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ABSTRACT
Heavy-duty gas turbines are commonly designed with can-

annular combustors, in which all flames are physically sepa-
rated. Acoustically, however, the cans communicate via the up-
stream located compressor plenum, or at the downstream gaps
found at the transition to the turbine inlet. In the present study, a
coupling condition that is based on a Rayleigh conductivity and
acoustic flux conservation is derived. It enables acoustic com-
munication between adjacent cans, in which one-dimensional
acoustic waves propagate. In addition, because can-annular
systems commonly feature a discrete rotational symmetry, the
acoustic field can be expressed as a Bloch-periodic wave in the
azimuthal direction. We demonstrate how the coupling condi-
tions resulting in a combustion system with N cans can be ex-
pressed as an effective impedance for a single can. By means
of this Bloch-type boundary condition, the thermoacoustics of a
can-annular system can be analyzed considering only one can,
thus reducing the size of the problem by a factor of N. Using this
method, we investigate in frequency domain the effect of the cou-
pling strength of a generic can-annular combustor consisting of
12 identical cans, which are connected at the downstream end.
We describe generic features of can-annular systems that can be
efficiently addressed with this framework and derive results on
the frequency response of the cans at various Bloch numbers in
the low-frequency and high-frequency limits. Furthermore, the
formation of eigenvalue clusters with eigenvalues of close fre-
quency and growth rate, but very different mode shapes is dis-
cussed.

∗Address all correspondence to this author, jonas.moeck@ntnu.no.

NOMENCLATURE
Roman
Ac cross sectional can area
Ag gap area
b Bloch wavenumber/azimuthal mode order
c speed of sound
f downstream propagating acoustic wave amplitude
g upstream propagating acoustic wave amplitude
i imaginary unit
j, l index for can number
k distance between cans
m acoustic–flame coupling strength
Mb acoustic system matrix
M̃b thermoacoustic system matrix
N number of cans
p̂ Fourier transform of acoustic pressure
q̂ Fourier transform of heat release rate fluctuation
rc can radius
rg gap radius
Rb effective reflection coefficient
Rgas gas constant
R1 upstream reflection coefficient
R2 downstream reflection coefficient
s Laplace variable
t time
Tj transmission coefficient
û Fourier transform of acoustic velocity
x axial coordinate
Zb effective impedance
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Greek
α gap-to-can radii ratio
γ specific heat ratio
θ j discrete azimuthal coordinate
ρ density
σ growth rate
τ time lag
ψb axial pressure mode shape at Bloch number b
ω angular frequency

Abbreviations
FTF Flame transfer function

Introduction
Can-annular combustors are commonly installed in modern

heavy-duty gas turbines. They consist of a set of nominally iden-
tical cans aligned next to each other along a ring, whose center
is the axis of the turbine rotor. At the upstream end, all the cans
are connected to the compressor plenum. Downstream, the cans
end into the turbine. Since in each can a flame burns in an essen-
tially isolated manner, can-annular combustors have often been
approximated by isolated single can systems when investigating
thermoacoustic stability. Acoustic communication between ad-
jacent cans has been neglected. Recent studies, however, have
shown that the acoustic can-to-can communication that arises via
the compressor plenum or connection gaps before the first tur-
bine stage cannot be neglected even if the connection points are
small.

Acoustic interaction between adjacent cans was first numer-
ically and experimentally examined in [1]. By comparing ther-
moacoustic oscillations in a single can with the oscillations in
a quarter of a 16 can combustor, the study revealed that can-to-
can communication is not negligible. Experimental evidence of
acoustic interaction between adjacent cans was also presented
in [2], in conjunction with a modal analysis of the acoustics of
a simplified two dimensional can-annular configuration with 8
cans. Acoustic mode shapes that involve multiple cans, and thus
cannot be found by examining a single isolated can only, were
observed. The effect of the cross-talk gap between adjacent cans
at the turbine inlet on the acoustic cross-talk between the cans
was numerically examined in [3]. In [4], it was theoretically dis-
cussed how azimuthal modes can arise in can-annular combus-
tors even for a weak acoustic can-to-can coupling. Numerical re-
sults based on the two-dimensional Helmholtz equation showed
that weak acoustic coupling causes the formation of eigenvalue
clusters, in which a group of N eigenvalues have closely spaced
frequencies. The results were validated with experimental data
of a 12 can combustor, in which modes of different azimuthal
order, oscillating at close frequencies were observed. Moreover,
Bloch-periodic boundary conditions, which exploit the discrete
rotational symmetry of the system, were applied to a single can,

thereby reducing the dimension of numerical models by the de-
gree of symmetry. Only recently, experimental studies on ther-
moacoustics in a two-can combustor model with a downstream
coupling through a cross-talk tube aligned normal to the flow
direction were conducted [5, 6]. Depending on the equivalence
ratio and geometric boundary conditions, push–push (in phase),
push–pull (in anti-phase) and bi-modal oscillation patterns with
close frequencies were observed.

Although thermoacoustic phenomena in axial and annular
combustor geometries have been studied extensively, thermoa-
coustics in can-annular combustors have received much less at-
tention. Below the cut-on frequency of transverse modes, acous-
tic waves in ducts are of axial form. Single can combustors
are often regarded as ducts, for which low-order thermoacous-
tic network models, based on plane axial waves, are well estab-
lished [7]. In the present study, an extension of this type of single
can combustor low-order models to a generic can-annular com-
bustor model is presented. The acoustics inside each can remain
one dimensional, whereby an acoustic can-to-can communica-
tion is enabled by a coupling boundary condition. This condition
is based on the Rayleigh conductivity and acoustic flux conser-
vation. By exploiting the discrete rotational symmetry, the cou-
pling boundary condition is also expressed as a novel effective
Bloch-type boundary condition. When applied at the boundary
of a single can, this effective boundary condition models the cor-
responding response of a can-annular combustor with N identi-
cal cans. The equations to analyze the thermoacoustic stability
of a generic can-annular combustor are presented, explicit ex-
pressions for transmission of acoustics across cans are derived,
and the effect of coupling strength on acoustic and thermoacous-
tic modes of a can-annular configuration with 12 cans is inves-
tigated. The presented generic can-annular combustor model is
based on the weak coupling between the 1D acoustics in each
can using the Bloch ansatz. It therefore significantly differs from
other low-order modeling approaches, which model azimuthal
and axial acoustic waves in fully annular geometries, such as the
one presented in [8].

Acoustic coupling boundary condition
We consider a generic can-annular combustor consisting of

N nominally identical cans and assume one-dimensional acoustic
wave propagation in each of the cans. The cans are considered to
be acoustically closed (û= 0) downstream, to emulate the choked
boundary condition of the combustor outlet. However, a small
aperture at the downstream end, at x = l2, allows for acoustic
communication between adjacent cans (see Figure 1). Mass flux
conservation at the downstream end in can j yields

û jAc + û j−1, jAg− û j, j+1Ag = 0 at x = l2, (1)
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FIGURE 1: Sketch of a generic can-annular arrangement with
connection points of adjacent cans indicated.

where û j denotes the Fourier transform of the acoustic velocity
in can j, û j, j+1 the acoustic velocity in the connection gap be-
tween cans j and j + 1, Ac is the cross sectional can area, and
Ag = πr2 is the connection gap area. The acoustic flux conser-
vation is evaluated at x = l2 although the connection gaps have a
spatial extension in the x direction. This implies that the equation
is an approximation valid only for acoustically compact gaps.
Since the acoustic wave propagation is assumed to be one di-
mensional, the acoustic fluctuations inside the gaps are related
to the acoustic fluctuations in the axial direction by the Rayleigh
conductivity [9, 10]

KR ≡−
sû j, j+1ρAg

p̂ j+1− p̂ j
at x = l2, (2)

where ρ is the gas density and p̂ is the Fourier transform of the
acoustic pressure. The strength of the coupling is determined by
the Rayleigh conductivity KR, which we model using known re-
sults. Complex models of the Rayleigh conductivity can be found
in the literature. For example, a frequency dependent model that
also includes mean flow effects inside the gaps was presented
in [11]; the effect of a tangential mean flow on the Rayleigh con-
ductivity was discussed for different gap geometries in [12, 13].
Nonetheless, in this study we use a simple constant model for
the Rayleigh conductivity. By assuming circular gaps and by
neglecting wall thickness and mean flow effects, the Rayleigh
conductivity scales with the gap radius, KR = 2rg [11].

Solving Eq. (2) for the velocity amplitudes in the gaps and
inserting the latter in Eq. (1) yields a downstream coupling
boundary condition:

û jAc−
2rg

sρ
(2 p̂ j− p̂ j−1− p̂ j+1) = 0 at x = l2. (3)

Equation (3) serves as a coupling boundary condition that allows

the one-dimensional acoustics of adjacent resonators to commu-
nicate. Note that in the limit in which no communication is al-
lowed between the cans, rg = 0, we retrieve from Eq. (3) û j = 0,
as expected for a closed (sound hard) can termination. In order
to model the acoustics of a generic can-annular combustor with
acoustic coupling between the cans, Eq. (3) must be applied at
the downstream boundary of each can.

Effective Bloch-type boundary condition
Due to the discrete rotational symmetry of the generic can-

annular combustor, the coupling boundary condition (3) can be
expressed in form of an effective Bloch-periodic boundary con-
dition. In a can-annular system with discrete rotational symme-
try, in which the can-acoustics are one dimensional, the acoustic
pressure can be written as a Bloch wave [4, 14, 15]

p̂(x,θ j) = ∑
b

p̂ j,b(x) = ∑
b

ψb(x)e−ibθ j , (4)

where b is the Bloch wavenumber, θ j ≡ ( j−1)2π/N is the dis-
crete coordinate in the azimuthal direction, and ψb is the ax-
ial acoustic pressure for a given Bloch wavenumber. Since the
acoustics within the cans are assumed to be one dimensional,
the Bloch wavenumber coincides with the azimuthal order of the
acoustic wave. Consequently, ψb is identical in each can and
only depends on the axial coordinate. For a generic can-annular
combustor with N cans, the Bloch wavenumber takes values
b = [0,±1, . . . ,±(N/2−1),N/2] or b = [0,±1, . . . ,±(N−1)/2]
for even or odd values of N, respectively. The Bloch wave ap-
proach allows to relate the acoustic pressure in can j+ 1 to the
acoustic pressure in can j for any given b, by means of a phase
shift

p̂ j+1,b(x) = p̂ j,b(x)e−ib 2π
N ∀b. (5)

Accordingly, the pressure in can j− 1 can be expressed with
the pressure in can j and a phase shift in the opposite direction.
Inserting this ansatz into Eq. (3) yields an effective Bloch-type
impedance:

Zb(s)≡
p̂ j,b

û j,b
=

sρAc

8rg sin2 (πb
N

) , at x = l2. (6)

If this effective Bloch-type impedance is applied at the down-
stream boundary of a single can, the resulting system models
the response of a can-annular system with N identical cans for a
given Bloch wavenumber.

The Bloch wave formulation, Eq. (5), also allows for an in-
terpretation of possible mode shapes [4]. For b = 0 all cans os-
cillate in phase and the mode is called a push–push mode. For
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b = N/2 (even N only), adjacent cans oscillate in anti-phase and
the mode is called a push–pull mode. For all other values of ±b,
the two mode shapes correspond to two counter-rotating waves
with azimuthal order b, and are associated with degenerate eigen-
values; they can, hence, be combined to represent azimuthally
standing waves.

Generic can-annular combustor model
In this section, the effective Bloch-type boundary condi-

tion (6) is applied at the downstream boundary of a single can
to derive a low-order thermoacoustic model of a generic can-
annular combustor consisting of N identical cans. Parame-
ters will be chosen to analyze a generic can-annular combustor
model, without the aim of reproducing a specific configuration.

We consider a can with a total length of 1 m and a compact
heat source at x = 0, as sketched in Figure 2. The heat source
separates the can in an upstream (subscript 1) and a downstream
(subscript 2) region. The temperature is set to T1 = 300 K in the
upstream region and increases by a factor of two across the flame.
The mean flow is assumed to be zero; thus, the mean pressure
p̄= 1 bar does not change across the flame zone. The densities in
the two regions are assumed to follow the ideal gas law, with gas
constant Rgas = 287 J/(kg K). The mean heat release, q̄, can be
computed by imposing energy conservation. By assuming only
plane acoustic waves, the acoustic pressure and acoustic velocity
inside each of the two regions read [16, 17]

p′(x, t) = p̂(x)est = ( f e−
xs
c +ge+

xs
c )est , (7)

u′(x, t) = û(x)est =
1

ρc
( f e−

xs
c −ge+

xs
c )est , (8)

where c ≡
√

γRgasT denotes the speed of sound, s ≡ σ + iω is
the complex frequency, and g and f are the amplitudes of the up-
and downstream traveling acoustic waves, respectively. The ra-
tio of specific heats is set to γ = 1.4. To relate the acoustic fluc-
tuations across the flame element, the Rankine–Hugoniot jump

FIGURE 2: Plane acoustic waves in a single can with compact
heat source. The downstream boundary condition models the
response of a corresponding can-annular system.

conditions are invoked at x = 0 [17, 18]

p̂2− p̂1 = 0, (9a)

û2− û1 =
γ−1

ρ1c2
1Ac

q̂, (9b)

where q̂ is the Fourier transform of the compact heat release rate
fluctuation, and the radius of the cross-sectional can area is set to
rc = 0.05 m. For this choice of parameters the cut-on frequency
of transversal modes is above 1000 Hz. As we consider rg < rc,
the compactness assumption of the gaps is fulfilled in this fre-
quency range. To model an acoustic can-to-can communication,
the Bloch-type boundary condition is applied at the downstream
end. The effective impedance, Eq. (6), can be expressed in form
of an effective reflection coefficient R≡ g/ f ; it reads:

Rb(s) =
Zb−ρc
Zb +ρc

= 1−
16rgc2 sin2 (πb

N

)
sAc +8rgc2 sin2 (πb

N

) (10)

The effective reflection condition is applied at the downstream
boundary of the single can, R2 = Rb. It transforms the axial
model into a can-annular model.

The upstream reflection coefficient, at x = −l1 = −0.2 m,
is set to R1 = 0.95 to introduce some damping. The upstream
boundary condition could be chosen to a Bloch-type coupling
boundary condition in an analogous manner. However, in this
study we assume acoustic coupling only at the downstream end.
The two boundary conditions and the jump conditions yield:


−R1e−τ1s 1 0 0

1 1 −1 −1
1 −1 −ρ1c1

ρ2c2

ρ1c1
ρ2c2

0 0 1 −Rb(s)e−τ2s


︸ ︷︷ ︸

Mb(s)


g1
f1
g2
f2


︸ ︷︷ ︸

g

=


0
0
q̂

c1Ac
0

 , (11)

where the time lags are defined as τ1 ≡ 2l1/c1 and τ2 ≡ 2l2/c2.
For q̂ = 0, Eq. (11) can be solved for the acoustic eigenval-

ues. In order to solve for thermoacoustic eigenvalues, the heat
release rate fluctuation needs to be related to the acoustic fluctu-
ations; this is achieved by introducing the Flame Transfer Func-
tion (FTF):

FTF≡ q̂
q̄

ū
û

(12)

We extract the FTF from forced simulations of the well-
established kinematic G-equation representation of a laminar
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FIGURE 3: Flame Transfer Function of a conical laminar pre-
mixed flame extracted from LSGEN (markers) and fitted onto a
continuous state-space model (solid line).

conical flame [19, 20, 21], with a radius of 5.5 mm and a length
of 16.5 mm. The LSGEN code, which uses a level set method
to solve the G-equation, is used to determine the FTF for the
present study. The code has been thoroughly validated and used
to extract the FTFs of two dimensional slot laminar flames [22],
rotationally symmetric conical flames [23], and more complex
turbulent partially premixed flames [24]. Figure 3 shows the FTF
for a range of frequencies (gray dots) for an acoustic forcing with
1% of the mean flow velocity, which is set to 1.5 m/s. A ratio-
nal transfer function is fitted to the data (black line) using a pole
relocation method based on the algorithm presented in [25].

When the FTF is introduced in Eq. (11), an eigenvalue prob-
lem of the form

M̃b(s)g = 0 (13)

arises, which can be solved for the thermoacoustic eigenvalues s.
Note that the downstream reflection coefficient depends on the
Bloch wavenumber and therefore Eq. (13) has to be solved for
each possible azimuthal order b. However, by applying the ef-
fective reflection coefficient to a single can, the size of the eigen-
value problem is reduced by the degree of symmetry, compared
to the eigenproblem that arises when considering the acoustics
in the full system with N cans. Solving N reduced eigenvalue
problems is numerically more efficient and robust than solving
one problem which is N times larger in size.

Effective reflection and transmission coefficient
The effective reflection coefficient Rb(s) is frequency and

Bloch wavenumber dependent. Figure 4 shows the phases of the
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FIGURE 4: Phase of the effective reflection coefficient for α =
0.002 and α = 0.3 and different Bloch wavenumbers as a func-
tion of frequency.

frequency responses (σ = 0) of Rb(iω) for all Bloch wavenum-
bers of a 12-can configuration and two different gap radii. We
indicate the ratio of the gap radius and the can radius with
α ≡ rg/rc. Since no acoustic losses are accounted for at the
downstream end, the absolute values of the effective reflection
coefficients are 1 for all frequencies and Bloch wavenumbers,
|Rb(iω)| = 1. Due to the sin2() function, the responses for neg-
ative and positive Bloch wavenumbers are identical. For b = 0
the reflection coefficient is 1 for all frequencies and represents a
sound hard boundary condition. For b 6= 0 the reflection coeffi-
cient is −1 (arg(Rb)→ π) for low frequencies and converges to
1 (arg(Rb)→ 0) for large frequencies. Hence, at large frequen-
cies the effective reflection coefficient behaves as a closed-end
boundary condition for all b. Larger values of the gap radius
shift the transition from open to closed-end boundary condition
to higher frequencies.

The effective reflection coefficient can also be used to ana-
lyze how acoustic waves are transmitted into adjacent cans. The
acoustic wave at the downstream boundary in can l is transmitted
into can j by the transmission coefficient Tj−l . Note that T0 is a
reflection coefficient, but will still be denoted with the symbol
T0 in the following. Due to the discrete rotational symmetry the
transmission coefficient only depends on the distance between
the two cans and can be computed by summing over all possible
Bloch wavenumbers at a given frequency:

Tj−l(s) =
1
N ∑

b
Rb(s)e−ib(θ j−θl). (14)

The Bloch phase shift determines the distance to the forcing,
Eq. (5). Figure 5 shows the absolute values and phases of the
transmission coefficient Tk, where k = j− l denotes the distance
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between the cans. The total can number is set to N = 12 and the
connection gap radius to 5% of the can radius (α = 5%). The
maximum distance between two cans in this configuration is 6
cans. In [4], transmission coefficients of a two dimensional can-
annular model with the same can number were presented. The
study in [4] looks at the transmission from an upstream travel-
ing wave at x = 0 in can l to the downstream traveling wave at
x = 0 in can j, and thus includes part of the acoustic response of
the can. In order to model the same transmission, the transmis-
sion coefficients we present in Eq. (14) should be multiplied by
exp(−τ2s). However, we decide to focus only on the transmis-
sion coefficient at the can end (at x = l2). Taking can-acoustic ef-
fects into account leads to an additional phase drop which is can
dependent and makes it more challenging to interpret the pure
contribution of can-to-can coupling effects on the system. Fig-
ure 5 shows that the transmission to closer cans is stronger. In the
zero-frequency limit, the gain of reflection coefficient T0 tends to
1−2/N, whereas the gains for all other transmission coefficients,
Tk for k 6= 0, tend to 2/N. This behavior was also reported in [4],
Fig. 9, but no explantion was given. With the effective reflection
coefficient, Eq. (10), and the formula for the transmission coeffi-
cient for adjacent cans, Eq. (14), it can be proven that this is the
case for every N:

lim
iω→0
|Tk|= 1− 2

N
, k = 0 lim

iω→0
|Tk|=

2
N
, k 6= 0. (15)

The first relation can also be directly observed in Figure 4. For
b = 0 the effective reflection coefficient at ω = 0 is 1, for all
other N− 1 Bloch wavenumbers, the effective reflection coeffi-
cients are −1. Averaging these values yields the result shown
in Eq. (15). The proof of the second relation for k 6= 0 can be
found in Appendix A.

At higher frequencies, there are some differences between
our results shown in Figure 5 and those reported in [4]. In Fig-
ure 5 the gain of the T0 reflection coefficient converges to 1, all
other transmission coefficients converge to 0, which means that
the acoustic wave remains confined in the first can. This is con-
sistent with the results shown in Figure 4; at high frequencies
the effective reflection coefficient converges to 1 for all b. The
model in [4], however, is two dimensional and resolves the gap
size in axial direction, whereas in the present study the reflec-
tion coefficient is just applied at one x location and thus can only
be used when the axial extent of the gap is small. The study
in [4] uses a larger gap radius and could therefore represent ef-
fects that cannot be resolved with the model presented here, even
if a larger gap radius would be used. A more complex model of
the Rayleigh conductivity could compensate for these effects, but
is not considered in the present study. The phases shown in [4]
for the transmission coefficients include can-acoustic wave prop-
agation. It has been verified (not shown) that they qualitatively
agree well with the phase of the transmission coefficients of the
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FIGURE 5: Amplitudes and phases of transmitted waves to cans
of different distances (k = 0 . . .N/2) for α = 5% as a function of
the Helmholtz number.

present study if can-acoustic effects are included in this model
as well. At ω = 0 the k = 0 phase starts from π , for k 6= 0 the
phases start from 0. For high frequencies, the acoustic wave is
not reflected into the adjacent cans. It is, however, interesting to
note that the phases of the transmission coefficients converge to
constant values, equispaced at multiples of π/2, which can also
be observed for any value N, even or odd.

The transmission coefficients do not contain any damping
elements. Consequently, the acoustic fluctuation energy must be
conserved, and the sum of all magnitude-squared transmission
coefficients must be 1 at any given frequency:

6

∑
k=−5
|Tk|2 = 1 (16)

It can also be shown that the sum of the transmission coefficients
equals unity:

∑
k

Tk = ∑
k

1
N ∑

b
Rb(s)e−ibθk . . .

=
1
N ∑

b
Rb(s)∑

k
e−ibk2π/N = 1,

(17)

with θk ≡ 2πk/N. The sum over k equals 0 for every b 6= 0, and
equals N for b = 0. The reflection coefficient is 1 for b = 0 and
independent of frequency (see Figure 4).
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Note that the results presented in Eqs. (15)-(17) are indepen-
dent of α . The transmission coefficients results shown in Fig-
ure 5 for α = 5% are qualitatively the same for other values of
α , and have exactly the same limits at ω → 0 and ω → ∞. The
high-frequency limits are reached quicker for smaller values of
α . This can be seen in Figure 4: for smaller values of α , the
reflection coefficient converges to the closed end limit at lower
frequencies.

Can-annular acoustics
The generic can-annular combustor is first analyzed from a

pure acoustics point of view (Eq. (11) with q̂ = 0). The acoustic
eigenvalues sA are solutions of det[Mb(sA)] = 0 and are obtained
using root-finding algorithms. Figure 6 shows the acoustic eigen-
values of the generic can-annular combustor with N = 12 cans
and α = 20% between 0 and 1250 Hz. Eigenvalues have also
been computed in a full-setup, i.e., without the use of the Bloch
boundary condition (10) but with the coupling condition (3) ap-
plied to all N cans. The resulting eigenvalues are indicated with
black dots in Figure 6, and validate the cheaper calculations per-
formed with the Bloch formalism. Figure 6 shows that the acous-
tic eigenvalues form clusters, in the sense that groups of eigen-
values are close in frequency and growth rate. Each cluster con-
tains N eigenvalues, one for each Bloch wavenumber b. Given
the symmetries of the configuration, most of these are two-fold
degenerate. In particular only the eigenvalues found for b = 0
(and b = N/2 if N is even) are not degenerate. Moreover, it can
be observed that for increasing Bloch wavenumbers within one
cluster, the corresponding acoustic eigenvalues show higher fre-
quencies; the b = 0 acoustic eigenvalue is always the eigenvalue
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FIGURE 6: Acoustic eigenvalues for a can-annular combustor
with N = 12 cans and α = 20%. The symbols indicate the Bloch
wavenumber, the dots inside the symbols are solutions of the full
system without Bloch-type boundary condition.

with the lowest frequency, the b = 6 the one with the highest
frequency. For increasing frequencies, the clusters become more
dense, i.e., the eigenvalues move even closer. This results from
the effective reflection coefficient, which, as shown in Figure 4,
converges to 1 (sound hard) for every b at high frequencies. In
the limit ω → ∞ the cans become decoupled and show 12 times
the same eigenvalue. However, this is a theoretical considera-
tion since the gaps are assumed to be acoustically compact, an
assumption that breaks down at very large frequencies.

It is interesting to note that for b = 0, the effective reflection
coefficient is 1, and the acoustic matrix M0 is not dependent on
the coupling strength rg nor on the total can number N. Accord-
ingly, the same acoustic eigenvalues for b = 0 shown in Figure 6
exist for any value of α and N. This results from the fact that the
b = 0 eigenvalue corresponds to a push–push mode, which also
exist in a single can. For an even number of cans, the b = N/2
eigenvalues always show the same values, too. They correspond
to a push–pull mode, which already exists in a system composed
of only two cans. However, the b = N/2 eigenvalues are affected
by the gap radius. These findings also hold for the thermoacous-
tic system, discussed next.

Effect of coupling strength on acoustic and thermoa-
coustic eigenvalues

The small size of the low-order generic can-annular com-
bustor model, Eq. (11), allows for extensive parametric studies
at low computational cost. In the following, the effect of acous-
tic coupling strength between the cans is investigated by vary-
ing the gap size. Thermoacoustic eigenvalues sT solve Eq. (13)
and can be found in a manner analogous to the purely acoustic
case. Figure 7 shows the acoustic and thermoacoustic eigenval-
ues of the 12-can combustor for a cluster of eigenvalues between
230 and 290 Hz (left) and one between 445 and 485 Hz (right).
We set the coupling parameter α to 5%. The symbols indicate
the Bloch wavenumber. The colored lines show the paths along
which all eigenvalues move when the gap radius is decreased
(α → 0). The color indicates the α values at the positions of
the b = 6 eigenvalues. In order to track the mapping between
acoustic and thermoacoustic eigenvalues, when the acoustics are
coupled with the flame, an artificial parameter m is introduced
before the heat release term in Eq. (11), q̂new = mq̂. The dot-
ted lines show the trajectories of the thermoacoustic eigenval-
ues when m is varied from m = 1 (full coupling) to m = 0 (no
coupling). As the acoustic–flame coupling is reduced m→ 0,
the thermoacoustic eigenvalues converge to acoustic eigenvalues
with the same Bloch wavenumber. The acoustic–flame coupling
shifts the thermoacoustic eigenvalues mostly in growth rate and
only to a lesser extent in frequency. Note that the parameter m is
non-physical and only used to demonstrate the effect of acoustic–
flame coupling.

All acoustic and thermoacoustic eigenvalues move along the
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FIGURE 8: Acoustic and thermoacoustic eigenvalues of the generic can-annular combustor with 12 cans and α = 30%. The left figure
shows eigenvalues between 230 and 350 Hz and the right figure eigenvalues between 445 and 540 Hz. Symbols and lines are as in
Figure 7, the black crosses denote flame eigenvalues.

same paths, as the radius is varied, but at different rates depend-
ing on the Bloch wavenumber. The acoustic eigenvalues have
similar growth rates and vary mostly in frequency, the thermoa-
coustic eigenvalues, instead, show a strong shift in growth rate,
which results from the frequency dependent acoustic–flame in-
teraction. The b = 6 eigenvalues are the most sensitive to a
change in radius. The b = 0 eigenvalues, on the other hand, do
not vary since they are independent of the gap radius size, as dis-
cussed in the previous section. All other eigenvalues lie, for any
α > 0, on the colored paths that connect the b = 6 with the b = 0
eigenvalues. Their distances along these paths from the b = 0
eigenvalues are larger the larger is b. In the limit α → 0, the

b 6= 0 eigenvalues converge to the b = 0 eigenvalues. This leads
to the formation of dense clusters of thermoacoustic eigenval-
ues with very close frequencies and growth rates for very small
gap radii. The b = 0 thermoacoustic eigenvalue in Figure 7 (left)
is unstable, which means that for very small radii (α < 2.5%),
a whole cluster of thermoacoustic eigenvalues becomes unsta-
ble. This observation raises the question, how a whole cluster of
linearly unstable eigenvalues with close frequencies and growth
rates will interact in the nonlinear regime.

Analogous to the acoustic eigenvalues (see Figure 6), the
thermoacoustic eigenvalues are observed to cluster more densely
at higher frequencies; the difference in frequency between the
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b = 6 and b = 0 thermoacoustic eigenvalues in Figure 7 (left) is
40 Hz, whereas in Figure 7 (right), a cluster with higher frequen-
cies, the maximum distance between two thermoacoustic eigen-
values is only 25 Hz. Even though the acoustic–flame coupling
can have a strong influence on the growth rates of thermoacous-
tic eigenvalues, this effect does not appear if the corresponding
acoustic eigenvalues are very closely clustered, as it is the case
for either small gap radii, or high frequencies. That small gap
radii and high frequencies have analogous effects on the system
eigenvalues could already be observed in Figure 4. In fact, either
increasing the frequency to large values at a fixed value of α ,
or decreasing α at a fixed frequency, causes the effective reflec-
tion coefficients to converge to the sound hard limit, and leads to
denser eigenvalue clustering.

Figure 8 shows the same acoustic and thermoacoustic eigen-
values as Figure 7 but for α = 30% . The black crosses mark the
locations of flame eigenvalues, which correspond to the poles of
the rational fit of the flame transfer function shown in Figure 3.
In addition to thermoacoustic eigenvalues that converge to acous-
tic eigenvalues as the coupling is decreased (m→ 0), Figure 8
(left) shows another N eigenvalues that, instead, converge in this
limit to a flame eigenvalue. Some thermoacoustic eigenvalues
that converge to an acoustic eigenvalue for α = 5%, Figure 7
(left), converge for α = 30% to flame eigenvalues. The location
in the complex plane at which the eigenvalues change the na-
ture of their origin is approximately the location of the |b| = 2
eigenvalues in Figure 8 (left)1. That thermoacoustic eigenval-
ues can converge to either acoustic or flame eigenvalues in the
m→ 0 limit depending on a change in other parameters was dis-
cussed in more detail in [26]. The interaction of the two groups
of thermoacoustic eigenvalues, one originating from acoustic, the
other from flame eigenvalues, causes a strong dependence of the
growth rates on a change in α , as recently discussed in [27, 26].
Some thermoacoustic eigenvalues change by more than 200 s−1

in growth rate2 by a variation from α = 0 to α = 30%.
In all other groups of thermoacoustic eigenvalues, no inter-

action with flame eigenvalues is observed and the eigenvalues
qualitatively behave as the ones shown in Figure 8 (right) when α

is varied. The change in α shifts the acoustic eigenvalues mostly
in frequency and, due to the acoustic–flame coupling, the ther-
moacoustic eigenvalues in frequency and growth rate, as it was
observed in Figure 7 for α = 5%. The shift in growth rate can
cause thermoacoustic eigenvalues to be stable for some values of
α and unstable for others.

Figure 9 shows the frequencies and growth rates of a ther-
moacoustic eigenvalue cluster, with eigenvalues between 0 and
100 Hz, as a function of α . It can be observed that the b 6= 0

1This is not a general feature. It is the particular complex frequency at which
thermoacoustic eigenvalues of intrinsic and acoustic origin strongly interact for
these specific two clusters.

2A factor of more than 20 compared to the baseline single-can growth rate of
10 s−1.

FIGURE 9: Frequencies and growth rates of an eigenvalue cluster
with eigenvalues between 0 and 100 Hz, as a function of α . The
color indicates the Bloch wavenumber.

eigenvalues grow out of the b = 0 eigenvalue, which leads to
dense eigenvalue clustering for a weak acoustic coupling. As the
b = 0 eigenvalue is not affected by a change in α , its growth rate
and frequency are constant. Since all other eigenvalues travel
along the same path for varying α , all of them reach the same
minimum (maximum) growth rate at the same frequency, but for
different values of α . The frequencies of the b 6= 0 thermoa-
coustic eigenvalues increase for increasing α and converge to
the push–pull eigenvalue which converges to a constant value for
large α . These results qualitatively agree with those presented
for acoustic eigenvalues in [4], Figure 7, which shows the fre-
quency of the eigenvalues for a varying geometric aspect ratio,
can length over can cross-sectional area. If the increase in this
aspect ratio is caused by a decrease in can radius, then its effect
is comparable with an increase in α .

For large values of α , the effective reflection coefficients for
b 6= 0 are close to −1 for a relatively large range of frequen-
cies. This is because the transition from Rb = −1 (open-end) to
Rb = +1 (closed-end) is shifted to higher frequencies for larger
α , as shown in Figure 4. Consequently, for increasing α , the ef-
fective reflection coefficients move towards the Rb = −1 limit
and the eigenvalues for b 6= 0 move closer to the position of
the eigenvalue that is found for an open-end boundary condi-
tion (R2 = −1). The push–pull eigenvalue is the most sensitive
to changes in α and reaches the limit first, followed by the eigen-
values with similar azimuthal orders. The lower limit (Rb =−1)
of the effective reflection coefficient can cause eigenvalues with
high azimuthal order to be very close in frequency and growth
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rate for high values of α , as shown in Figure 9 and Figure 8 for
the |b|= 4,5,6 eigenvalues. This demonstrates that dense eigen-
value clustering can also arise for a strong acoustic coupling and
is not restricted to the weak-coupling case. However, for strong
acoustic coupling, these dense clusters do not contain all the N
eigenvalues associated with all possible Bloch wavenumbers b,
as it is the case for weak acoustic coupling. The dense clustering
for a strong coupling is restricted to groups of eigenvalues at low
frequencies because the eigenvalues at high frequencies cluster
close to the b = 0 (closed-end) eigenvalue, as discussed in the
previous section. For eigenvalues at higher frequencies, α must
be increased to very large values in order to reach the open-end
limit, which cannot be considered within the present framework
since the gaps are assumed to be acoustically compact.

Conclusions
In the present work, we introduced a low-order network

model for thermoacoustic oscillations in a generic can-annular
combustor. The model assumes plane acoustic waves inside the
cans and a coupling boundary condition that is derived under the
assumption of acoustically compact connection gaps between the
cans at their downstream end. The coupling boundary condition
is based on acoustic flux conservation and the Rayleigh conduc-
tivity. By exploiting the discrete rotational symmetry of the can-
annular combustor, the coupling boundary condition can be ex-
pressed in form of an effective Bloch-type boundary condition.
The Bloch formalism reduces the order of the model by the de-
gree of symmetry of the system. Thus, only a single can with
effective Bloch-type boundary condition needs to be considered
in order to solve for eigenvalues of the generic can-annular com-
bustor. The reduction of the order of the model reduces com-
putational costs, even though the reduced-order model has to be
solved for all independent Bloch wavenumbers to find all eigen-
values.

The strength of the coupling between the cans is described
by means of the Rayleigh conductivity KR. For the present study,
we used a constant Rayleigh conductivity model, which scales
with the connection gap radius for circular gaps, neglects the wall
thickness between the gaps and mean flow effects. By neglect-
ing the thickness of the walls, an additional frequency dependent
time lag is omitted, which may be relevant when considering
the acoustics of can-annular combustors. The presented generic
can-annular model, nonetheless resolves the most important dy-
namical features of can-annular combustors, which have been
reported in various studies. In order to represent more realistic
acoustic coupling scenarios between the cans with less assump-
tions, more complex models of the Rayleigh conductivity could
be considered.

We analyzed the frequency response of the Bloch-type
boundary condition in form of an effective reflection coefficient
and used the Bloch ansatz and the effective reflection coefficient

to analyze how acoustic waves are transmitted from one can into
the others, as a function of their distance. Results are qualita-
tively in good agreement with results from a two dimensional
study, which resolves the acoustic near field effects around the
gaps [4].

We then used the effective boundary condition to construct a
low-order (thermo)acoustic network model of a generic N = 12
can-annular combustor. When no unsteady heat release is con-
sidered, acoustic eigenvalues are observed to form clusters with
close frequencies and growth rates. The clustering of acoustic
eigenvalues was found to be stronger for groups of eigenvalues
at higher frequencies.

By varying the connection gap radius, we investigate the ef-
fect of coupling strength on the location of acoustic and ther-
moacoustic eigenvalues of the generic can-annular combustor
model. The eigenvalues are more sensitive to a change of cou-
pling strength the higher the Bloch wavenumber is. Acous-
tic eigenvalues within a cluster are mostly shifted in frequency,
whereas thermoacoustic eigenvalues show also a strong sensitiv-
ity in growth rate. As the coupling strength is increased, starting
from the closed-end limit, the eigenvalues for b 6= 0 grow out of
the b = 0 eigenvalues. This results in dense clusters of eigenval-
ues with very close frequency and growth rate for weak can-to-
can coupling. It implies that, if the cans of a can-annular system
are designed in such a way that their eigenvalues have negative
growth rates for a closed end boundary condition, the eigenval-
ues of the corresponding can-annular system will also have nega-
tive growth rates, for a weak acoustic coupling between the cans.
On the other hand, if an eigenvalue of the single-can system is
unstable, the corresponding can-annular system will, for a weak
acoustic coupling, show a whole set of linearly unstable eigen-
values.

We demonstrated that also for a strong acoustic can-to-can
coupling, eigenvalues at low frequencies and for large Bloch
wavenumbers can form dense clusters of eigenvalues, with very
close frequencies and growth rates, close to the eigenvalues that
are found for a corresponding system with an open-end bound-
ary condition. The formation of eigenvalue clusters raises the
question how a set of modes with close frequency and growth
rate but, as each eigenvalue corresponds to a different azimuthal
order, with very different mode shapes, will interact in the non-
linear regime and which oscillation pattern(s) will be observed.
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A Low-frequency response of transmission coeffi-
cients
From Eq. (15), for k 6= 0 we have

lim
iω→0
|Tk|= lim

iω→0

∣∣∣∣∣ 1
N

N

∑
b=0

Rb(s)e−ib(θk)

∣∣∣∣∣= ...∣∣∣∣∣ 1
N
(1−∑

b6=0
e−ib(θk))

∣∣∣∣∣=
∣∣∣∣∣ 1
N
(1−∑

b 6=0
cos(bθk)− isin(bθk))

∣∣∣∣∣ .
(18)

The imaginary part is zero since the sin-function is odd and θk =
(k2π/N). Note that any N consecutive Bloch wavenumbers can
be considered. The sum over the cos(bθk) yields −1:

N−1

∑
b=1

cos(bθk) = Re

[
N−1

∑
b=1

eibθk

]
= . . .

Re

[
eiθk

ei(N−1)θk −1
eiθk −1

]
=

sin((N−1)kπ/N)

sin(kπ/N)
cos(kπ) . . .

=−cos(kπ)2 =−1.

(19)

The relation between the first and second lines of Eq. (19) is
based on the known result for the geometric series

N

∑
b=1

eibθk = eiθk
eiNθk −1
eiθk −1

. (20)
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