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Abstract 
In this paper, we evaluate the quality of reconstruction i.e. 

relighting from images obtained by a newly developed multispectral 
reflectance transformation imaging (MS-RTI) system. The captured 
MS-RTI images are of objects with different translucency and color. 
We use the most common methods for relighting the objects: 
polynomial texture mapping (PTM) and hemispherical harmonics 
(HSH), as well as the recent discrete model decomposition (DMD). 
The results show that all three models can reconstruct the images of 
translucent materials, with the reconstruction error varying with 
translucency but still in the range of what has been reported for 
other non-translucent materials. DMD relighted images are 
marginally better for the most transparent objects, while HSH- and 
PTM- relighted images appear to be better for the opaquer objects. 
The estimation of the surface normals of highly translucent objects 
using photometric stereo is not very accurate. Utilizing the peak of 
the fitted angular reflectance field, the relighting models, especially 
PTM, can provide more accurate estimation of the surface normals. 

Introduction 
Reflectance Transformation Imaging (RTI) is a popular tool for 

the acquisition of object appearance under different directions of the 
light source [1]. An RTI acquisition setup is fairly simple – it 
requires a static camera, that is positioned orthogonally to a static 
object, and a light source that can be moved along a hemisphere 
above the object. The acquired images for each of the different light 
directions are used to model the per-pixel angular reflectance field 
i.e. the reflectance as a function of the incident light’s angle. Other 
surface properties such as the albedo map or the surface normals of 
the object can be obtained from an RTI image set. These models of 
the object’s appearance can be used in different applications, such 
as cultural heritage for analyzing object surface structures or their 
change over time [1-2] or inspection of surface anomalies [3]. 

The RTI imaging started with the introduction of Polynomial 
Texture Maps (PTM) for visualization of objects under varying 
illumination [4]. Using an RTI image set, a six-coefficients 
polynomial function is fitted to the normalized luminance intensities 
at each pixel, which represents the estimated angular reflectance 
field. This function can be used to visualize, or relight, the object 
under a light from an arbitrary direction. The extension to color 
images can be done by either fitting a separate polynomial function 
to each of the RGB channels, or by fitting a polynomial function to 
the luminance only and using constant chrominance values. Other 
functions have been proposed as a basis for the angular reflectance. 
In the context of this paper, we mention the Hemispherical 
Harmonics (HSH) [5] and the Discrete Modal Decomposition 
(DMD) [6]. Both HSH and DMD use more complex basis functions 
than polynomials, and therefore they have improved the relighting 
over PTM especially for surface points that contain higher 
frequencies in the angular reflectance field (such as specular 
highlights) [6]. 

 Regarding the systems for RTI acquisition, the two most 
commonly used are free-form RTI systems - where a hand-held light 
source is used during acquisition together with reflecting spheres to 
recover the light source positions [2], and dome systems - where the 
positions of the light sources are fixed inside a dome and therefore 
the light positions are more accurate [6]. 

In this paper, we present the multispectral RTI system that we 
have developed, which uses a robotic arm for positioning the light 
source during the RTI acquisition. As we have identified a lack of 
RTI capture sets and evaluation of relighting models on translucent 
materials, we used our system to acquire images of materials with 
different translucency. We investigate the reconstruction accuracy 
of the relighted images as well as the surface normals estimation 
using the two most commonly used relighting models PTM and 
HSH, as well as the recent DMD. Specifically, in this paper we seek 
to provide answers to the following questions: Which reflectance 
basis is best suited for relighting translucent objects? Can the 
relighting models be used for estimation of the surface normals, and 
how? What is the influence of spectral bands on the accuracy of 
relighting and surface normals estimation?  

Materials and Methods 

Multispectral RTI System 
The main components of our multispectral RTI system are the 

five-joints Dexter robotic arm from Haddington Dynamics [7], a 
turntable from Norsk Elektro Optikk [8] and the Spectral Filter 
Array (SFA) multispectral camera Silios CMS-C [9]. We use the 
robotic arm to hold the light source and move it along a virtual half-
hemisphere around the object. We chose that the robotic arm should 
cover only half of a hemisphere in order to have larger radius (which 
is the distance between the object and the light source) while at the 
same time the robotic arm being able to cover a wide range of 
elevation angles for all azimuth angles of the half-hemisphere. The 
whole azimuth range for the light source positioning is achieved by 
rotating the object for 180° in the horizontal plane and around the 
center of the virtual hemisphere. This is done using a turntable that 
holds the object. During capture, the robotic arm positions the light 
source at the wanted measurement points on the first half-
hemisphere, and after the object is rotated for 180° the robotic arm 
effectively positions the light source at the measurement points on 
the other half-hemisphere. The multispectral camera has a 3×3 SFA 
that captures 8 narrow bands (centered at the following 
wavelengths: 440 nm, 473 nm, 511 nm, 549 nm, 585 nm, 623 nm, 
665 nm, and 703 nm) and one panchromatic band that is relatively 
constant across the whole visible wavelength range. It is positioned 
vertically over the turntable, with its optical axis passing very close 
to the center of the virtual hemisphere. As for the light source, we 
used a commercial LED light bulb with a luminous power of 470 lm 
and a color temperature of 6500K. All components are placed on a 
Thorlabs optical table [10] which removes ambient vibrations. 
The robotic arm is controlled using five variables – the angles of 
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each of the five joints. For each measurement position, these five 
angles are calculated using an iterative inverse-kinematic solver, 
that uses a 3D kinematic model of the robotic arm with the light 
source mounted. Before a capturing session, the robotic arm is 
manually calibrated to the reference position i.e. aligned to the 3D 
kinematic model. The synchronization between the robotic arm 
movement, the camera capture, and the turntable is achieved by 
controlling all of them from same programming environment. Due 
to the object rotation, the captured set contains two sets of images 
that are corrected for lens distortion and aligned in a pre-processing 
stage. This stage also includes spectral bands normalization using 
values obtained from a reference white tile, and demosaicing using 
bilinear interpolation. The output of the pre-processing stage is the 
final RTI acquisition set. A picture of our setup is shown in             
Figure 1. The positioning of the light source using the robotic arm 
is flexible in terms of azimuth and elevation angles. In this work, 
our multispectral RTI capture set was generated from 44 light 
positions that cover elevations from 15° to 65° as well as the whole 
azimuth range in a fairly uniform manner. We did a capture of 12 
additional light positions that would be used only for evaluation of 
the relighting models. The unit vectors of these light positions 
projected on the horizontal plane are shown on Figure 2 (The 12 
evaluation-only locations are shown in red). The average time for 
acquisition of one object (56 images) is around 6 minutes. 

 

 
Figure 1. Our RTI system consisted of a robotic arm that holds a light source, a 
turntable the holds the object, and a multispectral camera 
 

 
Figure 2. Light positions used in this work. The circle is the base of the virtual 
hemisphere, the red positions are only used for evaluation  

Translucent samples 
We used translucent samples from the Plastique collection 

[11]. From the three available shapes we selected only spheres as 
they cover broad range of surface normals. We excluded the most 
transparent and most opaque spheres, as well as the glossiest spheres 
from the collection. The nine chosen samples used in this work have 
different levels of translucency in terms of amount and type of 
volumetric scattering. They are indexed as samples from 1 to 9 and 
shown in Figure 3. In our work, we grouped the nine samples into 
different sets: 

Regarding their translucency, we denote the following sets: 

- Set 1 (most transparent: samples 1, 4, and 7); 
- Set 2 (intermediate: samples 2, 5, and 8);  
- Set 3 (most opaque: samples 3, 6, and 9). 

Regarding their color, we denote the following sets: 

- Set 4 (white set: samples 1, 2, and 3); 
- Set 5 (amber set: samples 4, 5, and 6); 
- Set 6 (blue set: samples 7, 8, and 9). 

Relighting models 
As previously mentioned, we evaluate the PTM [4], HSH [5], 

and the DMD [6] regarding their performance on relighting the 
translucent samples and estimating the surface normals. Each of the 
three models are fitted in least squares error sense on the 44 training 
images of each sample, for each of the nine multispectral bands 
separately. We used four different model parametrizations 
according to the number of model coefficients N: 4, 9, 16, and 25, 
which similarly as in [12] correspond to 1st, 2nd, 3rd and 4th degree 
polynomials for PTM and HSH, respectively. As for the DMD, N 
refers to the use of the first N modes of the discrete modal basis as a 
basis for the angular reflectance. 

In this work we use three different approaches for estimation 
of the per-pixel surface normals. First, we use a classical 
photometric stereo (PST) based on eight relighted images from each 
of the three models (referred to as PST-PTM, PST-HSH, and PST-
DMD). The second approach estimates the surface normals as the 
light direction that results in maximum luminance in the relighted 
image [13] (referred to as PTMmax, HSHmax, and DMDmax). In 
the third approach, we estimate the surface normals as the direction 
that bisects the angle between the maximum luminance light 
direction and the camera viewing direction. These are referred to as 
PTMmax2, HSHmax2, and DMDmax2; they are calculated using 
the normals from the second approach, and their calculation 
effectively assumes that the maximum luminance in the relighted 
image is due to a specular highlight. 

Results  
The evaluation of the relighting accuracy is performed in terms 

of PSNR and SSIM between the captured and the relighted images, 
separately for the training and for the testing images. The camera 
exposure time was set separately for each of the nine samples to 
ensure relatively good exposure across the nine bands. However, 
due to the variations in the spectral power distribution of the light 
source, the different peak sensitivities in each of the nine bands, as 
well as the spectrally varying properties of the samples, the resulting 
multispectral images had different utilization of the available 
dynamic range. Therefore, the captured RTI set includes images 
with different levels of average luminance. All of the results in this 
section are generated only for the pixels of the translucent surface – 
we effectively cropped the spheres using a circular mask on the 
relighted images and on the estimated surface normals. 
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Figure 3. The nine translucent spheres from the Plastique collection [11] used in this work, from left to right indexed as 1 to 9 
 
 

The relighting accuracy averaged over the 9 multispectral 
bands and grouped according to the level of translucency and 
number of model parameters is given in Table 1 and Table 2 in terms 
of PSNR and SSIM between the captured and relighted images. 
There is no big difference between using the training images (used 
for model fitting) and the testing images for the evaluation. As 
expected, using more coefficients (more basis functions) decreases 
the reconstruction error for all three models. Figure 4 shows a visual 
example of this, where an original testing image and relighted ones 
for the four different numbers of model coefficients. Overall, the 
PSNR values are relatively in the same range to what is reported for 
other, non-translucent, materials [12,14-15]. This means that the 
common relighting models may be well suited for translucent 
materials. It can be observed that the reconstruction becomes better 
as the samples become ‘opaquer’ – the best reconstruction is 
achieved for the Set 3. The images from Set 1 contained most 
complex highlights, which occurred both around the incident area, 
and on the opposite, exiting side, as the light propagated through the 
sample. This can be seen in Figure 5, which shows an example of 
images captured from the same angle for samples from the three 
different sets. The relatively high amount distinct specular 
highlights in the Set 1 may be the reason behind the DMD 
performing marginally better in terms of PSNR. HSH and PTM 
relighted images had significantly higher PSNR than DMD for the 
images of Set 2 and Set 3. We think that the reason behind this is the 
absence of a constant term in the DMD basis, because there is an 
offset added to many pixels in the DMD-relighted images which 

decreases the PSNR. This offset has lower impact on the structure 
captured by the SSIM metric (Table 2) which results in the DMD 
performing similar to PTM and HSH. As a summary, for relighting 
objects of higher transparency, the DMD performs marginally better 
than PTM and HSH both in terms of PSNR and SSIM, however, the 
HSH or PTM basis might be more preferable for opaquer objects. 
Another point is that it is more important to use more basis functions 
in the estimation of the angular reflectance for objects with higher 
transparency – so that the more complex appearance due to the light 
transport within the object can be represented accurately. 

Figure 6 and Figure 7 show the PSNR and SSIM between the 
original and relighted images, averaged in a different way – across 
the number of model parameters and for the testing set only. The 
previously observed PSNR drop for DMD is mainly due to the white 
set (and according to Table 1, the opaquer white samples) which has 
strongest highlights that introduce the largest offset in the relighted 
image. It is interesting that PSNR is in general lower for the amber 
set than for the other two sets. The bluish light source could be one 
of the reasons, even though we don’t see a clear evidence for this. 
Regarding the relighting of the object structure, quantified using 
SSIM (Figure 7), it is most accurate for the white samples. It can be 
seen again that there are no big differences between the three 
relighting models. A trend can be observed of having better 
relighting for the brighter images, i.e. for the mid-to-high spectral 
bands of the amber set, and for the lower spectral bands of the blue 
set. Relighting the panchromatic band has been with very good 
accuracy and close to the most accurately relighted spectral band. 

Table 1: PSNR between the relighted images and both the training and testing images. The highest values are shown in bold 

 

Training images 

4-coeff. model 9-coeff. model 16-coeff. model 25-coeff. model 

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 

PTM 17.60 21.50 25.35 20.87 25.44 30.15 23.40 28.17 33.21 26.92 31.73 36.36 

HSH 17.66 21.51 25.62 21.50 25.85 29.35 23.57 28.43 33.52 27.52 32.23 36.52 

DMD 18.67 19.64 20.96 21.42 22.67 23.46 24.65 26.39 27.00 27.59 28.74 29.60 

 

 

Testing images 

4-coeff. model 9-coeff. model 16-coeff. model 25-coeff. model 

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 

PTM 17.43 21.46 25.40 20.52 25.31 29.81 22.96 27.91 32.66 25.78 30.72 34.87 

HSH 17.50 21.44 25.60 21.18 25.82 29.36 23.21 28.14 32.95 26.47 31.26 35.06 

DMD 18.49 19.49 20.74 20.94 22.38 23.44 23.99 26.13 27.17 25.80 27.70 29.12 
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Table 2: SSIM between the relighted images and both the training and testing images. The highest values are shown in bold 

 

Training images 

4-coeff. model 9-coeff. model 16-coeff. model 25-coeff. model 

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 

PTM 0.65 0.83 0.88 0.69 0.85 0.93 0.74 0.90 0.95 0.82 0.94 0.97 

HSH 0.66 0.83 0.88 0.69 0.87 0.92 0.75 0.91 0.95 0.82 0.94 0.97 

DMD 0.69 0.82 0.83 0.68 0.85 0.90 0.78 0.93 0.93 0.84 0.95 0.95 

 

 

Testing images 

4-coeff. model 9-coeff. model 16-coeff. model 25-coeff. model 

Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 

PTM 0.66 0.83 0.88 0.70 0.86 0.93 0.75 0.90 0.94 0.81 0.93 0.95 

HSH 0.67 0.84 0.89 0.69 0.88 0.92 0.75 0.90 0.94 0.82 0.93 0.95 

DMD 0.69 0.82 0.84 0.69 0.85 0.90 0.78 0.92 0.92 0.82 0.93 0.94 

 

 

 
 
 
Figure 4. Relighted images using PTM, HSH, and DMD, with four different number of parameters, N. The captured image (leftmost) is from the testing set  
(Azimuth = -90°, Elevation = 50°) of sample 1, panchromatic band 
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Figure 5. Captured images of band 473nm for samples 7 (left), 8 (middle), and 9 (right) 

 

 

Figure 6. PSNR between the relighted images and original images, for different spectral bands and colors of the samples 

 

 
 
Figure 7. SSIM between the relighted images and original images, for different spectral bands and colors of the samples 
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The reconstruction of the surface normals using the three 
different approaches was evaluated in terms of the average angular 
error (in degrees) between the estimated and the surface normals 
reference. We do not have the ground-truth for the surface normals 
of each of the samples, so the reference used in the evaluation was 
a synthetic ideal sphere. There is a mismatch between the actual 
surface normals of the samples and the synthetic ones due to small 
translations and small size and shape variations in the samples, 
which invalidates the actual absolute numbers for the calculated 
angular error. However, we argue that the relative comparisons and 
trends observed in the calculated angular error are still valid, as after 
all, the mismatch between the real and the synthetic ground-truth is 
relatively very low.  

Figure 8 shows the average angular error using the three 
approaches (PST-, -max, -max2) for each of the three relighting 
models (PTM, HSH, and DMD), averaged over the spectral bands 
and number of model parameters, and calculated separately on the 
sets grouped according to their translucency (Set 1, Set 2, and Set 
3). As expected, the estimation of surface normals using PST 
approach is best for the opaquest Set 3, which is also the case for the 
other two approaches. Calculating the surface normals as the 
direction of maximum relighted luminance results in the largest 
errors for the majority of cases, even though there can be examples 
where it performs better than the PST approach. Calculating the 
surface normals as the direction that bisects the angle between the 
direction of maximum relighted luminance and the camera viewing 
direction seems to work best, especially for the PTM fits 
(PTMmax2). Regarding the number of model coefficients, using      
N = 9 leads to best estimation overall, while using large N can lead 
to larger errors. For the cases when N = 9, the surface normals 
estimation is with reversed trend between Set 1 and Set 2 – the 
estimation is slightly more accurate for Set 1. 

Figure 9 shows the average angular error calculated separately 
on the sets grouped according to their color (Set 4, Set 5, and Set 6). 
It can also be seen that the surface normals estimation using the 
assumption of maximum relighted luminance due to specular 
highlights is better, with PTMmax2 being better than the other two. 
The accuracy of estimation of the surface normals appears to be 
different among the spectral bands. The spectral bands that are 
darker and therefore with higher contrast of the specular highlights 
– e.g. the low spectral bands of the amber set and the mid-to-high 
spectral bands of the blue set, lead to more accurate calculation of 
the surface normals. 

Figure 10 shows an example of the estimated surface normals 
of the three blue samples (Set 6) from the panchromatic channel and 
with N = 9 coefficients in the relighting models. It shows what can 
be observed in general that PTMmax, HSHmax, and DMDmax 

make larger errors in estimating the elevation component of the 
surface normals. It can also be seen that the estimation of the surface 
normals that are closer to horizontal orientations (near the edges of 
the captured spheres) is with quite larger errors. This is due to the 
maximum relighted luminance occurring not because of specular 
highlights at the incident point but because of the highlights due to 
the scattering at the exiting point – this can be observed in Figure 4 
and Figure 5. The lower ability of PTM to relight highlights can be 
the reason behind the better performance for reconstructing the 
surface normals using PTMmax2. As the performance of the surface 
normals estimation is specific to the size and the shape of the 
samples used, the better performance of PTMmax2 may not occur 
in general. 

Conclusions   
In this paper, we used a multispectral RTI capture set of objects 

with different translucency and color to evaluate three different 
reflectance bases that are used for modeling the angular reflectance 
field: PTM, HSH, and DMD. The evaluation was done on equal 
terms - for the same number of basis functions i.e. for the same 
number of fitted model parameters. The conclusion points of this 
work can be summarized into the following: 1) The commonly used 
angular reflectance bases can also be used to model the appearance 
of, and relight, translucent objects. The number of basis functions 
used may need to be higher for more transparent objects whose 
appearance under directionally varying illumination is more 
complex; 2) The DMD model showed marginally better relighting 
for the most transparent samples both in terms of PSNR and SSIM. 
For the opaquer samples, HSH and PTM seem to be better than 
DMD, especially in terms of PSNR; 3) Regarding the impact from 
the spectral bands, we observed that in SSIM terms, the relighting is 
more accurate for spectral bands where the object is more reflective 
and therefore, the captured image is brighter and with more details; 
4) The estimation of surface normals using Lambertian-like 
assumptions degrades as the object becomes more transparent. 
Assuming that the maximum relighted luminance is due to specular 
highlights can lead to more accurate estimation of the surface 
normals; 5) There is a small difference in accuracy of the estimated 
surface normals between different spectral bands – spectral bands 
where the object is more absorptive (but specular highlights are still 
present) lead to more accurate estimation of the surface normals. 

These conclusion points are limited to our choice of samples in 
this study – e.g. in terms of shape, size, color, or glossiness. While 
they might be within the reasonable expectations, they should be 
confirmed in a future and broader study. 

 

 

 

Figure 8. Average angular error (°) in the surface normals estimation for the different approaches, and according to the sample sets with different translucency 
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Figure 9. Average angular error (°) in the surface normals estimation for the different approaches, for different spectral bands and color of the samples 

 

 

Figure 10. Estimated surface normals using the different approaches for the three blue samples. The synthetic ground-truth is shown leftmost 
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