xij(t): the temperature of the coolant entering the

node at time t (or inflow temperature);
• xcj(t): the local temperature state of node j at time
t (for instance, the average temperature of a CPU
package);

• xoj(t): the temperature of the coolant leaving the node
at time t (or outflow temperature).

The flow of the coolant through the interconnections is
assumed adiabatic and its temperature is thus determined
only at the entry and exit points of each node, disregarding
the explicit description of the in-transit thermal dynamics.
The coolant flows into j, collects the heat produced within
the node due to electrical dissipation, and exits at a
higher temperature. During normal operation we have
then xij(t) ≤ xoj(t) ≤ xcj(t) at all times.

Remark 2: We stress that thermal phenomena affecting
the in-transit coolant can still be described in our frame-
work by introducing opportune sub-networks that account
for the local thermal inertiae and any parasitic resistances
to the environment.
1) Modelling the inflow temperature xij(t): Recall that

the flow rates at the supply nodes are manipulable vari-
ables set through (7). The liquid coolant enters then the
thermal network at the generic supply node si ∈ S at
rate uIs(si)(t) and given temperature xisi

(t). The latter
temperature should be understood as an exogenous input
since in practice the Coolant Distribution Unit (CDU) acts
as a heat reservoir with a large thermal capacitance and a
slow varying temperature. Using again the bijection Is(·)
in (6) we can introduce the vector of input temperatures
by orderly stacking the supply coolant temperature of each
supply node

xi(t) =̇
[
xiIs(s1)(t) . . . xiIs(sm)(t)

]T
∈ Rm≥0. (13)

Those nodes that have more than one inflow act as
mixing manifolds and correspond to points in the cooling
circuit where multiple interconnections are channeled into
a single pipe. The temperature of the coolant flow crossing
the j-th node is captured through the average

xij(t) =̇ 1
fj(t)

∑
h∈δEcv

− (j)

ϕhj(t)xoh(t), j ∈ N \ S. (14)

The above relation (14) weights the instantaneous tem-
perature contribution of each incoming flow by its flow
rate. This corresponds to consider the conservation law
(8) together with two additional assumptions:
i) the coolant is perfectly mixed at the manifolds;
ii) the heat energy of the coolant is conserved during the

mixing.
We notice that ii) above is motivated by the low flow rates
while i) is supported by practical considerations: mixing
and heat-exchange sites do not coincide in the hardware,
and this allows flows to be mixed before they enter the
active to-be-cooled parts.
Remark 3: For the sake of simplicity and in the light

of the experimental results of Section V-C, we disregard
to account for transport delays in this work. While these
phenomena are inherent in a liquid cooling setting, their
effect is negligible at the typical lengths of the server level.
2) Dynamics of the local temperature xcj(t): Tracking

the temperatures of any self-heating components is cen-
tral to our modelling effort. Indeed, the safe operation
of the network depends on being able to regulate these
temperatures below specified thresholds (this aspect is
further discussed and formalized in Section IV). To this
aim, the generic j-th node is also seen as a dynamical sub-
system with temperature dynamics ẋcj(t) and a lumped
heat capacity dj . The dynamics takes the form

dj ẋ
c
j(t) = qcdj (t) + qcvj (t) + pj(t), (15)

and builds on top of the following three contributions:

5

xc
j

fj , xi
j xo

j

oqcd
j oqcv

j

opj

xo
h, ϕhj

xo
w, ϕwj

xo
z, ϕzj

Figure 2: The temperature dynamics of the generic j-th
node involves three heat transfer phenomena: conduction
to and from neighboring nodes (qcdj), convection to and
from the liquid coolant (qcvj) and generation due to the
local conversion of electrical power (pj). An energetic
balance is used to estimate the inlet to outlet coolant
temperature jump (xoj − xij) in function of the volumetric
flow rate (fj).

• qcdj (t) is the rate at which heat energy is transferred
to/from the node purely through the mode of conduc-
tion;

• qcvj (t) is the rate of heat exchange with the coolant
in the liquid cooling circuit through the mode of
convection;

• pj(t) is the rate at which electrical energy is converted
into thermal energy locally at the node.

The functional structure of qcdj follows from (1) in Sec-
tion II-A. Under constant flow conditions, the term qcvj
in (15) can be approximated using Newton’s law of cooling
as

qcvj (t) ∝ −
(
xcj(t)− xlj(t)

)
, (16)

where the effective temperature of the coolant xlj(t) is,
in first approximation, a function of xij(t), xoj(t) and
the physical parameters of the specific heat exchanger.
More in general, qcvj exhibits a nonlinear dependence on
the flow rate fj . Later in Section III, we describe these
nonlinear features by adopting a popular semi-empirical
model suitable for a relevant class of heat exchangers when
flows are time-varying. Finally, we notice that the power
dissipation at the components is modelled as a uniform
volumetric phenomenon with a first order effect on the
proxy temperature xcj .
Remark 4: The nature of the thermal interfaces and the

typical material properties found in data servers induce
small Biot numbers. In turn, this motivates the adoption
of the scalar temperature dynamics (15). We validate this
choice experimentally in Section V-C.
Remark 5: The inclusion of computational aspects such

as the CPU, memory, and I/O loads is thus accomplished
in an aggregate manner by mapping these quantities into
the corresponding electrical power consumption at the
chip level.

3) Modelling the outflow temperature xoj(t): Applying
a thermal energy balance to a control volume containing
only the generic node j gives the equation

qoj (t)− qij(t) = −qcvj (t), (17)

where qcvj (t) is the heat rate in (15) and qij(t), qoj (t) are
the rates at which heat energy, transported by the coolant,
enters and exits node j. Expanding these terms in function
of the volumetric flow and the physical properties of the
coolant, assuming that the pressures in the cooling circuit
are in first approximation constant in time, yields

cpρfj(t)xoj(t) = cpρfj(t)xij(t)− qcvj (t), (18)
where ρ is the density of the coolant and cp its specific
heat capacity at constant pressure. By rearranging terms
we obtain the outflow temperatures as

xoj(t) = xij(t)−
qcvj (t)
cpρfj(t)

. (19)

(12), (14), (15) and (19) are the salient ingredients of
our control-oriented framework for liquid cooling applica-
tions. In the following section we show how they can be
specialized to model the characteristic thermal networks
of data centers at the server level.

III. A library of standard models at the server
level

Here we develop the generic node model of Section II
into a library of reusable node types. We start by categoriz-
ing nodes into two classes (see also Table I). Thermal nodes
participate in the thermal dynamics by exchanging heat
with their neighbors and by acting as local heat sources.
Heat reservoirs and electrical components such as CPUs
are examples of thermal nodes. Transport nodes, instead,
have an infrastructure character: they do not participate
directly in the thermal dynamics but rather support the
liquid cooling operations as we discuss next.

A. The transport nodes
In practice, the liquid cooling overlay Ecv is implemented

using pipes, joints and flow splitters. In our framework,
these elements are modelled as transport nodes, that is,
mathematical constraints describing how the coolant can
flow in and out of each manifold and how the flow tem-
perature propagates along the cooling circuits. Transport
nodes are thus means to describe the topology of the
cooling circuit while no heat is absorbed or rejected within
these nodes. Therefore, we neglect the dynamics (15) and
require

∣∣∣δEcd
− (j)

∣∣∣ =
∣∣∣δEcd

+ (j)
∣∣∣ = 0 for all transport nodes

j ∈ N .
1) Joint nodes: This node type models joint couplings

in the liquid cooling circuit. The generic joint node j has
multiple inflows and one outflow. The inflow temperature
is given by (14) and we assume that the flow crossing j
exits the node instantaneously without exchanging heat:

xoj(t) = xij(t). (20)

6

Node type
∣∣δEcd
− (j)

∣∣ ∣∣δEcd
+ (j)

∣∣ ∣∣δEcv
− (j)

∣∣ ∣∣δEcv
+ (j)

∣∣ Inflow
temp.

Dynamics Outflow
temp.

Supply 0 0 0 1 - - (6)
Collector 0 0 1 0 (14) - -
Joint 0 0 ≥ 2 1 (14) - (20)
Splitter 0 0 1 ≥ 2 (14) - (20)
Environmental 0 ≥ 1 0 0 - (21) -
MMC ≥ 0 ≥ 0 1 1 (14) (25) (24)
Active ≥ 1 ≥ 1 0 0 - (26) -

Table I: Each node type introduced in this section is specialized to address a specific modeling need in capturing the
temperature dynamics of liquid cooling data servers.

2) Splitter nodes: Splitter nodes describe constant-ratio
flow splitters. The generic splitter node j has one inflow
and at least two outflows. The inflow temperature is again
(14), with the summation reduced to the single inflow
link, and the outflow temperature is evaluated as for
the joint nodes through (20). Finally, splitter nodes are
characterized by the splitting ratios Λ defined in (11).
3) Supply nodes: The generic supply node j ∈ S is

characterized by the manipulable flow uI(j)(t) and the
coolant temperature xoj(t) = xij(t) (considered here a
measurable exogenous input).
4) Collector nodes: A collector node j ∈ C has one in-

flow and no outflows. The inflow temperature is evaluated
using (14).

B. The thermal nodes
Nodes endowed with a local temperature state are called

thermal nodes. They are further specialized in: environ-
mental nodes, modelling heat reservoirs, heat exchanger
nodes, introduced to describe heat transfers to and from
the liquid cooling loop, and active nodes, modelling the
self-heating components.
1) Environmental nodes: In our set-up a generic envi-

ronmental node j is not connected to the liquid cooling
circuit; in particular, the inflow and output temperatures
are disregarded. Rather, the node acts as a heat reservoir
being connected in the heat conduction overlay Ecd, that
is,
∣∣∣δEcd
− (j)

∣∣∣ = 0,
∣∣∣δEcd

+ (j)
∣∣∣ ≥ 1. Environmental nodes are

thus assumed to have constant temperature in time,

ẋcj(t) = 0, xcj(0) = xcj , (21)

for some given temperature xcj ∈ R≥0 of the reservoir.
2) Heat exchanger nodes: This type of nodes is used to

model the heat transfer interfaces between the on-board
electrical components and the cooling loop. Thus, the j-th
heat exchanger node can transfer heat over both the con-
duction and convection overlays. The inflow and outflow
temperatures are given by (14) and (19), respectively. The
local temperature dynamics is modelled by specializing
(15). The rate of local heat generation is zero and the
dynamical contribution due to thermal conduction is given
by (2). The heat rate qcvj (t) due to convection is instead

approximated by the following nonlinear resistive thermal
model

qcvj (t) = −
xcj(t)− xlj(t)
Rj
(
fj(t)

) , (22)

where
• xlj(t) − xcj(t) is the effective temperature difference

between the liquid coolant and the component;
• fj 7→ Rj(fj) is the lumped thermal resistance of the

heat exchanger in function of the (volumetric) flow
rate fj .

Here we specifically consider Manifold Micro-Channel
(MMC) heat exchangers, a specific liquid cooling tech-
nology that has been investigated extensively, both out-
side [30], [31], [32], [33], [34] and inside data centers [35],
[36]. We thus model the flow dependence of the thermal
resistance Rj in (22) through the following rational form

fj 7→ Rj(fj) =̇Rpj +Rsj +
Rbj
fj
, (23)

where Rpj , Rsj , Rbj are positive parameters defining the heat
transfer performance of the physical device. The thermal
resistance Rj corresponds then to the series connection of
three thermal resistances:
• Rpj : the thermal resistance given by the component’s

package and the metal plate at the base of the heat
sink;

• Rsj : the resistance of the heat transfer structure, that
is, the channel’s fins in a MMC design;

• Rbj : the bulk resistance between the heat transfer
structure and the liquid coolant.

We stress that the nonlinear model (23) has been shown
to capture accurately the heat exchange profiles of MMC
devices. The three resistance parameters depend on the
physical microchannel design (layout and topology) and
can be either estimated from first principles or evaluated
numerically [33], [34], [36], [37]. As for the effective coolant
temperature xlj(t) in (22), following [34], [36], we propose
to set it equal to the inflow coolant temperature, in
symbols xlj(t) = xij(t).

7

CPU

outletinlet

HX

Figure 3: Above, photo of an off the shelf EK-Supremacy
EVO water cooling block (with the mounting plate re-
moved). The 60 × 60 × 20mm block is manufactured in
nickel-plated brass and weights 380 grams with about 25
percent of the mass corresponding to its plate. Below,
sketch of a CPU chip dissipating heat into an MMC heat
exchanger.

By using (22) and (23) in (19) we obtain the heat
exchanger’s outflow temperature

xoj(t) = xij(t) +
(
xcj(t)− xij(t)

)
cpρ
(
Rbj + (Rpj +Rsj)fj(t)

) . (24)

Finally, substituting (2) and (22) in (15) yields the full
continuous time temperature dynamics of the node:

ẋcj(t) = − fj(t)
dj
(
Rbj + (Rpj +Rsj)fj(t)

)(xcj(t)− xij(t))+ . . .

−
∑

h∈δEcd
− (j)

khj
dj

(
xcj(t)− xch(t)

)
.

(25)
3) Active nodes: In a data server the active nodes

coincide with the electrical components that necessitate
cooling such as CPUs, DIMMs and any companion chips.
Heat is either injected into the network through local
generation or exchanged over the conduction overlay. The
generic active node j has no inflows or outflows, while the
corresponding temperature dynamics takes the form:

ẋcj(t) = −
∑

h∈δEcd
− (j)

khj
dj

(
xcj(t)− xch(t)

)
+ pj(t)

dj
. (26)

Example 3: Consider the uni-CPU liquid cooled set-
up in Figure 3. The cool inlet liquid enters the MMC
and is channeled into the micro-channels by a jet-plane.
The warmer coolant then recirculates within the MMC
exchanging heat with the exchanger’s casing until it
reaches the outlet port. In Figure 4, we recorded a CPU

1 3

2

4 4

Inlet port HX1a

CPU1

HX1b Outlet port

Figure 4: Above, temperature recording of a liquid cooled
CPU subject to a step in the computational workload at
time t = 10s. The coolant is supplied at a constant rate
(see Example 3 for the details). Below, graph representa-
tion of the corresponding thermal network model: the blue
arrows indicate links in the convection overlay while red
arrows depict links in the conduction overlay. Two heat
exchangers nodes connected in series are used to describe
the temperature dynamics of a single MMC device.

temperature trajectory where we transition the workload
from idle to peak utilization. By inspection of the trace
we notice two fast modes and one slow mode indicating
the interplay of three main thermal inertiae: 1) the CPU
package, 2) the MMC plate and heat-transfer structure
and 3) the MMC casing. We propose to use the thermal
network in Figure 4 to model this setting. More in detail
we consider that the CPU core is interposed between
the server motherboard and the heat exchanger, and we
assume any heat losses from this interstice to be negligible.
We then model the chip as having homogeneous thermal
properties and approximate the heat transfer from the
CPU as a one-dimensional thermal flux directed towards
the heat exchanger as in (26). We approximate the micro-
channel structure of the heat exchanger as an isothermal
surface and thus let a single scalar temperature be a proxy
for the temperature of the whole plate. To account for flow
dependency in the heat transfer rates we capture the cor-
responding dynamics using a heat exchanger node (HX1a).
Finally, the thermal dependency between the bottom and
upper part of the water block is taken into account by
introducing a thermal bridge in the conduction overlay
to a second heat exchanger node (HX1b) with higher
thermal capacitance and lower convective heat transfer
performance.

8

IV. Controlled liquid cooling

We propose a controlled liquid cooling strategy that
aims at simultaneously minimizing the supply flow rates
(to decrease the actuation costs) while increasing the tem-
perature of the coolant at the outlet (to improve its quality
in heat reuse applications). To this aim, we formulate a
polynomial optimal control problem in a Receding Horizon
Control (RHC) fashion. The minimization objective is
then to minimize the coolant pumping cost subject to
the temperature constraints induced by the underlying
thermal network model.
Remark 6: Our focus on an optimizing strategy is

motivated by the impact that exogenous inputs have on
the temperature dynamics. For example, the heat-loads
at a single server can vary instantaneously with the work-
load from tens to hundreds of Watts. Moreover, the inlet
coolant temperatures are dependent on the past workload
at the computer room level and the amount of thermal
energy that the data center injects into the end-user heat
reuse application. The latter being a time-varying quan-
tity depending on the thermal state of the subordinate
system. We thus suggest that dynamical controlled liquid
cooling strategies should be designed with the knowledge
of the attainable performance as measured by the system’s
thermal model and an optimizing controller. An on-line
implementation of the feedback could, instead, simply
mimic the optimal control law by approximating it using
one of many nonlinear regression tools.

A. Discretization
We assume a uniform sampling schedule with period

∆. The dynamics of the thermal network is discretized
using Euler’s forward rule and propagated over a horizon
of length H sampling periods. With a slight abuse of nota-
tion, we let xij(k) denote the inflow temperature of node j
at time k∆ and adopt the same convention for all the time-
varying quantities. All manipulable and exogenous inputs
are assumed zero-order held.

We assume a time-scale separation between the tem-
perature dynamics of the server and that of the storage
Coolant Distribution Unit (CDU). In particular, the tem-
perature of the supply inflows xij(k), j ∈ S, are measured
at the beginning of the receding horizon and assumed
to remain constant over it. We assume moreover that
the power consumption of the server’s active nodes is
unknown, that the computational loads are also unknown,
and that they are difficult to forecast. To cope with
this minimal-information setting we consider the following
worst-case scenario where each component dissipates the
highest plausible power:

pj(k) = pj,max, ∀ k ≥ 0 (27)

for all active nodes j ∈ N . Considering (27) leads then to a
feedback law that satisfies the operation constraints over
the specified horizon irrespective of the unknown future
computational loads.

B. Static and dynamical constraints
The safe operation of the server requires to keep the

temperature of the main components below established
thresholds2:

xcj(k) ≤ xcj,max, ∀ k ≥ 0 (28)
for all active nodes j ∈ N . Moreover, the supply flow rates
must satisfy box constraints of the form

umin � u(k) � umax ∀ k ≥ 0, (29)
with umin,umax ∈ Rm≥0.
The continuous time thermal dynamics of the network

are approximated under the assumption of piece-wise
constant flows, discretized using Euler’s forward rule and
then rewritten as polynomial constraints. For instance,
discretization of (25) yields

xcj(k + 1)− xcj(k)
∆ = . . .

−
fj(k)

(
xcj(k)− xij(k)

)
dj
(
Rbj + (Rpj +Rsj)fj(k)

) . . .
−

∑
h∈δEcd

− (j)

khj
dj

(
xcj(k)− xch(k)

)
,

(30)

which can be rewritten into an equivalent polynomial
constraint by multiplying both its left and right hands by
the positive affine term Rbj + (Rpj +Rsj)fj(k).

C. The cost function
Denote a generic candidate control sequence through
uk:k+H−1 =̇

(
u(k),u(k + 1), . . . ,u(k +H − 1)

)
. (31)

and define the corresponding control cost g(·) by

uk:k+H−1 7→ g(uk:k+H−1) =̇
k+H−1∑
z=k

Pflow(u(z)), (32)

where Pflow quantifies the pumping costs incurred to sus-
tain the given volumetric flow rates. The main feature of
g(·) is to penalize the overprovision of the liquid coolant
while attaining the auxiliary objective of increasing the
coolant temperature throughout the circuit. Indeed, by in-
spection of (24) we expect lower flow rates to induce higher
outflow temperatures with a first order effect. Moreover,
since the thermal convection resistance (23) is monotonic
decreasing with respect to fj , the required temperature
gap to transfer a given heat-load increases as the flow
rate decreases. This leads to a higher amount of thermal
energy that is stored within the network and thus higher xcj
and higher outflow temperatures. The cost (32) thus pairs
a natural economic control formulation with the benefit
of improving the eventual quality and value of the outlet
heat.

2We notice that dew point safety considerations potentially in-
troduce a new set of lower temperature constraints. In practice,
however, dew point controllers are naturally located at a higher
level of the cooling infrastructure (at and above the CDU level).
Indeed, while condensation phenomena entail serious hazards, it
would be impractical and cost-inefficient to regulate the inlet coolant
temperature at the server level.

9

DIMMs
CPU1 CPU2

PCH
air inlet air outlet

Figure 5: Top view of the test bed server (slid outside
of its enclosure) before the liquid cooling upgrade. This
Windmill V2 platform has dimensions 16.4× 50.7ċm

D. The RHC problem formulation
Let g be the cost function in (32) and ψ an opportune

vector-field of polynomial constraints obtained by stacking
all the static and dynamical polynomial constraints of
Section IV-B. For instance, design ψ by first stacking the
2m scalar inequalities corresponding to (29), then, for all
active components j, consider the static and dynamical
constraints corresponding to (28) and (30). Finally, ap-
pend the inflow and outflow constraints derived by refor-
mulating the rational forms (14) and (19). Let moreover
X0 be a compatible vector corresponding to the measured
state of the thermal network at time k0. Our control
policy aimed at heat recovery corresponds then to solve
the following optimal control problem:

min
uk0:k0+H−1

g(uk0:k0+H−1)

subject to:
ψ
(
xi(k0),X0,uk0:k0+H−1

)
� 0

. (33)

V. Experimental results
In this section we derive the thermal network model

of a direct liquid cooled server and assess the heat-reuse
performance of (33) in a realistic scenario. All the field
data supporting the remainder of this work has been
acquired from an Open Compute Windmill V2 server, a
Facebook design aimed at hyperscale deployments [38].
This platform deploys two CPU sockets, 8 low-power
DIMMs, a Platform Controller Hub (PCH) chip, support
electronics for I/O and power distribution and two axial
fans for cooling. The board’s layout is highlighted in
Figure 5. The maximum heat-loads are categorized by
component in Table II. Notice that all tests have been
carried out with the server deployed in its original 1.5U
tray enclosure.

A. Experimental setup
The experimental set-up is schematized in Figure 6. A

0.8 liter tank is used as the only water reservoir. The main
cooling circuit (depicted below the reservoir) circulates the
coolant through the liquid cooled server and back to the

Part Count Model TDP

CPU 2 Intel Xeon E5-2670 115W
PCH 1 Intel C600/X79 7.8W
DIMM 8 2GiB DDR3-1600 2.1W

Table II: The two CPUs are responsible for more than 90
percent of the total heat load at peak usage on the adopted
Windmill V2 test bed.

Tank

T3T2

T1

T6

P2

P1

F2

F1

T5

T4

Server

T7

Figure 6: Schematic representation of our experimental
liquid cooling setup. The pump P1 provisions the coolant
to the server. The inlet and outlet temperatures of both
air and water are monitored through sensors T1 to T4.
An auxiliary cooling circuit is used to regulate the water
temperature within the tank. Notice that at each temper-
ature sensing point multiple sensors are used to average
the measurements.

storage. A three-way valve is used to limit the maximum
volumetric flow through the test bed. Four temperature
sensing points are used to monitor the air (T2, T3) and
the water coolant (T1, T4) at the inlet and outlet faces
of the server. An auxiliary cooling circuit (depicted above
the reservoir), circulates the coolant through a water-to-
air heat exchanger; an independent pump and a fans’ array
are actuated to maintain a desired set-point for the inflow
temperature T1. We henceforth omit the operative details
of the auxiliary cooling circuit which is employed with the
sole purpose of simulating a constant temperature water
reservoir.
The two CPUs on the Windmill server have been

retrofitted using off the shelf components acquired from
EK Water Blocks. Differently from the engineered plat-
form in Figure 1, we did not connect other self-heating

10

parts in the liquid cooling loop3. We stress, however, that
the two CPUs are the largest contributors to the server
heat-load and thus a natural focus point. During all the
experiments, a constant volumetric air flow rate equal to
0.00816m3/s was provisioned through the server enclosure
to cool down these remaining components.

To confirm the capability of thermal networks to
capture thermal dependencies among nodes we have
chosen to implement a series cooling circuit. The coolant
thus flows from the main inlet to the main outlet while
crossing the two water cooled CPUs in series. Depending
on the current heat-load, this configuration leads the two
packages to operate at markedly different temperature
conditions (as demonstrated later in Section V-C).

Monitoring and control of the test bed has been per-
formed through a dedicated software toolkit. We col-
lected information about the logical and thermal state
of the server (power load, CPU temperatures, inlet and
outlet air temperatures) by querying the server’s Intelli-
gent Platform Management Interface (IPMI) through an
out-of-band Ethernet connection. Ad-hoc electronics have
been designed to acquire the additional temperature and
tachometric measurements from the other external sensors
and actuators. At run-time, this state information is fed
back to our supervision algorithm, residing on a remote
machine, and used to compute the optimal pump control
of Section IV in real-time. Time-varying computational
workloads have been injected in the instrumented server
according to either deterministic or random utilization
patterns4.

B. The thermal network model
The liquid cooling topology discussed above and

schematized in Figure 6 is captured by the thermal net-
work model of Figure 7. A single source node, correspond-
ing to pump P1, provisions the coolant to the server sub-
network and back to the reservoir through two modelled
collector nodes. Along the same reasoning of Example 3,
each MMC heat exchanger has been modelled by the series
of two heat exchanger nodes. Finally, an environmental
node is introduced to capture heat losses from the MMC
casings due to the constant-rate provisioning of air.

Instrumental to estimating the thermal network param-
eters, we have measured the water pump power consump-
tion at different rotational speeds and the corresponding
volumetric flow rate through the server enclosure (see
Figure 8). With a slight abuse of notation, in what follows,
we write u(k) to denote the volumetric flow rate of water
through the server at time k. Through a thermal energy
balance applied at the server’s inlet and outlet ports we
have moreover estimated the amount of harvested heat and

3This choice reflects both the lack of opportune fixations (as in the
case of the PCH) and the lack of on-chip temperature information
that would have been necessary to validate the augmented model (as
in the case of the DIMMs).

4The CPU stressor that we used is based on the open-source
software stress-ng [39]

the heat losses under a medium CPU loading condition.
Figure 9 shows how modulating the water supply rate
u corresponds to modulating the temperature at which
the water is harvested, xi10. Remarkably, at the lower
flow rates, the outlet water temperature approaches 60◦C
when the server heat-load is approximately half of the
peak value. At the same time, low control values imply
higher CPU temperatures which in turn induce higher
losses to the environment as shown in Figure 10. The static
performance of the system is summarized graphically in
Figure 11 by plotting the flow-dependent equivalent ther-
mal resistance R that relates the temperature gap between
the inlet and outlet water and the power rejected into the
cooling loop (cf. Figure 7)

R =̇ xi10 − xi1
qcv4 + qcv7

. (34)

In other words, R quantifies the attainable outlet water
temperature in function of the heat-load and the coolant
supply rate; thus, it highlights the overall relevance of
provisioning the coolant dynamically. However, to be able
to predict also the temperatures of the individual network
nodes’ (a requirement induced by (28)) it is necessary to
identify the full model of the network.

C. Identification of the full dynamics
In order to train the complete dynamical model we

have let the server run computational workloads designed
by sampling a Pseudo-Random Binary Sequence (PRBS)
with random switchings every 60 seconds. We mapped the
binary low and high values of the PRBS into normalized
CPU usage values of 0 (the CPU is idle) and 1 (the CPU
is fully utilized), respectively. By continuously monitoring
the test bed we have then acquired (recall Figure 7) the
inlet temperature xi1(k), the CPU temperatures xc4(k),
xc7(k), the water flow rate through the server u(k) and
the power consumptions of the CPUs, p4(k) and p7(k).
The thermal network model has been fitted to the data

by minimizing a cost quantifying the H-steps ahead (H =
60) prediction capabilities of the model:

J (θ) =̇∑
j=4,7

K−1−H∑
k=0

(
x̂cj(k, k +H;θ)− xcj(k +H)

)
,

(35)

where K is the number of samples in the training data
set, θ is the current candidate estimand (whose entries
correspond to all the unknown parameters of the thermal
network) and x̂cj(k, k+H;θ) is the H-steps ahead predic-
tion of the proxy temperature of node j given knowledge
of the state of the system at time k and the parameters θ.
We considered a sampling interval ∆ = 1 s, and used

four hours of measurements to minimize the cost (35). The
performance of the estimated thermal network model is
quantified in terms of the model-fit errors

εpj (k) =̇ x̂pj (k − 1, k;θ)− xpj (k), j = 4, 7 (36)

11

1 2

5

4

6 8

7

9 10

3

11

Pump 3-way valve

HX1a

CPU1

HX1b HX2a

CPU2

HX2b Server outlet

Tank return

Env./Air

Figure 7: Graph representation of the thermal network used to model the Windmill V2 test bed of Figure 5. The
blue arrows indicate the liquid cooling advection paths. The red arrows indicate the modelled heat conduction paths
between the CPUs (drawn in orange) and the corresponding, top-mounted, heat exchangers (drawn in violet). An
environmental node is introduced to capture heat losses due to the constant rate provisioning of air.

Figure 8: Pumping power and volumetric water flow rate
through the server in function of the pump’s rotational
speed.

namely, the difference between the measured and predicted
temperatures of the two CPUs, computed on a validation
data set. The quality of the J-optimal model used in
the following is assessed graphically in Figure 12 and
in Table III. The model demonstrates uniformly good
performance within the standard operational ranges of ex-
ogenous and control inputs. For both CPU temperatures,
the mean model-fit errors are smaller then 0.158 ◦C in
absolute value and their standard deviations are smaller
then 1.52 ◦C. Moreover, the two errors are smaller than
one standard deviation in absolute value with a normalized
frequency of 0.77, while the absolute fit errors are smaller
than 2◦C more than 83% of the time.

D. Assessment of the control performance
We compared a static provisioning policy (henceforth

shortened as “STA”) where the coolant is supplied to
the server at a constant rate (chosen as the smallest

Figure 9: The average inlet (drawn in blue) and outlet
(red) temperatures of the air and water entering and
leaving the server in function of the volumetric water flow
rate through the server. To be able to safely measure these
quantities at the lower flow rates we limited the heat-load
dissipated during the test to about 135 Watts.

Mean St. Dev.

εp
4 -0.1526 1.3476

εp
7 0.1584 1.5194

Table III: Mean and standard deviation statistics of the
validation model-fit errors in (36) evaluated over a four
hours long trace.

volumetric flow rate that maintains the servers’s on-board
temperatures below the safety thresholds (28)) against
the dynamic policy (33) (in short “DYN”). To this aim
we monitored the test bed while reproducing six sets of
pre-determined CPU workload traces. The latter traces
have been generated by sampling a PRBS as in Sec-
tion V-C while varying the PRBS’s minimum switching

12

Figure 10: The estimated amount of thermal energy re-
jected into the air (losses) and into the water cooling loop
corresponding to the experiment in Figure 9.

Figure 11: The equivalent thermal resistance defined in
(34). The interpolating curve has the functional form
R(u) = R

′ +R
′′
/u.

time, TPRBS, and the average workload, wAVG (as mea-
sured by the ratio of active versus idle periods in the trace)
to represent different stress patterns. We designed thus 12
scenarios by crossing two different values for the switching
time TPRBS ∈ {10, 60}, three values for the average CPU
utilization wAVG ∈ {0.25, 0.5, 0.75} and two different val-
ues for the coolant inlet temperature xi1 ∈ {30, 35} degrees
Celsius5. Each scenario has been accurately replayed twice
to compare the cooling performance of the static (STA)
and dynamic (DYN) controllers.

The length of each experiment (involving the triple of
a given control strategy, a workload scenario and an inlet
water temperature) has been set to 240 minutes. In the
case of DYN, we used ∆ = 1 seconds, considered a pre-
diction horizon of H = 60 steps, and set the temperature
thresholds in (28) as xcj,max = 80 ◦C for both CPUs.
For each scenario, we quantified the control performance

in terms of the following two indexes: 1) the average
amount of water coolant supplied to the system, and 2) the
average temperature of the coolant at the servers’s outlet.

5The higher coolant temperature was limited by the heat losses in
the supporting cooling circuit.

Figure 12: Validation CPU temperatures (dashed lines in
light blue and light red) acquired on the liquid cooled
Windmill server while running a computational stress
loader. During the experiment, the water flow rate was reg-
ulated by letting the server air-cooling algorithm control
the rotational speed of the pump. The identified thermal
network model accurately predicts the temperatures of
both CPU1 (dark blue) and CPU2 (dark red). The sam-
pling period ∆ is one second. The measured temperatures
are quantized at the hardware level with a interval of 1◦C.

The above indexes are formally defined as

û =̇ 1
T

T−1∑
k=0

u(k), x̂ =̇ 1
T

T−1∑
k=0

xo10(k) (37)

where u(·) and xo10(·) corresponds now to the sampled
sequences of a given experimental scenario. Since the
pumping cost Pflow is a monotonic increasing function of
the water flow rate u, lower values of û indicates lower
pumping costs. As for the temperature index x̂, higher
values indicate a higher quality heat harvest at the server’s
outlet which in turn relates directly to the economic value
of the outflowing coolant in heat-reuse applications [4].
To remove any dependence on the initial conditions when
evaluating (37) we discarded the first 30 minutes of each
test.

A qualitative comparison of the STA and DYN control
strategies is shown in Figure 13. The different trajectories
of the state variables highlight how DYN achieves higher
outlet water temperatures by minimizing the supply cost
while managing the thermal state of the CPUs and the
large thermal inertiae of the heat exchangers. Within the

13

Figure 13: Example temperature trajectories induced by
the static (dashed lines) and dynamic (solid lines) pro-
visioning strategies. Remarkably, as the amount of heat
energy stored in MMC devices increases, the optimizing
supervisors steers the CPU states away from the upper
temperature envelope to comply with constraint (28). The
mean water temperatures achieved by STA and DYN
over the full length of the test are 44.52◦C and 55.04◦C
respectively.

testing conditions the dynamic provisioning laws achieved
approximately 10 degrees higher outlet temperatures while
reducing the water supply by 29 percent on average.

The experimental results relative to xi1 = 30◦C and
xi1 = 35◦C are summarized in Figure 14. The panels in the
first row, dedicated to û, highlight the savings that can be
realized by considering the proposed dynamic provisioning
policy (33) relative to the coolant supply performance of
the static policy. The panels in the second row, dedicated
to x̂, quantify the benefits of controlled liquid cooling in
terms of the temperature of the coolant at the server
outlet. When the server operates at a low computational
load (wAVG = 0.25) the static supply policy overprovisions
the cooling resources leading to the unnecessary usage of
water, increased actuation cost and the overall decrease of
the heat quality index x̂. In this specific utilization sce-
nario, the dynamic policy can reduce the average coolant
supply rate up to a factor of two. Gains, from 19% to
45% can be achieved at a medium-high computational load
depending on the coolant inlet temperature. Throughout
our tests, the heat-quality index x̂ increases from 6 to 11.5
degrees Celsius when the dynamical policy is used instead
of the static one.

Figure 14: The average coolant supply rate û (panels in
the first row) and the average outlet coolant temperature
x̂ (panels in the second row) evaluated for the static (tri-
angles) and dynamic (diamonds) provisioning strategies
when TPBRS = 10 (gray marks) and TPBRS = 60 (black
marks), as wAVG varies. The dynamic strategy produces
higher quality heat harvests with a lower actuation cost
throughout all the considered scenarios.

Overall, controlled liquid cooling is effective at reducing
the actuation cost across all inlet temperature regimens
and workload scenarios. As expected, however, the benefit
of using DYN decreases as the server approaches the peak
heat-load.

VI. Conclusions
This manuscript unfolds a control theoretic approach

to enabling heat reuse in data centers that deploy direct
liquid cooling systems. We have proposed a thermal mod-
elling framework, built on first principles, that approxi-
mates the thermal dynamics of liquid cooled data servers.
We have then shown that the resulting dynamics can
be discretized and exploited in optimal control problems
suitable to the design of dynamic flow-provisioning poli-
cies. We have considered in particular a receding horizon
strategy where the cost to be minimized is taken to be
power dissipated to supply the liquid coolant.
An implementation in a realistic scenario has high-

lighted the effectiveness of our strategy in both minimizing
the control effort and increasing the temperature of the
coolant harvested at the server’s outlet, enabling thus
higher quality heat at lower pumping costs, and eventually
improving the prospective potential of controlled liquid
cooling for heat reuse purposes.
Future directions include the scaling up of our strategy

to a full rack of data servers at the research data center

14

SICS-ICE in Luleå. Of particular interest is the study of
the coupling between this higher power heat source and
the end-user of the heat in thermal storage and heat-
injection scenarios.

Acknowledgments: We thank the team at the research
data center SICS-ICE in Luleå for lending us the Open
Compute Project test bed used in Section V.

References
[1] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong, “Im-

plications of Historical Trends in the Electrical Efficiency of
Computing,” IEEE Annals of the History of Computing, vol. 33,
2011.

[2] B. Agostini, M. Fabbri, J. E. Park, L. Wojtan, J. R. Thome,
and B. Michel, “State of the Art of High Heat Flux Cooling
Technologies,” Heat Transfer Engineering, vol. 28, no. 4, 2007.

[3] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller,
M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,
S. R. Williams, and K. Yelick, “ExaScale Computing Study:
Technology Challenges in Achieving Exascale Systems,” Tech.
Rep., 2008.

[4] S. Zimmermann, I. Meijer, M. K. Tiwari, S. Paredes, B. Michel,
and D. Poulikakos, “Aquasar: A hot water cooled data center
with direct energy reuse,” Energy, vol. 43, 2012.

[5] C. D. Patel, “A vision of energy aware computing from chips to
data centers,” in International Symposium on Micro-Mechanical
Engineering, 2003.

[6] Y. Fulpagare and A. Bhargav, “Advances in data center ther-
mal management,” Renewable and Sustainable Energy Reviews,
2015.

[7] T. Brunschwiler, B. Smith, E. Ruetsche, and B. Michel,
“Toward zero-emission data centers through direct reuse of
thermal energy,” IBM Journal of Research and Development,
vol. 53, 2009.

[8] M. Iyengar, M. David, P. Parida, V. Kamath, B. Kochuparam-
bil, D. Graybill, M. Schultz, M. Gaynes, R. Simons, R. Schmidt,
and T. Chainer, “Extreme energy efficiency using water cooled
servers inside a chiller-less data center,” in InterSociety Confer-
ence on Thermal and Thermomechanical Phenomena in Elec-
tronic Systems, 2012.

[9] M. K. Patterson and J. M. Walters, “On Energy Efficiency
of Liquid Cooled HPC Datacenters,” in 15th IEEE ITHERM
Conference, 2016.

[10] T. green grid, “White paper #70: Liquid cooling technology
update,” 2016.

[11] T. Brunschwiler, I. G. Meijer, S. Paredes, W. Escher, and
B. Michel, “Direct Waste Heat Utilization from Liquid-cooled
Supercomputers,” in Proceedings of the 14th International Heat
Transfer Conference, 2010.

[12] J. B. Marcinichen, J. A. Olivier, N. Lamaison, and R. John,
“Advances in Electronics Cooling,” vol. 7632, 2016.

[13] J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang, and
J. Lee, “A CFD-based tool for studying temperature in rack-
mounted servers,” IEEE Transactions on Computers, vol. 57,
2008.

[14] Z. Wang, C. Bash, N. Tolia, M. Marwah, X. Zhu, and P. Ran-
ganathan, “Optimal fan speed control for thermal management
of servers,” in ASME InterPACK, 2009.

[15] L. Parolini, B. Sinopoli, B. H. Krogh, and Z. K. Wang, “A cyber-
physical systems approach to data center modeling and control
for energy efficiency,” Proceedings of the IEEE, vol. 100, 2012.

[16] R. Lucchese, J. Olsson, A.-L. Ljung, W. Garcia-Gabin, and
D. Varagnolo, “Energy savings in data centers: A framework
for modelling and control of servers’ cooling,” in IFAC World
Congress, 2017.

[17] B. A. Rubenstein, H. Packard, F. Collins, R. Zeighami,
R. Lankston, and E. Peterson, “Hybrid cooled data center using
above ambient liquid cooling,” in IEEE ITherm, 2010.

[18] J. B. Marcinichen, J. A. Olivier, and J. R. Thome, “On-chip
two-phase cooling of datacenters: Cooling system and energy
recovery evaluation,” Applied Thermal Engineering, vol. 41,
2012.

[19] S. J. Ovaska, R. E. Dragseth, and S. A. Hanssen, “Direct-
to-chip liquid cooling for reducing power consumption in a
subarctic supercomputer centre,” International Journal of High
Performance Computing and Networking, 2016.

[20] L. Li, W. Zheng, X. Wang, and X. Wang, “Coordinating Liquid
and Free Air Cooling with Workload Allocation for Data
Center Power Minimization,” 11th International Conference on
Autonomic Computing, 2014.

[21] ——, “Placement optimization of liquid-cooled servers for power
minimization in data centers,” 2014 International Green Com-
puting Conference, 2015.

[22] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan, “Temperature-Aware Microarchi-
tecture: Modeling and Implementation,” ACM Transactions on
Architecture and Code Optimization, vol. 1, 2004.

[23] T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wun-
derle, H. Oppermann, and H. Reichl, “Interlayer cooling poten-
tial in vertically integrated packages,” Microsystem Technolo-
gies, vol. 15, no. 1, 2009.

[24] A. K. Coskun, J. L. Ayala, D. Atienza, and T. S. Rosing,
“Modeling and dynamic management of 3D multicore systems
with liquid cooling,” in 17th IFIP International Conference on
Very Large Scale Integration, 2011.

[25] A. Coşkun, J. Ayala, D. Atienza, and T. Rosing, “Thermal
Modeling and Management of Liquid-Cooled 3D Stacked
Architectures,” in VLSI-SoC: Technologies for Systems
Integration, 2011, vol. 360.

[26] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras,
M. Gwerder, V. Stauch, B. Lehmann, and M. Morari, “Use
of model predictive control and weather forecasts for energy
efficient building climate control,” Energy and Buildings,
vol. 45, 2012.

[27] D. Sturzenegger, D. Gyalistras, M. Morari, and R. S. Smith,
“Model predictive climate control of a swiss office building: Im-
plementation, results, and cost–benefit analysis,” IEEE Trans-
actions on Control Systems Technology, vol. 24, 2016.

[28] K. C. Furman and N. V. Sahinidis, “A Critical Review and
Annotated Bibliography for Heat Exchanger Network Synthesis
in the 20th Century,” Industrial & Engineering Chemistry
Research, vol. 41, 2002.

[29] C. A. Floudas, A. R. Ciric, and I. E. Grossmann, “Automatic
synthesis of optimum heat exchanger network configurations,”
AIChE Journal, vol. 32, 1986.

[30] D. Copeland, M. Behnia, and W. Nakayama, “Manifold Mi-
crochannel Heat Sinks: Isothermal Analysis,” IEEE Transac-
tions on components, packaging and manufacturing technology,
vol. 20, 1997.

[31] J. H. Ryu, D. H. Choi, and S. J. Kim, “Three-dimensional
numerical optimization of a manifold microchannel heat sink,”
International Journal of Heat and Mass Transfer, 2003.

[32] T. Brunschwiler, H. Rothuizen, M. Fabbri, U. Kloter, B. Michel,
R. J. Bezama, and G. Natarajan, “Direct liquid jet-impingement
cooling with micronsized nozzle array and distributed return
architecture,” in Thermomechanical Phenomena in Electronic
Systems, 2006.

[33] W. Escher, B. Michel, and D. Poulikakos, “A novel high
performance, ultra thin heat sink for electronics,” International
Journal of Heat and Fluid Flow, vol. 31, 2010.

[34] W. Escher, T. Brunschwiler, B. Michel, and D. Poulikakos, “Ex-
perimental Investigation of an Ultrathin Manifold Microchannel
Heat Sink for Liquid-Cooled Chips,” Journal of Heat Transfer,
vol. 132, 2010.

[35] R. Wälchli, T. Brunschwiler, B. Michel, and D. Poulikakos,
“Combined local microchannel-scale CFD modeling and global
chip scale network modeling for electronics cooling design,”
International Journal of Heat and Mass Transfer, vol. 53, 2010.

[36] P. Kasten, S. Zimmermann, M. K. Tiwari, B. Michel, and
D. Poulikakos, “Hot water cooled heat sinks for efficient data
center cooling: Towards electronic cooling with high exergetic
utility,” Frontiers in Heat and Mass Transfer, vol. 1, 2010.

[37] A. F. Al-Neama, N. Kapur, J. Summers, and H. M. Thomp-
son, “An experimental and numerical investigation of the use
of liquid flow in serpentine microchannels for microelectronics
cooling,” Applied Thermal Engineering, 2017.

[38] “Open Compute Project, http://opencompute.org/,” 2017.
[39] “stress-ng - CPU and memory stressor.”

