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Preface

Scope

Track and vertex reconstruction is an important part of the data analysis chain in
experiments at particle accelerators. This includes fixed-target experiments, experi-
ments at lepton and hadron colliders, and neutrino experiments where the detector
is the target. This book deals almost exclusively with the reconstruction of charged
particles and their production vertices in tracking detectors. The reconstruction
of neutral particles in calorimeters and particle identification are subjects that are
outside the scope of the present book; excellent treatments of these topics can be
found elsewhere.

The methods presented here are also largely agnostic to the detector technology
that produces the observations that are the input to the algorithmic chain of track
finding → track fitting → vertex finding → vertex fitting. The problems that arise
in producing hit positions with well-calibrated standard errors in the various types of
tracking detectors are therefore described only very briefly; otherwise, it is simply
assumed that such positions with correct standard errors are available. Nevertheless,
an important part of the book deals with methods not sensitive to deviations from
this ideal case.

Although track and vertex reconstruction can be formulated largely in geometri-
cal terms, a statistically sound treatment of the stochastic processes that disturb the
trajectories of charged particles by interactions with the detector material is manda-
tory. The modeling of these processes and their incorporation into the reconstruction
algorithms is therefore a significant topic that is treated in considerable detail.

The examples in the last part of the book come from the four LHC experiments,
complemented by two experiments at SuperKEKB and FAIR. Nonetheless, it was
our aim to present the algorithmic solutions in as general a context as possible.
Inevitably, some selection of the material in the extensive literature was necessary,
driven by the available space and potentially somewhat influenced by our own
experiences and predilections. Still, we aspired to describe in sufficient detail as
many important contributions as possible; wherever this was not feasible, there are
pointers to the relevant publications.

vii
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Content

The first part of the book is conceived as an introduction. Chapter 1 gives a very brief
outline of tracking detectors, their basic principles of operation, and the challenges
they pose for calibration and alignment. Chapter 2 shows how track and vertex
reconstruction are embedded in the entire event reconstruction chain, from the
trigger to the physics object reconstruction, and how important they are for the final
physics analysis. Chapter 3 introduces basic notions from applied mathematics and
statistics relevant for the core topics of the book: function minimization, regression
and state space models, and clustering.

Part II covers the first core topic, track reconstruction. Chapter 4 describes track
models, starting with the equations of motion of charged particles, followed by
describing different ways of parametrizing the state of a particle and exhibiting
algorithms for track and error propagation in various types of magnetic fields.
It concludes with modeling of material effects and their inclusion in the track
reconstruction. Chapter 5 is dedicated to track finding. As there is no systematic
theory of track finding yet, we describe a variety of algorithms that have been and are
presently successfully deployed in many experiments, including fast track finding
in real time at the trigger level. Chapter 6 presents established methods for the
estimation of track parameters, both traditional least-squares estimators and more
recent robust and adaptive estimators. The special cases of circle and helix fitting
are given a separate section as is the assessment of track quality. The detection of
outliers and the finding of kinks in tracks concludes the chapter and Part II.

Part III is dedicated to the second core topic, vertex reconstruction. Chapter 7
first introduces the distinction between primary and secondary vertices, then goes
on to discuss search strategies for finding primary vertices, both in one dimension
and in 3D space. Various clustering algorithms are presented. Chapter 8 showcases
methods for vertex fitting, which are very similar to the ones used for track fitting on
a mathematical level. The concluding section shows how to extend the vertex fit to
a kinematic fit by imposing additional geometric constraints and conservation laws.
Part III concludes with Chap. 9, which deals with the reconstruction of secondary
vertices. As the methodology of the search for secondary vertices is strongly
influenced by the location of the vertex and the properties of the emerging particles,
the four most important types are treated in four separate sections.

Part IV of the book presents case studies of approaches to tracking and vertexing
from current and future experiments. Given our background in two of the LHC
experiments and the enormous challenges in all of the LHC experiments, it is maybe
not surprising that the four of them are our prime examples. They are complemented
by two experiments not at the LHC, Belle II, and CBM. They have to solve their own
specific tracking and vertexing problems, somewhat different from the ones typical
for the LHC, but not less difficult all the same. We have to warn the reader, however,
that at least some of these examples come with an expiration date as it were. In 2019,
the LHC experiments have already started preparations for Run 3 of the LHC, which
is scheduled to start in 2021, and for the high-luminosity phase of the LHC or HL-
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LHC, planned for operation starting in 2026. It is to be expected that the conditions
at the HL-LHC require substantial changes in the reconstruction algorithms of
ATLAS and CMS, especially in the track finding part. Belle II has started operation
recently and will certainly adapt and optimize its current algorithms with the rise
of the luminosity of the SuperKEKB B factory. CBM was still in the preparation
phase in 2019, and although it has found very convincing solutions to its tracking
and vertexing challenges, it too will profit from experience and probably modify its
approach if need arises. The reader should therefore keep in mind that the examples
in Part IV are based on the published material at the time of writing, and that many
exciting developments are yet to come or have already found their way into the track
and vertex reconstruction software.

The appendices following Part IV contain supplementary material. Appendix A
lists the Jacobian matrices of the parameter transformations treated in Chap. 4;
Appendix B shows the regularization of the kinematic fit for singular covariance
matrices; and Appendix C contains a list of software packages for track and vertex
fitting, as well as entire frameworks with existing, but easily replaceable, modules
for track and vertex reconstruction. These frameworks can serve as convenient
testbeds for new ideas and algorithms, addressing users and developers alike.

Audience

The book is intended for a wide audience: PhD students who want to gain better
understanding of the inner workings of track and vertex reconstruction; PhD
students and postdocs who want to enrich their experience by participating in
projects that require knowledge of the topic; and researchers of all ages who want
to contribute to the progress of the field by becoming algorithm and software
developers. In all cases, the reader is expected to have some basic knowledge of
linear algebra and statistics.
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A Note on the References

WWW addresses (URLs) are given for web resources, technical reports, articles in
arXiv and open access journals, and material that is hard to find otherwise.

Typesetting and Notation

Vectors are typeset in small bold italic letters, for example, a. Unless specified
otherwise, all vectors are column vectors. The length of vector a is denoted by
dim(a), its transpose by aT, its norm by |a |. The scalar product of two vectors a and
b is denoted by a ·b, and their cross product by a×b. Matrices are typeset in capital
bold italic letters, for example, A. The rank of matrix A is denoted by rank(A),
its diagonal by diag(A), its inverse by A−1, and its transpose by AT. The block-
diagonal matrix with blocks A1, . . . ,An is denoted by A = blkdiag(A1, . . . ,An).
The gradient of a multivariate function F(x) is a row vector and denoted by ∇F ;
the Hessian matrix is denoted by ∇2F . The expectation of a random variable z is
denoted by E [z] and its variance by var [z]. The expectation of a random vector
ε is denoted by E [ε] and its covariance matrix by Var [ε]. The cross-covariance
matrix of two random vectors ε and δ is denoted by Cov [ε, δ]. As usual, δij is the
Kronecker delta.
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Chapter 1
Tracking Detectors

Abstract The chapter gives an overview of particle detectors, with the emphasis
on tracking detectors. The working principles and the calibration of gaseous,
semiconductor, and fiber detectors are explained, followed by a brief review of
detector alignment. As an illustration, the tracking systems of the four experiments
at the LHC and two non-LHC experiments, Belle II and CBM, are presented.

1.1 Introduction

Many high-energy physics experiments are performed by colliding two beams of
high energy particles or one beam with a target. The particles produced in a collision
are recorded by particle detectors. The collision is then studied by reconstructing
most of the particles produced in the interaction and determining their properties.
For a general review of particle detectors, see for instance [1, Chap. 7] and [2].

The present book concentrates on the reconstruction of charged tracks and
interaction vertices using information collected by tracking detectors. A tracking
detector can be a single device such as a wire chamber or a silicon strip sensor, or
a full-blown tracking system such as a time projection chamber capable of stand-
alone track reconstruction; see Sect. 1.6. For a review of non-tracking detectors, the
reader is referred to [1, 3].

A charged particle crossing a tracking detector generates a single or a string of
spatial observations in the local coordinate system of the detector. For track recon-
struction, these have to be transformed to points in 3D space usually with different
precisions in the three coordinates. Accordingly, the correct transformations are
determined by the alignment procedure; see Sect. 1.5. The resulting space points or
“hits” are collected into track candidates by the track finding. In the subsequent track
fit, the track parameters are estimated and the track hypothesis is tested. Successfully
reconstructed tracks are then clustered into production or decay vertices, followed
by a vertex fit and a test of the vertex hypothesis.
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4 1 Tracking Detectors

There are three principal types of tracking detectors: gas-filled or gaseous
tracking detectors; solid state tracking detectors, usually equipped with silicon
sensors; and scintillating fiber trackers. They are described in the following three
sections.

1.2 Gaseous Tracking Detectors

Gaseous tracking detectors utilize the ionizing effect of charged particles in a
volume of gas. The simplest gaseous detector is the Geiger-Müller counter, a tube
with a central wire. A potential difference of 1–3 kV between the tube wall and the
wire causes the primary electrons and ions to move towards the anode (wire) and
the cathode (tube wall), respectively. Because of the large field strength close to the
wire, the primary electrons generate an avalanche of secondary electrons and ions,
resulting in a detectable signal fed into an amplifier.

In order to use this principle for the measurement of the position of a charged
particle, a structured array of many elements has to be designed. The following
subsections describe a few common types of such arrays.

1.2.1 Multi-wire Proportional Chamber

The multi-wire proportional chamber (MWPC, [1, Sect. 7.1]) is a thin cuboid
volume of gas, oriented approximately perpendicular to the passage of the particles
to be measured. The volume is bounded by a pair of conductive plates acting as the
cathode. Inside the volume an array of anode wires detects the passage of charged
particles, see Fig. 1.1. With a typical wire spacing of 1 mm a spatial resolution
of around 0.3 mm can be achieved in the v-coordinate orthogonal to the wires. A
further improvement can be obtained by tilting the MWPC so that the probability of
a particle giving signals on two adjacent wires gets larger or by rotating the chamber
and measuring the drift times to the anode wires and estimating the point of passage
from the drift distances [4, 5]. The resolution in the w-coordinate along the wire is
poor, equal to the wire length divided by

√
12 ≈ 3.46.

1.2.2 Planar Drift Chamber

A planar drift chamber is similar in shape to an MWPC (see Fig. 1.1), but the
electrical field is shaped by an alternating array of sense (anode) and field (cathode)
wires; see [1, Sect. 7.2] and [6]. The electrons and ions from the primary ionization
drift to the respective electrodes, and gas amplification in the strong field close to
the sense wires gives a detectable signal that is amplified. In addition, the drift time
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wires or strips

Fig. 1.1 Local coordinate system in a wire chamber, in a planar drift chamber, or in a silicon strip
sensor

between the crossing time of the particle and the signal time on the sense wire is
measured. The drift distance can then be computed from the drift time. Given a
precise calibration of the drift distance, a spatial resolution below 0.1 mm in the
coordinate v orthogonal to the wire can be achieved; see for instance [7].

Drift chambers need far fewer electronic channels than MWPCs, but have to be
monitored and calibrated much more carefully. In addition, there is an inherent left-
right ambiguity of the spatial position relative to the sense wire, so that each hit has a
mirror hit. This ambiguity must be resolved in the track finding or track fitting stage.
The spatial position w along the wire can be measured by comparing the charges
at both ends of the wire. A resolution of a couple of millimeters can be achieved in
this way [8].

1.2.3 Cylindrical Drift Chamber

Cylindrical drift chambers [1, Sects. 7.2 and 7.3] have been and still are widely
used in collider experiments. Such a chamber consists of up to 60 cylindrical
layers of alternating field and sense wires mostly parallel to the beams of the
collider; see Fig. 1.2. In the local coordinate system of the chamber, the z-axis is the
symmetry axis of the chamber. The measured point in the transverse plane can be
given in polar coordinates (Rm,Φm,zm), where Rm is the radial position of the sense
wire, and Φm is the polar angle of the wire plus/minus the drift angle Φd , i.e., the
drift distance d divided by Rm. The resolution of the drift distance is typically in
the order of 0.1–0.2 mm; see for instance [9, 10]. Like in a planar drift chamber,
each hit has a mirror hit, and the ambiguity must be resolved in the track finding
or track fitting stage. The z-coordinate can be measured by charge division or by
adding “stereo” layers of wires tilted with respect to the “axial” layers. The resulting
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Fig. 1.2 Local coordinate
system in a cylindrical drift
chamber. Only one layer of
sense wires is shown. Rm is
the radial distance of the
sense wire from the z axis;
Φw is the azimuth angle of
the sense wire. d is the drift
distance; Φd = d/Rm is the
angle spanned by d at radius
Rm. The azimuth angles of
the track hit and its mirror hit
are Φm,1 = Φw − Φd,

Φm,2 = Φw + Φd . The
z-coordinate may or may not
be measured directly

spatial resolution of zm is equal to the drift distance resolution divided by the sine
of the stereo angle, typically 2–3 mm.

1.2.4 Drift Tubes

Drift tubes are small drift chambers with a single sense wire. They can have
rectangular or circular cross sections, and can be arranged in cylindrical or planar
layers. In planar layers, wires can run in two or more directions, giving good spatial
resolution in two orthogonal directions. The resolution of the drift distance is in the
order of 0.1–0.2 mm.

1.2.5 Time Projection Chamber

The typical time projection chamber (TPC), as employed in many collider experi-
ments, is a large gas-filled volume shaped as a hollow cylinder, the axis of which is
aligned with the beams and the magnetic field [1, Sects. 7.3.3], see Fig. 1.3. There
is a potential difference between the central cathode plane and the two anode end
plates. The latter are equipped with position sensors. A charged particle traversing
the chamber ionizes the gas, and the electrons travel along the field lines towards
the end plates, where both the point and the time of arrival are measured and
recorded. A track therefore generates a dense string of space points. The position
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Fig. 1.3 Local coordinate
system in a time projection
chamber. The position in the
endplate can be given in polar
coordinates (Rm, Φm) or in
Cartesian coordinates (xm,

ym). zm is the drift distance

Endplate

primary ionization
cluster on endplate
drift distance

sensors at the end plates can be wire chambers or micro-pattern gas detectors. In the
drift direction z a spatial resolution in the order of 1 mm is possible; the transverse
resolution depends on the technology of the endplate sensors and increases with the
drift distance because of diffusion. Resolutions well below 0.1 mm can be achieved
with GEM chambers on the end plates. Another important calibration issue is the
correction of distortions arising from space charge effects, see for instance [11].

1.2.6 Micro-pattern Gas Detectors

The earliest micro-pattern gas detector is the micro-strip gas detector, in which wires
are replaced by microscopic metal strip structures deposited on high-resistivity
substrates [1, Sect. 7.4]. With typical strip distances of 75 µm, a spatial resolution
below 20 µm can be achieved. Other developments are the Gas Electron Multiplier
(GEM) and Micro-Mesh Gaseous Structure (Micromegas) chambers. Resolutions
down to 10 µm can be attained by these devices. Due to their small size and fast
collection of positive ions, they can be operated at high rates up to several MHz per
mm2.

1.3 Semiconductor Tracking Detectors

Semiconductor tracking detectors [1, Sect. 7.5] are mostly made of thin silicon
wafers, approximately 0.3 mm thick. The n-type silicon is processed by photo-
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lithographic methods to create p+-doped implants on one side, either thin strips
(see Sect. 1.3.1) or small pixels (see Sect. 1.3.2). Each strip or pixel is connected
to a read-out channel. The silicon bulk is fully depleted by a bias voltage. A
charged particle crossing the wafer creates electron-hole pairs along its path. The
electrons and the holes drift towards the electrodes and induce signals on the read-
out electrodes. Silicon drift detectors employ the measurement of the electron drift
time for measuring the position of a crossing particle; see Sect. 1.3.3.

1.3.1 Silicon Strip Sensors

Large-area semiconductor tracking systems employ silicon strip sensors to keep
construction costs affordable. The implants in the silicon wafers are narrow strips
with a typical width of 20 µm and a typical inter-strip distance of 100 µm. The local
coordinate system is shown in Fig. 1.1. The spatial resolution in v, orthogonal to the
strip direction, depends on the track direction via the cluster size, i.e., the number of
adjacent strips with a signal above threshold, and on the Lorentz angle [12]. Under
optimal conditions the resolution is in the order of 10 µm or better. The resolution
in w, parallel to the strip direction, is equal to the strip length divided by

√
12. A

typical strip length is 5 cm; shorter strips with a length below a centimeter are called
mini-strips. For an example of the calibration procedure, see [13].

Two-dimensional (2D) measurements can be achieved by implanting strips on
the back side of the wafer, either orthogonal to the ones on the front side, or at
a different stereo angle. Alternatively, two one-sided sensors can be glued on the
same mechanical support, separated by a small gap. If such a sensor happens to be
crossed by n particles at the same time, up to n strips on each side can give a signal,
resulting in up to n2 points of intersection. At most n of these correspond to the true
particle positions; the remaining ones are spurious or ghost hits.

1.3.2 Hybrid Pixel Sensors

In a pixel sensor, the implants are small square or rectangular pixels in a high-
resistivity silicon wafer. The pixels are connected to the read-out channel by bump
bonding. Depending on the pixel size and the track direction, pixel sensors can have
a position resolution below 10 µm in both coordinates, especially if the signal height
is measured and used to interpolate between pixels in a cluster. For an interesting
example of the calibration procedure, see [14]. Here, the position is estimated
from precomputed cluster templates, considering the incident angle and the Lorentz
angle. The templates can also be used to decide whether an observed cluster is
compatible with a predicted incident angle.

Pixel sensors are mostly employed in the region close to the interaction point,
as they can deal with the high track density and the high background radiation
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Ionizing particleRectifying electrodes

Anodes

Fig. 1.4 Three-dimensional sketch of a multi-anode silicon drift detector. The trajectories of
several signal electrons are indicated. The distance between the point where the ionizing particle
crosses the middle plane of the detector and the array of anodes is obtained from measurement of
electrons drift time. The second coordinate is given by the location of the anode pad where the
signal electrons are collected. An improvement of resolution along this coordinate comes from
charge sharing among several anodes. (From [16], by permission of Elsevier)

better than strip detectors. In addition, their excellent spatial resolution allows the
separation of secondary decay vertices very close to the primary interaction vertex;
see Chap. 9.

In monolithic pixel sensors, the sensitive volume and part of or the full read-out
circuits are combined in one piece of silicon. The generated charge is collected on
a dedicated collection electrode so that there is no need for delicate and expensive
bump bonding. For an application of monolithic pixel sensors in a vertex detector,
see Sect. 1.6.1.1.

1.3.3 Silicon Drift Sensors

In a silicon drift sensor, electrons are transported parallel to the surfaces of the
sensor to an anode segmented into small pads [15, 16]. The position information
along the drift direction is obtained from a measurement of the drift time of the
electrons. The position in the second coordinate is obtained from charge sharing
between adjacent pads; see Fig. 1.4. Silicon drift sensors have been deployed in
STAR and ALICE, see [16, 17].

1.4 Scintillating Fiber Trackers

Scintillating fiber trackers combine the speed and efficiency of plastic scintillators
with the geometric flexibility and hermeticity provided by fiber technology [18].
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The fibers in such a tracking detector serve two functions: they convert the ionisation
energy deposited by a passing charged particle into optical photons, and guide the
optical signal to the devices that detect the generated light. In recent applications,
these devices are silicon photomultipliers, which are fast, compact and sensitive to
single photons [19].

The spatial resolution of a fiber is approximately equal to the diameter divided by√
12, while the number of photons scales linearly with the diameter. The conflicting

requirements on accuracy and light yield can be alleviated by staggering the fibers
and by choosing a material with high intrinsic scintillation yield and long attenuation
length. For an example of a large-scale scintillating fiber tracker designed for
operation in the LHCb experiment from Run 3 of the LHC onward, see [20].

1.5 Alignment

The position measurements in the tracking detectors mentioned above are generated
in the local coordinate system of the devices. In order to be useful for track
reconstruction, they have to be converted to positions in the global coordinate
system of the experiment along with the associated covariance matrices. As tracking
detectors are very precise instruments, with position resolutions ranging from a
couple of hundred micrometers down to about ten micrometers, their positions,
orientations, and possible deformations have to be known with a similar or better
precision. The importance of correct alignment, especially in the complex detectors
of the LHC era, is attested by a series of workshops held at CERN in the past [21–
23].

Misalignment or insufficient alignment has a deleterious effect on the efficiency
of track and vertex reconstruction [21, p. 105]. Random misalignment also degrades
the resolution of track and vertex parameters and subsequently of invariant masses.
Moreover, systematic misalignment of larger substructures can cause a bias in the
estimates of track momenta and vertex positions. This can be harmful in many of
the physics analyses of the experiment.

Misalignment can have several sources: finite precision of the detector assembly,
thermal and magnetic stresses on mechanical structures, sagging of wires or sensors
because of gravity, changes in temperature and humidity, etc. Since misalignment
can and does vary over time, constant monitoring is a necessity.

Alignment proceeds through several steps. The starting point is the ideal
geometry, augmented by knowledge of the machining and assembly precision. The
next step is alignment by hardware using lasers for measuring distances or proximity
and tilt sensors. For instance, the ATLAS silicon tracker can be monitored optically
by Frequency Scanning Interferometry to a precision of about 10 µm [24].

The final step is track-based alignment, either with tracks from cosmic muons,
or from collisions, or both. Actually alignment profits from different types of tracks
that cross different parts of the detector under different angles. For instance, tracks
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from collisions hardly ever cross the entire central tracker of a collider experiment,
but cosmic tracks do.

Track-based alignment can be split into internal alignment and external align-
ment. Internal alignment refers to the relative alignment of a tracking system,
whereas external alignment refers to the alignment of the various tracking systems
to the global frame of the experiment, which is usually tied to the beam pipe or
some other part of the accelerator infrastructure. Even the internal alignment of a
tracking system can be a big challenge. For instance, the current silicon tracker of
the CMS detector has more than 104 sensors to be aligned, each with six degrees
of freedom, not counting deformations of the sensors under gravity or thermal
stresses. The estimation of O(105) parameters is a highly non-trivial problem. A
solution that has become a de-facto standard is the experiment-independent program
MillepedeII [25, 26], which performs a simultaneous fit of (global) alignment
parameters and (local) track parameters, allowing to include laser and survey data as
well as equality constraints in the fit. For one of the alternative algorithms developed
for track-based alignment, see [27].

1.6 Tracking Systems

Track reconstruction requires a minimal number of space points per track. A
tracking system is a device that has enough information for stand-alone track recon-
struction. A typical collider experiment has three tracking systems for momentum
measurement: the vertex detector, the central tracker, and the muon tracking system.
Fixed-target experiments frequently have vertex detectors as well, complemented by
a magnetic spectrometer for momentum measurement.

The vertex detector is the tracking system closest to the beam, with the purpose
to give very precise position and direction information of the tracks produced in a
collision, so that decays very close to the interaction point can be detected with large
efficiency; see Chap. 9. It therefore has the largest precision (smallest measurement
errors) of all tracking systems. Vertex detectors are usually equipped with pixel
sensors in order to achieve the required precision.

The central or inner tracker of a collider experiment is positioned between
the vertex detector and the calorimeters. It is normally embedded in a solenoidal
magnetic field with high bending power. A silicon tracker typically produces O(10)

hits per track, while a TPC produces O(100) hits per track. The main requirements,
not always easily satisfied, on the central tracker are: high single-hit precision;
good capability to resolve two nearby tracks; precise momentum estimation by a
long lever arm (large diameter); enough redundancy for high-quality track finding;
hermetic coverage; as little material as possible. In some cases, especially at the
future high-luminosity LHC (HL-LHC), fast readout is also essential, as trackers
must be able to contribute to the trigger.

The muon system is situated behind the calorimeters which, in principle, absorb
all particles with the exception of muons. Additional iron filters can be employed
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as well. The muon system can provide an independent measurement of the muon
momentum, especially for the purpose of triggering; see Sect. 2.1. If the muon
system has to cover a large area, as is the case in the LHC experiments, it is typically
equipped with proportional chambers, drift chambers or drift tubes.

The following subsections briefly describe the tracking systems of experiments
at the LHC, the SuperKEKB B-factory, and the future Facility for Antiproton and
Ion Research (FAIR).

1.6.1 Detectors at the LHC

1.6.1.1 ALICE

ALICE is a dedicated heavy-ion experiment at the LHC [28]. Its detector is designed
to study the physics of strongly interacting matter at extreme energy densities.

Until the end of 2018, the Inner Tracking System (ITS, see Fig. 1.5) of the
ALICE detector consisted of two barrel pixel layers [29], two layers of silicon
drift detectors [17], and two layers of double-sided silicon strip detectors. After the
upgrade in 2019–2020, the ITS consists of seven layers equipped with monolithic
pixel chips [30].

Fig. 1.5 Cut-away view of the ALICE detector. (From https://arxiv.org/abs/1812.08036. ©2015
CERN for the benefit of the ALICE Collaboration. Reproduced under License CC-BY-4.0)

https://arxiv.org/abs/1812.08036
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The main tracking device of ALICE is a TPC [31, 32]. It provides up to 159 space
points per track. The measurement of the energy deposit due to ionization provides
a powerful tool for particle identification, especially for low-momentum particles,
see [33]. For track reconstruction in the TPC and global track reconstruction,
see Sect. 10.1. The TPC is surrounded by a transition radiation detector (TRD) used
for triggering and electron identification.

The ALICE muon spectrometer covers only the forward region of the experiment
and is dedicated to the study of quarkonia production, open heavy flavor production
and vector meson properties via the muonic decay channel [34].

1.6.1.2 ATLAS

ATLAS [35] is one of the two general-purpose experiments at the LHC, the other
one being CMS. Its vertex detector (see Fig. 1.6) originally consisted of three barrel
pixel layers and three end-cap pixel disks on either side [36]. In 2014, a fourth pixel
layer was inserted in the barrel between the existing pixel detectors and a new beam
pipe with smaller radius [37].

The central tracker of ATLAS [36] consists of two parts: the silicon tracker (SCT)
with four barrel layers and nine end-cap disks on either side, and the Transition
Radiation Tracker (TRT) made of “straw tubes” which are proportional counters
that contribute to particle identification via transition radiation; see Sect. 2.4.1.
A charged particle hits at least 30 straw tubes on the way through the TRT;
see Sect. 10.2.

The ATLAS muon spectrometer [35, Chap. 6] consists of a barrel part and two
end-caps. The barrel spectrometer contains three concentric layers, each with eight
large and eight small chambers of drift tubes. Each end-cap has four disks of drift
tube chambers and cathode strip chambers. Resistive plate chambers on the barrel
and thin gap chambers in the end-caps are used for trigger purposes.

1.6.1.3 CMS

CMS [38] is, besides ATLAS, the second general-purpose experiment at the LHC.
Its vertex detector originally consisted of three barrel pixel layers and two end-cap
pixel disks on either side [39]. In the winter of 2016/2017, this device was upgraded
with a fourth barrel layer and a third end-cap disk on either side, giving at least four
hits per track over the full solid angle covered by the detector [40].

The silicon strip tracker (SST) of CMS is the largest silicon tracker ever built. It is
divided into four sections: the inner barrel (TIB), the outer barrel (TOB) and the two
end-caps (TEC). Depending on its angle with respect to the beam axis, a charged
particle crosses between eight and 14 sensors, out of which four to six are double-
sided ones [41]. Track reconstruction in the SST is done mostly in conjunction with
the Pixel Detector; see Sect. 10.3.
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Fig. 1.6 Top: Cut-away view of the ATLAS detector. (From [35], reproduced under License CC-
BY-3.0). Bottom: The central tracker. (From https://collaborationatlasfrance.web.cern.ch/content/
tracker)

The CMS muon system [42] consists of four layers of muon stations inserted in
the iron return yoke of the solenoid; see Fig. 1.7. The stations in the barrel region
are equipped with drift tubes, and those in the end-caps are equipped with cathode
strip chambers. In addition, resistive plate chambers are mounted in both the barrel
and end-caps of CMS; they are used mainly for triggering.

https://collaborationatlasfrance.web.cern.ch/content/tracker
https://collaborationatlasfrance.web.cern.ch/content/tracker
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Fig. 1.7 Top: Schematic diagram of a sector of the barrel part of the CMS detector. (From [43],
reproduced under License CC-BY-4.0). Bottom: Schematic view of the vertex detector and the
silicon strip tracker. (Courtesy of W. Adam)

Figure 1.7 shows a schematic diagram of a sector of the barrel part of the CMS
detector.

1.6.1.4 LHCb

LHCb [44] is the experiment at the LHC that is dedicated to precision measurements
of CP violation and rare decays of B hadrons. Instead of surrounding the entire
collision point with an enclosed detector as ATLAS and CMS, the LHCb experiment
is designed to detect mainly particles in the forward direction.
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Fig. 1.8 Top: View of the LHCb detector. (From [44], reproduced under License CC-BY-3.0).
Bottom: Sensor of the Vertex Locator (VELO)

The core of the LHCb [44] tracking system (see Fig. 1.8) is a silicon microstrip
detector close to the interaction point, the Vertex Locator (VELO). It can be moved
to a distance of only 7 mm from the proton beams and measures the position of
the primary vertices and the impact parameters of the track with extremely high
precision.

Up to end of 2018, the tracking downstream of the VELO was accomplished
by the TT and the T stations. The Tracker Turicensis (TT) is a silicon microstrip
detector placed upstream of the dipole magnet, which improves the momentum
resolution of reconstructed tracks and reject pairs of tracks that in reality belong
to the same particle. The magnet is placed behind the TT. It bends the flight path
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of the particles in the x-z plane and therefore allows the determination of their
momenta. The tracking system is completed by the T stations (T1-T2-T3), which,
together with the information from the VELO and optionally the TT, determine the
momentum and flight direction of the particles. The T stations are composed of
silicon microstrip sensors close to the beam pipe and by straw tubes in the outer
regions. For track reconstruction in LHCb, see Sect. 10.4.

After the upgrade of LHCb during 2019–2020 and starting with Run 3 of the
LHC, the tracking downstream of the VELO is done by the SciFi, a homogeneous
tracking system in scintillating fiber technology; see [20] and Sect. 1.4.

The LHCb muon system [44, Sect. 6.3], consisting of the muon stations M1
to M5, provides fast information for the muon trigger at Level 0 and muon
identification for the high-level trigger and offline analysis. It comprises five stations
interleaved with absorbers. The stations are mostly equipped with multi-wire
proportional chambers, with the exception of the central part of the first chamber,
where GEM detectors are used because of the high particle rate.

1.6.2 Belle II and CBM

1.6.2.1 Belle II

Belle II [45] is an experiment at the SuperKEKB collider at KEK in Japan. Its
principal aim is the study of the properties of B mesons. The detector is shown
in Fig. 1.9. The vertex detector consists of two parts, the pixel detector (PXD) with
two layers of DEPFET pixels [46] and the Silicon Vertex Detector (SVD) with four
layers of double-sided silicon strip detectors [47].

The central tracking device of Belle II is the CDC, a cylindrical drift cham-
ber [48]. It has 56 layers of sense wires in nine superlayers, five with a total of
32 axial wire layers and four with 24 stereo wire layers. The stereo angle is between
2.6 and 4.2 degrees. For track reconstruction in Belle II, see Sect. 11.1.

The Belle II KLM system is designed to detect long-lived K-mesons and muons.
It consists of alternating layers of iron plates, serving as flux return, and active
detector elements. In the end-caps and the innermost two layers of the barrel, the
active elements are scintillator strips; the rest of the barrel layers are equipped with
resistive plate chambers, reused from Belle [49].

1.6.2.2 CBM

The Compressed Baryon Matter (CBM) experiment is a fixed target experiment [50]
(see Fig. 1.10) at the future FAIR facility for antiproton and ion research. It is
designed to investigate the properties of highly compressed baryon matter. Its
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Fig. 1.9 Top: View of the Belle II detector. Bottom: The pixel detector and the silicon vertex
detector

central tracking device is the Silicon Tracking System (STS [51]). It is designed
for high multiplicity, up to 1000 charged particles per interaction, at high rates, up
to 10 MHz, and consists of eight layers of double-sided silicon sensors between 30
and 100 cm downstream of the target, inside the magnetic field.

Each of the three Transition Radiation Detectors [52] is made of four MWPCs.
Their main task is electron identification. Track reconstruction in the STS and the
TRD is described in Sect. 11.2.
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Fig. 1.10 Top: Schematic geometry of the CBM detector. (From [53]). Bottom: Schematic
geometry of the silicon tracking system. (From [51])
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Chapter 2
Event Reconstruction

Abstract The chapter gives an outline of the event reconstruction chain of a
typical large experiment, from the trigger to the physics object reconstruction.
The concept of the trigger is illustrated by two examples, CMS and LHCb,
followed by a discussion of track reconstruction and its stages: hit generation,
local reconstruction, and global reconstruction. The section on vertex reconstruction
introduces a classification of vertices and sets the scene for the dedicated chapters
on vertex finding and vertex fitting. The chapter concludes with some remarks
on particle identification and reconstruction of physics objects such as electrons,
muons, photons, jets, τ leptons, and missing energy.

2.1 Trigger and Data Acquisition

2.1.1 General Remarks

In the latest and most powerful collider, the Large Hadron Collider (LHC), bunches
of protons collide with a nominal frequency of 40 MHz, i.e., every 25 ns. Due to
gaps in the beams, at most 2556 bunches are actually present [1]. As the bunch
revolution frequency equals 11,245 Hz, the average bunch crossing rate is about
28.7 MHz. The average number of individual proton collisions per bunch crossing,
called the pile-up, depends on the luminosity. In the CMS experiment, it varied
between about five and slightly more than 60 in 2018 [2], so that bunch crossings
without collisions are extremely unlikely in CMS and likewise in ATLAS. The
result of a bunch crossing with at least one collision is called an event. In CMS
and ATLAS, the event rate is virtually the same as the bunch crossing rate. In the
LHCb experiment, however, not all events are actually visible in the detector, so that
the effective event rate is lower than the bunch crossing rate; see Sect. 2.1.3.

The most frequent value of pile-up observed by CMS in 2018 was around 30,
corresponding to nearly 900 million individual collisions per second. Clearly, it
is neither possible nor desirable for the experiment to record all of the event data
produced during data taking. A selection mechanism is therefore required that tags
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the physically interesting events and activates the recording mechanism, called data
acquisition (DAQ). Such a selection mechanism is called a trigger.

Triggers have been deployed for many decades, ever since bubble chambers
were superseded by experiments with electronic tracking detectors and calorimeters.
Triggers are needed both in fixed target and in colliding beam experiments because
of limitations in data rates, storage capacity and computing resources. In order to
deal with the high event rates typical for electronic experiments, it is important to
minimize the dead time of the trigger, i.e., the time after an event during which
the system is not able to process another event. Triggers are therefore implemented
in several stages or levels, with increasing computational complexity and decision
time or latency. The principle and possible implementations are best demonstrated
on examples. In the following the trigger/DAQ systems of the CMS and the LHCb
experiments will be described in somewhat more detail.

2.1.2 The CMS Trigger System

CMS [3] is one of the two general purpose experiments at the LHC; see Sect. 1.6.1.3.
Its trigger has two levels, the Level-1 Trigger (L1, [4]) and the High-Level Trigger
(HLT, [5, 6]). During data taking virtually every bunch crossing results in at least one
collision of protons, and the average primary event rate equals the average bunch
crossing rate of 28.7 MHz. The trigger, however, must be able to process events
separated by only 25 ns.

The task of the L1 trigger is to reduce the primary event rate to less than 100 kHz.
This is achieved using high-speed customized hardware running up to 128 different
algorithms. Its inputs come from the calorimeters, the muon detectors, and the
beam monitors. Its latency is 3.2 µs, including data collection, decision making, and
propagation back to the detector front-ends. A block diagram of the L1 trigger is
shown in Fig. 2.1.

The input to the muon trigger (MT) comes from three different detector types.
The local MTs find track segments, the regional MTs find tracks, and the global
MT combines the information from all regional MTs, selects the best four muon
candidates, and provides their momenta and directions.

The calorimeter trigger (CT) uses information from the both the electromagnetic
and the hadronic calorimeter. The local CTs compute energy deposits, the regional
CTs find candidates for electrons, photons, jets, isolated hadrons, and compute
transverse energy sums. The transverse energy vector ET is defined as:

ET = E ·
(

cos φ cos λ

sin φ cos λ

)
, (2.1)

where φ is the azimuth angle and λ = π/2 − θ is the dip angle of the particle or
jet direction. The global CT sorts the candidates in all categories, computes total
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Fig. 2.1 Block diagram of the CMS L1 trigger. The details are explained in the text. (From [4], by
permission of Elsevier)

and missing transverse energy sums, and computes jet multiplicities for different
thresholds.

Finally, the global trigger makes the final decision which is passed on to the
detector front-end electronics and the DAQ.

The HLT is designed to reduce the L1 output rate of 100 kHz to the final recording
rate of O(100) Hz. It is implemented purely in software which runs on a farm of
commercial processors, using the full event data and performing the reconstruction
and selection of physics objects such as electrons, photons, muons, τ leptons,
hadronic jets, and missing energy; see Sect. 2.4.

2.1.3 The LHCb Trigger System

Although the intersection point of LHCb is tuned to lower luminosity than the one
of CMS and ATLAS, the number of produced bb̄ pairs is still of the order of 1011

per year. An efficient, robust and flexible trigger is required in order to cope with
the harsh hadronic environment. It must be sensitive to many different final states.

While the average bunch crossing rate is 28.7 MHz, the frequency of events
actually visible in the detector is about 13 MHz [7]. This must be reduced to about
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Fig. 2.2 Scheme of the
LHCb trigger system.
(From [8], reproduced under
License CC-BY-4.0)
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1 MHz, the frequency at which the detector can be read out. As in CMS, the trigger
is organized in two levels, Level-0 (L0) and HLT (see Fig. 2.2).

The L0 trigger is implemented in field-programmable gate arrays (FPGAs) with
a fixed latency of 4 µs [8]. It has two components: the calorimeter trigger, which
looks for particles (electrons, photons, neutral pions, hadrons) with large transverse
energies; and the muon trigger which uses the tracks reconstructed in the muon
chambers and selects the two muons with the highest transverse momentum for
each quadrant of the muon detector.

The HLT is implemented purely in software running on the nodes of the event
filter farm [8]. It is subdivided in two stages, HLT1 and HLT2; see Sect. 10.4. HLT1
does a partial event reconstruction. Its output, at a rate of about 100 kHz, is directed
to HLT2, which performs the full event reconstruction and writes the results to mass
storage. For more details on track and vertex reconstruction, see Sect. 10.4.

2.2 Track Reconstruction

Track reconstruction is a central task in the analysis of the event data. Its aim is to
provide estimates of the track parameters, i.e., the position, the direction, and the
momentum of charged particles at one or several specific points or surfaces. For an
excellent review of track reconstruction, see [9].

Only the tracks of stable or sufficiently long-lived charged particles—for instance
electrons, protons, muons and charged pions—are visible in the tracking detectors.
Short-lived particles, for instance B hadrons or J/ψ mesons, are reconstructed from
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their decay products. The reconstruction of charged particles can be divided into the
following steps:

A. Hit generation The recorded signals are converted to spatial coordinates, either
2D or 3D, using the detector-specific calibration constants. The coordinates will
be called “measurements”, “observations” or “hits” in the following. For some
examples, see Sects. 1.2 and 1.3.

B. Local track reconstruction First, tracks are reconstructed in each tracking
system. This can again be divided into two or three steps.

1. Track segment reconstruction. This step is relevant only for tracking systems that
are in turn composed of several independent devices capable of giving at least the
position and the direction of the particle and possibly the momentum. A typical
example is the barrel muon system of the CMS experiment which consists of
four muon stations, each with up to 12 layers of drift tubes. Although a muon
station is not considered a fully-fledged tracking system in the context of track
reconstruction, it provides enough hits to estimate the parameters of a straight
line track segment [10].

2. Track finding. In this step, hits or track segments are clustered to track candidates,
i.e., collections of hits, such that ideally all hits or segments in a collection are
produced by the same particle. Track finding can be done iteratively, especially
in the very-high multiplicity events recorded by the LHC experiments. In this
approach, “easy” tracks with high momentum and small material effects are
found first, while more difficult tracks are found in the subsequent passes
(see Sect. 10.3). Algorithms for track finding are discussed in detail in Chap. 5.
Specific solutions by experiments are discussed in Chaps. 10 and 11.

3. Track fitting. For each track candidate, the track model is fitted to the hits in order
to get the best estimates of the track parameters. This is the topic of Chap. 6. The
track fit also gives an indication of the quality of the fit, usually in the form of
a chi-square statistic χ2. An abnormally large value of the chi-square statistic
indicates either a random combination of hits, i.e., a “fake” or “ghost” track, or
the presence of outliers in the track candidate. Outliers can either be removed
from the track or down-weighted by employing a robust estimator; see Sects. 6.2
and 6.4.2.

C. Global track reconstruction After the local track reconstruction, the tracks
found in the individual tracking systems have to be combined to global track candi-
dates. To this end, the track candidates accepted by the track fit in the main tracking
system are extrapolated to the other tracking systems and checked for compatibility
with the tracks reconstructed there. As the estimated track parameters in different
tracking systems are stochastically independent, the test for compatibility is usually
based on the chi-square statistic of their weighted mean, but more sophisticated
machine learning methods can be applied as well [11]. The successful combination
of local tracks to a global candidate is normally followed by a track fit of the latter.

Some tracking systems do not have enough redundancy to allow stand-alone local
track reconstruction, for instance a pixel vertex detector with only two layers. In this
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case, the tracks found in the global track reconstruction are extrapolated and used to
find compatible hits, which are then attached to the track; see Sect. 5.1.7.

D. Assessment of track quality Not every track candidate generated by the track
finding is a valid track. Testing the track hypothesis and assessing the track quality
after the track fit is therefore mandatory. This is the topic of Sect. 6.4.

Given a careful calibration of the tracking devices (Sects. 1.2 and 1.3) the chi-
square statistic of the track fit is used to reject fake tracks (Sect. 6.4.1) and to
trigger the search for outliers (Sect. 6.4.2) or kinks (Sect. 6.4.3). Another important
ingredient to the assessment of track quality is the track length or the effective
number of hits attached to the track after removal or down-weighting of outliers;
see Sect. 6.4.1. Checking the compatibility with the collision or production region
can also be used to reject fake tracks.

If the track reconstruction proceeds iteratively, it is tempting to remove the hits
used in an iteration from the hit pool to simplify the task of the subsequent iterations.
It is, however, advisable to remove only those hits that are unambiguously attached
to tracks of the highest quality.

2.3 Vertex Reconstruction

A point where particles are produced in a collision or a decay is called a vertex.
The point of collision of two beam particles in a collider or of a beam particle
with a target particle in a fixed-target experiment is called the primary vertex. In
high-luminosity colliders, such as the LHC, many collisions occur in a single bunch
crossing; consequently, there are many primary vertices. It is, however, statistically
almost certain that at most one of the collisions generates a pattern recognized by the
trigger as being of potential physical interest. The vertex of this collision is called
the signal vertex.

Many of the particles produced at a primary vertex, including the signal vertex,
are unstable and decay at a secondary vertex. The aim of of vertex reconstruction is
to find sets of particles that have been produced at the same vertex, to estimate the
vertex position, test whether the assignment of the particles to the vertex is correct,
and improve the estimates of the track parameters by imposing the vertex constraint.
Vertex finding and vertex fitting are the topics of Chaps. 7 and 8, respectively. For
the various types of secondary vertices and how to find them, see Chap. 9. Examples
of experimental strategies are given in Chaps. 10 and 11.

2.4 Physics Objects Reconstruction

Both the trigger and the physics analysis require not just tracks, but objects that
represent physical entities such as electrons, photons, muons, τ leptons, jets,
missing energy, etc. Object identification can be obtained by two complementary
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approaches: dedicated detectors for particle identification (PID), and combining
information from different sub-detectors.

2.4.1 Particle ID by Dedicated Detectors

Charged particles can be identified by dedicated detectors in various ways [12].

Measurement of the velocity Given the momentum as determined by the tracking
system, the mass can be estimated. Velocity can be measured directly by time-of-
flight detectors [13], or indirectly by measuring the emission angle of Cherenkov
radiation in Cherenkov detectors [14] and time-of-propagation detectors [15].

Energy loss by ionization In a large range of velocity, the expected energy loss
by ionization is proportional to (m/p)2, where m is the unknown mass and p is the
momentum of the particle; see Sect. 4.5.2.1. In practice, the most probable energy
loss is estimated from a number of measurements. In a silicon tracker, energy loss is
measured in each sensor [16]; in a drift or time projection chamber, the energy loss
is measured for each wire hit or for each cluster in the endplates, respectively [17].

Transition radiation Transition radiation (TR) is electromagnetic radiation in the
X-ray band. It is emitted when an ultra-relativistic particle crosses the boundary
between two media with different dielectric constants. The radiator is combined
with a gaseous sensing device that measures the TR signal and the position of the
particle [13, 18].

2.4.2 Particle and Object ID by Tracking and Calorimetry

PID in dedicated detectors is complemented by combining information from the
tracking systems and the calorimeters.

Electrons Electrons and positrons are identified as such by the fact that they have
a reconstructed track and a cluster in the electromagnetic calorimeter that matches
the track in energy and position. For the special treatment of electrons in the track
fitting, see Sects. 6.2.3, 10.2 and 10.3.

Photons Clusters in the electromagnetic calorimeter that are not matched to a track
or a cluster in the hadronic calorimeters are candidates for photons.

Muons Global tracks with hits in both the central tracking system and the muon
tracking system are candidates for muons.

Jets Jets are narrow bundles of charged and neutral particles produced by the
hadronization of a quark or a gluon. Jet reconstruction algorithms are based on
clustering the charged tracks, but should also provide a good correspondence
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between the energy deposits in the calorimeters and the reconstructed tracks. This is
the aim of the particle flow method, which originated in the ALEPH experiment at
the LEP collider [19], and is now employed by LHC experiments as well [20, 21].
In this approach, the energy of a charged hadron is estimated by a weighted average
of the track momentum and the associated calorimeter energy. The energy of the
photons is measured by the electromagnetic calorimeter, and the energy of neutral
hadrons is measured by the hadronic calorimeter.

Tau leptons Tau leptons have to be reconstructed from their decay products
(Sect. 9.2). In two thirds of the cases, τ leptons decay into hadrons, typically into
one or three charged mesons (predominantly pions), often accompanied by neutral
pions decaying into photons and an invisible neutrino. Therefore, the particle flow
approach can be applied to τ leptons as well [22, 23].

Missing energy Missing transverse energy is a signature for invisible particles such
as neutrinos, dark matter, and neutral supersymmetric particles. In a typical collider
experiment, it is a global quantity computed from the transverse momentum/energy
components of all jets, electrons, photons, muons, and τ leptons in the event. In the
LHC experiments, it has to be corrected for contributions from the pile-up collisions
in the same bunch crossing; see for instance [24].
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Chapter 3
Statistics and Numerical Methods

Abstract The chapter gives an outline of some statistical and numerical methods
that will be applied in later chapters. The first section deals with the minimization of
functions. Several gradient-based methods and a popular non-gradient method are
discussed. The following section discusses statistical models and the estimation of
model parameters. The basics of linear and nonlinear regression models and state
space models are presented, including least-squares estimation and the (extended)
Kalman filter. The final section gives a brief overview of clustering and different
types of clustering algorithms.

3.1 Function Minimization

The minimization (or maximization) of a multivariate function F(x) is a frequent
task in solving non-linear systems of equations, clustering, maximum-likelihood
estimation, function and model fitting, supervised learning, and similar problems.
A basic classification of minimization methods distinguishes between methods that
require the computation of the gradient or even the Hessian matrix of the function
and gradient-free methods. All methods discussed in the following subsections
are iterative and require a suitable starting point x0. Implementations of the
methods discussed in the following, along with many others, can, for instance, be
found in the MATLAB® Optimization Toolbox™ [1] and in the Python package
scipy.optimize [2].

3.1.1 Newton–Raphson Method

If F(x) is at least twice continuously differentiable in its domain, it can be
approximated by its second order Taylor expansion F̂ at the starting point x0:
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F(x0 + h) ≈ F̂ (x) = F(x0) + g(x0)h + 1

2
hTH (x0)h, (3.1)

where g(x) = ∇F(x) is the gradient and H (x) = ∇2F(x) is the Hessian matrix of
F(x). The step h is determined such that F̂ has a stationary point at x1 = x0 + h,
i.e., that the gradient of F̂ is zero at x1:

∇F̂ (x1) = g(x0) + hTH (x0) = 0 �⇒ h = −[H (x0)]−1g(x0)
T. (3.2)

Note that if x is a column vector, g(x0) is a row vector. In order to ensure that the
Wolfe conditions [3] are satisfied, Eq. (3.2) is often relaxed to:

h = −η[H (x0)]−1g(x0)
T, (3.3)

with a learning rate η ∈ (0, 1). Inverting the Hessian matrix can be computationally
expensive; in this case, h can be computed by finding an approximate solution to
the linear system H (x0) · h = −g(x0)

T. This procedure is iterated to produce a
sequence of values according to:

xk+1 = xk − η[H (xk)]−1g(xk)
T. (3.4)

If the starting point x0 is sufficiently close to a local minimum, the sequence
converges quadratically to the local minimum. In practice, the iteration is stopped
as soon as the norm |g(xk)| of the gradient falls below some predefined bound ε. If
F is a convex function, the local minimum is also the global minimum.

3.1.2 Descent Methods

As the computation of the Hessian matrix is computationally costly, various
methods that do not require it have been devised, for instance, descent methods. A
descent method is an iterative algorithm that searches for an approximate minimum
of F by decreasing the value of F in every iteration. The iteration has the form
xk+1 = xk + ηk dk , where dk is the search direction and ηk is the step-size
parameter. As with the Newton–Raphson method, when a (local) minimum is
reached, it cannot be left anymore.

3.1.2.1 Line Search

A search direction d is called a descent direction at the point x ∈ R
n if g(x) ·d < 0.

If η is sufficiently small, then

F(x + η d) < F(x). (3.5)
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Once a search direction dk has been chosen at the point xk , line search implies that
the line x = xk + λ dk is followed to its closest local minimum. For various line
search methods such as fixed and variable step size, interpolation, golden section or
Fibonacci’s method, see [4, 5].

3.1.2.2 Steepest Descent

Steepest descent follows the opposite direction of the gradient. If it is combined
with line search, each search direction is orthogonal to the previous one, leading
to a zig-zag search path. This can be very inefficient in the vicinity of a minimum
where the Hessian matrix has a large condition number (ratio of the largest to the
smallest eigenvalue); see Fig. 3.1.

3.1.2.3 Quasi-Newton Methods

In the Newton-Raphson method, the search direction is d = −[H (xk)]−1g(xk)
T.

If H (xk) is positive definite, then d is a descent direction, and so is −Ag(xk)
T

for any positive definite matrix A. In a quasi-Newton method, A is constructed as
an approximation to the inverse Hessian matrix, using only gradient information.
The initial search direction is the negative gradient, d0 = −g(x0)

T, and the initial
matrix A0 is the identity matrix. Each iteration performs a line search along the
current search direction:

Fig. 3.1 Contour lines of the function F(x, y) = 2x2+16y2, and steepest descent with line search
starting at the point x0 = (3; 1)
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λk = argλ min
λ

(xk + λdk) , xk+1 = xk + λkdk. (3.6)

The new search direction is then computed according to:

dk+1 = −Ak+1g(xk+1)
T, (3.7)

where Ak+1 is the updated approximation to the inverse Hessian matrix. There are
two different algorithms for computing the update [6, p. 422], both using the change
of the gradient along the step, denoted by yk = [g(xk+1) − g(xk)]T.

Davidon–Fletcher–Powell algorithm

Ak+1 = Ak + λk

dkd
T
k

dT
k yk

− Akyky
T
k Ak

yT
k Akyk

. (3.8)

Broyden–Fletcher–Goldfarb–Shanno algorithm

Ak+1 = λk

dkd
T
k

dT
k yk

+
(

I − dky
T
k

dT
k yk

)
Ak

(
I − ykd

T
k

yT
k dk

)
. (3.9)

3.1.2.4 Conjugate Gradients

If the function F(x), x ∈ R
n is quadratic of the form F(x) = 1

2xTAx − bTx + c

with positive definite A, the global minimum can be found in exactly n steps, if line
search with a set of conjugate search directions is used. Such a set {d1, . . . , dn} is
characterized by the following conditions:

dT
i Adj = 0, i 	= j, dT

i Ad i 	= 0, i = 1, . . . , n. (3.10)

The set is linearly independent and a basis of Rn. An example for n = 2 is shown
in Fig. 3.2.

In the general case, the conjugate gradient method proceeds by successive
approximations, generating a new search direction in every iteration. Given an
approximation xk , the new search direction is dk = −g(xk)

T + βk dk−1, where
d0 is arbitrary. A line search along direction dk gives the next approximation:

λk = argλ min(xk + λdk), xk+1 = xk + λkdk. (3.11)

Different variants of the algorithm exist corresponding to different prescriptions for
computing βk . Two of them are given here [6, p. 406–416].
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Fig. 3.2 Contour lines of the function F(x, y) = 2x2 + 16y2, and descent with line search and
conjugate gradients starting at the point x0 = (3; 1). The minimum is reached in two steps

Fletcher–Reeves algorithm

βk = g(xk)g(xk)
T

g(xk−1)g(xk−1)T
. (3.12)

Polak-Ribière algorithm

βk = g(xk) [g(xk) − g(xk−1)]T

g(xk−1)g(xk−1)T
. (3.13)

It is customary to set βk to zero if k is a multiple of n, in order to avoid accumulation
of rounding errors. As such, convergence to the minimum in n steps is no longer
guaranteed for non-quadratic F(x).

3.1.3 Gradient-Free Methods

A popular gradient-free method is the downhill-simplex or Nelder–Mead algo-
rithm [7]. It can be applied to functions whose derivatives are unknown, do not
exist everywhere, or are too costly or difficult to compute. In n dimensions, the
method stores n+1 test points x1, . . . , xn+1 at every iteration, ordered by increasing
function values, and the centroid x0 of all points but the last one. The simplex
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Fig. 3.3 Contour lines of the Rosenbrock function F(x, y) = (0.8 − x)2 + 200 (y − x2)2 and
minimization with the downhill-simplex method starting at the point x0 = (1.5; 1). With the
tolerance 10−8 on the function value the minimum is reached after 90 steps

generated by the test points is then modified according to the function values in
the test points. The allowed modifications are: reflection, expansion, contraction
and shrinking. The iteration is terminated when the function value of the best point
does not change significantly anymore. The size of the initial simplex is important;
choosing it too small can lead to a very localized search. On the other hand, it is
possible to escape from a local minimum by restarting the search with a sufficiently
large simplex.

An example with the Rosenbrock function F(x, y) = (0.8−x)2+200 (y−x2)2 is
shown in Fig. 3.3. The function has a very shallow minimum at x = 0.64, y = 0.8.
With the tolerance 10−8 on the function value the minimum is reached after 90 steps.

Other gradient-free methods are simulated annealing, tabu search, particle swarm
optimization, genetic algorithms, etc.

3.2 Statistical Models and Estimation

In the context of this book a statistical model is defined as a functional dependence
of observed quantities (observations or measurements) on unknown quantities of
interest (parameters or state vectors). The parameters cannot be observed directly,
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and the observations are subject to stochastic uncertainties. The aim is to estimate
the parameters from the observations according to some criterion of optimality.

3.2.1 Linear Regression Models

A linear regression model has the following general form [8]:

m = Fp + c + ε, E [ε] = 0, Var [ε] = V = G−1, (3.14)

where m is the (n × 1)-vector of observations, F is the known (n × m) model
matrix with m ≤ n and assumed to be of full rank, p is the (m × 1) vector of model
parameters, c is a known constant offset, and ε is the (n × 1) vector of observation
errors with zero expectation and (n×n) covariance matrix V , assumed to be known.

LS estimation of p requires the minimization of the following objective function:

S(p) = (m − Fp − c)T G (m − Fp − c) . (3.15)

The least-squares (LS) estimator p̃ and its covariance matrix C are given by:

p̃ = (F TGF )−1F TG(m − c), C = (F TGF )−1. (3.16)

The estimator p̃ is unbiased and the estimator with the smallest covariance matrix
among all estimators that are linear functions of the observations. If the distribution
of ε is a multivariate normal distribution, the estimator is efficient, i.e., has the
smallest possible covariance matrix among all unbiased estimators.

The residuals r of the regression are defined by:

r = m − c − Fp̃, R = Var [r] = V − F (F TGF )−1F T. (3.17)

The standardized residuals s, also called the “pulls” in high-energy physics, are
given by:

si = ri√
Rii

, i = 1, . . . , n. (3.18)

If the model is correctly specified, the pulls have mean 0 and standard deviation 1.
The chi-square statistic of the regression is defined as:

χ2 = rTGr, with E
[
χ2
]

= n − m. (3.19)

If the observation errors are normally distributed, χ2 is χ2-distributed with d =
n − m degrees of freedom; its expectation is d and its variance is 2d. Its p-value p

is defined by the following probability transform:
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p = 1 − Gd (χ2) =
∫ ∞

χ2
gd (x) dx, (3.20)

where Gk(x) is the cumulative distribution function of the χ2-distribution with
k degrees of freedom and gk(x) is its probability density function (PDF). Large
values of χ2 correspond to small p-values. If the model is correctly specified,
p is uniformly distributed in the unit interval. A very small p-value indicates a
misspecification of the model or of the covariance matrix V , or both.

3.2.2 Nonlinear Regression Models

The linear regression model in Eq. (3.14) can be generalized to a nonlinear model:

m = f (p) + ε, E [ε] = 0, Var [ε] = V = G−1, (3.21)

where f is a (n × 1)-vector of smooth functions of m variables. LS estimation of p

requires the minimization of the following objective function:

S(p) = [m − f (p)
]T

G
[
m − f (p)

]
. (3.22)

The function S(p) can be minimized with any of the methods discussed in Sect. 3.1.
The one used most frequently is probably the Gauss-Newton method, based on the
first-order Taylor expansion of f and resulting in the following iteration:

p̃k+1 = p̃k + (F T
k GF k)

−1F T
k G
[
m − f (p̃k)

]
, F k = ∂f

∂p

∣∣∣∣ p̃k

. (3.23)

At each step, the covariance matrix Ck+1 of p̃k+1 is approximately given by:

Ck+1 = (F T
k GF k)

−1. (3.24)

In general, the covariance matrix of the final estimate p̃ can be approximated by the
inverse of the Hessian of S(p) at p̃. The final chi-square statistic χ2 is given by:

χ2 = [m − f (p̃)
]T

G
[
m − f (p̃)

]
. (3.25)

In the case of Gaussian observation errors, the chi-square statistic is approximately
χ2-distributed, and its p-value is approximately uniformly distributed. The iteration
is stopped when the chi-square statistic does not change significantly any more.
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3.2.3 State Space Models

A dynamic or state space model describes the state of an object in space or time,
such as a rocket or a charged particle [9]. The state usually changes continuously,
but is assumed to be of interest only at discrete instances in the present context.
These instances are labeled with indices from 0, the initial state, to n, the final state.
The state at instance k is specified by the state vector qk . The spatial or temporal
evolution of the state is described by the system equation, which is Eq. (3.26) in the
linear case and Eq. (3.41) in the general case.

3.2.3.1 Linear State Space Models and the Kalman Filter

In the simplest case, the state at instant k is an affine function of the state at instant
k − 1 plus a random disturbance called the system or process noise, with known
expectation and covariance matrix:

qk = F k |k−1qk−1 + dk + γ k, E
[
γ k

] = gk, Var
[
γ k

] = Qk. (3.26)

The process noise γ k may affect only a subset of the state vector, in which case its
covariance matrix Qk is not of full rank.

In most cases, only some or even none of the components of the state vector
can be observed directly. Instead, the observations are functions of the state plus an
observation error. In the simplest case, this function is again affine:

mk = H kqk + ck + εk, E [εk] = 0, Var [εk] = V k = Gk
−1. (3.27)

Process noise and observation errors are assumed to be independent.
Given observations m1, . . . ,mn, an initial state q0 and an initial state covariance

matrix C0, all states can be estimated recursively by the Kalman filter [10]. Assume
there is an estimated state vector q̃k−1 with its covariance matrix Ck−1 at instant
k−1. The estimated state vector at instant k is obtained by a prediction step followed
by an update step. After the last update step, the full information contained in all
observations can be propagated back to all previous states by the smoother. If both
process noise and observation errors are normally distributed, the Kalman filter is
the optimal filter; if not, it is still the best linear filter.

Prediction step The state vector and its covariance matrix are propagated to the
next instance using the system equation Eq. (3.26) and linear error propagation:

q̃k |k−1 = F k |k−1q̃k−1 + dk + gk, Ck |k−1 = F k |k−1Ck−1F
T
k |k−1 + Qk.

(3.28)
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Update step The updated state vector is the weighted mean of the predicted state
vector and the observation mk . There are two equivalent ways to compute the
update. The first one uses the gain matrix Kk:

q̃k = q̃k |k−1 + Kk (mk − ck − H k q̃k |k−1), Ck = (I − KkH k)Ck |k−1,

(3.29)

Kk = Ck |k−1H
T
k (V k + H kCk |k−1H

T
k )−1. (3.30)

The second one is a multivariate weighted mean:

q̃k = Ck

[
C−1

k |k−1q̃k |k−1 + HT
k Gk (mk − ck)

]
, (3.31)

Ck = (C−1
k |k−1 + HT

k GkH k)
−1. (3.32)

The update step has an associated chi-square statistic χ2
k , which can be computed

from the predicted residual rk |k−1 or from the updated residual rk:

rk |k−1 = mk − ck − H k q̃k |k−1, Rk |k−1 = Var
[
rk |k−1

] = V k + H kCk |k−1H
T
k ,

(3.33)

rk = mk − ck − H k q̃k, Rk = Var [rk] = V k − H kCkH
T
k , (3.34)

χ2
k = rTk |k−1R

−1
k |k−1rk |k−1 = rTk R−1

k rk. (3.35)

If the model is correctly specified and both process noise and observation errors
are normally distributed, χ2

k is χ2-distributed with a number of degrees of freedom
equal to the dimension of mk . The total chi-square χ2

tot of the filter is obtained by
summing χ2

k over all k.

Smoothing The smoother propagates the full information contained in the last
estimate q̃n back to all previous states. There are again two equivalent formulations.
The first one uses the gain matrix Ak of the smoother:

q̃k |n = q̃k + Ak(q̃k+1|n − q̃k+1|k), Ak = CkF
T
k+1C

−1
k+1|k, (3.36)

Ck |n = Ck − Ak(Ck+1|k − Ck+1|n)AT
k . (3.37)

This formulation is numerically unstable, as the difference of the two positive
definite matrices in Eq. (3.37) can fail to be positive definite as well because of
rounding errors. The second, numerically stable formulation realizes the smoother
by running two filters, one forward and one backward, on the same sets of
observations. The smoothed state is a weighted mean of the states of the two filters:
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q̃k |n = Ck |n
[
Ck

−1q̃k +
(
C b

k |k+1

)−1
q̃ b

k |k+1

]
, C−1

k |n = C−1
k +

(
C b

k |k+1

)−1
,

(3.38)

where q̃ b
k |k+1 is the predicted state from the backward filter and C b

k |k+1 its
covariance matrix. Alternatively, the predicted state from the forward filter and the
updated state from the backward filter can be combined. The smoother step has
an associated chi-square statistic χ2

k |n, which can be computed from the smoothed
residuals:

rk |n = mk − ck − H k q̃k |n, Rk |n = Var
[
rk |n

] = V k − H kCk |nHT
k , (3.39)

χ2
k |n = rTk |nR

−1
k |nrk |n. (3.40)

If the model is correctly specified and both process noise and observation errors are
normally distributed, χ2

k |n is χ2-distributed with a number of degrees of freedom
equal to the dimension of mk . As the smoothed state vectors are estimated from
the same information, they are correlated. The prescription for computing their joint
covariance matrix is given in [11].

The Kalman filter can also be implemented as an information filter and as a
square-root filter [10].

3.2.3.2 Nonlinear State Space Models and the Extended Kalman Filter

In the applications of the Kalman filter to track fitting, see Chap. 6, the system
equation is usually nonlinear; see Sect. 4.3 and Fig. 4.4. It has the following form:

qk = f k |k−1(qk−1) + γ k, E
[
γ k

] = gk, Var
[
γ k

] = Qk. (3.41)

In the prediction step, the exact linear error propagation is replaced by an approxi-
mate linearized error propagation; see also Sect. 4.4 and Fig. 4.5.

q̃k |k−1 = f k |k−1(q̃k−1) + gk, F k |k−1 = ∂f k |k−1

∂qk−1

∣∣∣∣ q̃k−1
,

Ck |k−1 = F k |k−1Ck−1F
T
k |k−1 + Qk. (3.42)

More rarely, also the measurement equation can be nonlinear:

mk = hk(qk) + εk, E [εk] = 0, Var [εk] = V k = Gk
−1. (3.43)

The first order Taylor expansion of hk at q̃k |k−1 gives:

hk(qk) ≈ H kqk + ck, ck = hk(q̃k |k−1) − H k q̃k |k−1. (3.44)
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Using this H k and ck in Eqs. (3.29) and (3.30) or Eqs. (3.31) and (3.32) gives the
update equations for the nonlinear measurement equation. If required, the update
can be iterated by re-expanding hk at q̃k and recomputing H k , ck and Kk . The
smoother can be implemented via its gain matrix, Eqs. (3.36) and (3.37), or by the
backward filter, Eq. (3.38).

3.3 Clustering

Clustering is the classification of objects into groups, such that similar objects
end up in the same group. The similarity of objects can be summarized in a dis-
tance/similarity matrix containing the pair-wise distances/similarities of the objects
to be clustered. A cluster is then a group with small distances/large similarities
inside the group and large distances/small similarities to objects outside the group.
After clustering, the resulting cluster structure should be validated by measuring
the internal consistency of each cluster. For further information and examples, the
reader is directed to the literature [12–14].

3.3.1 Hierarchical Clustering

Hierarchical clustering groups the objects with a sequence of nested partitions [12,
Chapter 3]. If the sequence starts from single-object clusters and merges them to
larger clusters, the clustering is called agglomerative; if the sequence starts from a
single cluster containing all objects and splits it into successively smaller clusters,
the clustering is called divisive. At any stage of the clustering, all clusters are
pairwise disjoint. The number of clusters is not necessarily specified in advance,
but can determined “on the fly”. If in divisive clustering a cluster is considered to
be valid, further splitting is not required, but also not forbidden. If in agglomerative
clustering the merging of two clusters results in an invalid cluster, the merger is
undone.

3.3.2 Partitional Clustering

Partitional clustering directly divides the objects into a predefined number K of
clusters, usually by optimizing an objective function that describes the global quality
of the cluster structure [12, Chapter 4]. Partitional clustering can be repeated for
several values of K in order to find the optimal cluster structure. In the fuzzy variant
of partitional clustering, an object can belong to more than one cluster with a certain
degree of membership [15].
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3.3.3 Model-Based Clustering

In model-based clustering, the objects are assumed to be drawn from a mixture
distribution with two or more components. Each component is described by a
PDF and has an associated probability or “weight” in the mixture [16]. The
parameters of the mixture are usually estimated by the Expectation-Maximization
(EM) algorithm [17–19]; see Sect. 7.2.2. A by-product of the EM algorithm is the
posterior probability πik of object i belonging to cluster k, for all objects and all
clusters. The result is again a fuzzy clustering.
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Part II
Track Reconstruction



Chapter 4
Track Models

Abstract The chapter shows how the equations of motion for charged particles
in a homogeneous or inhomogeneous magnetic field are solved. Various types
of parametrizations are presented, and formulas for track propagation and error
propagation are derived. As the effects of the detector material on the trajectory have
to be taken into account, the statistical properties of multiple Coulomb scattering,
energy loss by ionization, and energy loss by bremsstrahlung are discussed; then
it is shown how the effects can be treated in the track reconstruction. As multiple
scattering in thin layers and energy loss by bremsstrahlung have distinctive non-
Gaussian features, an approximation by normal mixtures is presented.

4.1 The Equations of Motion

Consider a charged particle with mass m and charge Q = qe, where e is the
elementary charge and q is an integer, usually q = ±1. Its trajectory or position
r(t) = (x(t), y(t), z(t))T in a magnetic field B(r), as a function of time, is
determined by the equations of motion given by the Lorentz force F ∝ qv × B,
where v = dr/dt is the velocity of the particle. In vacuum, Newton’s second law
reads [1]:

dp

dt
= kqv(t) × B(r(t)), (4.1)

where p = γ mv is the momentum vector of the particle, γ = (1 − v2/c2)−1/2

is the Lorentz factor, and k is a unit-dependent proportionality factor. If the units
are GeV/c for p, meter for r , and Tesla for B, then k = 0.29979 GeV/c T−1 m−1.
The trajectory is uniquely defined by the initial conditions, i.e., the six degrees
of freedom specified for instance by the initial position and the initial momentum.
If these are tied to a reference surface, five degrees of freedom are necessary and
sufficient. Geometrical quantities other than position and velocity can also be used
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to specify the initial conditions. The collection q = (q1, . . . ., qm) of these quantities
is called the initial track parameter vector or the initial state vector.

Equation (4.1) can be written in terms of the path length s(t) along the trajectory
instead of t , giving [1]:

d2r

ds2 = kψ · dr

ds
× B(r(s)) = Γ

(
s, r(s), ṙ(s)

)
, (4.2)

where ṙ(s) ≡ dr/ds, ψ = q/p and p = |p|. In simple cases, this equation has
closed-form solutions. In a homogeneous magnetic field, the solution is a helix;
it reduces to a straight line in the limit of B ≡ 0. In the general case of an
inhomogeneous magnetic field, one has to resort to numerical methods such as
Runge–Kutta integration of the equations of motion (Sect. 4.3.2.1), parametrization
by polynomials or splines [1], or other approximations [2]; see Sect. 4.3.2.2.

Equation (4.2) can be expressed in terms of other independent variables. For
example, if the equations of motion are integrated in a cylindrical detector geometry,
the radius R is a natural integration variable. In a planar detector geometry, the
position coordinate z could be the variable of choice [2, 3].

4.2 Track Parametrization

Different detector geometries often lead to different choices of the track parameters.
However, the parametrization of the trajectory should comply with some basic
requirements: the parameters should be continuous with respect to small changes
of the trajectory; the choice of track parameters should facilitate the local expansion
of the track model into a linear function; and the stochastic uncertainties of the
estimated parameters should follow a Gaussian distribution as closely as possible.
In order to fulfill, for instance, the continuity requirement, curvature should be
used rather than radius of curvature, and inverse (transverse) momentum rather than
(transverse) momentum.

In a barrel-type detector system typical for the central part of collider experi-
ments, a natural reference surface of the track parameters is a cylinder with radius
R, centered around the global z-axis, which usually coincides with the beam line.
The track parameters are, in this case, defined at the point of intersection P between
the track and the reference cylinder. In such a system, one possible choice of track
parametrization is the following:

q1 = q/pT, q2 = φ, q3 = tan λ, q4 = RΦ, q5 = z, (4.3)

where pT = p cos λ is the transverse momentum, φ is the azimuth angle of the
tangent of the track at P, λ is the dip angle (complement of the polar angle) of
the tangent at P, and RΦ and z are the cylindrical coordinates of P in the global
coordinate system, see Fig. 4.1.



4.2 Track Parametrization 51

Fig. 4.1 Track
parametrization according
to Eq. (4.3). The parameter
tan λ is the slope of the
tangent at the reference point
with respect to the
(x, y)-plane

Fig. 4.2 Track
parametrization according
to Eq. (4.4). The parameters
dv/du and dw/du are the
direction tangents of the track
at the reference point with
respect to the u-axis

reference point

track

tangent

In a detector system based on planar detector elements, the natural reference
surface is a plane. Such a surface is uniquely determined by a normal vector of
the plane and the position of a reference point inside the plane. A local coordinate
system is defined such that the u-axis is parallel to the normal vector and the v- and
w-axes are inside the plane. A natural choice of track parameters is now

q1 = ψ, q2 = dv/du, q3 = dw/du, q4 = v, q5 = w, (4.4)

where ψ = q/p, dv/du is the tangent of the angle between the projection of the
track tangent into the (u, v)-plane and the u-axis, dw/du is the tangent of the angle
between the projection of the track tangent into the (u,w)-plane and the u-axis, and
v and w are the local coordinates of the intersection point of the track with the plane;
see Fig. 4.2. The quantities dv/du and dw/du are also called direction tangents, as
the tangent vector to the track is proportional to the vector (dv/du, dw/du, 1)T.
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Fig. 4.3 Track
parametrization according
to Eq. (4.5). The parameters
x⊥ and y⊥ are the distances
from the reference point in
the plane perpendicular to the
track. The direction of the
tangent is measured in global
polar coordinates

tangent track

reference point

Another planar reference system is the curvilinear frame, which is useful
for transporting uncertainties of track parameters; see Sect. 4.4. It is a hybrid
local/global reference frame. The curvilinear plane is always orthogonal to the
direction of the track with the parametrization:

q1 = ψ, q2 = φ, q3 = λ, q4 = x⊥, q5 = y⊥, (4.5)

where x⊥ and y⊥ are orthogonal position coordinates inside the plane, see Fig. 4.3.
The x⊥-axis is parallel to the global (x, y)-plane. The azimuth and dip angles φ and
λ are defined at the point of intersection of the track with the curvilinear plane, but
their values are measured in the global Cartesian coordinate system. The tangent
vector is thus proportional to (cos λ cos φ, cos λ sin φ, sin λ)T.

In addition to the above-mentioned, surface-based frames, a global, Cartesian
coordinate frame is also frequently used. In this frame, the track parameters are the
position vector r and the momentum vector p at that point. Since these are not tied
to a surface, six parameters are needed in order to uniquely specify the state of the
track. The rank of their covariance matrix is at most five.

4.3 Track Propagation

The track model, given by the solution of the equations of motion, describes the
functional dependence of the state vector qj at a surface j on the state vector qi at
a different surface i :

qj = f j |i
(
qi

)
. (4.6)
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qi q j = fj | i qi

surface i surface j

Fig. 4.4 Track propagator from surface i to surface j

The function f j |i is called the track propagator from surface i to surface j ,
see Fig. 4.4. When closed-form solutions of the equations of motion exist, e.g., in
the two situations of vanishing magnetic field and homogeneous magnetic field,
the track propagator can be written as an explicit function of the path length. In
the straight-line solution of the equations of motion in a vanishing magnetic field,
it is easy to also derive an analytical formula for the path length between two
surfaces. For the helical solution in a homogeneous magnetic field, however, such
an analytical formula exists only for propagation to cylinders with symmetry axis
parallel to the field direction or to planes orthogonal to the field direction. Otherwise,
a Newton iteration or a parabolic approximation has to be used to find the path
length.

4.3.1 Homogeneous Magnetic Fields

The helical track propagator takes the solution to Eq. (4.2) as a starting point. The
solution [4] can be written as:

r(s) = r0 + δ

K
(θ − sin θ) · h + sin θ

K
· t0 + α

K
(1 − cos θ) · n0, (4.7)

where r(s) is the position vector of the point on the helix at path length s from
the reference point r0 (at s = 0), h = B/|B | is the normalized magnetic field
vector, t = p/p is the unit tangent vector to the track, n = (h × t) /α with α =
|h × t |, δ = h · t, K = −kψ |B |, and θ = Ks. In the following, the subscript “0”
indicates quantities defined at the initial point s = 0. Any point along the trajectory
can be specified by a corresponding value of s. The equation of the unit tangent
vector t is found by differentiating Eq. (4.7) with respect to s,
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t(s) = dr(s)

ds
= δ (1 − cos θ) · h + cos θ · t0 + α sin θ · n0. (4.8)

For a given value of s, any desired set of track parameters can be calculated
from Eq. (4.7) (positions) and Eq. (4.8) (directions). In the helical track model, the
momentum p is constant and therefore has the same value for all s.

4.3.2 Inhomogeneous Magnetic Fields

In an inhomogeneous magnetic field, the equations of motion have no exact closed-
form solutions, and one has to resort to numerical, approximate solutions.

4.3.2.1 Runge–Kutta Methods

Runge–Kutta methods are iterative algorithms for the approximate numerical
solutions of ordinary differential equations, given initial values. Among Runge–
Kutta methods, the Runge–Kutta–Nyström algorithm is specifically designed for
second-order equations such as Eq. (4.2). In the fourth-order version a step of length
h, starting at s = sn, is computed by [1]:

rn+1 = rn + hṙn + h2(k1 + k2 + k3)/6,

ṙn+1 = ṙn + h(k1 + 2k2 + 2k3 + k4)/6,
(4.9)

with the intermediate stages k defined by

k1 = Γ (sn, rn, ṙn),

k2 = Γ (sn + h/2, rn + hṙn/2 + h2k1/8, ṙn + hk1/2),

k3 = Γ (sn + h/2, rn + hṙn/2 + h2k1/8, ṙn + hk2/2),

k4 = Γ (sn + h, rn + hṙn + h2k3/2, ṙn + hk3),

(4.10)

where rn is the position of the particle at s = sn, ṙn is the unit tangent vector, and Γ

is defined in Eq. (4.2). The magnetic field needs to be looked up three times per step,
at the positions rn, rn +hṙn/2+h2k1/8, and rn +hṙn +h2k3/2. If the field at the
final position rn+1, which is the starting position of the next step, is approximated
by the field used for k4, only two lookups are required per step.

If integration variables other than the path length s are used, for instance the
radius R or the position coordinate z, the integration equations Eq. (4.9) are very
similar. The difference is that the step length h must be expressed in terms of R or z,
and that the function Γ has a different form when expressed in other variables [3].
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If the field is (almost) homogeneous, as for example in a solenoid, the step size
h can be chosen to be constant; otherwise a variable step size, taking into account
the local inhomogeneity of the field, is more efficient. Determining the variable step
size along the propagation is done by a step-size selection algorithm. The essence of
such an algorithm is to assess the local error ε of the Runge–Kutta step and compare
it to a user-defined error tolerance τ . The so-called embedded Runge–Kutta pairs,
originally invented by Fehlberg [5], provide a measure of the local error in an elegant
way by producing solutions of different orders during the same step with little extra
computational cost. The higher-order solution is denoted rn+1, whereas the lower-
order solution is denoted r̂n+1. The difference

ε = |rn+1 − r̂n+1 | (4.11)

between these solutions constitutes a measure of the error of the step. A popular
algorithm for the step size hn+1 of step n + 1 is [6]

hn+1 = hn

(τ

ε

)1/(q+1)

, (4.12)

where hn is the size of step n and q is the order of the lower-order solution. This
algorithm will effectively shorten the step size if the local error is larger than the
tolerance and lengthen it if the local error is smaller than the tolerance, forcing the
local error to oscillate around the tolerance.

The original version of the Runge–Kutta–Nyström algorithm is not of the
embedded type and therefore contains no direct recipe for estimating the local error.
It was realized by the authors of [7], however, that a fourth-order derivative of r

can be formed by a combination of the various stages calculated along the step.
This derivative is implicitly the difference between a fourth-order solution and a
third-order solution and can therefore be used as a measure of the local error ε:

ε = h2 · |k1 − k2 − k3 + k4|. (4.13)

This error measure can be used for step-size selection according to Eq. (4.12) and
constitutes an adaptive version of the Runge–Kutta–Nyström algorithm when used
alongside the integration steps in Eq. (4.9).

4.3.2.2 Approximate Analytical Formula

An approximate analytical formula for track extrapolation in an inhomogeneous
field is described in [2]. The magnetic field B(z) is assumed to depend only
on the z-coordinate. The particle is assumed to move along the z-axis, and the
track parameters are x, y, tx, ty, ψ , where tx, ty are the direction tangents. In this
parametrization, the equations of motion read:
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x′ = tx,

y′ = ty,

t ′x = h · [tx tyB1 − (1 + t2
x )B1 + tyB3] = a(z) · B(z), (4.14)

t ′y = h · [(1 + t2
y )B1 − tx tyB2 − txB3] = b(z) · B(z),

ψ ′ = 0,

where h = kψ
(

1 + t2
x + t2

y

)1/2
and the prime denotes differentiation with respect

to z. The aim is to find formulas for the extrapolation of (tx, ty) from z0 to ze;
the extrapolation of x and y can then be performed by integration of the direction
tangents.

Let T (z) = T (tx(z), ty(z)) be a function of tx and tz. Then

T ′ = ∂T

∂tx
t ′x + ∂T

∂ty
t ′y =

(
∂T

∂tx
a + ∂T

∂ty
b

)
· B =

3∑
i1=1

Ti1 Bi1 . (4.15)

The derivatives of the functions Ti1 can be represented in a similar way:

T ′
i1

= ∂T ′
i1

∂tx
t ′x + ∂T ′

i1

∂ty
t ′y =

(
∂T ′

i1

∂tx
a + ∂T ′

i1

∂ty
b

)
· B =

3∑
i2=1

Ti1i2 Bi2 . (4.16)

When this process is continued, the following functions can be defined recursively:

T ′
i1...ik−1

=
3∑

ik=1

Ti1...ikBik , (4.17)

Ti1...ik = ∂Ti1...ik−1

∂tx
aik + ∂Ti1...ik−1

∂ty
bik . (4.18)

The exact relation

T (ze) = T (z0) +
∫ ze

z0

T ′(z)dz (4.19)
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can then be expanded into:

T (ze) = T (z0) +
3∑

i1=1

∫ ze

z0

Ti1(z1)Bi1(z1)dz1 =

= T (z0) +
3∑

i1=1

∫ ze

z0

(
Ti1(z0) +

∫ z1

z0

T ′
i1
(z2)dz2

)
Bi1(z1)dz1 =

= T (z0) +
3∑

i1=1

Ti1(z0)

∫ ze

z0

Bi1(z1)dz1+

+
3∑

i1=1

∫ ze

z0

Bi1

∫ z1

z0

3∑
i2=1

Ti1i2(z2)dz2dz1

= . . .

(4.20)

If the expansion is terminated after n steps, the compact form of Eq. (4.20) reads:

T (ze) ≈ T (z0) +
n∑

k=1

∑
i1...ik

Ti1...ik (z0) ×
(∫ ze

z0

Bi1(z1) . . .

∫ zk−1

z0

Bik (zk)dzk . . . dz1

)
+

+ O
(

kBψ(ze − z0)
n+1

(n + 1)!
)

(4.21)

The integral over the field components is taken along an approximate trajectory.
Setting T = tx and T = ty gives the desired extrapolation formulas. For a
comparison with a Runge–Kutta solver, see [2].

4.4 Error Propagation

The task of transporting the covariance matrix of the track parameters is essential
for any track reconstruction algorithm, either from one set of track parameters to
another in the same reference surface, or during track propagation from one surface
to another.

This so-called error propagation is straightforward when the transformed track
parameter vector is a strictly linear function of the initial track parameter vector.
The track propagator in Eq. (4.6), however, is in general a non-linear function,
and exact error propagation is not feasible. The common solution is approximate
linearized error propagation; see Sect. 3.2.3.2 and Fig. 4.5. The derivatives of the
track propagator f j |i are collected in the Jacobian matrix Fj |i :
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Fig. 4.5 Error propagation from surface i to surface j . The error bars around the track positions
and the cones around the direction vectors symbolize the growing uncertainty of the track
parameters

Fj |i = ∂qj

∂qi

. (4.22)

The covariance matrix Ci of the track parameters at surface i is transported to
surface j according to:

Cj ≈ Fj |iCiF
T
j |i . (4.23)

A general method for computing the Jacobians is numerical differentiation [8,
Section 5.7], by propagating a reference track and five other, nearby tracks from
surface i to surface j . Consider a reference track with parameter vector qi at surface
i. A small variation of component l (l = 1, . . . , 5) in qi is introduced by adding to
q i the vector Δl = (δ1l hl, . . . , δ5l hl)

T. The corresponding change in parameter k

(k = 1, . . . , 5) at surface j is

Δkl = fk(qi + Δl ) − fk(qi ), (4.24)

where fk is component k of the track propagator f j |i . The elements (Fj |i )kl of the
numerical Jacobian matrix Fj |i are then obtained by evaluating

(Fj |i )kl = Δkl

hl

. (4.25)

This procedure works for all track propagators, irrespective of whether or not they
are in closed form.
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4.4.1 Homogeneous Magnetic Fields

The exposition in this section closely follows the treatment in [4]. In a homogeneous
magnetic field, it is possible to obtain analytical formulas for the Jacobians defined
in Eq. (4.22). The problem of calculating transport Jacobians from one plane of
arbitrary orientation to another is naturally decomposed into three separate parts
because the error propagation from one spatial location to another is performed most
easily in a coordinate frame which moves along the track, i.e., the curvilinear frame
introduced in Sect. 4.2. Therefore, the natural decomposition is first a transformation
from a local coordinate system to the curvilinear frame at the initial surface, then
a transport within the curvilinear frame to the destination surface, and finally a
transformation from the curvilinear frame to a local frame at the destination surface.
The total Jacobian is the matrix product of the three intermediate Jacobians.

The starting point of calculating the transport Jacobians are differentials relating
variations of position, direction, and momentum at the initial point (s = 0)
to variations of the same quantities at any other point along the helix. These
differentials are given by

dr = ∂r

∂r0
· dr0 + ∂r

∂t0
· dt0 + ∂r

∂ψ0
· dψ0 + ∂r

∂s
· ds, (4.26)

dt = ∂t

∂t0
· dt0 + ∂t

∂ψ0
· dψ0 + ∂t

∂s
· ds, (4.27)

where dψ0 is the variation of the signed inverse momentum at the initial point and
ds is the change in path length of the helix due to the variations at the initial point.
An illustration of this effect is shown in Fig. 4.6.

The partial derivatives are obtained by direct differentiation of Eqs. (4.7) and
(4.8). The results are:

∂r

∂r0
· dr0 = dr0, (4.28)

∂r

∂t0
· dt0 = θ − sin θ

K
· (h · dt0) · h + sin θ

K
· dt0 + 1 − cos θ

K
· (h × dt0) ,

(4.29)

∂r

∂ψ0
· dψ0 = 1

ψ
[s · t + r0 − r] · dψ0, (4.30)

∂r

∂s
· ds = t · ds, (4.31)

∂t

∂t0
· dt0 = cos θ · dt0 + (1 − cos θ) · (h · dt0) · h + sin θ · (h × dt0) , (4.32)

∂t

∂ψ0
· dψ0 = αKs

ψ
· n · dψ0, (4.33)

∂t

∂s
· ds = αK · n · ds. (4.34)
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Fig. 4.6 A track and the displaced track due to a variation dr0 are shown. In the error propagation,
the change ds of the path length has to be taken into account. In this specific case, dr is understood
to be perpendicular to the track (see also Eq. (4.41))

4.4.1.1 Transformation from One Curvilinear Frame to Another

The curvilinear frame is uniquely defined at each point along the track by three
orthogonal unit vectors u, v and t , defining a coordinate system (x⊥, y⊥, z⊥). The
vector t has been defined above as the unit vector parallel to the track, and pointing
in the particle direction. The two vectors u and v are defined by

u = z × t

|z × t | , v = t × u, (4.35)

where z is the unit vector pointing in the direction of the global z-axis. This means
that the z⊥-axis is pointing along the particle direction, the x⊥-axis is parallel to the
global (x, y)-plane, while the y⊥-axis is given by the requirement that the three axes
should form a Cartesian, right-handed coordinate system. The relations between the
momentum components

(
px, py, pz

)
in the global Cartesian frame and the angles

are:

px = p cos λ cos φ,

py = p cos λ sin φ,

pz = p sin λ.

(4.36)
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The Jacobian of the transformation from a curvilinear frame (ψ, φ, λ, x⊥, y⊥) at
s0 = 0 to the same set of parameters at path length s is then derived by forming the
differentials dr and dt , introducing the specific constraints given by the curvilinear
frames,

dr0 = u0 · dx⊥0 + v0 · dy⊥0, (4.37)

dt0 = ∂t0

∂φ0
· dφ0 + ∂t0

∂λ0
· dλ0 = cos λ0 · u0 · dφ0 + v0 · dλ0, (4.38)

dr = u · dx⊥ + v · dy⊥, (4.39)

dt = cos λ · u · dφ + v · dλ. (4.40)

Moreover, since dr is now defined to be a variation in a plane perpendicular to the
track, the functional dependence of ds on the variations of position, direction, and
momentum at the initial point can be evaluated by multiplying Eq. (4.26) with t and
using the constraint dr · t = 0. One obtains

ds = −t · dr0 − t ·
(

∂r

∂t0
· dt0

)
−
(

t · ∂r

∂ψ0

)
· dψ0. (4.41)

Inserting Eq. (4.41) and Eqs. (4.28) – (4.34) into Eqs. (4.26) and (4.27), making
use of Eqs. (4.37) and (4.40), yields a set of equations relating variations of the
parameters at the initial surface to the variations at the destination surface. These
can then be manipulated in a straightforward manner to yield the differentials of
the parameters at the destination surface. Since, for instance, the differential dx⊥ is
defined as

dx⊥ = ∂x⊥
∂ψ0

· dψ0 + ∂x⊥
∂φ0

· dφ0 + ∂x⊥
∂λ0

· dλ0 + ∂x⊥
∂x⊥0

· dx⊥0 + ∂x⊥
∂y⊥0

· dy⊥0,

(4.42)

the different terms in the desired Jacobian can be identified as the multiplying factors
of the variations at the initial surface. A complete list of these can be found in
Appendix A. Since a perfectly helical track model is assumed, the momentum at the
destination surface is equal to the momentum at the initial surface.

4.4.1.2 Transformations Between Curvilinear and Local Frames at a
Fixed Point on the Particle Trajectory

Consider the transformation from a local plane—defined by a unit vector i normal to
the plane and two, orthogonal unit vectors j and k inside the plane—to the curvilin-
ear frame. These three unit vectors define the coordinate system (u, v,w) introduced
in Sect. 4.2. The aim is to derive the Jacobian of the transformation between
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(
ψ, v′, w′, v, w

)
, where v′ = dv/du and w′ = dw/du, and (ψ, φ, λ, x⊥, y⊥) at

a given point s on the particle trajectory. The relevant differentials are now

dr = u · dx⊥ + v · dy⊥ = j · dv + k · dw + t · ds, (4.43)

dt = cos λ · u · dφ + v · dλ = ∂t

∂v′ · dv′ + ∂t

∂w′ · dw′ + ∂t

∂s
· ds. (4.44)

Again dr is orthogonal to t , therefore ds can be calculated from Eq. (4.43), in a
similar manner as before. The result is

ds = − (t · j) · dv − (t · k) · dw. (4.45)

By inserting Eq. (4.45) into Eqs. (4.43) and (4.44) and following the same
procedure as in Sect. 4.4.1.1, explicit expressions of the differentials can again be
constructed. For this also t and its derivatives, expressed in the local parameters, are
needed. The formulas are:

t = 1√
1 + v′2 + w′2

[
i + v′j + w′k

]
, (4.46)

∂t

∂v′ = 1√
1 + v′2 + w′2

[
j − v′√

1 + v′2 + w′2
t

]
, (4.47)

∂t

∂w′ = 1√
1 + v′2 + w′2

[
k − w′√

1 + v′2 + w′2
t

]
. (4.48)

The Jacobian of the transformation from the curvilinear to the local frame can
be derived by inverting the Jacobian of the transformation from the local to the
curvilinear frame. The expressions of both Jacobians can be found in Appendix A.

4.4.1.3 Transformations Between Global Cartesian and Local Frames

The global Cartesian frame (px, py, pz, x, y, z) is useful for vertex reconstruction
purposes as well as for track reconstruction in zero and inhomogeneous magnetic
fields. Zero magnetic field is typical in, for instance, test-beam applications.

First the transformations between a local frame and the global Cartesian frame is
considered. The basic strategy is to go via an intermediate Cartesian frame aligned
with the local frame under consideration. This Cartesian frame is related to the
global Cartesian frame via a pure rotation. The intermediate Cartesian frame C′ will
be denoted by primed quantities (p′

x, p′
y, p′

z, x′, y′, z′), where the x′- and y′-axes
are parallel to the v- and w-axes of the local frame, respectively. The Jacobian R

of the transformation from the global, Cartesian frame to the intermediate frame
C′ consists of two similar, three-by-three blocks, each containing the relevant
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rotation matrix. The other entries of this matrix are zero. The Jacobian JC′→L

of the transformation from the primed Cartesian frame C′ to the local frame L is
constructed from the following formulas:

q

p
= q√

p′
x

2 + p′
y

2 + p′
z

2
, (4.49)

v′ = p′
x

p′
z

, (4.50)

w′ = p′
y

p′
z

. (4.51)

The total Jacobian is given by the product JC′→L · R.
For the inverse transformation, the Jacobian JL→C′ can be derived from the

following relations:

p′
x = q

ψ
· sz · v′
√

1 + v′2 + w′2 , (4.52)

p′
y = q

ψ
· sz · w′
√

1 + v′2 + w′2 , (4.53)

p′
z = q

ψ
· sz√

1 + v′2 + w′2 , (4.54)

where sz = sign(pz) is the sign of the z-component of the momentum vector in the
local frame. It is needed in order to uniquely specify the state of the track in the
local frame. The total Jacobian is in this case given by the product RT · JL→C′ ,
using the same matrix R as above. The Jacobians JC′→L and JL→C′ are shown in
Appendix A.

4.4.2 Inhomogeneous Magnetic Fields

As mentioned above, the common way of obtaining the Jacobian matrices needed
for the linearized error propagation is to expand the track propagator functions
to first order in a Taylor series. As there are no analytical expressions for the
track propagator in the case of inhomogeneous magnetic fields, this approach is
unfortunately impossible. Another common technique is the error propagation by
numerical derivatives described earlier. This method is slow but robust and accurate.
A third way of obtaining the Jacobian matrices is to differentiate the recursion
formulae of the numerical integration method directly. This is the essence of the
so-called Bugge-Myrheim method [3].
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In the parameter propagation, the propagated global track parameters:

r =
⎛
⎝x

y

z

⎞
⎠ , ṙ = t =

⎛
⎝tx

ty

tz

⎞
⎠ , (4.55)

are obtained by integrating the equations of motion, using some recursion formulas.
With the Runge–Kutta–Nyström method, one step (numbered by n) becomes:

rn+1 = rn + hṙn + h2

6
(k1 + k2 + k3) = F n(rn, ṙn), (4.56)

ṙn+1 = ṙn + h

6
(k1 + 2k2 + 2k3 + k4) = Gn(rn, ṙn). (4.57)

To obtain the Jacobian matrix of the propagated global track parameters with respect
to the initial track parameters qi , the recursion formulae (Eq. (4.57)) have to be
differentiated with respect to qi , giving:

J n+1 =

⎛
⎜⎜⎝

∂rn+1

∂qi

∂ ṙn+1

∂qi

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂F n

∂qi

∂Gn

∂qi

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂F n

∂rn

∂F n

∂ ṙn

∂Gn

∂rn

∂Gn

∂ ṙn

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

∂rn

∂qi

∂ ṙn

∂qi

⎞
⎟⎟⎠ = Dn · J n,

(4.58)

where the derivatives ∂rn/∂qi and ∂ ṙn/∂q i of the 6 × j Jacobian J are given by
the following 3 × j matrices:

∂rn

∂qi

=

⎛
⎜⎜⎜⎜⎜⎝

∂xn

∂qi,1
· · · ∂xn

∂qi,j

...
. . .

...
∂zn

∂qi,1
· · · ∂zn

∂qi,j

⎞
⎟⎟⎟⎟⎟⎠

,
∂ ṙn

∂qi

=

⎛
⎜⎜⎜⎜⎜⎝

∂tx,n

∂qi,1
· · · ∂tx,n

∂qi,j

...
. . .

...
∂tz,n

∂qi,1
· · · ∂tz,n

∂qi,j

⎞
⎟⎟⎟⎟⎟⎠

. (4.59)

Dn is a 6 × 6 matrix containing the recursion formulae F n and Gn differentiated
with respect to the global track parameters:

Dn = ∂(F n,Gn)

∂(rn, ṙn)
=

⎛
⎜⎜⎝

∂F n

∂rn

∂F n

∂ ṙn

∂Gn

∂rn

∂Gn

∂ ṙn

⎞
⎟⎟⎠ , (4.60)
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giving the 3 × 3 matrices

∂F n

∂rn

=

⎛
⎜⎜⎜⎜⎝

∂Fn,1

∂xn

· · · ∂Fn,1

∂zn
...

. . .
...

∂Fn,3

∂xn

· · · ∂Fn,3

∂zn

⎞
⎟⎟⎟⎟⎠ ,

∂F n

∂ ṙn

=

⎛
⎜⎜⎜⎜⎜⎝

∂Fn,1

∂tx,n

· · · ∂Fn,1

∂tz,n
...

. . .
...

∂Fn,3

∂tx,n

· · · ∂Fn,3

∂tz,n

⎞
⎟⎟⎟⎟⎟⎠

, (4.61)

and

∂Gn

∂rn

=

⎛
⎜⎜⎜⎜⎝

∂Gn,1

∂xn

· · · ∂Gn,1

∂zn
...

. . .
...

∂Gn,3

∂xn

· · · ∂Gn,3

∂zn

⎞
⎟⎟⎟⎟⎠ ,

∂Gn

∂ ṙn

=

⎛
⎜⎜⎜⎜⎜⎝

∂Gn,1

∂tx,n

· · · ∂Gn,1

∂tz,n
...

. . .
...

∂Gn,3

∂tx,n

· · · ∂Gn,3

∂tz,n

⎞
⎟⎟⎟⎟⎟⎠

. (4.62)

By writing the recursion formulae of the derivatives as a product of Dn and J n

(Eq. (4.58)), the recursion formulae F n and Gn can be differentiated with respect to
the global track parameters rn and ṙn instead of the initial track parameters qi . This
greatly simplifies the differentiation, giving:

∂F n

∂rn

= 1 + h2

6

(
∂k1

∂rn

+ ∂k2

∂rn

+ ∂k3

∂rn

)
,

∂F n

∂ ṙn

= h + h2

6

(
∂k1

∂ ṙn

+ ∂k2

∂ ṙn

+ ∂k3

∂ ṙn

)
,

∂Gn

∂rn

= h

6

(
∂k1

∂rn

+ 2
∂k2

∂rn

+ 2
∂k3

∂rn

+ ∂k4

∂rn

)
,

∂Gn

∂ ṙn

= 1 + h

6

(
∂k1

∂ ṙn

+ 2
∂k2

∂ ṙn

+ 2
∂k3

∂ ṙn

+ ∂k4

∂ ṙn

)
.

(4.63)

In order to calculate these derivatives explicitly, the individual stages of the Runge–
Kutta–Nyström method have to be differentiated with respect to the global track
parameters:

Al = ∂kl

∂ ṙn

, Cl = ∂kl

∂rn

, (4.64)

where l denotes the individual stages, and kl is given by the equations of motion of
the global track parameters in Eq. (4.2):
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d2x

ds2
= x′′ = ξ (tyBz − tzBy),

d2y

ds2 = y′′ = ξ (tzBx − txBz),

d2z

ds2 = z′′ = ξ (txBy − tyBx),

(4.65)

where ξ ≡ kψ . Writing the 3 × 3 matrices Al and Cl in a general form yields:

A =

⎛
⎜⎜⎜⎜⎜⎝

∂x′′

∂tx
· · · ∂x′′

∂tz
...

. . .
...

∂z′′

∂tx
· · · ∂z′′

∂tz

⎞
⎟⎟⎟⎟⎟⎠

=
⎛
⎝ 0 ξBz −ξBy

−ξBz 0 ξBx

ξBy −ξBx 0

⎞
⎠ (4.66)

and

C=

⎛
⎜⎜⎜⎜⎝

∂x′′

∂x
· · · ∂x′′

∂z
...

. . .
...

∂z′′

∂x
· · · ∂z′′

∂z

⎞
⎟⎟⎟⎟⎠= ξ

⎛
⎝(tyBz;x − tzBy;x) (tyBz;y − tzBy;y) (tyBz;z − tzBy;z)

(tzBx;x − txBz;x) (tzBx;y − txBz;y) (tzBx;z − txBz;z)
(txBy;x − tyBx;x) (txBy;y − tyBx;y) (txBy;z − tyBx;z)

⎞
⎠,

(4.67)

with

Bu;v = ∂Bu

∂v
, u, v ∈ {x, y, z}. (4.68)

With the help of these matrices, the elements of the matrix Dn in Eq. (4.60) are
computed. Dn is then multiplied by J n to produce the transported Jacobian J n+1;
see Eq. (4.58). This procedure is repeated for every recursion step, transforming J

along the way. If, for instance, a planar detector element is reached at the end of
the propagation steps and a measurement is to be included in a track reconstruction
algorithm, the Jacobian can be transported from the global parameters to a local set
of parameters as described in Sect. 4.4.1.3.

When applied to real problems, the field gradients in C are usually quite costly
to calculate. The calculations can be significantly sped up by setting elements of C

with negligible influence on the Jacobians to zero. The sensitivity of the Jacobians
to the field gradients can be checked by a simulation study.
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4.5 Material Effects

4.5.1 Multiple Scattering

4.5.1.1 The Distribution of the Scattering Angle

Elastic Coulomb scattering of particles heavier than electrons, including the muon,
is dominated by the atomic nucleus. The PDF of the single scattering angle θ has
the following form [9]:

f (θ) =
⎧⎨
⎩

kθ

(θ 2 + a2)2
if θ ≤ b,

0 otherwise,
(4.69)

with the normalization constant

k = 2a2
(

1 + a2/b2
)

. (4.70)

The PDF in Eq. (4.69) is derived from the Rutherford scattering formula by setting
sin θ ≈ θ and introducing a minimal and a maximal scattering angle, thereby
avoiding the singularity at θ = 0. The minimal and maximal angles a, b depend
on the nuclear charge Z and the atomic mass number A of the nucleus as well as on
the momentum p of the scattered particle [9]:

a = 2.66 · 10−6 · Z1/3

p
, b = 0.14

A1/3 · p
. (4.71)

Here and in the following, p is assumed to be given in units of GeV/c. The ratio

ρ = b/a ≈
(

204

Z1/3

)2

(4.72)

depends only on the nuclear charge Z, with the exception of very heavy nuclei,
where the approximation A ≈ 2Z breaks down. The size of ρ is typically of the
order 104. The normalization constant k can therefore be approximated by k ≈ 2a2.
It follows that the expectations of θ and θ2 are approximately given by:

E[θ ] = 4.18 · 10−6 · Z1/3

p
, E[θ 2] = 2.84 · 10−11 · Z2/3 · ln(159 Z−1/3)

p2 .

(4.73)

In track reconstruction, the scattering angle θ is of little use, as it is more
convenient to work with two projected scattering angles instead, for instance,
θx = θ cos φ and θy = θ sin φ, if the particle runs parallel to the z-axis. Under
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the assumption that the azimuthal angle φ is independent of θ and uniform in the
interval [0, 2π ], their joint PDF is given by [10]:

g(θx, θy) =

⎧⎪⎨
⎪⎩

1

π
· a2

(θ 2
x + θ 2

y + a2)2 , if 0 ≤ θ 2
x + θ 2

y ≤ b2,

0, otherwise.

(4.74)

The support of the joint PDF is a circle around the origin with radius b. The
projected angles θx and θy are uncorrelated but not independent. The marginal PDF
of the projected angle in the interval [−b, b] has the following form:

f (θp) = a2

π

⎡
⎣

√
b2 − θ 2

p

(a2 + b2)(θ 2
p + a2)

+
arccos

(√
θ 2

p + a2
/√

a2 + b2
)

(θ 2
p + a2)3/2

⎤
⎦ ,

(4.75)

with θp either θx or θy . The marginal PDF has zero mean, a single mode at θp = 0
with f (0) ≈ 1/(2a), and the following variance:

var [θp] = E[θ 2]/2 = 1.42 · 10−11 · Z2/3 · ln(159 Z−1/3)

p2 . (4.76)

The range of the distribution is very large. For silicon (Z = 14), it is about ±2500
standard deviations.

If the projected scattering angle is still small after N scattering processes, it
is approximately equal to the sum of the individual projected scattering angles.
Its distribution can be obtained either by the convolution of N single scattering
distributions [10] or by the Molière theory [11–13]. Figure 4.7 shows the two PDFs
for a muon with p = 1 GeV/c and four silicon scatterers. Their thickness d is given
in fractions of a radiation length [14]. The corresponding numbers of scattering
processes in the four scatterers have been chosen as N = 210, 213, 216 and 219,
respectively, spanning the range from about 0.2% to about 90% of a radiation
length. There is excellent agreement for all scatterers but the thickest one; in this
case, the tails are more persistent in the Molière PDF than in the PDF obtained by
convolution. The discrepancy is at angles larger than the maximum scattering angle
b, which is equal to about 46 mrad in silicon for p = 1 GeV/c.

For the purpose of track reconstruction, the “exact” distribution of the projected
scattering angle has to be approximated by a single Gaussian or a mixture of
Gaussians; see Sect. 6.2.3. The most commonly used approximation by a single
Gaussian is the Highland formula, proposed in [15] and modified in [16]. The most
up-to-date version can be found in [14], which gives the standard deviation of the
projected scattering angle as:
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Fig. 4.7 Probability density functions of the projected multiple scattering angle for silicon targets
obtained by convolution (solid lines) and frequency distributions obtained by simulation from the
Molière densities (dots). The vertical dashed lines in figure (d) show the upper limit b ≈ 46 mrad
in silicon

√
var [θp] ≈ 0.0136 z

βp

√
d

X0

[
1 + 0.038 ln

(
dz2

β2X0

)]
, (4.77)

where p, β and z are the momentum, velocity, and charge number of the incident
particle, and d/X0 is the thickness of the scatterer in units of the radiation length.
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If the scatterer consists of a composite material with k components, its radiation
length X0 is given by:

1

X0
=

k∑
i=1

fi

Xi

, (4.78)

where Xi is the radiation length of component i in g/cm2 and fi is the mass fraction
of component i [17]. In the following, it is more convenient to express d and X0 in
centimeters:

X0

cm
= g/cm3

�

X0

g/cm2
, (4.79)

where � is the density of the material in units of g/cm3.
In a thin scatterer, a Gaussian distribution is but a poor approximation of the

actual distribution of the multiple scattering angle, because of the latter’s large
range. A better, though still far from perfect, approximation can be obtained using a
normal mixture with two components, one modeling the “core”, the other modeling
the “tails” [10, 18]. The standardized two-component mixture PDF of θp with
variance equal to 1 has the following form:

f (θp) = (1 − ε) · ϕ(θp; 0, σ 2
1 ) + ε · ϕ(θp; 0, σ 2

2 ), (4.80)

where σ 2
1 < σ 2

2 , ε < 1/2 and σ 2
2 = [1 − (1 − ε) σ 2

1 ]/ε.
The core variance σ 2

1 is parametrized in terms of the reduced thickness d ′
0 =

d/(β2X0), where X0 is the radiation length of the scatterer:

σ 2
1 = 8.471 · 10−1 + 3.347 · 10−2 · ln d ′

0 − 1.843 · 10−3 · (ln d ′
0)

2 (4.81)

The tail weight ε is parametrized in terms of a modified reduced thickness d ′′
0 =

Z2/3d/(β2X0):

ε =
{

4.841 · 10−2 + 6.348 · 10−3 · ln d ′′
0 + 6.096 · 10−4 · (ln d ′′

0 )2, if ln d ′′
0 <0.5,

−1.908 · 10−2 + 1.106 · 10−1 · ln d ′′
0 − 5.729 · 10−3 · (ln d ′′

0 )2, if ln d ′′
0 ≥0.5,

(4.82)

Finally, the standardized PDF in Eq. (4.80) is scaled with the total standard deviation
of the projected scattering angle without the logarithmic correction; see Eq. (4.77).
This ensures that the variance of the scattering angle is strictly additive if the
scatterer is divided into thinner slices. For a comparison of the mixture model with
simulations by GEANT4 [19], see [18].
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4.5.1.2 Multiple Scattering in Track Propagation

If a charged particle is propagated through material, the covariance matrix of
the track parameters is augmented by the additional uncertainty on direction
and possibly position caused by multiple scattering. The algorithmic treatment is
different for “thin” and “thick” scatterers. By definition, in a thin scatterer the
offset—the change in position of the passing particle—is negligible in relation to the
spatial resolution of the surrounding detectors, so that only the direction is affected.
For instance, in a silicon sensor with a typical thickness of 0.3 mm the standard
deviation of the offset is less than 0.2 µm for momenta above 1 GeV; see Eq. (4.107)
below. As the spatial resolution is in the order of 10 µm, the offset can be safely
neglected, and the sensor is considered as a thin scatterer.

If, on the other hand, the scatterer is a 5 cm thick iron absorber in a muon
spectrometer, the standard deviation of the offset is about 0.66 mm for a muon with
1 GeV, and the offset can be as large as 2 mm. This is no longer negligible in a
muon spectrometer equipped with drift chambers having a typical spatial resolution
of 150 µm. The absorber should therefore be treated as a thick scatterer, at least for
low-momentum muons.

Thin Scatterers
Consider a thin scatterer with nominal thickness d, radiation length X0, and unit
normal vector n at the point where the track crosses the scatterer. The track is
specified by a vector q of track parameters and the associated covariance matrix
C. In a thin scatterer, only the sub-matrix of C corresponding to the track direction
is augmented. The details depend on the choice of the track parametrization;
see Sect. 4.2.

A. The track is parametrized as in Eq. (4.3):

q1 = q

pT
, q2 = φ, q3 = tan λ, q4 = RΦ, q5 = z. (4.83)

1. Compute the unit direction vector a and the momentum p of the track:

a = (cos φ cos λ, sin φ cos λ, sin λ)T , p = 1/(| q1| cos λ). (4.84)

2. Compute the effective thickness t in units of X0:

t = d |a |
|a · n| X0

. (4.85)

3. Compute the variance of the projected multiple scattering angle, assuming
β = 1 and q = 1 if unknown:
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var [θp] = 1.85 · 10−4 · t

p2 (1 + 0.038 ln t)2 . (4.86)

4a. If sin φ = 0 compute the covariance matrix D of (a2, a3)
T:

D = J · C (2:3,2:3) · J T, with

J =
(

cos φ cos λ 0
0 cos3λ

)
. (4.87)

Augment D by the contribution of multiple scattering [1]:

D′ = D + var [θp] ·
(

1 − a2
2 − a2a3

−a2a3 1 − a2
3

)
. (4.88)

Modify C :

C (2:3,2:3) = J−1 · D′ · (J−1)T, with

J−1 =
(

1/cos φ cos λ 0
0 1/cos3λ

)
. (4.89)

4b. If sin φ 	= 0 compute the covariance matrix D of (a1, a3)
T:

D = J · C (2:3,2:3) · J T, with

J =
(− sin φ cos λ − cos φ sin λ cos2λ

0 cos3λ

)
. (4.90)

Augment D by the contribution of multiple scattering [1]:

D′ = D + var [θp] ·
(

1 − a1
2 −a1a3

−a1a3 1 − a2
3

)
. (4.91)

Modify C :

C (2:3,2:3) = J−1 · D′ · (J−1)T, with

J−1 =
(−1/sin φ cos λ − cos φ sin λ/sin φ cos2λ

0 1/cos3λ

)
. (4.92)

B. The track is parametrized as in Eq. (4.4):

q1 = ψ, q2 = dv/du, q3 = dw/du, q4 = v, q5 = w. (4.93)
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1. Compute the direction vector a and the momentum p of the track:

a = (q2, q3, 1)T , p = 1/| q1|. (4.94)

2. Compute the effective thickness t and the variance of the projected multiple
scattering angle as in Eqs. (4.85) and (4.86).

3. Extract the covariance matrix D of (q2, q3)
T:

D = C (2:3,2:3). (4.95)

4. Augment D by the contribution of multiple scattering [1] and modify C :

C (2:3,2:3) = D + var [θp] · (1 + q2
2 + q2

3 ) ·
(

1 + q2
2 q2q3

q2q3 1 + q2
3

)
. (4.96)

C. The track is parametrized as in Eq. (4.5):

q1 = q

p
, q2 = φ, q3 = λ, q4 = x⊥, q5 = y⊥. (4.97)

1. Compute the unit direction vector a and the momentum p of the track:

a = (cos φ cos λ, sin φ cos λ, sin λ)T , p = 1/| q1|. (4.98)

2. Compute the effective thickness t and the variance of the projected multiple
scattering angle as in Eqs. (4.85) and (4.86).

3a. If sin φ = 0, compute the covariance matrix D of (a2, a3)
T:

D = J · C (2:3,2:3) · J T, with

J =
(

cos φ cos λ 0
0 cos λ

)
. (4.99)

Augment D by the contribution of multiple scattering as in Eq. (4.88) and
modify C :

C (2:3,2:3) = J−1 · D′ · (J−1)T, with

J−1 =
(

1/cos φ cos λ 0
0 1/cos λ

)
. (4.100)
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3b. If sin φ 	= 0, compute the covariance matrix D of (a1, a3)
T:

D = J · C (2:3,2:3) · J T, with

J =
(−sin φ cos λ − cos φ sin λ

0 cos λ

)
. (4.101)

Augment D by the contribution of multiple scattering as in Eq. (4.91) and
modify C :

C (2:3,2:3) = J−1 · D′ · (J−1)T, with

J−1 =
(−1/sin φ cos λ − cos φ sin λ/sin φ cos2λ

0 1/cos λ

)
. (4.102)

Thick Scatterers
A thick scatterer can be treated in two ways: sliced into a number of thin scatterers
or considered a single scatterer. The first approach gives more precise results, in
particular when the scatterer is magnetized and the incoming particle is expected to
be strongly deflected and suffer significant energy loss. A typical example for this
situation is a low-momentum muon crossing the instrumented iron return yoke of
the CMS experiment [20].

In the second approach, the uncertainties of both the direction and the position
at the exit point have to be increased. In addition, energy loss may have to be
considered, and an estimate of the actual track length L in the scatterer must be
available. If no estimate of L is returned by the track propagation algorithm, L can
be approximated by the distance between the entry and the exit point times a safety
factor that depends on the momentum and can be tuned by simulation. Alternatively,
L can be determined from the most probable trajectory in the scatterer [21].

Assume that the track parameters and their covariance matrix at the exit of the
scatterer are given by q and C in the curvilinear parametrization; see Eq. (4.97).

1. Extract the entry and exit momenta p1 and p2. Under the assumption that the
momentum p drops linearly between the entry and the exit, the average of 1/p2

is 1/(p1p2).
2. Compute the variance per unit length of the projected multiple scattering angle:

t = 1

X0
, σ 2

0 = 1.85 · 10−4 · t

p1p2
(1 + 0.038 ln t)2 . (4.103)

3. Extract the covariance matrix D of (q2, q3, q4, q5)
T:

D = C (2:5,2:5). (4.104)
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4. Compute the unit direction vector a in the global coordinate system:

a = (cos φ cos λ, sin φ cos λ, sin λ) . (4.105)

5. Transform a into the curvilinear system by rotating a into a′ = (0, 0, 1)T:

a′ = Ua, with U =

⎛
⎜⎜⎜⎜⎝

a1
2a3 + a2

2

1 − a3
2 − a1 a2

1 + a3
−a1

− a1 a2

1 + a3

a1
2 + a2

2a3

1 − a3
2 −a2

a1 a2 a3

⎞
⎟⎟⎟⎟⎠ . (4.106)

6. Compute the joint covariance matrix E of q ′ = (a′
1, a

′
2, x⊥, y⊥)T [1]:

E = σ 2
0 ·

⎛
⎜⎜⎝

L 0 L2/2 0
0 L 0 L2/2

L2/2 0 L3/3 0
0 L2/2 0 L3/3

⎞
⎟⎟⎠ . (4.107)

7. Rotate the direction part of E back into the global system:

E′ = T · E · T T, with T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a1
2a3 + a2

2

1 − a3
2

− a1 a2

1 + a3
0 0

− a1 a2

1 + a3

a1
2 + a2

2a3

1 − a3
2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.108)

8. Transform the direction cosines a1, a2 back to φ, λ:

E′′ = J · E′ · J T, with

J =

⎛
⎜⎜⎝

− sin φ/ cos λ cos φ/ cos λ 0 0
− cos φ/ sin λ − sin φ/ sin λ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , if λ 	= 0; and (4.109)

J =

⎛
⎜⎜⎝

− sin φ cos φ 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , if λ = 0. (4.110)

9. Augment D by the contribution of multiple scattering and modify C :

C (2:5,2:5) = D + E′′. (4.111)
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4.5.2 Energy Loss by Ionization

4.5.2.1 Mean Energy Loss

A heavy, charged particle passing through material suffers loss of energy due to
ionization of the material. The mean energy loss of the particle is given by the
Bethe–Bloch formula [14]:

dE

ds
= −Kz2 Zρ

Aβ2

(
1

2
ln

2mec
2β2γ 2Wmax

I 2 − β2 − δ

2

)
, (4.112)

where K is a constant, z is the charge number of the incoming particle, Z and A are
the atomic number and atomic mass of the material, ρ is the density of the material,
me is the electron mass, Wmax is the maximum energy transfer in a single collision, I
is the mean excitation energy, and δ is the density effect correction. For an incoming
particle of mass M, Wmax is given by:

Wmax = 2mec
2β2γ 2

1 + 2γme/M + (me/M)2
. (4.113)

For light particles such as electrons and positrons, the Bethe–Bloch formula needs
some modifications. An alternative expression for light particles is [1]:

dE

ds
= −K

Zρ

A

(
ln

2mec
2

I
+ 1.5 ln γ − 0.975

)
. (4.114)

4.5.2.2 Ionization Energy Loss in Track Propagation

In tracking detectors, material layers traversed during propagation are often con-
sidered as discrete. Knowing the thickness of the traversed layer, the Bethe-Bloch
formula is used to modify the momentum part of the track parameter vector by the
expected change before propagating to the next layer. Fluctuations in the ionization
energy loss are often considered so small that they are neglected.

For detectors such as electromagnetic or hadronic calorimeters, however, ion-
ization energy loss takes place continuously during propagation. In this case, it
is possible to augment the vector of global track parameters in Eq. (4.55) with
a parameter containing the track momentum [3, 22], e. g., ξ = kψ as defined
in Sect. 4.4.2:

u = (x, y, z,Ξ)T , u̇ = (tx, ty, tz, ξ)T , (4.115)

where Ξ is an auxiliary parameter corresponding to the integrated change in ξ .
Track parameter and Jacobian matrix propagations can thereby be carried out in
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way very similar to the one described in Sect. 4.4.2, effectively including effects of
energy loss continuously while traversing the detector.

4.5.3 Energy Loss by Bremsstrahlung

4.5.3.1 Mean and Distribution of the Energy Loss

High-energy electrons lose energy in a material mainly by bremsstrahlung [14]. The
dependence on the material can be summarized in a characteristic length, called the
radiation length X0. It is defined as the average distance over which a high-energy
electron loses 1 − 1/e ≈ 63% of its energy. Although it is not strictly identical to
the radiation length that is characteristic for multiple scattering (see Sect. 4.5.1), the
same length is used in both contexts for the sake of convenience.

The rate of the mean energy loss by bremsstrahlung is nearly proportional to the
energy:

E
[
−dE

ds

]
≈ E

X0
, (4.116)

and on average, the energy decreases approximately exponentially as a function of
the reduced path length t = s/X0:

E [E(t)] = E0 exp(−t), (4.117)

where E0 is the initial energy. The energy loss is subject to large fluctuations, as a
substantial part of the electron energy can be carried away by a single photon. A
simplified PDF of E as a function of t has the following form, called the Bethe–
Heitler model [23]:

h(E) = [ln(E0/E)] t/ ln 2−1

E0 Γ (t/ ln 2)
. (4.118)

The PDF can be rewritten in terms of the remaining energy fraction z = E/E0:

f (z) = (− ln z) t/ ln 2−1

Γ (t/ ln 2)
. (4.119)

It can be seen that − ln z is Gamma-distributed. The expectation and the variance
can be computed explicitly [24]:

E [z] = exp (−t) , var [z] = exp (−t ln 3/ ln 2) − exp (−2t) . (4.120)
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Fig. 4.8 Probability density function of the Bethe–Heitler model of bremsstrahlung in Eq. (4.119),
with mean μ and standard deviation σ , for t = 0.2, 0.1, 0.05, 0.02

Figure 4.8 shows that the shape of the PDF is very far from being Gaussian; thus,
the distribution cannot be adequately described by merely its mean and variance.

4.5.3.2 Approximation by Gaussian Mixtures

For electron reconstruction with the Gaussian-sum filter (GSF; see Sect. 6.2.3) the
model PDF in Eq. (4.119) is approximated by a normal mixture PDF with nc
components. The parameters of the mixture are determined by minimizing some
measure of distance between the two distributions. In [25], two distances have been
used: DKL, the Kullback–Leibler distance, and DCDF, the integral over the absolute
difference of the respective cumulative distribution functions (CDFs):

DKL =
∫ 1

0
ln[f (z)/g(z)] f (z) dz, (4.121)

DCDF =
∫ ∞

−∞
|F(z) − G(z)| dz, (4.122)

where f (z) and F(z) are the PDF and CDF of the model distribution, and g(z) and
G(z) are the PDF and CDF of the normal mixture, respectively. Using DKL and
nc = 1 the single Gaussian with the correct first two moments is recovered. In all
other cases, the mixtures do not have the same moments as the model. The quality
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of the approximating mixtures has been investigated in detail in [25]. Software in
the form of a MATLAB® function can be downloaded from the URL in [26].
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Chapter 5
Track Finding

Abstract There is no systematic theory of track finding yet. Therefore, the first
section of this chapter presents a list of basic techniques which have been success-
fully used, stand-alone or in combination, in past and present experiments. Among
them are the conformal transformation, the Hough and the Legendre transform,
cellular automata and neural networks, pattern matching, and track following by
the combinatorial Kalman filter. The following section gives a brief excursion into
online or real-time track finding in the collider experiments CDF, ATLAS, and CMS.
As track finding in most cases delivers some candidates that do not correspond
to actual particle tracks, the concluding section discusses methods for an efficient
selection of valid candidates.

5.1 Basic Techniques

5.1.1 Conformal Transformation

Circles in the plane passing through the origin can be transformed into straight lines
by the following mapping [1]:

u = x

x2 + y2 , v = y

x2 + y2 . (5.1)

The mapping is conformal, i.e., preserves angles between curves. Assume that a
circle is defined by the equation:

(x − a)2 + (y − b)2 = R2 = a2 + b2. (5.2)

Expansion of the left hand side and division by x2 + y2 gives a linear equation in u

and v:

2au + 2bv = 1. (5.3)
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This is the equation of a straight line in the (u, v)-plane with distance d = 1/(2R)

from the origin. A circle with a large radius R or small curvature κ is therefore
transformed into a line that passes very close to the origin (Fig. 5.1). In the
limit of zero curvature, the circle becomes a line transformed into itself by the
mapping in Eq. (5.1). Both circle finding and circle fitting can be simplified by this
transformation from circles to straight lines.

5.1.2 Hough Transform

The Hough transform [2] is a technique that finds clusters of points that lie on
or close to a parametric curve such as a straight line or a circle. The number
of parameters is usually two or three. In the simplest case, there is a set of
points {(x1, y1), . . . , (xn, yn)} in the plane (image space) that lie on a straight line,
parameterized by y = k0x + d0, where k0 is the slope and d0 is the intercept
of the line. A line passing through (xi, yi) fulfills the equation d = −xik + yi ,
which is the equation of a line �i in the parameter space (Hough space) of k and
d. The point of intersection of two lines �i, �j is just (k0, d0), the parameters of
the original line. Finding straight lines in the image space is therefore equivalent to
finding intersection points in the Hough space.

In practice, the measured points do not lie exactly on a straight line, and the lines
in the Hough space do not intersect exactly in a single point. The usual approach is
to define a binning in the Hough space and count the number of lines crossing each
bin. Peaks in the 2D histogram correspond to lines that are close to many points in
the image space. The size of the bins depends on the distribution of the measurement

Fig. 5.1 Conformal transformation of the circles through the origin in the (x, y)-plane (left) into
lines in the (u, v)-plane (right)
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errors and can be tuned on simulated tracks. Alternatively, a 2D binary search can
be performed using a quadtree data structure [3, 4].

The parametrization of the lines by y = kx + d can be numerically problematic
if very large values of the slope k are possible. A more robust parametrization of the
line has the form x cos ϕ + y sin ϕ − c = 0. The curve in the Hough space of ϕ and
c passing through the point (xi, yi) is a sinusoid with the equation

c = xi cos ϕ + yi sin ϕ = ri sin(ϕ + ϕi), with

ri =
√

x2
i + y2

i , ϕi = arctan(xi/yi). (5.4)

If the curve to be found in the image space is a circle through the origin, there are two
possibilities. The problem can be reduced to the straight line case by a conformal
transformation, or a circle through the origin can be parameterized in the following
form:

x2 − 2xR cos ϕ + y2 − 2yR sin ϕ = 0, (5.5)

where R is the circle radius and ϕ is the azimuth of the circle center in polar
coordinates. The curve in the Hough space of κ = 1/R and ϕ passing through
the point (xi, yi) is a sinusoid with the equation

κ = 2

ri
sin(ϕ + ϕi), (5.6)

with ri and ϕi as above, see Fig. 5.2.
If the curve to be found in the image space is a circle in general position with the

equation

(x − xc)
2 + (y − yc)

2 − R2 = 0, (5.7)

the constraint that the circle passes through the point (xi, yi) defines a second order
surface in the 3D Hough space of xc, yc, z:

z = (xi − xc)
2 + (yi − yc)

2, with z = R2. (5.8)

It follows that finding circles requires finding intersection points of surfaces in a 3D
histogram, which is computationally much more expensive than the same problem
in 2D. A search in 3D can be based on octrees, the 3D analogues of quadtrees [4].

An alternative is the randomized Hough transform [5], that randomly selects
triplets of points. The center of the circle passing through the triplet and its radius are
stored in a 3D histogram. Peak finding can be done in 3D or in the 2D histogram of
the circle centers. After finding a peak, the best circle center and radius is obtained
by computing the medoid [6] of the entries in the peak bin.
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Fig. 5.2 Top: Image space
(x, y); bottom: Hough space
(ϕ, c). The circled point in
the Hough space corresponds
to the straight line in the
image space

5.1.3 Artificial Retina

The concept of the “Artificial Retina” was introduced in [7]. Similar to the Hough
transform, it relies on a partition of the track parameter space into cells. Figure 5.3
shows a simple example with a track in 2D, specified by slope k and intercept d.

The intensity of a cell is the sum of the responses of its associated receptors to
the hits that are present in the layer. Assuming a Gaussian response, the intensity
R(k, d) of the cell centered at (k, d) is given by:

R(k, d) =
n∑

i=1

m∑
j=1

exp
(
−s2

ij /2σ 2
i

)
, (5.9)

where sij = yij − (kxi + d) is the distance of hit j in layer i from the ideal
track position in layer i, and σi is a scale parameter that regulates the width of
the receptive field in layer i. Other response functions are of course possible, and
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Fig. 5.3 Left: A cell in the parameter space of (k, d) corresponds to an ideal track with these
parameters. Right: The corresponding track receptors represent the intercepts of this ideal track
with the tracking layers. The hits of a real track are close to the track receptors within the
experimental resolution. (Adapted from [11], by permission of Elsevier)

their shape and width can be adjusted for optimal performance. As with the Hough
transform, track candidates correspond to the local maxima of intensity in parameter
space.

The artificial retina is eminently suitable for high-speed track finding, as it can be
highly parallelized and implemented on commercial FPGAs [8, 9]. For applications
in the vertex locator of LHCb (Sect. 1.6.1.4) and in a test beam, see [10, 11].

5.1.4 Legendre Transform

The Legendre transform is an extension of the Hough transform, used to find com-
mon tangent lines or tangent circles through the origin to a set C of circles [12, 13].
In the context of track finding, the circles in C are drift circles in a drift chamber or
a drift tube chamber [14], see Fig. 5.4. Assume a drift circle in the plane, with center
(xw, yw) and radius ρ. A line parameterized by x cos ϕ + y sin ϕ − c = 0 is tangent
to the circle if, and only if, its signed distance from the circle center is equal to ±ρ:

xw cos ϕ + yw sin ϕ − c = ±ρi or c = xw cos ϕ + yw sin ϕ ± ρi. (5.10)

The drift circle in the image space (x, y) therefore corresponds to two sinusoids in
the Legendre space (ϕ, c), see Fig. 5.4. The further procedure is the same as with
the Hough transform.

A circle through the origin can be parameterized by its radius R and the angle
Φ, where the circle center is given by xc = R cos Φ, yc = R sin Φ. Such a circle
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Fig. 5.4 Top: Image space
(x, y); bottom: Legendre
space (ϕ, c). The circled
point in the Legendre space
corresponds to the straight
line in the image space

touches the drift circle with center (xw, yw) and radius ρ if, and only if, the squared
distance of the circle centers is equal either to (R + ρ)2 or to (R − ρ)2:

2R (±ρ + xw cos Φ + yw sin Φ) = x2
w + y2

w − ρ2. (5.11)

In order to avoid large radii in the limit of the circle approaching a straight line, the
Legendre space is chosen as (κ,Φ), where κ = 1/R is the curvature of the circle.
The drift circle again corresponds to two sinusoids in (κ,Φ):

κ = 2(±ρ + xw cos Φ + yw sin Φ)

x2
w + y2

w − ρ2
(5.12)

The task of finding a circle through the origin can be reduced to the task of finding
a straight line if the Legendre transform is preceded by a conformal transformation,
see Sect. 5.1.1, which transforms the circle into a straight line while transforming
the drift circles into circles.
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5.1.5 Cellular Automaton

A cellular automaton (CA) is a dynamical system where space, time, and variables
are discrete [15]. It has five fundamental defining characteristics [16]:

1. It consists of a discrete lattice of sites.
2. It evolves in discrete time steps.
3. Each site takes on a finite set of possible values.
4. At each site, the value evolves according to the same deterministic rules.
5. The rules for the evolution of a site depend on a local neighbourhood around it.

Probably the best known CA is Conway’s “Game of Life” [17]. Like many, but not
all, subsequently proposed cellular automata, it assumes that the cells are located
on a regular 2D rectangular lattice. However, this assumption is too restrictive for
the application to track finding. Instead, the cells are represented by the nodes of a
graph, and the neighbourhood of a cell Ci is the set of all cells connected by an edge
to Ci .

The neighbours of a cell are divided into “inner” and “outer” neighbours such that
if Ci is an inner neighbour of Cj , then Cj is an outer neighbour of Ci . The possible
states of a cell are the non-negative integers. In practice, the states are bounded by
some upper limit depending on the number of detector layers. The initial states of
all cells are set to zero.

The earliest applications of the CA to track finding are described in [18–21].
With the exception of [18], cells are defined as short track segments connecting
hits in adjacent detector layers; segments that skip a layer are sometimes allowed as
well [22, 23]. Each cell has an inner hit and an outer hit according to the arrangement
of the detector layers. Two cells are neighbours if the outer hit of one cell is the inner
hit of the other cell. In addition, the neighbourhood relation can be further restricted
by imposing a cut on the angle spanned by the two cells (segments). It is the task
of the CA to find chains of neighbouring segments that correspond to actual tracks.
This is achieved by the following rule of evolution. At each time step, the state
of each cell is augmented by 1 if it has the same state as its inner neighbour. The
states of all cells are updated synchronously. When no state changes anymore, the
evolution is stopped. At this point, the state of a cell is the length of the longest
unbroken chain of segments terminating in this cell. An illustration of the CA is
shown in Fig. 5.5.

The actual search for track candidates starts with the cells with the highest state.
If such a cell has an inner neighbour with a state that is smaller by 1, it is attached to
the track candidate. This procedure is repeated until a cell with no inner neighbour
is reached. If, at any point, several neighbours can be attached to the track candidate,
either the “best” cell according to some criterion is selected, or the track candidate
is split into two, and each candidate is followed independently. This inevitably
results in candidates that share hits, requiring a final selection of compatible (non-
overlapping) candidates. This is the topic of Sect. 5.3.
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6 5 4 3 2 1

1

1
2

Collect tracks Creat tracklets

Fig. 5.5 Illustration of the cellular automaton algorithm. It creates tracklets and links, numbers
them as possibly situated on the same trajectory, and collects tracklets into track candidates.
(From [24], by permission of Elsevier)

In tracking detectors with few layers and little redundancy [25], the CA can be
complemented by prior information stored in a sector map [26, 27]. In this concept,
the sensors are partitioned into sectors. In order to create a sector map, a large
training sample of simulated tracks in a chosen angular and momentum region
is generated. Two sectors are declared as “friends” if a sufficiently large number
of tracks passes through them without hitting any other sector in between. The
friendship relation defines an acyclic directed graph that is stored in the sector map.

In the track-finding phase, the hits are sorted into their sectors, and the segment
finder is activated. It creates pairs of hits in friendly sectors and keeps those pairs
(segments) that pass various cuts, which are also stored in the sector map. If two
segments share a hit such that the outer hit of the inner segment is the same as the
inner hit of the outer segment, they are passed to the neighbour finder, which applies
additional cuts, also stored in the sector map. Finally, all surviving segments form
the cells of the CA.

Different sector maps for different geometrical or kinematical regions can be
created and applied sequentially. For instance, high-momentum, high-quality tracks
can be found first by using a sector map with tighter cuts. After removing their hits,
a second sector map with less selective cuts can be used to find the remaining tracks.

Another extension of the CA, termed the 4D CA, is described in [28, 29]. Pairs
of segments or triplets of hits are accepted only if the time stamps of the hits are
consistent with the hypothesis that they have been created by the same charged
particle. For the application of the 4D CA in the CBM experiment, see Sect. 11.2.
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5.1.6 Neural Networks

The application of neural networks to track finding was first proposed independently
in [30] and [31]. In this approach, the network is of the Hopfield type [32], the
neurons being track segments that connect observations in adjacent or nearby layers
of the detector; see Sect. 5.1.6.1. More recently, the HEP.TrkX pilot project was
established with the aim to develop deep neural networks for track finding in
high-multiplicity environments typical for the LHC era [33]. Two deep networks
are described in Sects. 5.1.6.2–5.1.6.3. A follow-up project, called Exa.TrkX, was
started with a kick-off meeting in June 2019 [34]; a second workshop was held in
April 2020 [35]. A reference to first published results can be found in Sect. 5.1.6.3.

5.1.6.1 Hopfield Network

A Hopfield network is a fully connected network with a single layer of neurons. In
the simplest case, the neurons are binary with two states: si = ±1, i = 1, . . . , n.
Each pair (i, j) of neurons has a fixed connection weight wij with wij = wji and
wii = 0. The states of the neurons evolve in discrete time steps according to the
following prescription:

si(t) = sign

⎡
⎣ n∑

j=1

wij sj (t − 1)

⎤
⎦ . (5.13)

The update can be synchronous (the states are recomputed in parallel) or asyn-
chronous (the states are recomputed sequentially). The network has an associated
function E(s), defined as:

E(s) = −1

2

n∑
i,j=1

wij si sj , (5.14)

where s = (s1, . . . , sn) is the state of the network. In analogy to the theory of spin
glasses, E(s) is called the energy function of the network. It can be shown that E(s)

is a non-increasing function of the time t and that the update rule Eq. (5.13) leads to
a local minimum of E(s) [36].

In most applications, including the one discussed here, the aim is to find the
global minimum rather than a local one. To this end, thermal noise is introduced
in the network. At temperature T , the state s is Boltzmann distributed with the
probability function

P(s) = 1

Z
exp [−E(s)/T ] , with Z =

∑
s

exp [−E(s)/T ] . (5.15)
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As the number of possible states rises exponentially with the number of neurons,
the partition function Z is computed in the mean-field approximation [37], and the
thermal average vi of si is given by:

vi = 〈si〉T = tanh

(
− 1

T

∂E

∂vi

)
, (5.16)

where the states v = (v1, . . . , vn) are now continuous in the interval (−1, 1). The
definition of the energy function is analogous to Eq. (5.14):

E(v) = −1

2

n∑
i,j=1

wij vi vj , (5.17)

and the update is modified accordingly:

vi(t) = tanh

⎡
⎣ 1

T

n∑
j=1

wij vj (t − 1)

⎤
⎦ . (5.18)

Finding the global minimum or at least a low local minimum of the energy function
is facilitated by deterministic annealing [38]. First, the energy function is minimized
at high temperature; the temperature is then lowered according to a predefined
cooling or annealing schedule. At low temperature, the states of the network are
close to either 1 (active) or −1 (inactive).

For the purpose of track finding, the problem has to be mapped on the Hopfield
network such that the final state of the network corresponds to the solution of the
problem. Similar to the CA, the neurons are short track segments connecting space
points in adjacent or nearby layers of the tracking detector. To keep the number of
neurons manageable, geometric cuts ensure that only segments that can be part of an
actual track in the momentum range of interest are used as neurons. The sector map
introduced in Sect. 5.1.5 can be used to store the cuts. A track can be considered as
an unbroken chain of segments, so only pairs of segments sharing a point qualify for
having a positive weight. Consider a triple of points (k, l,m) in consecutive layers,
defining two neurons vkl and vlm. The weight wklm depends on the angle between
the segments and on their length. In [31], it is defined as follows:

wklm = cosλ θklm

dkl + dlm

, (5.19)

where λ is an odd exponent and dij is the length of neuron vij , either in space
or in the projection to the bending plane. This definition of the weights favours
combinations of short segments with small angles. Small weights can be set to zero.

Constraints on the possible final configurations of the active neurons can be
included by adding a cost or penalty term to the energy function of the network. This
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serves to prevent association of a point to several tracks and to get approximately
the expected number of active neurons in the final state. For example, in [39] the
following cost term was used:

C(v) = α

⎛
⎝ ∑

k,l,n,l 	=n

vklvkn +
∑

k,l,m,k 	=m

vklvml

⎞
⎠− b, (5.20)

where α is a Lagrange multiplier and b is a small constant bias term. Minimizing
the first term leads to a competition between neurons starting or ending in the same
point, so that in the end at most one should survive. The final update equation is
given by Eq. (5.16).

For an evaluation of the performance of the Hopfield network on real data from
an experiment at the LEP electron-positron collider, see [39]. For an application to
tracking in the ALICE experiment at the LHC, see [40].

5.1.6.2 Recurrent Neural Network

The dynamics of a particle track can be modelled by a nonlinear state-space
model; see Sect. 3.2.3. A track is, thus, very similar to a discrete time series, the
main difference being that the observations are not progressing in time but in
space. Recurrent neural networks (RNNs), in particular networks of long short-term
memory (LSTM) neurons [41, 42], are routinely used for forecasting time series
arising in various contexts: financial, industrial, weather, traffic, etc. It is, therefore,
to be expected that RNNs can be trained to learn the dynamics of a track and follow
it in a way similar to the extended Kalman filter. The crucial difference is that in
the Kalman filter, the dynamics is explicitly coded in the system equation and in the
distribution of the process noise, whereas in the RNN, the dynamics is implicit in
the weights learned by the network on a training set of examples.

The first successful attempt to train an RNN for track finding is described
in [43]. Two models are presented. The first is a sequential hit predictor that,
given a sequence of past hits, predicts the position of the next hit. The second
model augments the first one by predicting the covariance matrix of the hit,
using a Gaussian distribution. Both predictors are implemented as an LSTM layer,
followed by a fully connected (FC) layer. The scheme of the Gaussian predictor is
shown in Fig. 5.6. The training data for the RNN network and the GNN network
in Sect. 5.1.6.3 were generated by the ACTS package [44].

5.1.6.3 Graph Neural Network

Like the CA described in Sect. 5.1.5, track finding with the graph neural network
(GNN) is based on the representation of the tracking data by a graph [43]. The
detector hits are the nodes (vertices) of the graph, and two nodes are connected by
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LSTM FC

Fig. 5.6 Diagram of the Gaussian hit predictor model that takes a sequence of 3D coordinates
as input and produces bivariate Gaussian probability distributions as next-step predictions. The
architecture is the same as the basic hit predictor, but the model provides additional output that
parameterizes the Gaussian covariance matrix. (Adapted from [43], by permission of the author)

IL EN NN EN NN EN

Fig. 5.7 Diagram of the Graph Neural Network model which begins with an input transformation
layer (IL) and has a number of recurrent iterations of alternating EdgeNet (EN) and NodeNet
(NN) units. In this case, the final unit is an EN, making this a segment classifier model. (Adapted
from [43], by permission of the author)

an edge if they are compatible according to some criterion. Such a criterion can
be stored in a sector map as the one described in Sect. 5.1.5. The graph is fed into
the GNN that consists of an input transformation layer (IL) followed by alternating
units of edge networks (ENs) and node networks (NNs), each implemented as a
multi-layer perceptron with two layers, see Fig. 5.7.

An EN computes a new weight for every edge from the features of the end nodes
while an NN computes new features for every node from the current features and
the edge-weighted aggregated features of all connected nodes in the adjacent layers.
The network can be used to classify whether nodes/hits or edges belong to a track or
not. The network in Fig. 5.7 classifies edges, as the last unit is an EN. An extension
of the work in [43] to track seeding and hit labelling with GNNs is described in [45].

5.1.7 Track Following and the Combinatorial Kalman Filter

In track finding methods such as the Hough transform or the CA, the complete set
of all hits serves as the primary input. Such methods have, therefore, been dubbed
“global” [46]. This is in contrast to methods that find tracks locally or sequentially,
one after the other. The most prominent example of a sequential method is track
following.

In track following, a track candidate starts from a “seed”, i.e., a short track
segment. This seed can in principle be anywhere in the tracking detector. Generating
seeds in the outer layers of the trackers has the advantage of smaller occupancy and
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less background from low-momentum tracks that spiral in the inner layers of the
tracker. Generating seeds in the inner layers, which are frequently pixel layers, has
the advantage of using 3D hits with higher resolution both in the bending plane
and in the longitudinal direction. As will be described in more detail in Chap. 10,
ATLAS and CMS, the two general-purpose experiments at the LHC, have opted for
the second solution.

The generation of seeds is often a simple combinatorial search for compatible
triplets or quadruplets of hits, potentially assisted by a CA [47], and includes
information about the size and position of the beam spot; see Sect. 7.1. Some
examples of seed generation algorithms will be given in Chap. 10.

Once the seeds have been found, each seed is then followed through the tracker
by extrapolating it toward the outside of the tracker or toward the production region,
depending on where the seed is situated. After each extrapolation step, compatible
hits are searched for and attached to the track candidate.

The progressive track recognition described in [48] can be extended to a com-
binatorial Kalman filter (CKF), introduced in [49, 50] under the name “Concurrent
Track Evolution”, see Fig. 5.8. First, each seed is fitted with one of the methods
described in Chap. 6. The parameters and the covariance matrix of the seed are then
extrapolated to the nearest tracker layer, taking into account interactions with the
detector material; see Sects. 4.3, 4.4 and 4.5. The hits in the sensor in which the
extrapolated trajectory intersects with the layer are tested for compatibility with the
predicted track parameters using a chi-square statistic; see Sects. 3.2.3 and 6.1.2. If
n compatible hits are found, n copies of the predicted state, i.e., its track parameters
and its covariance matrix, are generated, and each one of them is updated with one
of the n hits according to the Kalman filter, Eqs. (3.29) and (3.30) or Eqs. (3.31) and
(3.32). The original state is also kept and marked as having a missing hit, giving a

from seed

Reject

Accept

A B C D E
T2

T1

T3

Fig. 5.8 Schematic view of concurrent track evolution in a five-layered part of a tracking system
with hexagonal drift cells, which is traversed by three particles, labelled T1, T2 and T3. The
simulated drift time isochrones are indicated by circles. The propagation proceeds upstream from
the right to the left and starts with a seed of hits from track T1 outside of the picture. (From [49],
by permission of Elsevier)
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total of n + 1 track candidates. This procedure is iterated on each track candidate
until the last layer of the tracker is reached or the count of missing hits in a candidate
exceeds a preset threshold, typically one or two.

In the course of the combinatorial Kalman filter, it may be necessary to limit the
number of active candidates for reasons of memory and/or speed. In this case, the
“worst” track candidates are discarded and not followed anymore. The quality of a
track candidate can be measured by a combination of its total number of hits, its
number of missing hits, and its total chi-square χ2

tot (Sect. 6.4). The tuning of the
combination is usually performed on simulated data, where the correct association
of hits to tracks is known.

Avoiding a combinatorial explosion is an important issue in experiments with
high track multiplicities. Therefore, the CKF in, for instance, ATLAS and CMS
starts with seeds in the pixel detector with its very high resolution in all three spatial
dimensions. As a consequence, the compatibility test in the first non-pixel layer
rejects wrong hits with a high probability. As the CKF proceeds, the state becomes
more precisely known, and the probability of attaching a wrong hit becomes even
smaller. For more details, see Sects. 10.2 and 10.3.

5.1.8 Pattern Matching

Pattern or template matching is mostly used in real-time track finding for the purpose
of triggering on charged tracks (see Sect. 5.2). It can be applied to detectors with
a layer structure, each layer being segmented into sectors or bins [51, 52]; see
also Sect. 5.1.5. A charged particle crossing the detector generates hits in certain
bins of the layers, thereby creating a pattern of “on” and “off” bins, which can be
coded as strings of zeros and ones. The set of physically meaningful patterns is
generated by extensive simulations and stored in a pattern bank.

The number of patterns to be stored depends on the geometry and size of the
detector, on the characteristics of the tracks to be found, and on the granularity
of the binning. For the purpose of triggering a lower bound on the momentum is
usually imposed; therefore, only the patterns of tracks with momentum above the
threshold need to be stored. The granularity of the binning determines how well two
nearby tracks can be separated, and therefore depends on the occupancy of the layer.
If the binning is very coarse, for instance, only one bin per module in a silicon strip
tracker, fewer patterns have to be stored, but two nearby tracks cannot be resolved
(see Fig.1 in [52]). If the binning is very fine, for instance, a bin for each strip in
the extreme case, nearby tracks can be resolved almost perfectly, but the number
of patterns is far too large to store. Also, higher track multiplicity implies smaller
track separation on average, which in turn requires finer granularity. In any case, the
granularity has to be optimized by extensive simulation studies.

In an event, a particular configuration of hits is generated and translated into a
pattern. This pattern is compared to all patterns in the bank, and matching patterns
constitute track candidates. The sketch in Fig. 5.9 shows an example of a pattern
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Fig. 5.9 Top: Two tracks in a
detector with four layers
creating two patterns.
Bottom: Four patterns in the
pattern bank

generated by two tracks and some patterns stored in the pattern bank. To cope with
inefficiencies of the tracking detector, it may be necessary to accept partial matches.

As the number of patterns that have to be stored can be very large, the method is
feasible only if there is sufficient memory and if the comparison can be made very
fast and in a highly parallel mode. The matching has therefore to be implemented
in VLSI hardware, using content-addressable or associative memories [51, 52]. The
pattern can be arranged in a tree structure, starting with coarse granularity of the
sectors and proceeding to finer granularity. It is also possible to store patterns with
variable resolution [53].

Pattern matching was used for real-time track finding both in the vertex detector
and in the drift chamber of the CDF experiment; see Sect. 5.2.1. Later applications
include the FTK (Fast Track Trigger) for the ATLAS experiment, see Sect. 5.2.2,
and a proposed track trigger for the new CMS tracker that will be installed for the
HL-LHC, see Sect. 5.2.3.
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5.2 Online Track Finding

An early proposal for online track finding by dedicated hardware is the one
described in [52]. It is based on matching hit patterns in the tracking detector with
a pattern bank stored in associative memory; see Sect. 5.1.8. As field programmable
gate arrays (FPGAs) were still in their infancy at the time of the publication, the
associative memory (AM) is an array of 400 custom VLSI chips [51] that can hold
O(105) patterns [51]. The pattern matching is organized as a tree search through
different levels of spatial resolution [52]. This was soon followed by the actual
implementation in the CDF experiment at the Tevatron collider.

5.2.1 CDF Vertex Trigger

The Silicon Vertex Tracker (SVT, [54]) was designed to provide track impact
parameter information for the level-2 trigger of the CDF experiment [55]. It was
realized in custom hardware [56, 57]. Track finding is done by an AM, refining the
information from the XFT track processor (see below) that finds tracks in the central
drift chamber for the level-1 trigger. Tracks are fitted by a farm of digital signal
processors using a linearized fit that requires only scalar products; see Sect. 6.1.6.

The upgraded SVT, now renamed Silicon Vertex Trigger, is described in [58, 59].
If an event passes the level-1 trigger, the SVT extrapolates the XFT tracks, associates
hits in the silicon vertex detector, and computes the transverse impact parameter. Its
average latency is 24 µs. The hit association is performed by custom AM chips, the
linearized track fit in FPGAs.

The eXtremely Fast Tracker (XFT, [60, 61]) is a track processor that finds tracks
with high transverse momentum in the central drift chamber of the experiment [62].
It is highly parallel and reports its results every 132 ns, in time for the trigger level-1
decision. The XFT works with hits in the four axial superlayers. Track identification
is done in two stages called the Finder and the Linker. The Finder searches for
high-pT segments in each of the superlayers, and the Linker searches for high-pT
track candidates by combining segments from at least three (out of four possible)
segments. Both stages use pattern matching to accomplish their tasks.

5.2.2 ATLAS Fast Tracker

The Fast Tracker (FTK) system of the ATLAS experiment is designed for global
track reconstruction after each level-1 trigger [63, 64]. It enables the level-2 trigger
to gain rapid access to tracking results. The system is based on the Silicon Vertex
Trigger of the CDF experiment; see the preceding subsection. It uses hit data from
four pixel layers and from both sides of four silicon strip layers, twelve in total. The
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tracker volume is split into 64 regions or towers, which are processed independently.
The sensors are divided into “superstrips” with a coarser resolution.

Data processing starts with clustering in the pixel and in the strip sensors. The
clustering algorithm is optimized for execution in an FPGA [65]. After clustering, a
track is represented by a list of superstrips that corresponds to a pattern in the custom
AM chip [66]. Pattern matching produces track candidates at coarse resolution;
these are then refined by a high resolution track fit in an FPGA. Missing layers are
allowed in both stages. The number of patterns that have to be stored is currently
in the order of a billion. This number would have to rise by a factor of the order of
10 at the HL-LHC [63], because of the larger number of channels in the tracker and
of the higher track multiplicity, which requires finer granularity (see Sect. 5.1.8).
For this and other reasons, the FTK will not be upgraded for operation at the HL-
LHC; instead, the focus will be on the acceleration of the track reconstruction
software [67, 68]; see also Sect. 10.2.

The fitted tracks are sent to the Second Stage Board wherein they are extrapolated
to the remaining silicon layers and fitted again. Finally, duplicate tracks are removed
based on the number of common hits and χ2 [64].

5.2.3 CMS Track Trigger

Starting in 2026, the luminosity of the LHC is expected to increase by a factor of
about ten above the current design value. The current CMS silicon tracker, having
been in operation since 2009, cannot withstand the radiation level predicted for the
HL-LHC and has no triggering capability. It will, therefore, be replaced by a newly
designed tracker [69]. The new design features so-called pT modules as the basic
sensing devices. A pT module consists of two closely stacked sensors, either a pixel
and a strip sensor (PS) or two strip sensors (2S); see [70] and Fig. 5.10. A charged
particle crossing the stack generates a stub that consists of two clusters. Tracks of
sufficiently high transverse momentum (pT > 2 GeV) have little curvature and a
small offset in the sensor stack, in contrast to tracks with smaller pT, which are bent

Fig. 5.10 A pT module of
the new CMS tracker.
High-momentum tracks pass
the pT cut, low-momentum
tracks fail. (From [70],
reproduced under License
CC-BY-3.0)
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more strongly and have a larger offset. Stubs that pass the cut on pT are the input to
the track trigger.

Three concepts are explored for reconstructing tracks at the level-1 trigger, two
using an all-FPGA system [71], the third one using a combination of AM and
FPGAs [72].

5.2.3.1 Time Multiplexing

The all-FPGA system is based on the principle of time multiplexing [73]. The
fundamental idea is that several sources send their information from a given bunch
crossing to a single destination for processing. The architecture of the system has
two layers: the first extracts and preprocesses the stubs and sends them to the second
layer, which contains the track finding processors.

Two track finding algorithms are investigated in the time-multiplexed track
trigger, tracklets and Hough transform. The tracklet algorithm has the following
stages:

1. Stub organization: The stubs are sorted into sectors in φ.
2. Seeding: Tracklets are formed from stubs in adjacent layers.
3. Projection: Tracklets are projected to other layers to search for matching stubs,

both inside-out and outside-in.
4. Fit: Track fit of stubs matched to the tracklet.
5. Duplicate removal: Candidate selection based on χ2.

The second algorithm [71] has the following stages:

1. Hough transform: Stubs on the same trajectory are transformed into lines that
meet in the vicinity of a single point; see Sect. 5.1.2.

2. Fit: Combinatorial Kalman filter, see Sect. 5.1.7.
3. Duplicate Removal: Tracks are removed whose parameters do not correspond to

the bin of the Hough transform where they were found.

5.2.3.2 Pattern Matching

Pattern matching is done in parallel in 48 regions called trigger towers [72]. Each
tower has two boards for pattern recognition and track fitting. Pattern recognition
is done with lower resolution data, which are compared to predefined patterns by
a content addressable memory. Only patterns corresponding to tracks with pT >

2 GeV are stored. If a match is found, the corresponding high-resolution data are
sent to the track fitting module. The linearized track fit (Sect. 6.1.6) runs in the
FPGA and computes the helix parameters and the χ2.
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5.3 Candidate Selection

After track finding, track candidates may share hits. If two candidates share more
hits than is deemed acceptable, for instance more than one, the track candidates
are called incompatible. The incompatibility relation can be represented by an
undirected graph (V ,E), where the n vertices vi ∈ V, i = 1, . . . , n are the track
candidates. Two incompatible track candidates vi and vj are connected by the edge
eij = eji , which is defined as the unordered pair (vi, vj ). The number of compatible
track candidates can be maximized by finding an independent set of vertices of
maximal size, i.e., a subset V1 ⊆ V of vertices, no two of which are connected by
an edge.

Alternatively, the graph can represent the compatibility relation, in which case
two compatible tracks/vertices are connected by an edge. The problem is then to find
a maximum clique, i.e., a fully connected subset V2 ⊆ V of vertices of maximal
size.

Both problems are NP-hard [74] so that finding a maximum independent set or
maximum clique can be very time-consuming for large graphs. A set of C routines
for finding cliques in a compatibility graph can be found in [75]. The fastest exact
algorithm for finding independent sets published up to now is the one in [76]. An
independent set can also be obtained by finding a vertex cover, i.e., a set V3 ⊆ V of
vertices the removal of which leaves an independent set. In [77], it was shown that
there is a one-to-one correspondence between minimal vertex covers or maximal
independent sets and steady states of Hopfield networks [32] with nonpositive
weights. In addition, such a network converges to its steady state in at most 2n

steps. There may be many minimal vertex covers of different size, and the steady
state reached depends on the initial state of the network, of which there are 2n.
Finding the minimal vertex cover by an exhaustive or random search of all initial
states is, therefore, computationally infeasible for large n.

In any case, finding the largest independent set is not necessarily the best
approach for finding an “optimal” set of track candidates, as the quality of the track
candidates (see Sect. 6.4) should be taken into account, too. If the quality of the
candidate vi is quantified by a positive weight wi , the problem is now to find an
independent set that maximizes the sum of weights (MWIS). Like its unweighted
counterpart, the MWIS problem is NP-hard. For a recent approximative solution and
numerous references to previous work, see [78].

If the weight wi is mapped to a quality indicator qi ∈ [0, 1], the network in [77]
can be generalized to a recurrent network with annealing that aims to find the set of
compatible vertices with the largest sum of weights [79]; see also Sect. 11.1.
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Chapter 6
Track Fitting

Abstract Track fitting is an application of established statistical estimation pro-
cedures with well-known properties. For a long time, estimators based on the
least-squares principle were—with some notable exceptions—the principal methods
for track fitting. More recently, robust and adaptive methods have found their way
into the reconstruction programs. The first section of the chapter presents least-
squares regression, the extended Kalman filter, regression with breakpoints, general
broken lines and the triplet fit. The following section discusses robust regression by
the M-estimator, the deterministic annealing filter, and the Gaussian-sum filter for
electron reconstruction. The next section deals with linearized fits of space points to
circles and helices. The chapter concludes with a section on track quality and shows
how to test the track hypothesis, how to detect outliers, and how to find kinks in a
track.

6.1 Least-Squares Fitting

In this section, three methods are described that are based on the least-squares
(LS) principle for estimation of the track parameters. They are linear or linearized
regression, the (extended) Kalman filter, and regression with breakpoints. In the
case of a strictly linear model, they are mathematically equivalent. With a nonlinear
model, there may be small differences because of different choices of the expansion
point(s). In the following, the more frequent case of nonlinear models will be
described, which contains the linear model as a special case.

6.1.1 Least-Squares Regression

Assume that track finding has produced a track candidate, i.e., a collection of
n measurements m1, . . . ,mn in different layers of the tracking detector, along
with their respective covariance matrices V 1, . . . ,V n. The measurements may have
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different dimensions mi and usually have different covariance matrices, resulting
in a heteroskedastic model. The initial parameters of the track to be fitted to the
measurements are denoted by p. They are assumed to be tied to a reference surface
(layer 0). The regression model has the following form:

m = f (p) + ε, E [ε] = 0, Var [ε] = V , (6.1)

where m = (m1, . . . ,mn)
T and f = (f 1, . . . ,f n)

T. The function f k maps the
initial parameters p to the measurement mk in layer k. It is the composition of the
track propagators up to layer k (see Sect. 4.3) and the function that maps the track
state to the measurement (see Sect. 3.2.3):

f k = hk ◦ f k |k−1 ◦ f k−1|k−2 ◦ . . . ◦ f 2|1 ◦ f 1|0, (6.2)

Its Jacobian F k is given by the product of the respective Jacobians:

F k = H kF k |k−1F k−1|k−2 . . . F 2|1F 1|0. (6.3)

The covariance matrix V is the sum of two parts, V = VM + V S. The first part
is the joint covariance matrix of all measurement errors. These can virtually always
be assumed to be uncorrelated across different layers, so that VM is block-diagonal:

VM = blkdiag(V 1, . . . ,V n), with V i = Var [εi] , i = 1, . . . , n. (6.4)

The second part V S is the joint covariance matrix of the process noise caused by
material effects, mainly multiple Coulomb scattering; see Sect. 4.5. As in Sect. 3.2.3,
the process noise encountered during the propagation from layer k − 1 to layer k

is denoted by γ k and its covariance matrix by Qk . The integrated process noise up
to layer k is denoted by Γk . Linearized error propagation along the track gives the
following expression for the covariance matrix of Γk:

Var [Γk] =
k∑

i=1

F k |iQiF
T
k |i , (6.5)

with

F k |i = F k |k−1F k−1|k−2 · · · F i+1|i for i < k and F k |k = I . (6.6)

If i < k, Γi and Γk are correlated with the following cross-covariance matrix:

Cov [Γi ,Γk] =
i∑

j=1

F i |j Qj F T
k |j . (6.7)
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Error propagation from the track states to the measurements gives the final block
structure of V S:

V S =

⎛
⎜⎜⎜⎝

C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn

⎞
⎟⎟⎟⎠ , with Cik =

⎧⎪⎪⎨
⎪⎪⎩

H kVar [Γk] HT
k , if i = k

H iCov [Γi ,Γk] HT
k , if i < k

CT
ki , if i > k

(6.8)

Estimation of the initial state p is usually done by the Gauss-Newton method;
see Sect. 3.2.2. A first approximation p̃0 of p has to be delivered by the track finder
to be used as the expansion point to compute the Jacobians in Eq. (6.3). The updated
estimate p̃1 is obtained via:

p̃1 = p̃0 + (F T
0 GF 0)

−1F T
0 G[m − f (p̃0)], F 0 = ∂f

∂p

∣∣∣∣ p̃0
. (6.9)

The corresponding chi-square statistic is given by:

χ2
1 = [m − f (p̃1)]TG[m − f (p̃1)], with G = V −1. (6.10)

It is approximately χ2 distributed with M − m degrees of freedom, where M =
dim(G) is the sum of all mi , and m is the number of estimated track parameters,
usually five.

The Jacobians are recomputed at the new expansion point p̃1, and an updated
estimate p̃2 is computed. This two-step procedure is iterated until the absolute
difference

∣∣χ2
k+1 − χ2

k

∣∣ is below a predefined threshold or a maximal number of
iterations is reached.

The p-value of the chi-square statistic (see Sect. 3.2.1) is the primary quality
indicator of the track fit; see Sect. 6.4. A small p-value indicates a misspecification
of the model or at least one outlying measurement that does not fit to the track. The
standardized residuals or pulls can be used to look for outliers. The residuals r of
the fit are defined by:

r = m − f (p̃), (6.11)

where p̃ is the final estimate after convergence. Their covariance matrix is obtained
by linearized error propagation and is approximately equal to:

R = Var [r] ≈ V − F (F TGF )−1F T. (6.12)

Note that R has rank M −m and thus cannot be inverted. The standardized residuals
s are given by:

s = r ./
√

diag(R), (6.13)
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where ./ denotes the point-wise division of two vectors or matrices (MATLAB®

convention). They are approximately distributed according to a standard normal
distribution. Outliers are characterized by an unusually large value of s.

The residuals r , i.e., the differences of the measured track and the fitted track
are a superposition of measurement noise and process noise (mainly multiple
scattering). The vector r of residuals can be further decomposed into two parts
corresponding to the two types of noise [1]:

r = rM + rS, with (6.14)

rM = VMG′m, RM = Var [rM] = VMG′VM, (6.15)

rS = V SG′m, RS = Var [rS] = V SG′V S, (6.16)

G′ = GRG. (6.17)

The two noise contributions can thus be checked independently via their standard-
ized residuals sM and sS, given by:

sM = rM ./
√

diag(RM) (6.18)

sS = rS ./
√

diag(RS) (6.19)

6.1.2 Extended Kalman Filter

A “progressive” or recursive version of the LS regression for track fitting was first
proposed in [2]. Soon, it was realized that this was the same as an (extended) Kalman
filter [3] in the state space model of the track dynamics. The Kalman filter has the
advantage that only small matrices have to be inverted, that the track fit follows the
track as closely as possible, and that material effects such as multiple scattering and
energy loss can be treated locally in each measurement or material layer. In addition,
the filter can be complemented by the smoother; see Sect. 3.2.3.

In track fitting with the extended Kalman filter, it is assumed that the trajectory
crosses a number of surfaces or layers with well-defined positions and orientations.
A layer can be a measurement layer, a material layer, or both. At the intersection
point of the trajectory with layer k, the state vector qk contains information about
the local position, the local direction, and the local momentum of the track. The
uncertainty of the information is specified by the associated covariance matrix Ck .
Different possible parameterizations of the track state are discussed in Sect. 4.2.

The Kalman filter is a sequence of alternating prediction and update steps;
see Sect. 3.2.3. In the prediction step, the estimate q̃k−1 of the track state in layer
k − 1 is extrapolated to layer k, along with its covariance matrix Ck−1:

q̃k |k−1 = f k |k−1(q̃k−1), Ck |k−1 = F k |k−1Ck−1F
T
k |k−1, (6.20)
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where f k |k−1 is the track propagator from layer k − 1 to layer k, and F k |k−1 is its
Jacobian matrix; see Sect. 4.3.

The update step is different in material and detector layers. In a material layer,
multiple scattering is taken into account by inflating the covariance matrix elements
of the track directions and, in a thick scatterer, of the track position; see Sect. 4.5.
Energy loss by ionization is taken into account by decreasing the track momentum.
For the treatment of electron bremsstrahlung, see Sect. 6.2.3.

The update step in a detector layer is given by Eqs. (3.29) and (3.30) or
Eqs. (3.31) and (3.32). The associated chi-square statistic χ2

k , Eq. (3.35), can be
used to test the compatibility of the observation mk with the predicted state q̃k |k−1

in the combinatorial Kalman filter; see Sect. 5.1.7. A large value of χ2
k or a small

p-value indicates that the observation does not belong to the track.
In track fitting, the initial state q0 is obtained from the track finder and therefore

contains information from the observations. In order not to use the information
twice, its covariance matrix is set to a large diagonal matrix. As a consequence, the
initial chi-square statistics χ2

k have zero degrees of freedom, until the covariance
matrix of the state vector has full rank. For instance, if all measurements are 2D,
and the state is 5D, χ2

1 and χ2
2 have zero degrees of freedom, χ2

3 has one degree of
freedom, all subsequent χ2

k have two degrees of freedom and the total chi-square
statistic χ2

tot has 2n − 5 degrees of freedom.
The smoother can be implemented either according to Eqs. (3.36) and (3.37) or

by running a second filter in the opposite direction and combining the states of the
two filters by a weighted mean (Eq. (3.38)):

q̃k |n = Ck |n
[
Ck

−1q̃k +
(
C b

k |k+1

)−1
q̃ b

k |k+1

]
, C−1

k |n = C−1
k +

(
C b

k |k+1

)−1
,

(6.21)

where q̃ b
k |k+1 is the predicted state from the backward filter and C b

k |k+1 its
covariance matrix. Alternatively, the predicted state from the forward filter and the
updated state from the backward filter can be combined. The associated chi-square
statistic χ2

k |n (Eqs. (3.39) and (3.40)) can be used to test the compatibility of the
observation mk with the smoothed state q̃k |n, using the entire track information. A
large value of χ2

k |n or a small p-value indicates that the observation does not belong
to the track and is an outlier; see Sect. 6.4.2. A simplified version of the chi-square
statistic χ2

k |n is used in the deterministic annealing filter; see Sect. 6.2.2.

6.1.3 Regression with Breakpoints

Instead of absorbing the effects of multiple scattering in the covariance matrix
of the process noise, the scattering angles at certain points, called breakpoints,
can be explicitly incorporated into the track model as additional parameters. At
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these breakpoints, the scattering angles are estimated [4, 5], using their known
expectation (zero) and known covariance matrix in the curvilinear parameterization;
see Sect. 4.5.1. The breakpoint fit is mathematically equivalent both to LS regression
in the linear approximation of the model and to the Kalman filter, unless the initial
state of the latter has non-negligible information.

Let θj = (θj1, θj2), j = 1, . . . , m denote two uncorrelated multiple scattering
angles at the breakpoint j , and Qj their covariance matrix. Then the regression
model in Eq. (6.1) can be modified to:

mk = f̂ k(p, θ1, . . . , θjk
) + εk, E [εk] = 0, Var [εk] = V k, k = 1, . . . , n,

(6.22)

where jk is the index of the last breakpoint before measurement layer k. All
measurement errors εk are now independent, and their joint covariance matrix is
block-diagonal, as is the joint covariance matrix of all θj . The full regression model,
which includes the scattering angles as additional parameters, now reads:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1
...

mn

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̂ 1(p, θ1, . . . , θj1)
...

f̂ n(p, θ1, . . . , θm)

θ1
...

θm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ δ, with (6.23)

E [δ] = 0, Var [δ] = blkdiag(V 1, . . . ,V n,Q1, . . . ,Qm). (6.24)

If the functions f̂ k are Taylor-expanded to first order, a linear regression model with
the following structure is obtained:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1
...

mn

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F 1 H 1|1 · · · H 1|j1 O · · · O
...

...
...

...
...

...
...

F n H n|1 · · · · · · · · · · · · H n|m
O I O · · · · · · · · · O
...

...
...

...
...

...
...

O · · · · · · · · · · · · O I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

p

θ1
...

θm

⎞
⎟⎟⎟⎠+ c, (6.25)

where H k |j , j ≤ jk is the Jacobian matrix of the function that describes the
dependence of mk on θj and F k is as in Eq. (6.3).

The following two subsections describe two efficient implementations of the
breakpoint concept.
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6.1.4 General Broken Lines

The general broken lines (GBL) algorithm [6] is a fast track refit based on
the breakpoint concept. It is particularly useful for track-based alignment and
calibration with the Millepede-II package [7]. It is assumed that only thin scatterers
are present, or that thick scatterers are divided into several thin scatterers. The
algorithm needs an initial trajectory as a reference.

At each measurement plane and thin scatterer, a local orthonormal coordinate
system (u, v,w) is defined. The natural choice of the w-axis is perpendicular to the
sensor plane for a measurement and parallel to the track direction for a scatterer. At
each thin scatterer, the offset (u, v) is a fit parameter, as is the global signed inverse
momentum q/p. The prior information on the scattering angles is the same as above,
obtained from multiple scattering theory; see Sect. 4.5.1. The transformations from
the curvilinear frame following the track to the local frames are given in Sect. 4.4.1.

The corrections to the track parameters in a measurement plane depend only
on the (inverse) momentum and the adjacent offsets; therefore, their estimation
requires the inversion of a bordered band matrix, the computing time of which is
proportional to the number of breakpoints. The GBL is available in a dedicated
software package [8] and is also implemented in GENFIT [9–13].

A comparative study in [6] shows that track fitting with the GBL is a little faster
than the extended Kalman filter and up to three times faster than the Kalman filter
plus smoother.

6.1.5 Triplet Fit

A track fit for situations in which the principal source of stochastic uncertainty is
multiple scattering is described in [14]. The fit is an independent combination of
fits to triplets of hits, where the middle point of a triplet is a breakpoint. As the
triplet fits are fast and can be parallelized, the method is well suited for online
reconstruction. The fit has been designed for low momentum tracks with several
turns in the detector, but performs also very well for tracks in a high-resolution
pixel tracker with momenta up to 10 GeV. For a comparison with a full helix fit
and the GBL fit (Sect. 6.1.4) see [14]. The fit is implemented in a software package
called WATSON [15] which is available on request from the authors of [14].

6.1.6 Fast Track Fit by Affine Transformation

Online track reconstruction in the first-level trigger, see Sect. 5.2, requires an ultra-
fast track fit that can be implemented in high-speed hardware such as FPGAs [16].
One possibility to achieve the required speed is to fit an affine model to a training
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sample of simulated tracks that expresses the track parameters p as an affine
function of the measurements m [17]:

p̃ = Am + c. (6.26)

The matrix A and the vector c are estimated by minimizing the objective function

S (A, c) =
N∑

i=1

(
Ami + c − pi

)T (
Ami + c − pi

)
, (6.27)

where the pi are the true parameters of the N tracks in the training sample. The
solution is given by:

A =
[
〈pmT〉 − 〈p〉 〈mT〉

]
C−1, c = 〈p〉 − A 〈m〉 , C = 〈mmT〉 − 〈m〉 〈mT〉,

(6.28)

where C is the sample covariance matrix of the measurement vectors, and the angle
brackets denote the average over the training sample. The goodness-of-fit can be
judged by the chi-square statistic

χ2 = [m − 〈m〉]T C−1 [m − 〈m〉] , (6.29)

which is approximately χ2-distributed with M −m degrees of freedom, where M =
dim(m) and m = dim(p). If the track model is exactly linear, i.e., m = Fp with
some matrix F , the matrix A is equal to the Moore-Penrose pseudoinverse of F ,
and the rank of C is m, so that C has m positive eigenvalues while the remaining
ones are equal to 0. If the linear approximation to the track model is valid in the
entire training sample, C has m large and M − m small eigenvalues. The training
sample, therefore, has to be chosen such that this condition is satisfied. In practice,
this means that the detector volume has to be partitioned into many small regions,
each with its own training sample. The training automatically takes into account
material effects, measurement errors, misalignment, and the configuration of the
magnetic field.

6.2 Robust and Adaptive Fitting

6.2.1 Robust Regression

The LS regression described in Sect. 6.1.1 is not robust in the sense that outliers in
the track candidate lead to a significant distortion of the estimated parameters. One
way to cope with this problem is to look for outliers in the standardized residuals of
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the regression and to remove them; see Sect. 6.4.2. A more elegant way is to make
the regression robust by minimizing an objective function that is different from the
sum of squared differences between the model and the measurements.

Three important approaches to robust regression are Least Median of Squares
(LMS), Least Trimmed Squares (LTS), and M-estimators [18, 19]. LMS regression
is difficult to compute in the context of track fitting; it is statistically less efficient
than either LS or LTS, and there is no simple prescription for the computation
of the covariance matrix of the estimated parameters. The computation of the
LTS estimator requires the solution of a combinatorial optimization problem and
is therefore rather time-consuming. The M-estimator, on the other hand, can be
implemented as an iterated re-weighted LS regression and is therefore an excellent
method for a robust track fit. The re-weighting can be done on single components
of the measurement vectors mi or on entire measurement vectors.

An M-estimator is characterized by a function ψ(z) that determines the corre-
sponding weight function ω(z) = ψ(z)/z, where z is the standardized residual of a
measurement. Setting ψ(z) = z yields the LS estimator. Table 6.1 and Fig. 6.1 show
three examples of ψ and weight functions from the literature.

The constant c controls the shape of the weight function. The weight function of
Huber’s M-estimator [19] is equal to one in the interval [−c, c] and slowly drops
to zero outside the interval (see Fig. 6.1a). Tukey’s biweight [20] is a redescending
estimator for which the weight function is equal to zero outside the interval [−c, c]
(see Fig. 6.1b). For the adaptive M-estimator [21], c is the point where the weight
function is equal to 0.5. This estimator has an additional control parameter T that
modifies the transition from large to small weight and can be used for implementing
an annealing procedure; see Sect. 6.2.2. In the limit of T → 0, the estimator is
redescending, as the weight function approaches a step function that drops from 1
to 0 at z = c (see Fig. 6.1c). The computation of the M-estimator is summarized
in Table 6.2. In order to be less sensitive to multiple scattering, it uses only the
measurement component sM of the standardized residuals; see Eq. (6.18).

Table 6.1 The ψ functions and the corresponding weight functions ω of three M-estimators. c and
T are constants. Further explanations can be found in the text

Name ψ(z) ω(z)

Huber
z, if |z| ≤ c

c · sign(z), if |z| > c

1, if |z| ≤ c

c/|z|, if |z| > c

Tukey’s biweight
z (1 − z2/c2)2, if |z| ≤ c

0, if |z| > c

(1 − z2/c2)2, if |z| ≤ c

0, if |z| > c

Adaptive
z exp(−z2/2T )

exp(−z2/2T ) + exp(−c2/2T )

exp(−z2/2T )

exp(−z2/2T ) + exp(−c2/2T )
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Fig. 6.1 The weight functions of the three M-estimators in Table 6.1. (a) Huber type with c = 2.
(b) Turkey’s biweight with c = 3. (c) Adaptive with c = 3

6.2.2 Deterministic Annealing Filter

The deterministic annealing filter (DAF) is an adaptive version of the standard
Kalman filter [22]. It can modify the influence of outlying measurements by
assigning them a smaller weight. It can also deal with the case that two (or more)
measurements in the same detector layer are tagged by the track finder as valid
candidates for inclusion in the track. This is particularly relevant in the LHC
experiments, given the high track density in the central tracker. It is then up to the
track fit to decide which of the competing measurements, if any, is most compatible
with the local track state. Another use case is the choice between two mirror hits in
a drift chamber. The DAF is implemented in GENFIT [9–12].
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The measurements in layer k are denoted by m
j
k , j = 1, . . . , Mk , and their

covariance matrices by V
j
i . The DAF is implemented as an iterated Kalman filter

plus smoother with annealing; see Table 6.3 for the basic sequence and [23, 24] for
implementation details. In each layer, the state vector is updated with a weighted
mean of the measurements, using the covariance matrices of the current iteration.

Table 6.2 Algorithm: Track fit with M-estimator

TRACK FIT WITH M-ESTIMATOR

1. Set ε = 10−6, ̂V = V , V̂M = VM, and compute the LS regression.
2. Compute the standardized residuals sM in Eq. (6.18).
3. Compute the weights wj of the components sM,j of sM according to:

wj = max[ε, ω(sM,j )], j = 1, . . . , M. (6.30)

Set VM = V̂M./diag(w) and V = VM + VS.
4. Recompute the LS regression, set V = ̂V and repeat from step 2 until convergence.

Table 6.3 Algorithm: Deterministic annealing filter

DETERMINISTIC ANNEALING FILTER

1. Set ε = 10−6, set the iteration counter I = 0 and V
j
k (0) = V

j
k , j = 1, . . . , Mk, k =

1, . . . , n. Choose a threshold χ2
c and an initial temperature T0.

2. Run a Kalman filter plus smoother, using the covariance matrices V
j
k (I ) in all updates.

3. For all layers k = 1, . . . , n, compute the weights w
j
k of measurements m

j
k , j = 1, . . . , Mk :

w
j
k = max

[
ε,

exp(−X
j
k /2Tk)

exp(−χ2
c /2Tk) +∑Mk

�=1 exp(−X�
k/2Tk)

]
,

X
j
k =

[
m

j
k − hk(qk |n)

]T [
V

j
k (0)

]−1
[
m

j
k − hk(qk |n)

]
.

X
j
k is the χ2-distance of m

j
k from the smoothed state in layer k in the metric defined by the

inverse of V
j
k (0), see Eq. (3.39).

4. Increase the iteration counter I by 1 and set V
j
k (I ) = V

j
k (0)/w

j
k , j = 1, . . . , Mk, k =

1, . . . , n.
5. Set the new temperature TI according to the chosen annealing schedule and go to step 2.
6. When the final temperature is reached, iterate until convergence.
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6.2.3 Gaussian-Sum Filter

The Kalman filter is (near) optimal if the track model is (approximately) linear, and
both system and measurement noise are (approximately) Gaussian; see Sect. 3.2.3.
If the noise is long-tailed or highly asymmetric, the Gaussian-sum filter (GSF) is an
alternative estimator. It can be applied to a broad class of non-Gaussian distributions
by allowing all densities involved to be mixtures of normal PDF s or Gaussian sums.
The GSF can be applied in the following use cases:

1. Long-tailed measurement errors. The distribution of the measurement errors is
contaminated by frequent outliers and can be modelled by a mixture of two
Gaussians, the “core” and the “tails” [25].

2. Thin scatterers. The distribution of the multiple scattering angle in thin layers
is non-Gaussian because of its long tails [26], but can be approximated by a
Gaussian sum with two components [27]; see Sect. 4.5.1.

3. Inhomogeneous scatterers. Multiple scattering in an inhomogeneous material is
often treated by computing an average thickness and an average radiation length
(Eq. (4.79)). With the GSF, it is possible to describe the angular distribution by a
Gaussian sum, with one or two components for each type of material [28].

4. Energy loss by bremsstrahlung. The distribution of the energy loss caused by
bremsstrahlung of electrons is very far from being Gaussian. While the Kalman
filter is restricted to using the first two moments (mean and variance) of the
distribution, an approximation by a normal mixture allows the GSF to take into
account more details of the shape of the energy loss PDF [29, 30]; see Sect. 4.5.3.

In the GSF, the PDF of the state vector can be a Gaussian sum at every surface. First
assume that the surface is a material surface and that the predicted state vector q at
the entry of the surface has the following normal mixture PDF with J components:

p0(q ) =
J∑

j=1

πj ϕ(q ; qj ,Cj ),

J∑
j=1

πj = 1, (6.31)

where ϕ(q ; qj ,Cj ) is the normal PDF with mean qj and covariance matrix Cj , j =
1, . . . , J . The process noise γ in the surface is modeled by a normal mixture as well
(see also Sect. 3.2.3.2):

g(γ ) =
M∑

m=1

ωmϕ(γ ;gm,Qm),

M∑
m=1

ωm = 1. (6.32)

Note that both J and M may be equal to one. Then the PDF of the state vector at the
exit of the surface is given by the following normal mixture with J ×M components:

p1(q ) =
J∑

j=1

M∑
m=1

πj ωmϕ(q ; qj + gm,Cj + Qm). (6.33)
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Now assume that the surface is a measurement surface and that the distribution
of the measurement error of measurement m is modeled by a normal mixture:

g(ε) =
M∑

m=1

ωmϕ(ε; 0,Vm),

M∑
m=1

ωm = 1. (6.34)

Again, J and M may be equal to one. The PDF of the updated state vector is given
by:

p1(q ) =
J∑

j=1

M∑
m=1

ηjmϕ(q ; qjm,Cjm), (6.35)

with

ηjm ∝ πj ωmϕ(m;h(qj ),Vm + H Cj HT),

J∑
j=1

M∑
m=1

ηjm = 1. (6.36)

The mean qjm and the covariance matrix Cjm are obtained by the Kalman filter
update of component j of the predicted PDF p0(q ) with component m of the
measurement error PDF g(ε), see Eqs. (3.29) and (3.30) or Eqs. (3.31) and (3.32).

Finally, assume that there are M measurements mm in the measurement surface,
with weights ωm, m = 1, . . . ,M . In the absence or prior information, all weights
are set to 1/M . The observation m can then be modeled by the following normal
mixture PDF :

g(m) =
M∑

m=1

ωmϕ(m;mm,Vm),

M∑
m=1

ωm = 1. (6.37)

The PDF of the updated state vector is given by:

p1(q ) =
J∑

j=1

M∑
m=1

ηjmϕ(q ; qjm,Cjm), (6.38)

with

ηjm ∝ πj ωmϕ(mm;h(qj ),Vm + H Cj HT),

J∑
j=1

M∑
m=1

ηjm = 1. (6.39)

The mean qjm and the covariance matrix Cjm are obtained by a Kalman filter update
of component j of the predicted PDF p0(q ) with component m of the observation
PDF g(m). The resulting GSF is basically a combinatorial Kalman filter in which
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each track candidate has an additional weight which shows how likely it is compared
to the other ones. This version of the GSF can be used for track finding; in this case,
a missing hit with large errors should be added in each layer [31]. Its weight can
reflect the hit efficiency of the measurement device.

In principle, the number of components rises exponentially in the course of the
GSF, and it is necessary to reduce their number whenever it exceeds a threshold
K set by the user. The simplest way of reducing the number of components is to
keep the K components with the largest weights, drop the remaining ones, and
renormalize the weights to a sum of one. A more sophisticated approach is to search
for clusters among the components and to collapse the components in a cluster to
a single Gaussian with the same mean and covariance matrix. Clustering can be
based on the similarity between components, as measured by, e.g., the Kullback–
Leibler divergence [30]. For a brief review of clustering algorithms, see Sect. 3.3.
The choice of the threshold K and the clustering procedure have to be optimized by
simulation studies.

Even for moderate values of K , the GSF is significantly slower than the Kalman
filter; it is, therefore, used mainly for special applications such as the track fit of
electrons with non-negligible bremsstrahlung [30, 32, 33].

6.3 Linear Approaches to Circle and Helix Fitting

6.3.1 Conformal Mapping Method

The conformal transformation described in Sect. 5.1.1 can be generalized to deal
with circles passing close the origin [34]. The conformal transformation maps such a
circle to a circle with a very small curvature, which in turn can be well approximated
by a parabola:

v = 1

2b
− a

b
· u − ε

(
R

b

)3

· u2, (6.40)

where ε = R − √
a2 + b2 is the impact parameter. A standard parabola fit to the

measurements in the transformed (u, v)-coordinates yields the parameters A, B and
C according to

v = A + Bu + Cu2, (6.41)

and the circle parameters are therefore given by

b = 1

2A
, a = −bB, ε = −C · b3

(a2 + b2)3/2 , (6.42)
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using the approximation R ≈ √
a2 + b2 in the expression of ε [34]. Following

Gluckstern [35], it is also possible to obtain expressions of the estimated errors of
the circle parameters [34].

6.3.2 Chernov and Ososkov’s Method

The task of fitting a circular track to a set of measurements is tantamount to
minimizing the function

χ2 =
n∑

i=1

di
2, (6.43)

where di are measurement residuals orthogonal to the particle trajectory:

di = ±
[√

(xi − a)2 + (yi − b)2 − R

]
, i = 1, . . . , n, (6.44)

where a, b, and R are the coordinates of the circle centre and the radius. The
approach of Chernov and Ososkov [36] is to simplify this non-linear minimization
problem by introducing an approximate expression for the residuals di ,

di ≈ ±
[
(xi − a)2 + (yi − b)2 − R2

]
/2R, (6.45)

which holds true with high precision as long as the residuals are small compared
to the circle radius. The equations obtained by differentiating χ2 with respect to
the circle parameters and setting these to zero are quartic (polynomial equations of
degree 4) and can be solved efficiently by a standard Newton iteration procedure.

6.3.3 Karimäki’s Method

Karimäki’s approach [37] starts from the simplified expression of the residuals
di introduced by Chernov and Ososkov [36] and considers a χ2 with weighted
residuals:

χ2 =
n∑

i=1

widi
2, (6.46)

The weights can for instance contain measurement uncertainties if they are not the
same for all measurements (xi, yi).



118 6 Track Fitting

The χ2 function is minimized with respect to a set of circle parameters with
Gaussian behaviour: the curvature κ (the inverse radius of curvature), the impact
parameter ε (the distance from the origin to the point of closest approach of the
fitted circle), and the direction φ of the tangent of the circle at the point of closest
approach. Using this set of parameters, the simplified residuals are expressed as

di = 1

2
κri

2 − (1 + κε)ri sin(φ − φi) + 1

2
κε2 + ε, (6.47)

where ri and φi are the polar coordinates of measurement i. The residuals can be
written as di = (1 + κε) ηi , with

ηi = γ ri
2 − ri sin(φ − φi) + δ, (6.48)

and

γ = κ

2(1 + κε)
, δ = 1 + κε/2

1 + κε
ε. (6.49)

Using these definitions, the χ2 can be written as

χ2 = (1 + κε)2 χ̃2, (6.50)

where χ̃2 = ∑
i wiη

2
i . With the approximation 1 + κε ≈ 1, χ̃2 can be minimized

instead of χ2, leading to the attractive feature of a set of equations with explicit
solutions:

φ = 1

2
arctan(2q1/q2), (6.51)

γ = (sin φ · Cxz − cos φ · Cyz

)
/Czz, (6.52)

δ = −γ 〈z〉 + sin φ〈x〉 − cos φ〈y〉, (6.53)

where q1 = CzzCxy −CxzCyz and q2 = Czz(Cxx −Cyy)−C2
xz +C2

yz and the angle
brackets 〈〉 denote a weighted average, e.g., 〈x〉 = ∑i wixi/

∑
i wi . The variances

and covariances of the measurements x, y and z = x2 + y2 are given by

Cxx = 〈x2〉 − 〈x〉2, Cxy = 〈xy〉 − 〈x〉〈y〉, Cyy = 〈y2〉 − 〈y〉2,

Cxz = 〈xz〉 − 〈x〉〈z〉, Cyz = 〈yz〉 − 〈y〉〈z〉, Czz = 〈r4〉 − 〈z〉2.
(6.54)

The curvature κ and impact parameter ε are given by

κ = 2γ√
1 − 4δγ

, ε = 2δ

1 + √
1 − 4δγ

. (6.55)

Expressions of the uncertainties of the estimated parameters are available and can
be found in [37].
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6.3.4 Riemann Fit

The Riemann circle fit [38] is based on the fundamental theorem in complex analysis
that circles and lines in the plane correspond one-to-one to circles on the Riemann
sphere. Since a circle on a sphere is the intersection of a plane with the sphere,
there is a one-to-one correspondence between circles and lines in the plane and
planes in space. The problem of fitting a circle to a set of measurements in the
plane can, therefore, be transformed into the problem of fitting the transformed
measurements to a plane in space. The latter problem can be solved directly by
non-iterative methods.

The mapping of a point (ui, vi) in the plane to the transformed point (xi, yi, zi)

on the Riemann sphere is given by

xi = ui/(1 + ui
2 + vi

2),

yi = vi/(1 + ui
2 + vi

2), (6.56)

zi = (ui
2 + vi

2)/(1 + ui
2 + vi

2).

The denominator in the expressions of the transformed measurements leads to small
distances between the transformed measurements and the fitted plane for large

radii Ri = (
ui

2 + vi
2
)1/2

in the plane. In an attempt to satisfy the Gauss-Markov
conditions as closely as possible, a radius-dependent scaling factor was introduced
in the fitting procedure in [39]. It was realized in [40] that this scaling factor could be
omitted by mapping the points in the plane to a paraboloid rather than the Riemann
sphere,

xi = ui, yi = vi, zi = ui
2 + vi

2, (6.57)

leading to the same values of the estimated parameters if the measurements are at
fixed radial positions.

Fitting a plane in space to the n measurements on the paraboloid is tantamount
to minimizing the objective function

S(c,n) =
n∑

i=1

(c + n1xi + n2yi + n3zi)
2

σ 2
i

=
n∑

i=1

di
2

σ 2
i

(6.58)

with respect to c and n = (n1, n2, n3)
T with the constraint that n is a unit vector.

This is achieved by choosing n as the unit eigenvector corresponding to the smallest
eigenvalue of the sample covariance matrix A of the measurements:

A = 1

N

n∑
i=1

1

σ 2
i

(
r i − rcg

) (
r i − rcg

)T
. (6.59)
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The constant c is equal to c = −nTrcg with the centre of gravity vector rcg =∑
i wir i and the weights

wi = 1/σ 2
i∑n

j=1 1/σ 2
j

, i = 1, . . . , n. (6.60)

Given the parameters of the fitted plane, a suitable set of circle parameters can be
derived. For example, the parameters chosen in Sect. 6.3.3 are given by:

φ = arctan

(
n2

n1

)
, (6.61)

κ = s · 2n3√
1 − n2

3 − 4cn3

, (6.62)

ε = s ·
√

1 − n2
3 − 4cn3 −

√
1 − n2

3

2n3
, (6.63)

up to a sign s = ±1. One possible convention of determining s is given in [41].
Expressions of the uncertainties of the estimated circle parameters are given

in [41] for measurement uncertainties both in the transverse and in the radial
direction. Effects of multiple Coulomb scattering can also be included in this
approach, essentially by modifying Eq. (6.59) to include correlations between all
measurements due to multiple scattering [40]. A robust version of the Riemann fit
based on LMS regression is proposed in [42].

6.3.5 Helix Fitting

Linearized helix fitting can be done by first estimating the parameters of the circle
that results from the projection of the helix on the transverse (bending) plane. Any
of the methods described above can be used for this. If the detector system at hand is
of a barrel-type, so that the radial positions of the measurements are known to a very
high precision, the path lengths to the intersections between the fitted circle and the
detector elements can be obtained from the circle parameters. For the Riemann circle
fit, these path lengths can be found directly from the knowledge of the parameters
of the fitted plane [43]. The longitudinal (non-bending) plane parameters can then
be found by solving the linear regression model:

z = Ap + ε, A =
⎛
⎜⎝

1 s1
...

...

1 sn

⎞
⎟⎠ , (6.64)
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where z is the vector of z measurements and the parameter vector p is given by:

p =
(

z

tan λ

)
, Var [ε] = V z, (6.65)

where the dip angle λ = π/2 − θ is the complement of the polar angle θ , and V z is
the covariance matrix of the measurements (containing contributions from multiple
scattering, if desired). From the fitted parameters, θ and z in the innermost layer can
be immediately obtained.

In a forward-type detector, the z positions are known very precisely, whereas the
radial positions of the measurements are observed. In this case, the regression is s

on z. A suitable regression model is then:

s = Ap + ε, A =
⎛
⎜⎝

1 z1
...

...

1 zn

⎞
⎟⎠ , p =

(
s

tan θ

)
, Var [ε] = V R, (6.66)

since the covariance matrix of s is a very good approximation to the covariance
matrix of R. From the fitted parameters, the polar angle θ of the track and the s-
values in all layers can be immediately determined, and, if desired, the predicted
radial positions of all measurements [43]. If higher precision is needed, the circle
and line fits can be iterated.

6.4 Track Quality

6.4.1 Testing the Track Hypothesis

The principal test statistic of the track hypothesis, i.e., of the hypothesis that all
measurements in the track are generated by the same charged particle, is the total
χ2 of the track. It is exactly χ2-distributed if, and only if, the following conditions
are met:

1. the track model is exactly linear;
2. the measurement errors are normally distributed with mean zero and have the

correct covariance matrix;
3. the material effects are normally distributed and have the correct covariance

matrix;
4. the estimator is the LS estimator and thus a linear function of the measurements.

Obviously, these conditions are met very rarely, if ever, in the experiment. In most
circumstances, the track model is the linear approximation of a non-linear one; the
measurement errors are not strictly normal, and the calibration of their covariance
matrix is not perfect; the distribution of the multiple scattering angle has tails that
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contradict the assumption of normality; the estimated track parameters may be
distorted by outliers; and the estimator may be a robust version of the usual LS
estimator. As a consequence, the best one can hope for is that the total χ2 is at
least approximately χ2-distributed. Its distribution for a sample of tracks can be
visualized by a histogram of the p-values, defined by:

p =
∫ ∞

χ2
gd(x)dx, (6.67)

where gd(x) is the PDF of the χ2-distribution with d degrees of freedom. The
number of degrees of freedom is the sum M of the measurement dimensions mi

minus the dimension of the track parameter vector. In the ideal case, the p-values
are uniformly distributed in the interval [0, 1]. In practice, one frequently observes
a fairly uniform distribution with a peak at zero, where defective and fake tracks
accumulate.

Besides the total chi-square statistic, the track length and the number of holes or
missing measurements is an indication of the track quality. As the number of degrees
of freedom of the track fit is the same as the number of geometrical constraints
imposed on the measurements, a long track is much less likely to be a fake track
than a short track. On the other hand, an outlier has less effect on the total χ2 in
a long track than it has in a short track. This can be demonstrated by a simple
example. Assume a perfect sample of tracks with four measurements of dimension
two. The fit of five track parameters leaves three degrees of freedom. A χ2-cut at
the 99%-quantile q0.99,3 = 11.345 rejects 1% of the tracks. Assume that one of
measurements is replaced by an outlier, thereby increasing the total χ2 of every
track by 3. Now the same cut rejects 4% of the tracks. Under the same assumptions,
but with ten measurements and 15 degrees of freedom, the cut rejects only 2.4% of
the tracks with outliers.

If the efficiency of the tracking detectors or sensors is known with good precision,
a rigorous test on the allowed number of holes can be constructed. If, for the
sake of simplicity, it is assumed that the efficiency ε is the same for all sensors
contributing hits to a track candidate, and that the occurrence of holes is independent
across sensors, the number h of holes in a track with n measurements is distributed
according to a binomial distribution:

P(h) =
(

n

h

)
(1 − ε)hεn−h. (6.68)

If ε = 0.98 and n = 15, then P(1) = 0.23 and P(2) = 0.032, so a single hole is
not suspicious at all, and two holes are unlikely, but not impossible. If n = 6, then
P(1) = 0.11 and P(2) = 0.0055, so a single hole is possible, but the occurrence of
two holes just by chance is very unlikely, in which case the suspicion of a fake track
or a contaminated track is well-founded.
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6.4.2 Detection of Outliers

In the context of track fitting, an outlier is defined as a measurement that does not
follow the expected behaviour. This may be put into statistical terms by saying that
a measurement is considered as an outlier whenever its distance from the locally
estimated track position is too large under the assumption of normal measurement
errors, the distance being expressed in terms of the covariance matrix attached to
the measurement.

Outliers can be classified into track-correlated and track-uncorrelated ones [44].
Some sources of track-correlated outliers are:

• Ambiguous measurements. Some tracking detectors, in particular drift chambers,
give rise to ambiguous information; see also Sect. 1.2.3. The track search, being
less restrictive than a rigorous track fit, is not always able to decide which of the
two possible solutions is the correct one, and the decision must be deferred to the
track fit. In the track fit, the wrong solution is regarded as an outlier which has to
be spotted or suppressed.

• Delta rays. Delta rays are energetic ionization electrons that leave a trail of
secondary ionization in the detector and can cause a shift in the measured
position.

• Cluster merging. In a silicon sensor or in a gaseous detector, two clusters
belonging to particles that are close in space may merge to a single cluster that is
biased with respect to both true positions.

• Cluster decay. Similarly, a large cluster may decay into two clusters, which are
both biased with respect to the true position.

• Non-normal measurement errors. Although the bulk of the measurements follows
a normal distribution in most tracking detectors, there is nearly always a small
fraction of the data that deviate from the normal law. These data show up as long
tails in the error distribution and look like outliers.

• Faulty covariance matrix. The errors attached to the measurement are too small,
because of insufficient calibration, fluctuations of the signal, wrong assumptions
about the track angle with respect to the sensor, dead channels, or other detector
problems.

Track-uncorrelated outliers are signals that are not caused by the track, but are
nevertheless picked up by the track search. They may be, for instance, signals from
adjacent tracks, ghost hits in double-sided silicon sensors, see Sect. 1.3.1, or noise.

Whatever the source, an outlier can be detected by a test based on the residuals
of the measurements with respect to the estimated track position. In the case of
a single outlier, the test is most powerful if the estimate contains the information
of all the other measurements. This is done most easily in the state space model of
the track; see Sects. 3.2.3 and 6.1.2. Let mk be measurement under scrutiny, qk |n the
smoothed residual and Ck |n its covariance matrix, see Eqs. (3.39) and (3.40) and end
of Sect. 6.1.2. The compatibility of mk with qk |n can be checked component-wise
on the basis of the standardized residuals, or globally on the basis of the chi-square
statistic:
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χ2
k |n = (rk |n

)T (
Rk |n

)−1rk |n. (6.69)

If there are no outliers, the standardized residuals should be compatible with a
standard normal distribution, and χ2

k |n should be compatible with a χ2-distribution
with mk degrees of freedom, where mk is the dimension of mk . If mk is an outlier,
this should be visible in the values of rk |n and χ2

k |n. There is, however, a problem
with this approach. Even a single outlier at position k introduces a bias in all of the
states qi |n, i 	= k, so that also an inlier at position i 	= k can show abnormal values
of the residuals and χ2

i |n, especially if i is close to k. As a consequence, it is by no
means obvious that mk can be correctly identified as the outlier. The situation is even
worse if there are several outliers. In this case, a robust track fit that down-weights
outliers, instead of trying to find and remove them, is a better solution; see Sect. 6.2.

6.4.3 Kink Finding

A charged particle decay that produces a single charged daughter particle plus
some neutral ones manifests itself as a sudden change of the track direction and/or
curvature, often called a kink or breakpoint.1 Typical examples are the muonic
decays of charged π and K mesons. Another source of kinks is hard elastic
scattering on the material of the detector [45]. Collinear energy loss of an electron
by bremsstrahlung does not result in a kink, but only in a change of curvature.

It is characteristic for a kink that the track segments in front of and behind
the kink both give a good fit to their respective track model; however, there is
a significant difference between the two sets of track parameters estimated from
the two track segments. In the Kalman filter framework, this difference and its
covariance matrix are readily available at any layer k from the forward and the
backward filter:

Δk = qk − q̃ b
k |k+1, Var [Δk] = CΔ,k = Ck + C b

k |k+1. (6.70)

The associated chi-square statistic is given by:

χ2
Δ,k = ΔT

k CΔ,k
−1Δk. (6.71)

In [44] a χ2-test statistic X2 for kink finding is investigated:

X2 = max
k∈K

χ2
Δ,k, (6.72)

1In the literature on time series analysis it is called a change point.
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where the range K of layers is restricted by the requirement that the respective track
segments from the forward and the backward filter are well defined. Results from
the simulation of π and K decays in a simplified setup are given in [44].

This simple test does not take into account the specific features of the process
leading to the kink. In energy loss by bremsstrahlung, only the curvature changes; in
hard elastic scattering, only the direction changes; in a decay, the direction changes
and the momentum decreases, or curvature increases. In all three processes, the
position of the two track segments has to be compatible. These features are taken
into account by the modified track fit described in [45]. At each possible breakpoint,
an extended set of track parameters α is defined that allows for sudden changes in a
subset of the track parameters. Three cases are considered:

1. Energy loss by bremsstrahlung. The curvature is allowed to change; therefore, α

contains two curvature parameters instead of one, for instance, κf and κb.
2. Hard elastic scattering. Only the direction is allowed to change; therefore, α

contains two sets of direction parameters instead of one, for instance tan λf, φf
and tan λb, φb.

3. Muonic decays of π and K mesons. Direction and curvature are allowed to
change; therefore, α contains two sets of the corresponding parameters instead
of one, for instance, tan λf, φf, κf and tan λb, φb, κb.

At layer k, α can be estimated by a linear regression in which q̃k and q̃ b
k |k+1 play

the role of the observations. This is equivalent to the minimization of the following
objective function:

S(α) = (q̃k − H fα
)T

Ck
−1 (q̃k − H fα

)+
+
(
q̃ b

k |k+1 − H bα
)T (

C b
k |k+1

)−1
(
q̃ b

k |k+1 − H bα
)

, (6.73)

where H f and H b are the matrices that project α on q̃k and q̃ b
k |k+1, respectively.

From the estimated vector α and its covariance matrix, standardized forward-
backward differences of the relevant parameters can be computed. In addition
an F -test can be performed to test whether additional parameters result in a
significant reduction of the total chi-square statistic. The location of the breakpoint
can be determined by the location of the largest discrepancy between forward and
backward parameters, as measured by the value of S(α) at the minimum. Results of
studies of simulated pion decays in the NOMAD detector are shown in [45].

The breakpoint finder in [46] is based on the autocorrelation function of the
residuals of the track fit. In an undisturbed track with many measurements, typically
in a TPC, the residuals between the measured coordinates and the fitted trajectory
are only weakly correlated so that the autocorrelation function of the residuals is
close to zero for arbitrary lags. A breakpoint in the track introduces correlated shifts
in all subsequent position measurements, resulting in an autocorrelation function
that is significantly different from zero. Assuming 1D position measurements, the
average autocorrelation of lag � is defined by:
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ρ� =
(

n−�∑
i=1

riri+�

) (
n−�∑
i=1

ri
2

n−�∑
i=1

r2
i+�

)−1/2

, (6.74)

where ri = δi/σi is the residual of measurement i divided by the standard error of
measurement i, and n is the total number of measurements. The test statistic λ used
in [46] is a weighted average of the autocorrelations up to a maximal lag L such that
small lags have larger weight:

λ =
L∑

�=1

w� ρ�, w� = 2 (L − �)

L (L − 1)
,

L∑
�=1

w� = 1. (6.75)

For the simulated data used in [46], setting L equal to the nearest integer to n/8 gives
the largest power of the test. In general, the maximal lag L and the weights w� must
be tuned on simulated data. The threshold of λ above which the null hypothesis (no
breakpoint) is rejected, is set according to the tolerated percentage of undisturbed
tracks that are rejected, i.e., to the probability of an error of the first kind.
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Part III
Vertex Reconstruction



Chapter 7
Vertex Finding

Abstract Vertex finding is the search for clusters of tracks that originate at the
same point in space. The chapter discusses a variety of methods for finding primary
vertices, first in one and then in three dimensions. Details are given on model-based
clustering, the EM algorithm and clustering by deterministic annealing in 1D, and
greedy clustering, iterated estimators, topological vertex finding, and a vertex finder
based on medical imaging in 3D.

7.1 Introduction

Vertex finding is the process of dividing all or a subset of the reconstructed tracks
in an event into classes such that presumably all tracks in a class are produced
at the same vertex. Vertices in an event can be classified as primary vertices or
secondary vertices. In a fixed target experiment, a primary vertex is the point where
a beam particle collides with a target particle; in a collider experiment, a primary
vertex is the point where two beam particles collide. In the LHC experiments CMS
and ATLAS, there are many primary vertices in each event because in each bunch
crossing many collisions may and do occur. As a rule, however, at most one of these
primary vertices is of interest to the subsequent analysis; this is called the signal
vertex. The signal vertex is distinguished from the other primary vertices (pile-up
vertices) by using kinematic criteria such as the transverse momenta of the tracks
forming the vertex.

A secondary vertex is the point where an unstable particle decays, or where a
particle interacts with the material of the detector. As the search for secondary
vertices is often based on a well-reconstructed primary vertex, this chapter deals
only with primary vertex finding; secondary vertex finding is deferred to Chap. 9.

In collider experiments, the position of the beam spot and the size of the luminous
region contains precise prior information about the transverse position of primary
vertices, see Fig. 7.1. The prior information on the position along the beam axis
is much weaker, as the primary vertices can be anywhere in a zone defined by
the bunch length, which is a couple of centimeters in the LHC. In fixed-target
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Fig. 7.1 The transverse size of the luminous region of the LHC as determined by ATLAS in
2017 [1]. Left: horizontal size; right: vertical size

experiments, the prior information is given by the beam profile and the position
and size of the target.

Vertex finding methods can be roughly divided into three main types: generic
clustering algorithms, topological methods, and iterated estimators. The latter can
be considered as a special model-based clustering method. For a brief introduction
into methods of clustering, see Sect. 3.3.
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7.2 Primary Vertex Finding in 1D

In the LHC experiments ATLAS and CMS, there are many beam-beam interactions
during a single bunch crossing at the typical luminosity level of the collider. In
order to find all primary vertices, first primary tracks are selected by a cut on their
distance to the z-axis, which is the beam line. The selected tracks are then clustered
on the basis of their z-coordinates at their point of closest approach to the centre of
the beam spot. The vertex finding problem is thus reduced to clustering in a single
spatial dimension.

7.2.1 Divisive Clustering

A simple divisive clustering can be performed by requiring a gap of at least d

between adjacent clusters/vertices. The threshold d depends on the shape of the
beam profile along z, on the expected number of interactions per bunch crossing,
and on the precision of the z-coordinate used for clustering. It has to be optimized
by studying simulated events. If subsequent validation of a cluster fails, it can be
further divided by a more refined method (see Sect. 7.3.3).

7.2.2 Model-Based Clustering

Assume that there are n tracks with z-coordinates zi, i = 1, . . . , n, sorted in
ascending order: z1 < z2 < . . . < zn. The zi are assumed to be sampled from
a Gaussian mixture with the following PDF:

f (z) =
K∑

k=1

ωkϕ(z; vk, σ
2
k ),

K∑
k=1

ωk = 1, (7.1)

where K is the number of mixture components, ϕ is the PDF of the normal
distribution, ωk is the component weight, vk is the mean value, and σ 2

k is the variance
of component k, k = 1, . . . , K . As the association of the tracks represented by the
points zi to the vertices represented by the component means vk is unknown, latent
(unobserved) variables yi, i = 1, . . . , n are introduced that encode the association:

yi = k ⇐⇒ zi belongs to component k, i = 1, . . . , n. (7.2)

The latent variables and the unknown parameters of the mixture (weights, means,
variances) can be estimated by the Expectation-Maximization (EM) algorithm [2–
4]. The EM algorithm is iterative, and each iteration consists of two steps. In the E-
step (expectation step), the latent variables are estimated, given the observations and
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the current estimate of the mixture parameters. In the M-step (maximization step),
the maximum likelihood estimate of the mixture parameters is computed, using the
estimates of the latent variables from the E-step. Convergence is guaranteed as the
likelihood increases in every iteration. There is no guarantee, however, to reach the
global maximum of the likelihood function.

In the special case of a normal mixture, explicit formulas can be obtained.
Assume that the M-step of iteration j gives the estimates ωk(j), vk(j), σ 2

k (j), k =
1, . . . , K . The E-step of the next iteration j + 1 computes the association probabil-
ities or ownership weights pi,k of all points with respect to all components:

pi,k = ωk(j) ϕ(zi; vk(j), σ 2
k (j))∑K

l=1 ωl(j) ϕ(zi; vl(j), σ 2
l (j ))

, i = 1, . . . , n, k = 1, . . . , K. (7.3)

In the M-step the mixture parameters are updated:

ωk(j + 1) = 1

n

n∑
i=1

pi,k,

vk(j + 1) =
∑n

i=1 pi,k zi∑n
i=1 pi,k

,

σ 2
k (j + 1) =

∑n
i=1 pi,k [zi − vk(j + 1)]2∑n

i=1 pi,k

, k = 1, . . . , K.

(7.4)

The EM algorithm suffers from the fact that the number K of clusters has to be
selected in advance. A possible solution to this problem is to set K to the largest
value that can reasonably be expected, and to merge components that are sufficiently
similar after the EM algorithm has converged.

The selection of the optimal number of components can be automatized by
sparse model-based clustering [5, 6]. Sparsity of the final mixture is achieved by
an appropriate prior on the mixture weights. As explicit formulas are no longer
available, estimation of the mixture parameters has to be done via Markov Chain
Monte Carlo (MCMC). A comparison with the EM algorithm can be found in [6].

7.2.3 EM Algorithm with Deterministic Annealing

Assume that there are n tracks with z-coordinates zi, i = 1, . . . , n, again in
ascending order, with their associated standard errors σi, i = 1, . . . , n. The EM
algorithm described in Sect. 7.2.2 is sensitive to the initial values of the component
parameters. This can be cured by introducing deterministic annealing (DA), see [7].
DA introduces a temperature parameter T , which is used to scale the standard errors
of the zi, i = 1, . . . , n. Annealing starts at high temperature, corresponding to
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large errors, and the temperature is lowered according to a predefined annealing
schedule. At each temperature, the association probabilities of the data points zi

to the current cluster centers are computed. If there are data points not associated
to any of the clusters, indicated by very low association probabilities, one of these
points is chosen as a new cluster center. The number of clusters is thus determined
dynamically. The algorithm is summarized in Table 7.1. Note that in contrast to
the model-based clustering in Sect. 7.2.2 the association probabilities are computed
using the uncertainties of the track positions instead of the vertex positions.

Two examples with ten randomly generated clusters within a space of 1 cm and
σi = 0.01 cm are shown in Fig. 7.2. In the example on the top, the found clusters
perfectly match the true clusters while in the example on the bottom, two true
clusters merge into a single found cluster, and one of the found clusters is spurious
with a single data point.

7.2.4 Clustering by Deterministic Annealing

Assume further that there are K vertex positions vk, k = 1, . . . , K , called
prototypes, that represent K clusters of tracks. The expected discrepancy between
data points and prototypes is given by:

Table 7.1 Algorithm: Vertex finding with EM algorithm and deterministic annealing

CLUSTER FINDING WITH EM ALGORITHM AND DETERMINISTIC ANNEALING

1. Choose an initial temperature T0 > 1, a cooling schedule T0, . . . , Tm < 1, a threshold δ, and
a robustness constant c ∈ [2, 3].

2. Select the smallest data point z1 as the first cluster center v1, set K = 1, t = 0, and T = Tt .
3. Compute the association probabilities pi,k according to:

pi,k = exp
[−β (zi − vk)

2/σ 2
i

]
exp

(−β c2
)+∑K

j=1 exp
[−β (zi − vj )2/σ 2

i

] , with β = 1/T . (7.5)

4. Update the cluster centers:

vk =
∑n

i=1 pi,k zi∑n
i=1 pi,k

, k = 1, . . . , K. (7.6)

5. For each data point, compute pi = maxk pi,k and find the index j of the smallest pi . If
pj < δ, set K := K + 1, vK = zj and go to 3.

6. Optional: Split “large” clusters by checking their width or their multiplicity. Assign data
point zi to cluster k, if pi,k > 0.5. If cluster k is to be split, set K := K + 1, set vk to the
smallest data point in the cluster, set vK to the largest data point in the cluster, and go to 3.

7. If t < m, set t := t + 1, T = Tt , and go to 3.
8. Assign data point zi to cluster k, if pi,k > 0.9, i = 1, . . . , n.
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Fig. 7.2 Examples of cluster finding with EM algorithm and Deterministic Annealing. The results
are discussed in the text

E =
n∑

i=1

K∑
k=1

P(zi ∈ Ck) d(zi, vk), (7.7)

where Ck is the cluster represented by vk and d(zi, vk) is a measure of distance
between data point zi and the prototype vk [8]. A typical choice of d(zi, vk) is the
weighted squared difference:

d(zi, vk) =
(

zi − vk

σi

)2

, (7.8)

where σi is again the standard error of track position zi . As there is no prior
knowledge on the probabilities P(zi ∈ Ck), the principle of maximum entropy
can be applied, giving a Gibbs distribution:

P(zi ∈ Ck) = exp (−β d(zi, vk))∑K
l=1 exp (−β d(zi, vl))

(7.9)
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The parameter β = 1/T is the inverse of the “temperature” of the system.
Finding the most probable configuration of the prototypes at a given temperature

is equivalent to minimizing the “free energy” F , which is given by [8]:

F = − 1

β

n∑
i=1

ln
K∑

k=1

exp (−β d(zi, vk)) . (7.10)

Minimization of F has to be done by numerical methods; see Sect. 3.1.
At infinite temperature, i.e., β = 0, there is a single cluster containing all

data points. The temperature is now lowered according to a predefined annealing
schedule. At some positive value of β, the cluster will undergo a phase transition
and split into smaller clusters. Annealing is continued until the end of the schedule.
At every temperature, a characteristic number of effective prototypes emerges at
distinct positions, independent of the number of prototypes.

Instead of using a large number of prototypes, many of which may coincide at
a given temperature, one can work with weighted prototypes, where the weight
ρk corresponds to the fraction of unweighted prototypes that coincide at vk . The
weights ρk always sum to 1, and the free energy is slightly modified:

F = − 1

β

n∑
i=1

ln
K∑

k=1

ρk exp (−β d(zi, vk)) . (7.11)

The association probabilities and the cluster weight are given by:

pi,k = P(zi ∈ Ck) = ρk exp (−β d(zi, vk))∑K
l=1 ρl exp (−β d(zi, vl))

, ρk = 1

n

n∑
i=1

pi,k. (7.12)

The annealing is started at high temperature with a single prototype of weight ρ1 =
1. If the distance function is chosen as in Eq. (7.8), the minimum of F is at the
weighted mean of the data points. During annealing, the temperature is gradually
decreased and the local minima of F emerge. The critical temperature T c

k of cluster
k is the point where a local minimum turns into a saddle point and is given by:

T c
k = 2

n∑
i=1

pi,k

σ 2
i

(
zi − vk

σi

)2/ n∑
i=1

pi,k

σ 2
i

. (7.13)

Whenever the temperature falls below the critical temperature of a cluster, the
prototype of this cluster is replaced by two nearby representatives. The association
probabilities and the new cluster weights are recomputed according to Eq. (7.12). If
the final temperature is small enough, the soft assignments of data points to clusters
turns into a hard assignment.
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7.3 Primary Vertex Finding in 3D

In principle, the clustering methods described above for vertex finding in 1D can
also be applied to vertex finding in 3D. It has to be noted, though, that the shortest
distance in space between two tracks is peculiar insofar as it does not satisfy the
triangle inequality: if tracks a and b are close, and tracks b and c are close, it does
not follow that tracks a and c are close as well. The distance between two clusters
of tracks should therefore be defined as the maximum of the individual pairwise
distances, known as complete linkage in the clustering literature. Alternatively, the
distance between two clusters can be the distance between the two vertices fitted
from the clusters.

7.3.1 Preclustering

Because of the high track and vertex multiplicity in typical collider experiments at
the LHC, preliminary clusters of tracks can be formed by selecting a primary vertex
or a small group of primary vertices found in 1D. All tracks that are compatible with
these are put in a preliminary cluster. This reduces the combinatorics and opens the
possibility of processing these preliminary clusters in parallel. Tracks that are not
compatible with any primary vertex are reserved for secondary vertex finding. In
low-multiplicity experiments, this preliminary clustering can be omitted.

7.3.2 Greedy Clustering

Greedy clustering is agglomerative and starts with a single track, preferably a high-
quality track with many hits and good χ2 (see Sect. 6.4.1). It is combined with its
nearest neighbour in 3D, and a vertex is fitted from the two tracks. If the fit is
successful, the vertex is stored. The track nearest to vertex is added, for instance, by
means of an extended Kalman filter (see Sect. 8.1.2.2). This procedure is continued
until the vertex fit fails. Clustering is then resumed with an unused track.

The greedy clustering does not guarantee the globally best assignment of tracks
to vertices, as tracks that are attached to a vertex remain attached forever. This can
be cured by using a robust vertex fit throughout (see Sect. 8.2), allowing a track to
be removed from a vertex if it is tagged as an outlier.

7.3.3 Iterated Estimators

This is a divisive clustering algorithm with the following steps:
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1. Perform a (preferably robust) vertex fit with all tracks.
2. Discard all incompatible tracks.
3. Repeat step 1 with all discarded tracks.

The iteration stops when no vertex with at least two tracks can be successfully fitted.
Step 2 might itself be iterative, especially if the vertex fit is not robust, so that
the incompatible tracks have to be removed sequentially. An iterative vertex finder,
based on an adaptive fit (Sect. 8.2.2) and called the Adaptive Vertex Reconstructor
(AVR, [9]) is implemented in the RAVE toolbox [10, 11]; see Appendix C.

7.3.4 Topological Vertex Finder

A general topological vertex finder called ZVTOP was proposed in [12]. It is related
to the Radon transform, which is a continuous version of the Hough transform used
for track finding (see Sect. 5.1.2). The search for vertices is based on a function
V (v) that quantifies the probability of a vertex at location v. For each track a
Gaussian probability tube fi(v) is constructed. The function V (v) is defined taking
into account that the value of fi(v) must be significant for at least two tracks:

V (v) =
n∑

i=1

fi(v) −
∑n

i=1 f 2
i (v)∑n

i=1 fi(v)

Due to the second term on the right-hand side, V (v) ≈ 0 in regions where fi(v)

is significant for only one track. The form of V (v) can be modified to fold in
known physics information about probable vertex locations. For instance, V (v) can
be augmented by a further function f0(v) describing the location and spread of the
interaction point. In addition, V (v) may be modified by a factor dependent on the
angular location of the point v.

Vertex finding amounts to finding the local maxima of the function V (v). The
search starts at the calculated maxima of the products fi(v)fj (v) for all track pairs.
For each of these points, the nearest maximum of V (v) is found. As V (v) is a
smooth function, any of the methods discussed in Sect. 3.1 can be employed. The
found maxima are clustered together to form candidate vertex regions. The final
association of the tracks to the vertex candidates can be done on the basis of the
respective χ2 contributions or by an adaptive fit (see Sect. 8.2.2). An experimental
application is described in [13].

In [14], the topological vertex finder was augmented by a procedure based on the
concept of the minimum spanning tree of a graph. For each track, the bins crossed by
the track (or a tangent to the track at the point of closest approach) are incremented
by one.
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7.3.5 Medical Imaging Vertexer

The Medical Imaging Vertexer (MIV) [15] is similar to ZVTOP, but differs from
it in two points: first, it works with a pixelized representation of the track density;
second, it applies a medical imaging filter to the density before finding the maxima.
The vertex finder can be summarized in the following steps:

1. All tracks are back-projected into a volume to be searched for vertices. The
volume is represented by a 3D histogram. The bin size of the histogram is
comparable to the tube size in ZVTOP.

2. The histogram is transformed into Fourier space, filtered by a medical imaging
filter that removes artifacts and reduces blurring, and transformed back to a
histogram in 3D space.

3. The filtered histogram is searched for local maxima. Clustering starts with the
highest bin. If the next highest bin is adjacent it is added to the cluster, otherwise
it is the seed for the next cluster. This is iterated until no bin is above a predefined
threshold.

4. Clusters are split or merged using a resolution criterion similar to the one used in
ZVTOP [12].

5. A cluster is accepted as a vertex candidate if its starting bin exceeds a predefined
threshold. The vertex position is estimated as the center of gravity of the cluster.

The performance of the MIV has been studied and compared to the Adaptive Vertex
Reconstructor (AVR) in [15]. It is shown that the MIV finds vertices with higher
efficiency and higher purity at large pile-up, whereas the AVR performs better at
small pile-up.
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Chapter 8
Vertex Fitting

Abstract The methods used for vertex fitting are closely related to the ones used
in track fitting. The chapter describes least-squares estimators as well as robust and
adaptive estimators. Furthermore, it is shown how the vertex fit can be extended to
a kinematic fit by imposing additional constraints on the tracks participating in the
fit.

8.1 Least-Squares Fitting

8.1.1 Straight Tracks

8.1.1.1 Exact Fit

Assume that there are n straight tracks that have to be fitted to a common vertex.
Track i is given by a point r i , a unit direction vector ai , and the joint covariance
matrix V i of qi = (r i; ai ), i = 1, . . . , n. The rank of V i is usually equal to five.
Here and in the entire chapter, it is assumed that there is no material between the
vertex and the point or surface where the track parameters are defined.

The estimated common vertex is the point v that minimizes the sum of the
weighted squared distances from the tracks. The squared distance Di of track i from
the point v is given by:

Di(v) = [(r i − v) × ai]
2. (8.1)

For a given vertex v0, the variance σ 2
i = var [Di] is computed by linearized error

propagation. The Jacobian of Di with respect to qi is given by:
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J i=

⎛
⎜⎜⎝

∂Di

∂r i

∂Di

∂ai

⎞
⎟⎟⎠ ,

∂Di

∂r i

=2 ·
⎛
⎝ai,2 ηi,21−ai,3 ηi,13

ai,3 ηi,32−ai,1 ηi,21

ai,1 ηi,13−ai,2 ηi,32

⎞
⎠ ,

∂Di

∂ai

=2 ·
⎛
⎝di,3 ηi,13−di,2 ηi,21

di,1 ηi,21−di,3 ηi,32

di,2 ηi,32−di,1 ηi,13

⎞
⎠ , (8.2)

with the auxiliary variables

di,k = ri,k − v0,k, ηi,jk = ai,j di,k − ai,k di,j , j, k = 1, 2, 3.

It follows that

σ 2
i ≈ J T

i · V i · J i . (8.3)

Minimizing the sum of the squared distances gives the fitted vertex v̂:

v̂ = argv minS(v), with S(v) =
n∑

i=1

Di(v)

σ 2
i

. (8.4)

The minimization with the Newton–Raphson method proceeds iteratively:

1. Let v0 be an approximate initial vertex position. Compute Di(v0), J i and σ 2
i for

i = 1, . . . , n, according to Eqs. (8.1)–(8.3).
2. Compute the gradient of S with respect to v at v0:

∇S = ∂S
∂v

=
n∑

i=1

1

σ 2
i

· ∂Di

∂v
, with

∂Di

∂v
= − ∂Di

∂r i

. (8.5)

3. Compute the Hessian matrix of S with respect to v at v0:

∇2S =
n∑

i=1

1

σ 2
i

H i , with H i = 2 ·
⎛
⎜⎝

a2
i,2 + a2

i,3 − ai,1 ai,2 − ai,1 ai,3

−ai,1 ai,2 a2
i,1 + a2

i,3 − ai,2 ai,3

−ai,1 ai,3 − ai,2 ai,3 a2
i,1 + a2

i,2

⎞
⎟⎠ .

(8.6)

4. Compute the solution v1 of ∇S = 0:

v1 = v0 − (∇2S)−1 · ∇S. (8.7)

5. Set v0 equal to v1 and repeat from step 2 until convergence.
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The covariance matrix of the final estimate v̂ is given by (∇2S)−1, and the χ2-
statistic of the fit is equal to S(v̂). Its number of degrees of freedom is the sum
of the ranks of all V i minus three. Prior information on the vertex position that
is independent of the track information can be included by an additional term
in Eq. (8.4) or after the fit by a weighted mean.

8.1.1.2 Simplified Fit

If the uncertainty of the direction vectors ai is neglected, the vertex fit can be further
simplified [1]. Assume that track i is specified by a reference point r i = (xi, yi, zi)

T

in the vicinity of the vertex and a unit direction vector ai in spherical coordinates:

ai = (cos ϕi cos λi, sin ϕi cos λi, sin λi)
T , (8.8)

where ϕi is the azimuth and λi = π/2−θi the dip angle, i.e., the complement of the
polar angle. For the purpose of the vertex fit, a convenient choice of the coordinate
system for position is a system where the x‖-axis is parallel to the track, the y⊥-
axis is perpendicular to x‖ and z, and the z⊥-axis forms a right-handed orthonormal
system with x‖ and y⊥. The coordinate transformation of the reference point r i to
this track-based system is given by the following rotation:

r ′
i = Ri r i =

⎛
⎝ cos ϕi cos λi sin ϕi cos λi sin λi

− sin ϕi cos ϕi 0
− cos ϕi sin λi − sin ϕi sin λi cos λi

⎞
⎠ r i . (8.9)

The coordinates y⊥ and z⊥ are called the transverse and the longitudinal impact
parameter, respectively. The fit described in [1] assumes that qi = (y⊥, z⊥)T has
been estimated by the track fit, with the associated weight matrix Gi , and that the
direction errors are negligible. The transformation from r i to q i is given by the 2×3
matrix T i consisting of the second and third line of Ri .

The vertex v is estimated by minimizing the sum of the weighted distances
between the reference points and the vertex, transformed to the corresponding track-
based systems:

S(v) =
n∑

i=1

(r i − v)TT T
i GiT i (r i − v). (8.10)

The estimated vertex and its covariance matrix C are therefore given by:

v̂ = C

n∑
i=1

W i r i , with C =
(

n∑
i=1

W i

)−1

and W i = T T
i GiT i , i = 1, . . . , n.

(8.11)
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8.1.2 Curved Tracks

The fits described in the preceding subsection can also be used with locally straight
tracks for which the change of curvature and direction in the vicinity of the vertex is
negligible. If this is not the case, nonlinearities in the track model have to be taken
into account.

8.1.2.1 Nonlinear Regression

The general vertex fit can be formulated as a nonlinear regression model [2].
Assume that there are n tracks to be fitted to a common vertex. The tracks
are specified by the estimated track parameters qi and the associated covariance
matrices V i , i = 1, . . . , n. The parameters to be estimated are the vertex position v

and the momentum vectors pi of all tracks at the vertex, see Fig. 8.1.
The track parameters qi are nonlinear functions of the parameters:

qi = hi (v,pi ), i = 1 . . . , n. (8.12)

reference cylinderreference cylinderreference cylinderreference cylinder

Fig. 8.1 A vertex fit with four tracks. The parameters of the fit are the vertex v and the momentum
vectors pi ; the observations are the estimated track parameters qi
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The first-order Taylor expansion of hi at a suitable expansion point e0 = (v0,pi,0)

gives the following approximate linear model:

qi ≈ Aiv + Bipi + ci , i = 1 . . . , n, (8.13)

with

Ai = ∂hi

∂v

∣∣∣∣ e0
, B i = ∂hi

∂pi

∣∣∣∣ e0
, ci = hi (v0,pi,0) − Aiv0 − Bipi,0. (8.14)

This can be written as:

⎛
⎜⎝

q1
...

qn

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

A1 B1 O . . . O

A2 O B2 . . . O
...

...
...

. . .
...

An O O . . . Bn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

v

p1
...

pn

⎞
⎟⎟⎟⎠+

⎛
⎜⎝

c1
...

cn

⎞
⎟⎠ . (8.15)

The LS estimates v̂ and p̂i are obtained by:

⎛
⎜⎜⎜⎝

v̂

p̂1
...

p̂n

⎞
⎟⎟⎟⎠ = M−1N

⎛
⎜⎝

q1 − c1
...

qn − cn

⎞
⎟⎠ , (8.16)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D0 D1 D2 . . . Dn

DT
1 E1 O . . . O

DT
2 O E2 . . . O

...
...

...
. . .

...

DT
n O O . . . En

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.17)

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

AT
1 G1 AT

2 G2 . . . AT
nGn

BT
1 G1 O . . . O

O BT
2 G2 . . . O

...
...

. . .
...

O O . . . BT
nGn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8.18)
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Di = AT
i GiBi , Ei = BT

i GiBi = W−1
i , Gi = V i

−1, i = 1, . . . , n,

(8.19)

D0 =
n∑

i=1

AT
i GiAi . (8.20)

C = M−1 can be written as a block matrix with the blocks Cij , i, j = 0, . . . , n:

C00 =
(

D0 −
n∑

i=1

DiW iD
T
i

)−1

, (8.21)

C0j = −C00Dj W j , Cj0 = CT
0j , j > 0 (8.22)

Cij = δijW i + W iD
T
i C00Dj W j = δijW i − W iD

T
i C0j , i, j > 0. (8.23)

Substitution of Eqs. (8.21)–(8.23) into Eq. (8.16) gives the following expressions for
the estimated parameters:

v̂ = C00

n∑
j=1

AT
j Gj (I − Bj W j BT

j Gj )(qj − cj ), (8.24)

p̂i = W iB
T
i Gi (qi − ci − Ai v̂), i = 1, . . . , n. (8.25)

The functions hi are re-expanded at the new expansion point e1 = (v̂, p̂i ), i =
1, . . . , n, and the fit is iterated until convergence. After convergence, the track
parameters qi can be updated:

q̂i = hi (v̂, p̂i ), i = 1 . . . , n, (8.26)

In the linear approximation, the joint covariance matrix of v̂ and all p̂i is equal to
C = M−1, from which the joint covariance matrix of all q̂i can be computed by
linearized error propagation. The χ2-statistic of the fit can be computed as follows:

χ2 =
n∑

i=1

(qi − q̂ i )
TGi (qi − q̂i ). (8.27)

If the errors of the estimated track parameters can be assumed to be approximately
Gaussian, the chi-square statistic is approximately χ2-distributed with

ndf =
n∑

i=1

rank(V i ) − 3 (n + 1) (8.28)

degrees of freedom.
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8.1.2.2 Extended Kalman Filter

The nonlinear regression can be reformulated as an extended Kalman filter
(see Sect. 6.1.2). Initially, the state vector consists only of the prior information
about the vertex position v0, and its covariance matrix C0. In many instances, the
prior information is given by the position and the size of the beam spot or the target.
If no prior information is available, v0 is a rough guess, and C0 is set to a large
diagonal matrix.

For each track i, i = 1, . . . , n, the state vector is augmented by the three-
momentum vector at the vertex pi . The system equation is the identity:

vi = vi−1, Ci = Ci−1. (8.29)

The measurement equation and its linearized form are the same as in Eqs. (8.12)–
(8.14). The update of the vertex position and the estimation of pi can now be written
as:

vi = Ci

[
C−1

i−1vi−1 + AT
i G B

i (q i − ci )
]
, (8.30)

pi = W iB
T
i Gi (qi − ci − Aivi ), (8.31)

with W i = (BT
i GiBi )

−1 and GB
i = Gi −GiBiW iB

T
i Gi . The updated covariance

and cross-covariance matrices are:

Var [vi] = Ci =
(
C−1

i−1 + AT
i GB

i Ai

)−1
, (8.32)

Var
[
pi

] = W i + W iB
T
i GiAiCiA

T
i GiBiW i , (8.33)

Cov
[
vi ,pi

] = −CiA
T
i GiBiW i . (8.34)

Each update step gives rise to residuals r i and a chi-square statistic χ2
i :

r i = qi − hi (vi ,pi ), (8.35)

χ2
i = rTi Gi r i + (vi − vi−1)

TC−1
i−1(vi − vi−1). (8.36)

The chi-square statistic has two degrees of freedom and can be used to test the
compatibility of track i with the current fitted vertex. If no intermediate results
are needed, the computation of the momentum vectors pi can be deferred to the
smoother, and the final vertex vn and its covariance matrix Cn can be computed
directly, cf. Eqs. (8.21) and (8.24):

vn = Cn

[
C−1

0 v0 +
n∑

i=1

AT
i GB

i (qi − ci )

]
, (8.37)
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C0 =
(

C−1
0 +

n∑
i=1

AT
i GB

i Ai

)−1

. (8.38)

As there is no process noise in the system equation, the smoother is tantamount
to recomputing the momentum vectors and the covariance matrices with the final
vertex vn and its covariance matrix Cn, see also Eqs. (8.31)–(8.34):

pi |n = W iB
T
i Gi (qi − ci − Aivn), (8.39)

Var
[
pi |n

] = W i + W iB
T
i GiAiCnAT

i GiBiW i , (8.40)

Cov
[
vn,pi |n

] = −CnAT
i GiBiW i , (8.41)

Cov
[
pi |n,pj |n

] = W iB
T
i GiAiCnAT

j Gj Bj W j . (8.42)

The update of the track parameters reads:

q̂i = hi (vn,pi |n), i = 1 . . . , n. (8.43)

Their joint covariance matrix can be computed by linearized error propagation. Each
track can be tested against the final vertex by computing the smoothed residuals and
the corresponding chi-square statistic:

r i |n = qi − hi (vn,pi |n), (8.44)

χ2
i |n = rTi |nGi r i |n + (vn − vn|−i )

TC−1
n|−i (vn − vn|−i ), (8.45)

where vn|−i is the final vertex with track i removed, and Cn|−i is its covariance
matrix:

vn|−i = Cn|−i

[
C−1

n vn − AT
i GB

i (qi − ci )
]
, (8.46)

Var
[
vn|−i

] = Cn|−i =
(
C−1

n − AT
i GB

i Ai

)−1
. (8.47)

Searching for outliers in this way is, however, tedious and time consuming. The
adaptive vertex fit described in Sect. 8.2 is better suited to and more powerful for
this task, especially if there are several outliers.

8.1.2.3 Fit with Perigee Parameters

In many collider experiments, past and present, the magnetic field in the vicinity of
the collision region is almost perfectly homogeneous, giving a helical track model.
The “perigee” parametrization for such helical tracks was introduced in [3], with a
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Fig. 8.2 A helical track in
the projection to the
(x, y)-plane. O: origin;
C:circle center; P: perigee
point; V: vertex; ρ: circle
radius; tP: tangent at P; ϕP:
azimuth of track direction at
P; tV: tangent at V; ϕV:
azimuth of track direction
at V

correction in [4]. The track is parametrized around the point of closest approach, the
perigee point vP, of the helix to the z-axis, which is also the direction of the beams
and the magnetic field. The perigee point is expected to be close to the vertex. The
five track parameters of the perigee parametrization are (see Fig. 8.2):

1. The impact parameter ε. By convention, the sign of ε is positive if the origin O
is at the left side of the trajectory.

2. The azimuth ϕP of the tangent to the track at P.
3. The z-coordinate zP of the perigee point P.
4. The polar angle ϑ of the helix with respect to the z-axis.
5. The signed curvature κ . By convention, the sign of κ is positive if the trajectory

is anti-clockwise.

With these definitions, the trajectory can be approximately parametrized in terms
of a running parameter s, which is the distance from P along the projected helix:

x ≈ ε sin ϕP + s cos ϕP − s2κ

2
sin ϕP, (8.48)

y ≈ −ε cos ϕP + s sin ϕP + s2κ

2
cos ϕP, (8.49)

z ≈ zP + s cot ϑ.

The track parameters q = (ε, ϕP, ϑ, zP, κ)T have to be expressed as a function
of the coordinates v = (xV, yV, zV)T of the vertex V, and the track parameters
p = (ϑ, ϕV, κ)T at V. Note that ϑ and κ are invariant along the helix. As higher
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orders of κ can usually be neglected for tracks in collider experiments, the following
functional dependence is obtained:

ε ≈ −R − Q2κ/2,

zP ≈ zV − Q(1 − Rκ) cot ϑ, (8.50)

ϕP ≈ ϕV − Qκ,

with

Q = xV cos ϕV + yV sin ϕV, R = yV cos ϕV − xV sin ϕV. (8.51)

The Jacobian matrix at the lowest order is given by:

∂q

∂(v,p)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s −tc −κc

−c −ts −κs

0 1 0
0 Q(1 + t2) 0
Q −Rt 1

−Q2/2 QRt −Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (8.52)

with

c = cos ϕV, s = sin ϕV, t = cot ϑ. (8.53)

With these ingredients, the nonlinear regression (see Sect. 8.1.2.1) can be computed.

8.2 Robust and Adaptive Vertex Fitting

8.2.1 Vertex Fit with M-Estimator

Estimators are called robust if they are insensitive to outlying observations [5–
7]. The M-estimator, see Sect. 6.2.1, is a well-known robust estimator that can be
implemented as an iterated reweighted LS estimator that assigns smaller weights
(larger uncertainties) to observations suspected to be outliers. One of the first
attempts, if not the first, to make the vertex fit robust is the extension of the Kalman
filter to an M-estimator [8] of the Huber type [5]. Before the fit, the parameters of
each track are decorrelated by finding the orthogonal matrix U i that transforms the
covariance matrix V i to a diagonal matrix Di :

Di = U iV iU
T
i . (8.54)
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Table 8.1 Algorithm: Vertex fit with M-estimator

VERTEX FIT WITH M-ESTIMATOR

1. Set ε = 10−6, set the iteration counter I = 0 and set V i
(0) = V i , i = 1, . . . , n. Choose a

robustness constant c, usually a value between 1 and 3.
2. Compute the LS estimate v(I ) by one of the estimators in Sect. 8.1, using the covariance

matrices V i
(I ). For each track i, compute the smoothed residuals r i |n.

3. For each component ri |n,j , j = 1, . . . , 5, compute a weight wi,j according to:

wi,j = max

[
ε,

ψ
(
ri |n,j /V i,jj

)
ri |n,j /V i,jj

]
, (8.56)

where V i,jj is the j -th diagonal element of the initial covariance matrix V i , and ψ(t) is one
of the functions in Table 6.1 or a similar one from the literature.

4. Increase the iteration counter I by 1. For each track i and all j , set V
(I )
i,jj = V i,jj /wi,j .

5. Check convergence; if necessary, go to step 2.

The measurement equation Eq. (8.13) is transformed by setting

V i ← Di , qi ← U iq i , Ai ← U iAi , B i ← U iBi , ci ← U ici . (8.55)

The M-estimator is then computed by an iterated LS estimator, see Table 8.1. Vertex
fits using M-estimators with other weight functions are described in [9, 10].

8.2.2 Adaptive Vertex Fit with Annealing

The adaptive vertex fit (AVF) was introduced in [11] and further investigated in [12–
15]. It can be interpreted either as an EM algorithm or as an M-estimator with a
specific weight function [16, 17]; see also Table 6.1. In the AVF, tracks as a whole
are down-weighted, as the weight wi is a function of the distance of track i from the
current vertex, measured by the chi-square χ2

i :

χ2
i = rTi |nGi r i |n, wi

(
χ2

i

)
= exp

(−χ2
i /2T

)
exp

(−χ2
i /2T

)+ exp
(−χ2

c /2T
) , (8.57)

where T is a temperature parameter. The weight wi can be interpreted as the
probability that track i belongs to the vertex. The chi-square cut χ2

c sets the threshold
where the weight is equal to 0.5. Beyond this cut, a track is considered to be an
outlier rather than an inlier.

The temperature T modifies the shape of the function in Eq. (8.57). At high
temperature, the weight function varies very slowly; at low temperature, the weight
is close to 1 for χ2

i ≤ χ2
c and close to 0 for χ2

i > χ2
c (see Fig. 6.1c), with a sharp
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Table 8.2 Algorithm: Adaptive vertex fit with annealing

ADAPTIVE VERTEX FIT WITH ANNEALING

1. Set the iteration counter I = 0 and set V i
(0) = V i , i = 1, . . . , n. Choose a threshold χ2

c , an
initial temperature T0, and an initial vertex estimate v(0).

2. For each track i, compute the smoothed residuals r i |n and the χ2-statistic χ2
i in Eq. (8.57),

using v(I ) and V i . Compute the weight wi according to:

wi = exp
(−χ2

i /2Tk

)
exp

(−χ2
i /2Tk

)+ exp
(−χ2

c /2Tk

) . (8.58)

3. Increase the iteration counter I by 1. For each track i, set V i
(I ) = V i/wi .

4. Compute the LS estimate v(I ) by one of the estimators in Sect. 8.1, using the inflated
covariance matrices V i

(I ).
5. Set the new temperature TI according to a chosen annealing schedule and go to step 2.
6. When the final temperature is reached, iterate until convergence.

drop at χ2
i = χ2

c . The weights at low temperature can be used to identify secondary
tracks in a fit of the primary vertex; see Sect. 7.3.3.

Similar to the M-estimator in Sect. 8.2.1, the adaptive vertex fit is implemented
as an iterated LS estimator, which can be one of the methods described in Sect. 8.1.
The temperature T can be used to employ an annealing procedure that helps to reach
the globally optimal solution. The adaptive vertex fit is summarized in Table 8.2.

In order to get reasonable initial weights, the initial vertex v(0) has to be chosen
carefully, preferably with a robust finder [18]. The annealing schedule and the
constant χ2

c have to be tuned on simulated data. A detailed study and useful hints
can be found in [15].

8.2.3 Vertex Quality

The assessment of the quality of a fitted vertex is similar to the assessment of track
quality; see Sect. 6.4. The primary criterion is the chi-square statistic of the vertex
fit, or its p-value. If the p-value is unreasonably small, a search for outlying tracks
can be started. There are several sources of outliers in the vertex fit:

• Fake tracks and tracks that include unrecognized extraneous measurements or
noise hits.

• Tracks with an unrecognized interaction (kink) in the material.
• Tracks with a covariance matrix that does not properly reflect the statistical

uncertainty of the track parameters, for instance, because of an incorrect eval-
uation of material effects.

• Tracks that belong to a different vertex, in particular to a nearby secondary vertex.
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Just as in the case of the track fit, outliers can be detected by a test based on the
residuals of the track with respect to the estimated vertex position. Outlying tracks
that pass the track quality check are often candidates for inclusion in a secondary
vertex; see Sects. 7.3.3 and 9.2.

8.3 Kinematic Fit

The vertex fit as described so far imposes purely geometrical constraints on the
participating tracks, namely that they originate at the same point in space. Especially
in the case of a secondary vertex, the vertex fit can be extended by imposing other
geometrical or kinematical constraints. In the vertex fit of a photon conversion
(see Sect. 9.4), the constraint can be imposed that the momentum vectors of the
outgoing tracks are parallel. In the fit of a decay vertex (see Sects. 9.2 and 9.3), the
laws of momentum and/or energy conservation can be imposed as constraints. In
addition, assumptions about the mass of some or all of the participating particles
can be included. The width of a resonance can be included by considering its mass
as a virtual measurement with a standard error reflecting the width. Such fits are
called kinematic fits.

In a kinematic fit, a track is most conveniently represented by a collection u of
parameters that are physically meaningful and allow a simple formulation of the
constraints [19]. If only kinematic constraints are present, u contains the energy and
the Cartesian momentum components in the global coordinate system:

u = (E, px, py, pz)
T. (8.59)

For charged tracks, u is computed from the usual representation by a five-vector q,
and the covariance matrix V = Var [u] is obtained by linearized error propagation.
If the mass of the particle is assumed to be known and fixed, the rank of V is three,
as the energy is a deterministic function of the momentum p and the mass m. If
there is an independent measurement of the energy, for instance by a cluster in the
calorimeter, the rank is four. For neutral tracks, u is computed from the calorimeter
information. As there is no independent momentum measurement, the rank of V is
three.

If in addition a vertex constraint is to be enforced, the location x, y, z in space,
which can vary along the track, is appended to u, and the rank of V increases by
two [19].

If n tracks with parameters uk and covariance matrices V k, k = 1, . . . , n,
participate in the kinematic fit, their parameters are combined in a single column
vector y:

y =
⎛
⎜⎝

u1
...

un

⎞
⎟⎠ . (8.60)
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If the estimated uk are uncorrelated, their joint covariance matrix V is block-dia-
gonal:

Var [y] = V = blkdiag(V 1, . . . ,V n). (8.61)

If the momentum parts of the uk are the results of a preceding vertex fit, they are
correlated, and their joint covariance matrix is given in Eqs. (8.40) and (8.42).

The vector y is considered to be an unbiased observation of the vector α that
satisfies r ≤ rank(V ) kinematical or geometrical constraints:

y = α + ε, E [ε] = 0, Var [ε] = V . (8.62)

The constraints are expressed by r equations hi(α) = 0, i = 1, . . . , r , which can
be written compactly in the following vector form:

h(α) = 0, with h = (h1(α), . . . , hr (α))T . (8.63)

The function h is approximated by its first-order Taylor expansion at the expansion
point α0 = y, resulting in a set of linear constraints:

h(α) ≈ h(α0) + H (α − α0) = h(α0) + Hα − Hα0 = Hα + d = 0, (8.64)

with the Jacobian matrix H = ∂h/∂α evaluated at α = α0 and d = h(α0) − Hα0.
It is assumed that H has rank r in a sufficiently large neighbourhood of y.

If V has full rank, the constrained LS estimate of α is obtained by minimizing
the following objective function:

S(α,λ) = (α − y)T G (α − y) + 2 λT (Hα + d) , (8.65)

where G = V −1 and λ is the vector of Lagrange multipliers. Setting the gradient of
S(α,λ) to zero results in the following system of linear equations:

G (α − y) + HTλ = 0, (8.66)

Hα + d = 0. (8.67)

The system can be explicitly solved for α, the solution being the estimate α̂:

α̂ = y − V HTGH (Hy + d) , with GH =
(
H V HT

)−1. (8.68)

The solution is valid also for singular V as long as r ≤ rank(V ), so that H V HT

has full rank r and can be inverted. This can be proved by regularization of V ; see
Appendix B.
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The constraints are re-expanded at the new expansion point α0 = α̂, and the fit
is iterated until convergence. The covariance matrix Vα̂ of the final estimate α̂ and
the chi-square statistic of the fit are given by:

Vα̂ = V − V HTGH H V , (8.69)

χ2 = (Hy + d)T GH (Hy + d) . (8.70)

The χ2 has r degrees of freedom and can be used to assess the goodness of the
fit, provided that the linear approximation of the constraints is satisfactory and the
distribution of the error term ε in Eq. (8.62) is close to normal.

A comprehensive software package for kinematic fitting, called KWFIT, can be
found in [20]. In addition to stand-alone kinematic fits as described above, it allows
fitting entire decay chains with multiple vertices. For a discussion of its features
and of kinematic fitting in general, see [21]. More recent decay chain fitters are
described in [22] and [23].
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Chapter 9
Secondary Vertex Reconstruction

Abstract The chapter reviews methods for the search for secondary vertices. Four
types of secondary vertices are discussed in detail: decays of short-lived particles,
decays of long-lived particles, photon conversions, and hadronic interactions in the
detector material.

9.1 Introduction

A vertex is called a secondary vertex or displaced vertex if it is outside the
beam profile in a collider experiment or outside the target region in a fixed-target
experiment. Secondary vertices arise in the following contexts:

Decays of unstable particles The decaying particle is call the “mother” particle,
the decay products are called the “daughter” particles. Depending on the lifetime
and the momentum of the mother particle, the secondary decay vertex is displaced
by a certain distance from its production point, which can be either a primary or
itself a secondary vertex. The properties of the mother particles have to be inferred
from the decay products. Finding decays is important for many types of physics
analyses as well as for momentum scale calibration, by comparing the reconstructed
mass of the mother particle to the known one.

Interactions in the detector material Finding interaction vertices can be useful
for mapping the amount and position of material in the detector. Two types of
interactions are important in practice: photon conversions, i.e., pair production of
electrons and positrons or muons in the electric field of a nucleus; and hadronic
interactions of primary particles. A decay of a charged particles into a single charged
daughter particle plus some neutral daughters looks just like a kink in the track.
Kink finding is the subject of Sect. 6.4.3. The following subsections present some
methods for finding decay and interaction vertices.
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9.2 Decays of Short-Lived Particles

In the present context, short-lived particles are defined as particles that decay before
they enter the first layer of the innermost tracking device. This includes B (beauty)
and D (charmed) hadrons as well as τ leptons, which travel no more than a few
millimeters before they decay.

The key to successful secondary vertex reconstruction is a precise knowledge
of the primary vertex and the correct selection of the tracks of the decay products.
In order to make sure that the primary vertex is not contaminated with secondary
tracks, fake tracks or—at the LHC—pile-up tracks, the fit has to be made robust,
either by removing outliers (Sect. 8.2.3), or by employing a robust fitting algorithm
in the first place (Sects. 8.2.1 and 8.2.2). If there is prior information on the beam
spot, it should be included into the primary vertex fit. The tracks removed from
the primary vertex or down-weighted as outliers are by definition candidates for
secondary tracks; see Sect. 7.3.3.

The selection of the secondary tracks depends on the physics goals of the
analysis. If a specific decay channel is considered, the tracks can be selected
according to kinematic criteria, for instance their type, charge, and momentum [1].
In addition, the distance of the track from the primary vertex in the transverse
plane, called the transverse impact parameter d 0, can be used to verify that the
selected tracks are not produced at the primary vertex. As the uncertainty of d 0

depends on the angle and the momentum of the track, the test is based on the
standardized impact parameter s0 = d 0/σ [d 0], also called the significance of the
impact parameter.

Secondary tracks can also be selected by their impact parameter alone. To this
end, the impact parameter of a track is given a sign that is positive if the track
intersects the trajectory of the decaying hadron or τ lepton downstream of the
primary vertex [1–3]. As the trajectory is not known before the secondary vertex
fit, it is approximated by the jet axis of the jet the decaying particle is embedded in.
Only tracks with positive sign are candidates for secondary tracks.

The information contained in the impact parameter of a secondary track can be
augmented by considering its functional relation with the azimuth angle of the track
in the transverse projection, see Fig. 9.1. Let φ1, . . . , φm be the azimuth angles and
d 0

1 , . . . , d 0
m the transverse impact parameters of m tracks emerging from the same

secondary vertex. If the primary vertex is very close to the origin of the coordinate
system, as it usually is, the following functional relation holds approximately:

d 0
i ≈ � sin(φi − φh) ≈ �(φi − φh), i = 1, . . . , m, (9.1)

where � is the decay length of the decaying particle and φh its azimuth angle. Thus
in the (φ, d 0)-plane the points corresponding to secondary tracks lie on a straight
line. This line can be found in various ways, for instance, by a Hough transform
(Sect. 5.1.2), by histogramming the direction angles of segments connecting two
points or by agglomerative clustering of the segments [3].
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Fig. 9.1 The functional relation between φ and d 0 of secondary tracks

9.3 Decays of Long-Lived Particles

Long-lived particles such as neutral K-short mesons K0
S and Λ baryons decay in

the tracker volume. Reconstruction of their decays serves as a powerful cross-check
of the magnetic field map and the alignment, as their mass is very well known, and
systematic errors in the field map as well as misalignment can lead to a bias in
the momentum and invariant mass estimation. Candidates for the decay products
can be identified by a large impact parameter and the fact that tracker hits are
consistently missing up to a certain layer. In the search for 2-prong neutral decays,
so-called V0s, pairs of tracks with opposite charge and small distance in space
are combined to vertex candidates. Without particle identification, the Armenteros–
Podolansky plot is a useful tool to decide between hypotheses about the mother
particle from the kinematics of their decay products [4]. It is a scatter plot of the
longitudinal momentum asymmetry versus the transverse momentum of the positive
decay product, see Fig. 9.2. The figure shows that in some regions of the plot a
unique decision may not be possible.

The resolution of eventual ambiguities requires a kinematic fit with mass
constraints (see Sect. 8.3) based on particle identification of the decay products. For
example, in the case of K0

S versus Λ/Λ̄, charged pions have to be separated from
protons.

If the decay vertices are allowed to have more than two charged outgoing
particles, two-track vertices can serve as seed vertices [5]. A seed vertex is rejected if
at least one of its tracks has hits between the seed vertex and the primary vertex. The
seed vertices are then clustered to larger vertices by an agglomerative procedure.
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Fig. 9.2 Armenteros–Podolansky plot for K0
S and Λ/Λ̄. (From [4], with permission by the author)

9.4 Photon Conversions

The reconstruction of photon conversions is an integral part of photon reconstruction
in general. While the energy of unconverted photons is measured directly in the
electromagnetic calorimeter (ECAL), a converted photon is reconstructed from the
charged lepton pair, mostly an e+e− pair, that is produced in the electric field of a
nucleus. A characteristic feature of the conversion vertex is the fact that the two
leptons are parallel to each other. As a consequence, the vertex position along
the photon direction is not very well defined by the vertex fit alone. Two topical
examples of the reconstruction of converted photons are presented in the following
paragraphs.

In the ATLAS experiment (Sect. 1.6.1.2), the first step is the standard elec-
tron/positron reconstruction, briefly described in Sect. 10.2. Clusters in the ECAL
are built and used to create regions of interest (ROIs). Inside an ROI track finding
is modified such that up to 30% energy loss is allowed at each material layer. After
loosely matching the tracks in the ROIs with the ECAL clusters, tracks with silicon
hits are refitted with the Gaussian-sum filter (GSF, Sect. 6.2.3). Conversion finding
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is run on the loosely matched tracks that have a high probability to be electrons or
positrons according to the transition radiation detector. A conversion may have one
or two outgoing tracks. Double-track conversions are created when two tracks form
a vertex that is consistent with the hypothesis that they have been produced from
a massless particle. Single-track conversions look like tracks without hits before
a certain layer. If there are several conversions matched to a cluster, double-track
conversions are preferred over single-track conversions.

In CMS (Sect. 1.6.1.3) the reconstruction of photon conversions uses the full
tracking [6]; see also Sect. 10.3. Electrons and positrons in particular are recon-
structed by associating a track in the silicon tracker with a cluster in the ECAL [7].
Besides the standard seeding of tracks in the pixel detector, additional seeds
are computed by extrapolating the electron/positron from the cluster toward the
interaction vertex, using both charge hypotheses. Starting from these seeds, track
candidates are built by the combinatorial Kalman filter (Sect. 5.1.7) and sent to track
fit with the GSF (Sect. 6.2.3). Electron/positron candidates are then created from the
association of a GSF track with a cluster in the ECAL. Track pairs of opposite charge
sign are selected and filtered by various constraints: the two tracks must have small
angular separation; the trajectories (helices) projected to the transverse plane must
not intersect; and the presumptive vertex must be inside the tracker volume. Track
pairs that pass these filters are sent to the vertex fit with the constraint that the tracks
are parallel at the vertex; see Sect. 8.3. The track pair is kept if the p-value of the
chi-square statistic indicates a good fit.

9.5 Hadronic Interactions

Knowledge of the material in a tracking device is important for understanding and
tuning the track reconstruction algorithms. Reconstruction of hadronic interactions
in the tracker material gives a precise map of the amount and location of active and
inactive parts of the device. The hadronic interactions result in secondary vertices
that have to be found. Whereas, in photon conversions, the vertex position along the
photon direction is ill defined, the vertex position of hadronic interactions can be
precisely estimated in all directions.

Tracks from secondary interaction vertices have a large impact parameter and
may not be found by the standard track finder(s). In order to have the largest possible
sample of such tracks, a special track finding pass can be implemented. Tracks from
the primary vertex and short-lived decays are suppressed by a lower bound on the
transverse impact parameter. Further quality cuts can be applied to select a reliable
sample of secondary tracks. The following paragraphs describe examples from the
experiments at the LHC.

In [8], a vertex finder is described that simultaneously finds all secondary vertices
in an event in the ATLAS detector (Sect. 1.6.1.2). It starts by finding all possible
intersections of pairs of selected tracks, performs a vertex fit and applies a quality
cut. Wrong combinations can be further suppressed by requiring that neither track
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has hits in the layers with a smaller radius than the vertex. Finally, nearby vertices
are merged, and incompatibility between vertices sharing tracks are resolved via
an incompatibility graph; see Sect. 5.3. For results on reconstruction efficiency
and vertex resolution, see [8]. The search for hadronic interaction vertices can be
complemented by the reconstruction of photon conversions; see Sect. 9.4.

A precision measurement of the structure of the CMS pixel detector
(Sect. 1.6.1.3), including sensors and support material, and the beam pipe using
hadronic interactions is reported in [9]. The track selection requires a minimal
transverse momentum of 0.2 GeV/c. For all pairs of selected tracks, their distance
of closest approach is computed; if the distance is below a preset threshold, the
midpoint of the points of closest approach is kept as a vertex candidate. These
two-track vertices are then merged to larger vertices by agglomerative clustering,
(Sect. 3.3.1). These vertices are sent to the adaptive vertex fit (AVF, Sect. 8.2.2).

The tracks associated to a fitted vertex are classified into incoming, outgoing,
and merged tracks based on their transverse impact parameter and the number of
hits before and after the vertex. At least three tracks have to be present, but not more
than one incoming or merged tracks. Additional filters using the properties of the
outgoing tracks serve to further reduce the number of fake interaction vertices. For
results on resolution, efficiency and purity of the vertex reconstruction, see [9].

The Vertex Locator (VELO) of the LHCb experiment, see Sect. 1.6.1.4, was
mapped by the reconstruction of secondary interaction vertices of hadrons produced
in beam-gas collisions [10]. The data were collected during special runs in which
helium or neon was injected into the collision region. The tracks used for the recon-
struction of secondary vertices come from a modified track finding procedure that
makes no prior assumption about the vertex position. Only well-reconstructed tracks
with at least three 2D hits are selected. The secondary vertices are reconstructed
from at least three tracks and have to be of good quality. They also must not be
compatible with the primary vertex region. Only events with a single secondary
vertex are used in the analysis. Results and the verification of the procedure with
photon conversions to two muons can be found in [10].
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Chapter 10
LHC Experiments

Abstract The chapter gives an overview of the track and vertex reconstruction
methods of the LHC experiments that were used in production during Run 2 of
the LHC, which ended in autumn of 2018.

10.1 ALICE

Track reconstruction in ALICE [1, 2] starts with cluster finding in the two principal
tracking detectors, i.e., in the pad rows of the TPC and in the silicon sensors of the
Inner Tracking System (ITS, Sect. 1.6.1.1). The clusters reconstructed in the two
innermost pixel layers of the ITS are used for a preliminary reconstruction of the
primary vertex. Track reconstruction takes place through three main passes.

The first pass starts out in the outer part of the TPC and proceeds inwards through
the ITS to the vertex region. Track seeds for primary particles are formed from pairs
of measurements in the outer pad rows of the TPC and the primary vertex. Beginning
from the seeds, track finding proceeds in the inward direction using a combinatorial
Kalman filter (see Sect. 5.1.7).

Each reconstructed TPC track is extrapolated to the outermost layers of the ITS
and used as a seed for track finding in the ITS. Track following in the ITS uses the
particle hypothesis computed from the energy loss in the TPC, if available. Seven
hypotheses are considered: electrons, muons, pions, kaons, protons, deuterons and
tritons. If the dE/dx information is missing or inconclusive, the pion mass is used.
An illustration of how a particle hypothesis can be made using a combination
of dE/dx information (from the TPC measurements) and momentum information
(from track reconstruction) is shown in Fig. 10.1.

A difficult point in the first-pass inwards tracking is the transition between the
TPC and the ITS, due to the quite long (approximately 0.5 m) propagation distance
between the two tracking systems. Given the uncertainty of the position of the track
candidate propagated from the TPC and the high density of clusters in the ITS, many
measurements are potentially compatible with the extrapolation. In order to lower
the combinatorial complexity, the position coordinates of ITS hits used in finding
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Fig. 10.1 Ionization energy loss as a function of momentum for a set of particles in the
ALICE experiment. (From https://arxiv.org/abs/1701.04810. ©CERN for the benefit of the ALICE
Collaboration. Reproduced under License CC-BY-4.0)

primary tracks are augmented by the two angles describing the direction from the
measurement to the primary vertex, effectively making the hits four-dimensional.
When all layers of the ITS are traversed, the best surviving candidate (in terms
of a quality measure using for instance the total χ2 of the track and the number of
assigned clusters) of each combinatorial tree is selected. Additional track candidates
are then found by a stand-alone search in the ITS, using hits not attached to TPC
tracks.

During the outward propagation in the second-pass through ITS, TPC and transi-
tion radiation detector (TRD), the track length and seven time-of-flight hypotheses
per track (corresponding to the seven particles mentioned above) are calculated.
This information is subsequently used for particle identification in the time-of-flight
detector (TOF). Whenever possible, tracks are matched with hits in the TOF and
other detectors outside the TRD.

In the third pass towards the vertex region, measurements assigned to the
surviving track candidates during the first pass are used in the refit. The primary
vertex is again fitted, now using the full available information from the reconstructed
tracks as well as the average position and spread of the beam-beam interaction
region. For a review of the track reconstruction performance, see [2, 3].

The high-level trigger (HLT) of ALICE also performs GPU-accelerated track
finding and fitting in the TPC [4]. A cellular automaton finds track seeds, which
are then extended by a simplified Kalman filter. After track segments are merged
to the final track candidates, a full Kalman filter track fit is performed. A detailed
description of all stages of the HLT can be found in [5]. The current HLT tracking is
the base for the future TPC tracking in Run 3, which will run in GPUs as well [6].

https://arxiv.org/abs/1701.04810
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10.2 ATLAS

The main track reconstruction strategy in the ATLAS experiment (see Sect. 1.6.1.2)
is to start out with track seeds in the innermost part of the Inner Detector and proceed
outwards [7–9]. First clusters are assembled in the pixel and SCT detector sub-
systems by a connected component analysis (CCA) [10], and from these clusters
3D measurements (so-called space-points) are created. In dense environments such
as the core of high-energy jets adjacent clusters from neighbouring particles can
be so close that they overlap. Identifying such merged clusters correctly during
the track reconstruction procedure is very important, and ATLAS has developed
a method using a multi-layer, feed-forward neural network in order to solve this
task efficiently [11].

Track seeds are generated from sets of three space-points. Seeds are processed
iteratively by first considering sets of space-points from the SCT detector, then
sets from the pixel detector, and finally sets originating from a combination of the
two sub-detectors. Starting out from the seeds, track finding is carried out by a
combinatorial Kalman filter (see Sect. 5.1.7). Each seed can potentially give rise to
a number of track candidates, as long as the candidates pass a set of quality criteria.
Efforts to speed up the track reconstruction are ongoing at the time of writing; first
results based on improving the purity of the seed collection are given in [12]. More
recent results are described in [13].

After iterating over all the seeds, the set of all track candidates are processed
by an ambiguity solver. A flow diagram of the ATLAS ambiguity solver is shown
in Fig. 10.2.

The track candidates are first ranked by a track score given to each candidate.
The track score definition is intended to give high scores to candidates with a high
probability of being a real track and therefore depends on, e.g., cluster resolutions,

Calculate
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with bad score

Order tracks
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Create
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Accept track candidate
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Reject track candidate , if
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or
Recover track candidate , if

too many shared clusters 
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identify merged clusters)

Output tracks
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minimum requirements
(Neural network used to 
predict cluster positions) 

Fig. 10.2 Flow diagram of the ATLAS ambiguity solver. (From [9], reproduced under License
CC-BY-4.0)
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the number of holes on the track and the track χ2. Track candidates passing a set
of basic quality criteria are submitted to a full, high-resolution track fit using all
available information relevant for an optimal estimation of the track parameters.
After the track fit, track candidates can either be accepted, rejected or stripped down
if the candidate contains too many clusters shared by other track candidates. The
stripped-down candidates are scored again and re-submitted to the entire procedure
of ambiguity resolving. It can be noted that the full track fit is invoked after the track
scoring stage in order to save computational load.

The set of output track segments from the pixel and SCT detectors are submitted
to the TRT track extension, which extrapolates the track segments through the TRT
and searches for compatible segments in this drift tube detector. The search and
subsequent resolution of drift-time ambiguities are done using a line fit in coordinate
projections making the track model approximately linear [7]. At high levels of pile-
up the occupancy of the TRT is so high that including drift-time hits not always
increases track reconstruction performance. However, tube hits (i.e., using only the
position of the centre straw) in all cases contribute to electron identification through
information about transition radiation.

In order to find tracks originating, e.g., from secondary vertices or photon
conversions, a secondary track reconstruction strategy starts out by finding track
segments in the TRT using a Hough transform [7]. The TRT segments are then
back-tracked into the SCT, which allows finding small track segments in the silicon
detector that were not found during the first inside-out pass.

Electron reconstruction requires special attention [14] due to the potentially
large amounts of emitted bremsstrahlung. In ATLAS, there is no separate iteration
for electron track reconstruction. However, specific handling of bremsstrahlung is
triggered by electromagnetic showers during the entire track reconstruction chain.
The combinatorial Kalman filter allows for kinks in the track candidates if they are
inside a region compatible with an electromagnetic shower. The ambiguity solver
uses a global LS fit which allows for bremsstrahlung breakpoints in the track model.
During electron identification, a full Gaussian-sum filter is invoked.

The primary vertex reconstruction in ATLAS is divided into the two classical
categories vertex finding and vertex fitting [15]. The input is the set of reconstructed
tracks in an event selected according to a set of quality criteria. This set is first used
to obtain a seed position for the primary vertex. The seed position in the bending
plane is the center of the beam spot, whereas the longitudinal coordinate is defined
as the mode of the longitudinal position of the tracks at their respective points of
closest approach to the beam spot. Subsequently, the set of tracks and the seed
position is submitted to an iterative vertex finding procedure using the adaptive
vertex fit (AVF) with annealing (Sect. 8.2.2). A typical distribution of track weights
for a set of values of the temperature parameter T is shown in Fig. 10.3.

After the final iteration, the tracks with weights so small that they can be
considered incompatible with the reconstructed vertex are removed from the vertex
candidate and returned to the pool of unused tracks. The unused tracks are then
submitted to a new iteration of the vertex finding procedure, which continues
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Fig. 10.3 Histogram of track weights in the adaptive vertex fit for a set of different temperatures.
(From [15], reproduced under License CC-BY-4.0)

until all tracks have been used or no additional vertex can be found among the
remaining tracks. For secondary vertex finding inside jets, see [16]. Stand-alone
vertex reconstruction in the muon spectrometer of ATLAS is described in [17].

10.3 CMS

For a brief description of the CMS tracking system, see Sect. 1.6.1.3. Although
the pixel detector and the silicon strip detector are mechanically independent sub-
detectors with different sensor technology, they are considered as a single tracking
detector as far as track finding and track fitting are concerned.

The CMS track reconstruction is based on an iterative approach [18–21]. The
principal difference between iterations is the configuration of the seed generation
and the target tracks. The iterative search starts with the tracks that are the least
difficult to find, and proceeds to more difficult classes: low momentum tracks,
tracks from short-lived decays, and tracks from long-lived decays. In each iteration,
hits associated to high-quality tracks are masked, reducing the combinatorial
overhead for the following iteration. Finally, special iterations that improve track
reconstruction in high-density environments such as jets are executed, followed
by iterations targeting muon tracks in combination with the muon chambers. For
a recent comprehensive overview of the tracking performance, see [22].

Each iteration consists of four steps:

1. Seed generation. Initial track segments, called seeds, are found by a combina-
torial search or by a cellular automaton [23]; see also Sect. 5.1.5. Using the



174 10 LHC Experiments

information of three or four hits pixel and/or strips, the trajectory parameters
and the corresponding uncertainties of the seed are computed.

2. Track finding. Each seed is used as the starting segment of the combinatorial
Kalman filter (Sect. 5.1.7). At most one missing hit is allowed in a track
candidate.

3. Track fitting. A Kalman filter or, for electron candidates, a Gaussian-sum
filter/smoother (Sect. 6.2.3) is performed to obtain the final estimate of the track
parameters at the interaction point exploiting the full trajectory information. The
Kalman filter is also available in a parallelized version [24–26].

4. Track classification. Tracks are divided into classes according to different track
quality criteria; see also Sect. 6.4.

The twelve tracking iterations used after the pixel upgrade to four layers are listed
in Table 10.1, showing the seed type and the targeted tracks [20]. Iteration 9 is
special insofar as it improves track reconstruction in jets and hadronic τ lepton
decays by re-clustering pixel hits, using the jet direction to predict the expected
cluster shape and charge [27, 28]. Iterations 10 and 11 reconstruct global muon
tracks. For the combined electron reconstruction with tracker and electromagnetic
calorimeter, see [29] and Sect. 9.4.

Primary vertex reconstruction starts with selecting tracks that are produced
promptly by setting a threshold on their transverse impact parameter [18]. The
selected tracks are then clustered on the basis of their z-coordinates at their point
of closest approach to the center of the beam spot, allowing for an arbitrary

Table 10.1 List of the tracking iterations in CMS used after the Pixel Tracker upgrade with the
corresponding seeding configuration used and target tracks [20]

Iteration Step Name Seeding Target Track

0 Initial pixel quadruplets prompt, high pT
1 LowPtQuad pixel quadruplets prompt, low pT
2 HighPtTriplet pixel triplets prompt, high pT recovery
3 LowPtTriplet pixel triplets prompt, low pT
4 DetachedQuad pixel quadruplets from B hadron decay, r ≤ 5 cm
5 DetachedTriplet pixel triplets from B hadron decay, r ≤ 10 cm
6 MixedTriplet pixel+strip triplets displaced, r ≤ 7 cm
7 PixelLess inner strip pairs displaced, r ≤ 25 cm
8 TobTec outer strip pairs displaced, r ≤ 60 cm
9 JetCore pixel pairs in jets high-pT jets
10 Muon inside-out muon-tagged tracks muons
11 Muon outside-in standalone muons muons
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number of clusters. The algorithm of choice is clustering by deterministic annealing
(Sect. 7.2.4). Vertex candidates with at least two tracks are fitted by an adaptive
vertex fitter (Sect. 8.2.2). Finally the signal vertex is determined as the primary
vertex with the highest weighted sum of the squared momenta of the jets and isolated
tracks associated to the vertex.

Iterations 4 and 5 of the track finding target secondary tracks from short-lived
decays, for instance B hadrons. Other candidate tracks for inclusion in a secondary
vertex are tracks rejected by the adaptive vertex fit of the signal vertex. Finding
secondary vertices is then basically a combinatorial search, followed by a vertex fit
and possibly a kinematic fit for each candidate.

Tracks from long-lived decays, for instance K-short mesons and Λ baryons, are
the targets of iterations 6–8, each for a different range of the radial distance r of
the decay from the beam line. Reconstruction of these decay vertices is again a
combinatorial search followed by a vertex fit and a kinematic fit.

CMS also has an independent reconstruction of tracks and primary vertices based
purely on pixel hits. This is significantly faster than the standard track and vertex
reconstruction chain and therefore a valuable tool for the high-level trigger [18, 30].

10.4 LHCb

Track reconstruction in the LHCb detector uses hits in the VELO, TT and T stations;
see Sect. 1.6.1.4 and Fig. 10.4. Depending on which detectors are crossed by a
particle, different track types are defined [31]:

VELO track

upstream track

T-track

long track

downstream track

VELO
TT

T-stations

Fig. 10.4 Schematic diagram of the LHCb tracking system and the five track types. (From [31],
reproduced under License CC-BY-4.0)
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• VELO tracks have hits in the VELO. They are particularly important in the
primary vertex reconstruction. They can be extended to upstream and long tracks
during reconstruction.

• Upstream tracks have hits in the VELO and TT stations. In general their
momentum is too low to traverse the magnet and reach the T stations. If they
do, they can be extended to long tracks.

• Long tracks have hits in both the VELO and the T stations, and optionally in TT.
They are the most important set of tracks for physics analyses.

• Downstream tracks have hits in the TT and T stations. They are important for the
reconstruction of long-lived particles that decay outside the VELO acceptance.

• T tracks pass only through the T stations. Like the downstream tracks, they are
useful for particle identification in the Ring Imaging Cherenkov detectors.

Track reconstruction is done in the two stages of the high-level trigger, HLT1
and HLT2 (Sect. 2.1.3). In fact, the full event reconstruction runs in the high-level
trigger [31, 32].

The partial track reconstruction in HLT1 starts with finding straight lines in the
VELO, which are fitted by a simplified Kalman filter. The fitted tracks are used
for the reconstruction of the primary vertices. The primary vertex finding, see [33]
and [34, Appendix A], proceeds in two steps: seeding and fitting. The 3D seeding
algorithm starts with a base track and looks for tracks close to it. If at least four close
tracks are found, a robust average of the points of closest approach of all track pairs
is computed and stored as a seed. The tracks are marked as used and the next base
track is processed. The fast seeder clusters tracks according to the z-coordinates of
their points of closest approach to beam line, similar to the primary vertex finder of
CMS (see Sect. 10.3).

Before fitting, the seeds are ordered in descending track multiplicity, so that
primary tracks are fitted first, and the probability of incorrectly labeling a secondary
vertex as primary is minimized. The vertex fit is a redescending M-estimator with
Tukey’s biweight function, see Table 6.1 in Sect. 6.2.1. HLT1 proceeds with forming
upstream tracks by extrapolating VELO tracks to the TT. High-momentum tracks
are extended to the T stations. The resulting long tracks are fitted with a full Kalman
filter and sent to the fake track rejection by a neural network [35].

HLT2 performs the full track reconstruction, in the sequence shown in Fig. 10.5.
VELO tracks are extended to long tracks, without a threshold on the transverse
momentum. Next, a stand-alone track finding is done in the T stations [36]. The
found tracks are combined with VELO to long tracks. Tracks produced in the decays
of long-lived particles outside the VELO are reconstructed from track segments in
the T stations that are extrapolated backwards and combined with hits in the TT.
The final steps are a full track fit with the Kalman filter, fake track rejection by a
neural network, and removal of duplicates.
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Fig. 10.5 Sequence of the full track reconstruction in LHCb. (From [31], reproduced under
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Chapter 11
Belle II and CBM

Abstract The chapter gives an overview of the tracking and vertexing algorithms
of two experiments not at the LHC, Belle II at SuperKEKB in Japan and CBM at
FAIR in Germany.

11.1 Belle II

The Belle II experiment [1] started operation in late 2018. The following overview
of the reconstruction methods reflects the status after a couple of months of running;
further developments and adaptations that have been implemented in parallel to the
rising luminosity of the SuperKEKB collider are documented in [2].

The tracking system of Belle II has two principal components, the vertex detector
(VXD) and the central drift chamber (CDC); see Sect. 1.6.2.1. The VXD consists of
two parts: the PXD with two layers of DEPFET pixel sensors, and the SVD with
four layers of double-sided silicon strip sensors. The overall design of the track
reconstruction is shown in Fig. 11.1.

Track finding in the CDC starts with a filter, implemented as a boosted decision
tree, that rejects background hits. This is followed by two track finders. The global
track finder employs a Legendre transform (Sect. 5.1.4), to find complete tracks
originating from the interaction region. Peak finding in the Legendre space is done
by a fast iterative quadtree algorithm [3]. The local track finder builds segments
from the hits in a superlayer. This is followed by a multi-stage combination and
filter algorithm that connects valid segments and tracks, rejects fake segments, and
outputs the final CDC track sample [4].

Stand-alone track finding in the SVD [5, 6] is based on a cellular automaton (CA)
complemented by a sector map (Sect. 5.1.5). The sector map stores prior information
about which triplets of hits can be part of a track. The vertex position can be used as
a virtual hit. Track segments that pass all cuts form the cells of the CA. Figure 11.2
shows the final state of the CA with a toy event, without background.

When the CA has finished, each track candidate is assigned a quality index,
which is the p-value of a triplet fit (Sect. 6.1.5), a circle fit, or a Riemann helix
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Fig. 11.1 Scheme of the track reconstruction in Belle II. (Courtesy of B. Scavino, Mainz)

Fig. 11.2 Final state of the
CA with a toy event in the
VXD. The colors of the cells
(track segments) represent
their states. (Courtesy of J.
Lettenbichler, Vienna)

fit (Sect. 6.3). Finally, non-overlapping candidates are selected, either with a greedy
algorithm or a Hopfield network (Sect. 5.3). At the time of writing, the triplet fit and
the greedy algorithm are the defaults.

The merging of CDC and VXD tracks is based on a boosted decision tree that is
trained on valid combinations of CDC and VXD tracks. It takes the track parameters
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as determined by a Deterministic Annealing Filter (DAF, Sect. 6.2.2) as input and
returns a score in the interval (0, 1). Combinations above a threshold are accepted.
CDC tracks, SVD tracks and combined tracks are extrapolated into the PXD to
pick up hits by a combinatorial Kalman filter [7], and then passed to the DAF. The
implementation of the DAF is the one in GENFIT [8–10].

The B mesons produced by the decay of the Υ (4S) resonance are reconstructed
hierarchically [11], and their decay chains are fitted by a tree fitter based on [12].
V0 decays are reconstructed by pairing positive and negative tracks and performing
a vertex fit [13].

11.2 CBM

CBM is a heavy-ion experiment at FAIR [14], currently in the preparation phase.
The first beam is expected in 2024. The interaction rate will be up to 10 MHz,
with up to 1000 charged particles produced in a central collision. Full online event
reconstruction and selection will be required [15]. This is the task of the First Level
Event Selection Package (FLES, [16, 17]). The algorithms in FLES exploit vector
instructions for intra-processor parallelism and parallelism between cores on the
event level.

The FLES package consists of several modules: track finding, track fitting, short-
lived particles finding, event building and event selection [18], see Fig. 11.3. CBM
runs without a trigger; time-stamped data will be put into a buffer in time slices of
a certain length instead. The association of tracker hits with events is performed by
software [18], using the hit time information in the Silicon Tracking System (STS,
see Sect. 1.6.2.2). The resolution of the hit time is 5 ns.

Track finding in the STS (Sect. 1.6.2.2) is done by a 4D Cellular Automaton,
where the fourth dimension is time [19, 20]. The cells of the CA are triplets of hits
correlating in space and in time. The principle of the CA track finder is illustrated
in Fig. 5.5 in Sect. 5.1.5. For track finding efficiencies, see [18].

The track candidates from the CA are sent to the Kalman Filter Track Fitter.
The Kalman Filter is “SIMDized”, i.e., uses the Single-Instruction Multiple-Data
features of the processors employed [21]. The extrapolation in the inhomogeneous
magnetic field uses the approximate analytical method described in Sect. 4.3.2.2.

After the primary vertex fit with the Kalman Filter, tracks are sorted into primary
and secondary tracks. The reconstruction of short-lived particles is done by the
KFParticle package [22], also based on the Kalman Filter and designed to fit decay
chains. The reconstruction of a short-lived particle is implemented iteratively. The
KFParticle package starts with an initial approximation of the secondary vertex,
adds particles one after another, refines the state vector and gives the optimal values
after the last particle [16, 17]. Besides the geometrical constraints, mass constraints
and topological constraints can be imposed on the secondary vertex.

Track reconstruction in the three stations of the transition radiation detector is
done by a cellular automaton as well [23].
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Fig. 11.3 Flow diagram of the First Level Event Selection Package in CBM. (From [17],
reproduced under License CC-BY-4.0)
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Appendix A
Jacobians of the Parameter
Transformations

Transformation from One Curvilinear Frame to Another

The non-zero terms of the Jacobian matrix are:

ψ : ∂ψ/∂ψ0 = 1,

φ : ∂φ/∂ψ0 = − αK

cos λ
· 1

ψ
· (n · u) · [t · (r0 − r)] ,

∂φ/∂φ0 = cos λ0

cos λ

{
cos θ · (u0 · u) + sin θ · ((h × u0) · u)

+ (1 − cos θ) · (h · u0) · (h · u)

+ α (n · u) [− sin θ (u0 · t) + α (1 − cos θ) (u0 · n)

− (θ − sin θ) (h · t) (h · u0)]
}
,

∂φ/∂λ0 = 1

cos λ

{
cos θ · (v0 · u) + sin θ · ((h × v0) · u)

+ (1 − cos θ) · (h · v0) · (h · u)

+ α (n · u) [− sin θ (v0 · t) + α (1 − cos θ) (v0 · n)

− (θ − sin θ) (h · t) (h · v0)]
}
,
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∂φ/∂x⊥0 = − αK

cos λ
(n · u) (u0 · t) ,

∂φ/∂y⊥0 = − αK

cos λ
(n · u) (v0 · t) ,

λ : ∂λ/∂ψ0 = −αK · 1

ψ
· (n · v) · [t · (r0 − r)] ,

∂λ/∂φ0 = cos λ0{cos θ · (u0 · v) + sin θ · ((h × u0) · v)

+ (1 − cos θ) · (h · u0) · (h · v)

+ α (n · v) [− sin θ (u0 · t) + α (1 − cos θ) (u0 · n)

− (θ − sin θ) (h · t) (h · u0)]},
∂λ/∂λ0 = cos θ · (v0 · v) + sin θ · ((h × v0) · v)

+ (1 − cos θ) · (h · v0) · (h · v)

+ α (n · v) [− sin θ (v0 · t) + α (1 − cos θ) (v0 · n)

− (θ − sin θ) (h · t) (h · v0)],
∂λ/∂x⊥0 = −αK (n · v) (u0 · t) ,

∂λ/∂y⊥0 = −αK (n · v) (v0 · t) ,

x⊥ : ∂x⊥/∂ψ0 = 1

ψ
· [u · (r0 − r)] ,

∂x⊥/∂φ0 = cos λ0

{
sin θ

K
(u0 · u) + 1 − cos θ

K
((h × u0) · u)

+ θ − sin θ

K
(h · u0) · (h · u)

}
,

∂x⊥/∂λ0 = sin θ

K
(v0 · u) + 1 − cos θ

K
((h × v0) · u)

+ θ − sin θ

K
(h · v0) · (h · u) ,

∂x⊥/∂x⊥0 = u0 · u,

∂x⊥/∂y⊥0 = v0 · u,
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y⊥ : ∂y⊥/∂ψ0 = 1

ψ
· [v · (r0 − r)] ,

∂y⊥/∂φ0 = cos λ0

{
sin θ

K
(u0 · v) + 1 − cos θ

K
((h × u0) · v)

+ θ − sin θ

K
(h · u0) · (h · v)

}
,

∂y⊥/∂λ0 = sin θ

K
(v0 · v) + 1 − cos θ

K
((h × v0) · v)

+ θ − sin θ

K
(h · v0) · (h · v) ,

∂y⊥/∂x⊥0 = u0 · v,

∂y⊥/∂y⊥0 = v0 · v.

Transformations Between a Local Frame and the Curvilinear
Frame

∂ (ψ, φ, λ, x⊥, y⊥)/∂
(
ψ, v′, w′, v, w

) =
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0
(t · i) (u · j)

cos λ

(t · i) (u · k)

cos λ
−αK (t · j) (u · n)

cos λ
−αK (t · k) (u · n)

cos λ
0 (t · i) (v · j) (t · i) (v · k) −αK (t · j) (v · n) −αK (t · k) (v · n)

0 0 0 (u · j) (u · k)

0 0 0 (v · j) (v · k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

∂
(
ψ, v′, w′, v, w

)
/∂ (ψ, φ, λ, x⊥, y⊥) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0
cos λ (v · k)

(t · i)2 − (u · k)

(t · i)2 −αK (u · i) (m · k)

(t · i)3 −αK (v · i) (m · k)

(t · i)3

0 −cos λ (v · j)

(t · i)2

(u · j)

(t · i)2

αK (u · i) (m · j)

(t · i)3

αK (v · i) (m · j)

(t · i)3

0 0 0
(v · k)

(t · i)
− (u · k)

(t · i)

0 0 0 − (v · j)

(t · i)

(u · j)

(t · i)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where m = t × n and

(m · k) = (v · k) (n · u) − (u · k) (n · v) ,

(m · j) = (v · j) (n · u) − (u · j) (n · v) .

Transformations Between the Intermediate Cartesian Frame
and the Local Frame

∂
(
ψ, v′, w′, v, w

)
/∂
(
p′

x, p
′
y, p

′
z, x

′, y′, z′) =

⎛
⎜⎜⎜⎜⎜⎝

−qp′
x/g −qp′

y/g −qp′
z/g 0 0 0

1/p′
z 0 − p′

x/p
′
z

2 0 0 0
0 1/p′

z − p′
y/p

′
z

2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

with

g =
(
p′

x
2 + p′

y
2 + p′

z
2
)3/2

.

∂
(
p′

x, p
′
y, p

′
z, x

′, y′, z′)/∂ (ψ, v′, w′, v, w
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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with
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Appendix B
Regularization of the Kinematic Fit

If V in Eq. (8.61) is not of full rank (singular), it can be regularized by adding a
positive multiple of the identity matrix:

V δ = V + δI with δ > 0.

The eigenvalues of V δ are equal to the non-negative eigenvalues of V plus δ.
Therefore, they are all positive and V δ is regular. The corresponding estimate α̂

δ

(see Eq. (8.68)) is equal to:

α̂
δ = y − V δHTGδ

H (Hy + d),

with

Gδ
H = (H V δHT)−1 = [H (V + δI )HT]−1 =

= [H V HT + δH HT]−1 = [GH
−1 + δH HT]−1.

Application of the Woodbury identity [1, Theorem 18.2.8] yields:

Gδ
H = GH − GH [1/δ · (H HT)−1 + GH ]−1GH =

= GH − δ · GH [(H HT)−1 + δGH ]−1GH .

It follows that

lim
δ→0+ Gδ

H = GH and lim
δ→0+ α̂

δ = α̂.
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Appendix C
Software

This appendix presents some software platforms and packages that are not tied to a
specific experiment and are of particular interest to algorithm developers and users.

FairRoot

FairRoot [1] is an object-oriented framework for simulation, reconstruction and
analysis. It contains base classes for easy definition of the user’s experimental
setup. Using the concept of Virtual Monte Carlo [2] different simulation programs
can be deployed without changing the user code or the geometry description. The
framework delivers classes for detector handling and magnetic field definition, so
that the user can perform simulations with different detector setups and test different
reconstruction algorithms. The framework is used by several experiments at FAIR,
as well as by some groups outside.

ACTS: A Common Tracking Software

ACTS [3, 4] encapsulates track reconstruction algorithms in a generic, experiment-
independent framework. It provides data structures and algorithms for simulation,
track finding and track fitting, including track parameter propagation. Special
emphasis is put on parallelization and vectorization of the software. The imple-
mentation is independent of particular assumptions on the detector technology, the
detector configuration and the magnetic field. The further development of the project
depends on active input from the tracking community. ACTS is thus an excellent
testbed for new ideas on track finding and track fitting.
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GBL: General Broken Lines

The general broken lines (GBL) algorithm [5, 6] is a fast track refit based on
the concept of linearized regression with breakpoints (Sects. 6.1.3 and 6.1.4). The
track model is implemented in such a way that the model matrix has a very
special structure and can be inverted in linear time with respect to the number of
measurements. The GBL fit computes the full covariance matrix of the corrections
to the track parameters along the track and gives the necessary input to track-based
alignment with global methods, in particular Millepede II [7].

GENFIT

GENFIT [8–11] is a generic toolkit for track fitting. It provides classes for
measurements, track representations and fitting algorithms. There are predefined
measurement classes for various detector types, including planar detectors, drift
chambers, and time projection chambers. Track representations include code for
track parametrization and track extrapolation by Runge–Kutta. The available fitters
are the Kalman filter (with or without reference track), the Deterministic Annealing
Filter, and the General Broken Lines. There is an interface to the RAVE vertex
reconstruction toolbox, see below.

A new and extended version, called GENFIT2, is described in [12]. Studies of its
performance in the software frameworks of the experiments Belle II at SuperKEKB
and PANDA at FAIR (Chap. 11) can be found in [12].

RAVE

RAVE [13] is an experiment-independent toolkit for vertex reconstruction. It comes
with a stand-alone framework VERTIGO for debugging, testing and analyzing.
The vertex fitters are the extended Kalman filter (Sect. 8.1.2.2) and the adaptive
vertex fitter (Sect. 8.2.2). Secondary vertex finding by an iterated adaptive fitter
(AVR, Sect. 7.3.3) is implemented as well. The toolkit can be embedded in the
software framework of a collider experiment with minimal effort.

References

1. M. Al-Turany, et al., J. Phys. Conf. Ser. 396(2), 022001 (2012). https://iopscience.iop.org/
article/10.1088/1742-6596/396/2/022001

2. I. Hrivnacova, et al., CoRR cs.SE/0306005 (2003). http://arxiv.org/abs/cs.SE/0306005

https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022001
https://iopscience.iop.org/article/10.1088/1742-6596/396/2/022001
http://arxiv.org/abs/cs.SE/0306005


References 195

3. C. Gumpert, et al., J. Phys. Conf. Ser. 898, 042011 (2017). https://iopscience.iop.org/article/
10.1088/1742-6596/898/4/042011

4. A. Salzburger, et al. A Common Tracking Software. https://acts.web.cern.ch/ACTS
5. C. Kleinwort, Nucl. Instrum. Meth. Phys. Res. A 673, 107 (2012)
6. C. Kleinwort, General Broken Lines. http://www.terascale.de/wiki/generalbrokenlines
7. V. Blobel, C. Kleinwort, F. Meier, Comput. Phys. Commun. 182(9), 1760 (2011)
8. C. Höppner, et al., Nucl. Instrum. Meth. Phys. Res. A 620(2), 518 (2010)
9. J. Rauch, T. Schlüter, J. Phys. Conf. Ser. 608(1), 012042 (2015). https://iopscience.iop.org/

article/10.1088/1742-6596/608/1/012042
10. J. Rauch, T. Schlüter, GENFIT—a Generic Track-Fitting Toolkit (2016). https://arxiv.org/abs/

1410.3698v2
11. GENFIT—a generic toolkit for track reconstruction for experiments in particle and nuclear

physics. http://genfit.sourceforge.net
12. T. Bilka, et al., Submitted to Nucl. Instrum. Meth. Phys. Res. A (2019). https://arxiv.org/pdf/

1902.04405.pdf
13. W. Waltenberger, et al., J. Phys. Conf. Ser. 119, 032037 (2008). https://iopscience.iop.org/

article/10.1088/1742-6596/119/3/032037

https://iopscience.iop.org/article/10.1088/1742-6596/898/4/042011
https://iopscience.iop.org/article/10.1088/1742-6596/898/4/042011
https://acts.web.cern.ch/ACTS
http://www.terascale.de/wiki/generalbrokenlines
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012042
https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012042
https://arxiv.org/abs/1410.3698v2
https://arxiv.org/abs/1410.3698v2
http://genfit.sourceforge.net
https://arxiv.org/pdf/1902.04405.pdf
https://arxiv.org/pdf/1902.04405.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/119/3/032037
https://iopscience.iop.org/article/10.1088/1742-6596/119/3/032037


Glossary and Abbreviations

ACTS A Common Tracking Software
ALICE A Large Ion Collider Experiment, an experiment at the LHC
ATLAS A Toroidal LHC Apparatus, an experiment at the LHC
AVF Adaptive Vertex Fit
Belle II An experiment at the SuperKEKB collider
CBM Compressed Baryon Matter, a future experiment at FAIR
CA Cellular Automaton
CDF Collider Detector at Fermilab, an experiment at the Tevatron
CDF Cumulative Distribution Function
CERN European Laboratory for Particle Physics in Geneva
CKF Combinatorial Kalman Filter
CMS Compact Muon Solenoid, an experiment at the LHC
DAF Deterministic Annealing Filter
FAIR Facility for Antiproton and Ion Research, an accelerator complex

at GSI
GBL General Broken Lines
GNN Graph Neural Network
GSF Gaussian-Sum Filter
GSI German federal research institute for heavy ion research in Darm-

stadt
HL-HLC High-luminosity stage of the LHC, starting in 2026
HLT High-level trigger
KEK The Japanese National Laboratory for High-Energy Physics
LHC Large Hadron Collider, the large proton-proton collider at CERN
LHCb Large Hadron Collider beauty, an experiment at the LHC
LS Least Squares
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198 Glossary and Abbreviations

LSTM Long Short-Term memory
PDF Probability Density Function
RNN Recurrent Neural Network
SuperKEKB Electron-positron collider (B-factory) at KEK
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A
A common tracking software (ACTS), 91, 193
A large ion collider experiment (ALICE), 12,

91, 169
tracking detectors, 12

Alignment, 10
track based, 10, 11, 109

Artificial retina, 84
A toroidal LHC apparatus (ATLAS), 10, 13,

94, 171
fast tracker, 96
hadronic interaction, 163
photon conversion, 162
tracking detectors, 13

AVR, see Vertex finding

B
Belle II, 17, 181

tracking detectors, 17
Breakpoint, 107, 124
Bremsstrahlung, see Material effects

C
CA, see Cellular automaton
Case studies

ALICE, 169
ATLAS, 171
Belle II, 181
CBM, 183
CMS, 173
LHCb, 175

Cellular automaton (CA), 87, 88, 170, 173,
181, 183

Central tracker, 11, 13, 169, 173, 183
Chi-square statistic, 27, 28, 39, 40, 42, 93, 97,

98, 105, 110, 117, 118, 121, 124,
125, 148, 149, 153, 154, 157, 163

Circle fit, 116
Chernov and Ososkov’s, 117
conformal mapping, 116
Karimäki’s, 117
Riemann fit, 119

CKF, see Kalman filter, combinatorial
Clustering, 29, 44, 116, 132

agglomerative, 44, 138, 140, 160,
161, 164

deterministic annealing, 135, 175
divisive, 44, 133, 138
greedy, 138
hierarchical, 44
model-based, 45, 133
partitional, 44

Combinatorial Kalman filter, see Kalman filter,
combinatorial

Compact muon solenoid (CMS), 13, 24, 94,
173

hadronic interaction, 164
photon conversion, 163
tracking detectors, 13
track trigger, 97

Compressed baryon matter (CBM),
17, 183

tracking detectors, 17
Conformal transformation, 81, 116
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D
DAF, see Deterministic annealing filter (DAF)
Deterministic annealing, 90, 99, 111, 112, 134,

135, 154
Deterministic annealing filter (DAF), 112, 183,

194
Drift chamber, 4–6, 17, 96, 112, 181, 194

cylindrical, 5
drift tubes, 6
planar, 4

E
EM algorithm, 133, 134

with deterministic annealing, 134
Energy loss, see Material effects
Equation of motion, 49
Error propagation, 43, 57

homogeneous magnetic field, 59
inhomogeneous magnetic field, 63

Event reconstruction, 23
physics objects reconstruction, 28
track quality, 28
track reconstruction, 26

global, 27
hit generation, 27
local, 27

trigger and data acquisition, 23
vertex reconstruction, 28

Extended Kalman filter, see Kalman filter,
extended

F
Facility for antiproton and ion research (FAIR),

17, 183
CBM experiment, 17, 183

FairRoot, 193
Function minimization, 33

descent methods, 34
gradient-free methods

simplex algorithm, 37
gradient methods

conjugate gradients, 36
line search, 34
quasi-Newton methods, 35
steepest descent, 35

Newton–Raphson method, 33

G
Gaussian-sum filter, 78, 114–116
GBL, see General broken lines (GBL)
General broken lines (GBL), 109, 194

GENFIT, 109, 112, 183, 194
GNN, see Neural network

H
Helix fit, 120
High-luminosity LHC, 11, 95, 97
Hit generation

drift chamber, 5, 6
MWPC, 4
pixel sensor, 8
silicon strip sensor, 8
TPC, 7

Hough transform, 82, 98, 172

I
Inner tracker, see Central tracker

K
Kalman filter, 41, 42, 92, 124, 183, 194

backward, 43, 107, 124
combinatorial, 92–94, 98, 107, 115, 163,

169, 171, 174, 183
extended, 43, 106, 149

chi-square statistic, 149
gain matrix, 42
information filter, 43
linear

chi-square statistic, 42
residuals, 42
smoother, 41–43

residuals, 43
square-root filter, 43

Kinematic fit, 155
Kink finding, 28, 124

L
Large hadron collider beauty (LHCb), 15, 25,

175
hadronic interaction, 164
tracking detectors, 15

Legendre transform, 85, 181
LHC experiments, 12, 131, 169

ALICE, 12, 91, 169
ATLAS, 10, 13, 94, 171
CMS, 13, 24, 94, 173
LHCb, 15, 25, 175

M
Magnetic field, 49

homogeneous, 50, 53, 59
inhomogeneous, 50, 54, 63
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Material effects, 67
bremsstrahlung, 77, 114, 125

approximation by normal mixture, 78
Bethe–Heitler model, 77
distribution, 77

energy loss, 76
Bethe–Bloch formula, 76
by bremsstrahlung, 77
by ionization, 76
in track propagation, 76

multiple scattering, 67, 104, 105
angular distribution, 68
approximation by normal mixture, 70
covariance matrix, 104, 105
Highland formula, 68
single scattering angle, 67
single scattering variance, 68
in track propagation, 71
thick scatterer, 74
thin scatterer, 71

M-estimator, 110, 152, 153
adaptive weights, 111
Huber’s weights, 111
Tukey’s bisquare weights, 111, 176
weight function, 111

Micro-pattern gas detector, 7
Multiple scattering, see Material effects
Multi-wire proportional chamber (MWPC), 4
Muon tracking system, 11, 13, 14, 17, 24, 26,

71
MWPC, see Multi-wire proportional chamber

(MWPC)

N
Neural network, 89

graph, 91
Hopfield, 89, 99, 182
recurrent, 91

O
Outlier, 27, 105, 152–154

chi-square statistic, 123
detection of, 28, 105, 123, 155
track-correlated, 123
track-uncorrelated, 123

P
Particle identification, 29

Cherenkov detectors, 29
ionization, 29
particle flow, 30

tracking and calorimetry, 29
transition radiation, 29

Pattern matching, 94, 96–98
Pattern recognition, see Track finding
Perigee parameters, 150
Pile-up, 23, 30, 131, 140, 160, 172
Primary vertex, see Vertex

R
RAVE, 139, 194
Regression

linear, 39
chi-square statistic, 39

nonlinear, 40, 103, 146
chi-square statistic, 40, 105, 148

residuals, 39, 105
robust, 110
standardized residuals, 39, 105
with breakpoints, 107, 108

RNN, see Neural network
Runge–Kutta, see Track propagation

S
Secondary vertex, see Vertex
Seed

track, 92, 93, 163, 169, 171, 174
vertex, 161, 172, 176

Sensor
pixel, 8
silicon strip, 8

Signal vertex, see Vertex
Smoother, see Kalman filter
State space model, 41, 106, 123

linear, 41
nonlinear, 43

SuperKEKB, 17, 181
Belle II experiment, 17, 181

T
Template matching, see Pattern matching
Time projection chamber (TPC), 6, 13, 169,

194
TPC, see Time projection chamber (TPC)
Track candidate selection, 97–99
Track finding, 81

artificial retina, 84
cellular automaton, 87
combinatorial Kalman filter, 92
conformal transformation, 81
graph neural network, 91
Hopfield network, 89
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Track finding (cont.)
Hough transform, 82
Legendre transform, 85
online, 96
pattern matching, 94
recurrent neural network, 91
track following, 92

Track fit, 103
affine transformation, 96, 98, 109
deterministic annealing filter, 112
extended Kalman filter, 106
Gaussian-sum filter, 114
general broken lines, 109
least-squares regression, 103
M-estimator, 110
regression with breakpoints, 107
robust, 27, 110
triplet fit, 109

Track following, 92
Tracking detector, 3

alignment, 10
calibration, 4–8, 28
drift chamber, 4–6, 17, 96, 112, 181, 194
gaseous, 4
multi-wire proportional chamber, 4
pixel, 8, 93, 164, 169
scintillating fiber, 9
semiconductor, 7
silicon drift, 9
silicon strip, 8, 13, 16, 17, 97
time projection chamber, 6, 13, 169

Tracking system, 11
Track model, 49
Track parametrization, 50

barrel-type, 50
curvilinear, 52
planar, 51
transformation

between curvilinear and local frames,
61, 189

between curvilinear frames, 60, 187
between global Cartesian and local

frames, 62, 190
Track propagation, 43, 52

analytical, 55, 183
homogeneous magnetic field, 53
inhomogeneous magnetic field, 54
Runge–Kutta–Nyström method, 50, 54, 194

Track quality, 28, 121
chi-square statistic, 121
detection of outliers, 123
kink finding, 124

chi-square statistic, 124
number of holes, 122

test of track hypothesis, 28, 121
track length, 122

Track reconstruction, 47
in ALICE, 169
in ATLAS, 171
in Belle II, 181
in CBM, 183
in CMS, 173
in LHCb, 176

Trigger, 23
CMS, 24

high-level, 25
low-level, 24

LHCb, 25
high-level, 26
low-level, 26

Triplet fit, 109, 181

V
Vertex, 28

primary, 28, 131, 154
secondary, 28, 131
signal, 28, 131, 175

Vertex detector, 11, 13, 16, 17, 95, 96, 169,
171, 181

Vertex finding, 28, 131
in 1D, 133

deterministic annealing, 135
divisive clustering, 133
EM algorithm, 134
model-based clustering, 133

in 3D, 138
adaptive vertex reconstructor, 139, 140
greedy clustering, 138
iterated estimators, 138, 154
medical imaging, 140
preclustering, 138
topological, 139

secondary vertex, 159
decay vertex, 159
hadronic interaction, 163
interaction vertex, 159
long-lived particle, 161
photon conversion, 162
short-lived particle, 160

Vertex fit, 28, 143
adaptive, 139, 153, 172, 175
chi-square statistic, 154
curved tracks, 146

chi-square statistic, 148, 149
extended Kalman filter, 149
nonlinear regression, 146
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perigee parameters, 150
kinematic fit, 155, 157

chi-square statistic, 157
quality, 154
robust, 152

M-estimator, 152
straight tracks, 143

chi-square statistic, 145
exact fit, 143

Karimäki’s fit, 145
Vertex quality, 154
Vertex reconstruction, 129

in ALICE, 169
in ATLAS, 172
in Belle II, 183
in CBM, 183
in CMS, 174
in LHCb, 176
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