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Abstract

A can-annular combustor consists of a set of nominally identical cans, in which the flames burn in an essentially
isolated manner. However, adjacent cans are able to communicate acoustically, which provides dynamic coupling
of the entire can-annular arrangement. Recently, it was shown that the acoustic coupling is not negligible and can
cause clustering of eigenfrequencies. In this study, we present a low-order modeling framework for self-excited
thermoacoustic oscillations in generic can-annular combustors consisting of N identical cans. The dynamics of the
flames are modeled with the nonlinear G-equation; the acoustic model accounts for plane acoustic waves inside
the cans and can-to-can communication. The latter is enabled through a coupling boundary condition that is based
on conservation of mass and a Rayleigh conductivity. For weak coupling between adjacent cans, the thermoacoustic
feedback cycle shows clusters of linearly unstable modes of different azimuthal order, which are close in frequency and
growth rate. Their interaction in the nonlinear regime is investigated using time-domain simulations. Two simulations
for generic can-annular combustors consisting of 4 and 6 cans with weak acoustic coupling are discussed in this study.
We observe a strong interaction between the modes, which can cause long transition times and allows modes that do
not dominate the system dynamics in the linear regime to be dominant in the nonlinear regime. While the N = 6
case converges to a periodic oscillation pattern with one dominant frequency, the N = 4 case converges to a quasi-
periodic oscillation involving modes of different azimuthal order. Moreover, we observe a synchronization of these
modes. These results raise the questions whether it is possible to predict which mode(s) will dominate the system in
the saturated state and under which conditions synchronization of clustered modes can occur.
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1. Introduction

Thermoacoustic oscillations in axial and annular com-
bustors have been studied extensively in the past
years [1]. In contrast, can-annular systems have re-
ceived less attention and have often been regarded as
single cans, neglecting any acoustic cross-talk commu-
nication. However, recent experimental, theoretical and
numerical studies have shown that the acoustic interac-
tion between adjacent cans cannot be neglected, even
when it is weak. The acoustic coupling arises from
1) a small gap between adjacent cans in the transition
zone to the turbine inlet, and 2) a joint plenum upstream
of the combustor. The relevance of can-to-can interac-
tion was first demonstrated in a numerical and experi-
mental study, in which thermoacoustic oscillations in a
quarter of a can-annular combustor with 16 cans were
examined [2]. The effect of the cross-talk area at the
turbine vane section has been investigated numerically
in [3]. Only recently, a more comprehensive theoretical
study on the thermoacoustics of can-annular combustors
has been conducted [4]. It was shown that azimuthal
modes also arise in can-annular systems, even for weak
acoustic cross-talk communication.The weak acoustic
coupling also leads to the formation of eigenvalue clus-
ters with closely spaced frequencies and growth rates.
This is a unique feature of can-annular configurations
and raises the question, how clusters of linearly unsta-
ble thermoacoustic modes will interact in the nonlinear
regime, and which mode(s) will eventually dominate.

The formation of eigenvalue clusters is atypical
in non-can-annular configurations. Axial single-flame
combustors generically have non-closely spaced eigen-
frequencies; theoretical and experimental studies have
shown that when more than one mode is unstable, ei-
ther one suppresses the other(s), resulting in a periodic
oscillation, or multiple frequencies persist, and a quasi-
periodic oscillation manifests [5, 6]. Annular combus-
tors may have closely spaced acoustic eigenfrequencies,
depending on the specific geometrical dimensions of the
combustor. For example, it can then happen that two
thermoacoustic modes, one of azimuthal and one of lon-
gitudinal nature, exist at close frequencies and are si-
multaneously unstable. The interaction between an ax-
isymmetric and an azimuthal mode, manifesting in an
oscillation pattern known as slanted mode [7], was the-
oretically examined in [8], and it was suggested that
two closely spaced eigenfrequencies can synchronize.
More formal conditions on whether synchronization is
possible for closely spaced axial and azimuthal modes
were derived in [7]. For a can-annular combustor with
N cans and weak acoustic coupling, instead, clustering

is a common feature, and a whole cluster of N thermoa-
coustic modes can be unstable.

When examining can-to-can communication, the
simplest configuration that can be considered is an
N = 2 can setup. Oscillation patterns in which adjacent
cans oscillate in-phase (in anti-phase) are called push–
push (push–pull) modes. In [9], push–push, push–pull
and bi-modal oscillations were observed in an experi-
mental setup formed by two cans acoustically coupled
downstream via a cross-talk tube aligned normal to the
flow direction. Real gas turbines, however, usually fea-
ture a larger number of cans. This leads to a larger num-
ber of modes in a cluster and allows for the formation
of more possible acoustic oscillation patterns.

The study aims to numerically investigate fundamen-
tal features of can-annular combustors with a weak
acoustic coupling between adjacent cans. For this pur-
pose, we develop a generic acoustic wave-based can-
annular combustor model consisting of N identical cans,
which are acoustically connected at the downstream
end. The acoustic response is then represented as a low-
order state-space model. This is coupled with a nonlin-
ear dynamical flame model based on the G-equation in
each can [10]. In the weak coupling scenario, clusters
of linearly unstable modes can be observed, which are
closely spaced in frequency and growth rate but have
very different mode shapes. We find that, due to the
close spacing between the eigenvalues, the nonlinear in-
teraction between the modes is strong. This manifests
in pronounced beating patterns during the transient and
can lead to synchronization between some of the unsta-
ble modes.

2. Thermoacoustic model

The nonlinear flame and heat release rate dynamics are
modeled numerically in this study using LSGEN, a C-
based level set solver for the kinematic G-equation. So
far, the code has been used to investigate thermoacous-
tic phenomena with only one flame, by coupling the
flame dynamics with a single-input single-output acous-
tic state space model of an axial-type combustor [6]. For
the present study, LSGEN has been extended to model
annular and can-annular combustors with an arbitrary
number of flames. This is achieved by solving multiple
G-equations simultaneously (one flame for each can),
whose dynamics are coupled by a multi-input multi-
output acoustic state-space model that represents an an-
nular or a can-annular configuration. General details on
LSGEN and its implementation can be found in [5, 6].
Here, we describe only the key equations and their ex-
tension to multi-flame combustion systems. In the fol-
lowing, we present the nonlinear thermoacoustic model
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consisting of the nonlinear G-equation, which tracks the
evolution of the flame front in implicit form, and the lin-
ear acoustic model. How these equations can be used to
also examine linear stability is briefly discussed in §3.
Note that we consider a generic configuration and do
not attempt reproducing experimental data.
2.1. Flame dynamics
We model a generic annular/can-annular combustor
with N identical flames equally distributed along the az-
imuthal direction. Assuming fully premixed, axisym-
metric, conical flames with base radius of 5.5 mm, the
G-equation for each flame j reads

∂G j

∂t
+

[
u j − sl

∇G j

|∇G j|

]
· ∇G j = 0. (1)

The flame front is convected by the underlying flow
velocity u j = [ūx + u′x, j, u

′
r, j, 0], which is assumed to

have only a mean component in the axial direction,
ūx = 1.5 m/s. The flame front propagates normally to
the flame surface with speed sl = 0.47 m/s. In order
to resolve the flame dynamics, the underlying perturbed
velocity field must be appropriately modeled [11]. For
each flame, axial acoustic fluctuations impinging the
burner outlet cause the formation of coherent structures
at the burner edges, which propagate into the flame
field:
∂u′x, j
∂t

+ Uad

∂u′x, j
∂x

= 0, u′x, j(x = 0, t) = u′ac, j, (2)

where Uad is the fluctuation advection speed, which is
set to 0.83ūx [12]. Velocity fluctuations in the radial
direction are imposed by conservation of mass:

1
r

∂(ru′r, j)

∂r
+
∂u′x, j
∂x

= 0, u′r, j(r = 0, t) = 0. (3)

The unsteady heat release can be computed as

q j(t) = 2πρhR

∫∫
D

sl|∇G j|δ(G j)r dr dx, (4)

where δ is the Dirac delta function, ρ the unburned gas
density and hR the reaction enthalpy [13]. The mean
heat release is determined by the temperature jump
across the flame.

This set of equations is solved simultaneously for ev-
ery flame ( j = 1 . . .N) in the generic thermoacoustic
acoustic model. The flame model resolves nonlinear ef-
fects, including the formation of cusps and pinch-offs,
as shown in [6]. Although no direct flame-to-flame
interaction is considered (which is the case in a can-
annular combustor), the flames’ dynamics are indirectly
coupled by the interaction between the heat release rates
and the acoustic response of the entire configuration.

Figure 1: Sketch of three adjacent cans. Periodic boundary conditions
set can j = N + 1 to be can j = 1.

2.2. Multi-input multi-output acoustic response
To model the acoustics in a can-annular combustor, we
assume that only plane waves propagate in each can. All
cans are assumed to be identical. The unsteady heat re-
lease in each can is considered as a compact acoustic
source term, as shown in Fig. 1. Mean flow properties
are assumed to be constant upstream/downstream of the
flame. The mean temperature is set to Tup = 300 K up-
stream of the flame, and it changes by a factor of two
across the flame. The mean upstream velocity and pres-
sure are set to 1.5 m/s and 1 bar, respectively. Other
mean quantities can be determined by conservation of
mass, momentum and energy, and by the state equation
of an ideal gas with gas constant Rgas = 287 J/(kg K)
and ratio of specific heats γ = 1.4. The speed of sound
is given by c =

√
γRgasT .

As customary, we consider a modal decomposition of
the acoustic waves in the frequency domain as

u′j(x, t) = û j(x)est =
1
ρc

( f je−
xs

c+ū − g je+ xs
c−ū )est, (5)

where s = σ + iω is the complex frequency, and f j (g j)
are the amplitudes of the downstream (upstream) travel-
ing waves in can j. The Rankine–Hugoniot jump condi-
tions are imposed across the flame element [[14]], and
the model is closed by applying boundary conditions
at the can ends: on the upstream boundary we set the
reflection coefficient to R = 0.95 – to introduce some
damping; on the downstream end, a boundary condition
that couples adjacent cans is applied.

We account for the can-to-can communication by al-
lowing for acoustic flux communication between adja-
cent cans. We derive a coupling boundary condition
based on mass conservation and the Rayleigh conduc-
tivity. We consider small connection gaps with area Ag

at the downstream end as sketched in Fig. 1. By assum-
ing that the connection gaps are acoustically compact,
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density fluctuations can be neglected, and acoustic flux
conservation then yields

û jAc + û j−1, jAg − û j, j+1Ag = 0, at x = l2 = 0.8m, (6)

where Ac is the cross-sectional can area corresponding
to a radius of rc = 50 mm. The total length of the cans
is 1 m. Note that the cans are assumed to be acousti-
cally closed downstream in the absence of can-to-can
interaction, i.e. when Ag = 0. To relate the acoustic
pressure fluctuations between adjacent cans, we employ
the Rayleigh conductivity [15, 16]

KR = −
sû j, j+1ρAg

p̂ j+1 − p̂ j
, at x = l2. (7)

The strength of the coupling is determined by the gap
size and the conductivity KR. The latter generally de-
pends on the oscillation frequency, mean flow proper-
ties and gap geometry [17, 18]. In this study, we neglect
mean flow effects and the thickness of the walls between
the cans. We assume that the gaps have a circular form,
with radius rg. Under these assumptions, the Rayleigh
conductivity is well approximated by KR = 2rg [17, 18].
Substituting Eq. (7) into Eq. (6) yields

û jAc −
2rg

sρ
(2p̂ j − p̂ j−1 − p̂ j+1) = 0 at x = l2, (8)

which is a coupling boundary condition that enables
acoustic cross-talk between adjacent cans. Equation (8)
allows us to model the acoustics of a generic can-
annular combustor with a low-order acoustic model that,
despite considering only axial waves in the cans, also
describes azimuthal modes, found when the cans do not
oscillate in phase.

By combining the upstream/downstream boundary
conditions, unsteady flame jump conditions, and wave
propagation equations in each can, we obtain a sparse
linear system of equations that describes the coupled
can-annular thermoacoustic system. It depends on the
complex-valued frequency s and has N heat release
source terms, one per can. It can be written as

A(s)p = q, (9)

where the vector p contains the up- and downstream
traveling acoustic wave amplitudes f j and g j of all the
cans, and q contains the amplitudes of the heat release
rates q̂ j. The matrix A(s) in Eq. (9) is a transfer matrix
whose entries relate the acoustic response of the can-
annular system to a forced perturbation of the heat re-
leased by the N flames. Furthermore, due to the dis-
crete rotational symmetry, the acoustic response can be

extracted from Eq. (9) by forcing the heat released by
one flame only, and then exploiting the block-circulant
nature of matrixA(s) [8, 19]. First, by varying the forc-
ing frequency of the heat released in can 1 while setting
the heat release in all other cans to zero, we calculate
the velocity acoustic response at a reference location in
all cans by solving Eq. (9) at s = iω. We then iden-
tify a state-space model corresponding to the calculated
acoustic response. This is the single-input multi-output
model

ẋ1 = Ax1 + Bq′1, u′1 = Cx1, (10)

whose output vector u′1 ≡ [u′1,1, ..., u
′
N,1] contains the

contribution to all velocity fluctuations upstream of the
flames caused by unsteadiness of the heat source in
the first can only, q1. The matrices A,B,C are identi-
fied using the fitting algorithm of [20]. Since all cans
are identical, the acoustic response between a forcing
heat source and an upstream velocity fluctuation de-
pends only on their distance in number of cans. Thus,
the matrices of the identified single-input multi-output
state-space model (10) already contain all the informa-
tion needed to fully characterize the acoustic system. It
follows from modular arithmetic and the superposition
principle that the total acoustic fluctuation upstream of
the flame in the jth can is

u′ac, j =

j∑
k=1

c j−k+1xk +

N∑
k= j+1

cN+ j−k+1xk, (11)

where c j defines the jth row vector in C and xk is the
acoustic state generated by heat release perturbations in
can k, calculated from ẋk = Axk + Bq′k. This equation
feeds as a boundary condition into the flame dynamics,
Eq. (2), closing the thermoacoustic model.

Note that the acoustic model is based on plane acous-
tic waves inside each can and that both the heat source
and the coupling gaps are assumed to be acoustically
compact. Therefore, the model is only valid for low fre-
quencies.

3. Linear stability and data analysis

Using the can-annular thermoacoustic model presented
in §2, we now investigate the effect of the number of
cans and of the can-to-can coupling strength on the lin-
ear stability and nonlinear dynamics of the can-annular
system in the weak coupling range: α ≡ rg/rc � 1. The
parameter variation is given by N = [2, 3, 4, 5, 6] and
α = [0.005, 0.01, 0.015, 0.02].

Before performing nonlinear time-domain simula-
tions, we examine the linear stability of the thermoa-
coustic system in frequency domain. This is achieved
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by introducing a frequency-domain representation of
the linear heat release response in Eq. (9), identical for
all flames. The latter is expressed in terms of the Flame
Transfer Function (FTF), which was determined numer-
ically by forcing the G-equation with velocity fluctua-
tions at various frequencies with an amplitude of 1% of
the mean flow velocity. An FTF extracted from LSGEN
can be found in Figure 6 in [6]. Equation (9) then be-
comes an eigenvalue problem, whose solution yields the
thermoacoustic eigenvalues and modes.

Figure 2 shows clusters of unstable eigenfrequencies
identified in this way for two different can numbers and
various gap radii. The modes can be classified accord-
ing to their azimuthal mode number, m. As the acous-
tics within each can are one dimensional, the number
of independent azimuthal modes is equal to the num-
ber of cans. For a given gap radius, a set of all possi-
ble azimuthal modes can be observed within the clus-
ters. It can be seen that the push–push mode frequency
(m = 0) is insensitive to variations in N and α. This
is because this axial mode can be observed in a single-
can combustor, and persists for configurations with ar-
bitrary numbers of cans when the acoustics in each can
oscillates in phase. Also, the push–pull mode frequen-
cies (m = N/2, even N only), which can already be
observed in a two-can combustor, do not change when
varying the number of cans, although they are affected
by the strength of the coupling. The modeshapes of a
generic can-annular system analogous to that discussed
here can be found in [4]. The distance between the
eigenfrequencies is larger when increasing α, leading
to less closely spaced clusters. The gray lines in Fig. 2
show the paths along which the modes move for a con-
tinuous change in α. This is consistent with considering

Figure 2: Cluster of unstable eigenfrequencies for N = 6 (left) and
N = 4 (right) and different gap radii. The symbols indicate the az-
imuthal order and the symbol size indicates the gap radius. The cases
for which time domain simulations are discussed are highlighted in
red.

a weakly coupled can-annular system in analogy to a set
of weakly coupled oscillators. Note that all eigenfre-
quencies move along the same trajectory starting from
the push–push mode, in the limit α→ 0. This is because
the coupling boundary condition can be interpreted as
an effective continuous boundary condition. Since all
modes for m > 0 stem from the push–push mode, then,
if the push–push mode is linearly unstable, all modes
for higher azimuthal orders will, for small connection
radii, also be unstable. In §4 we discuss in detail the
nonlinear dynamics resulting from configurations with
N = 6, α = 0.015 (case 1) and N = 4, α = 0.015 (case
2). The unstable frequencies of these cases, as predicted
by the FTF method, are highlighted in red in Fig. 2.

All time-domain computations were initialized with
a zero acoustic state and non-perturbed conical flames.
The velocity fluctuations upstream of all flames, u′ac, j,
are stored at every time step, ∆t = 0.0165 ms. Due to
the close spacing of the unstable complex frequencies
within a cluster, it is difficult to analyze the temporal
evolution of the unstable modes with common time se-
ries analysis methods such as spectrograms or Hilbert
transforms. However, in Fourier space the acoustic ve-
locity field can be written as

û(x, θ j) =
∑

m

ûm(x, θ j) =
∑

m

ψm(x)eimθ j , (12)

where θ j = ( j − 1)2π/N is the discrete coordinate in
the azimuthal direction and ψm(x) is the modal ampli-
tude for a given azimuthal mode number m. Since the
acoustics in each can are one dimensional, the azimuthal
mode number takes values m = [0,±1, ...,±N/2 −
1,+N/2] or m = [0,±1, ...,±(N−1)/2] for an even or an
odd number of cans, respectively. Note that, in the lin-
ear regime, no distinction between ±m eigenfrequencies
can be made, as these pairs correspond to two counter
rotating waves with the same eigenvalue [4].

The discrete Fourier formalism enables us to differ-
entiate the dynamics of the closely spaced modes by
means of a decomposition in the azimuthal direction of
the N velocity time-series. The time-domain dynamics
of each mode can then be reconstructed via an inverse
Fourier transform that considers only the azimuthal or-
der(s) of interest. This yields a velocity time series
in each can for azimuthal orders m from 0 to N/2 or
(N − 1)/2 for even or odd N, respectively. Since the
processed time series are real valued, so far no distinc-
tion between positive (spinning clockwise) and nega-
tive (spinning counterclockwise) azimuthal order can be
made. This is achieved by first taking the Hilbert trans-
form of each modal time signal, and then using Eq. (12)
to solve for the modal amplitudes ψm. To avoid spectral

5



leakage, the time series are band-pass filtered around the
frequency of interest (the fundamental frequency of the
azimuthal order or its first harmonic in our case, as they
contain the dominant peaks in the spectra) before apply-
ing the Hilbert transform. The resulting time-resolved
azimuthal amplitudes ψm show how the linearly unsta-
ble modes evolve in the nonlinear feedback cycle.

4. Nonlinear dynamics of can-annular combustors

Depending on the number of cans and the coupling ra-
dius considered, the system exhibits different oscillation
patterns. In this section we discuss the nonlinear inter-
action between clustered unstable modes and the time
evolution of the modal amplitudes based on the acous-
tic velocity time series for the two cases discussed in
§3. The evolution of the acoustic pressure is analogous
to that of the velocity fluctuations and therefore not fur-
ther discussed.
4.1. Case 1: periodic oscillations of a push–pull mode
Figure 3 shows the first 5 s (out of 20 s simulated) of the
non-processed velocity fluctuations u′ac, j in the N = 6
cans. In the transient all 6 unstable modes contribute
to the dynamics. Due to the closely spaced frequencies
of the thermoacoustic modes active in the transient, the
velocity time series show a complex interaction between
the oscillations in the different cans, and typical beating
effects can be observed, which disappear after the tran-
sient period. After about 4 s a steady state is reached,
in which only one mode persists, and a push–pull os-
cillation is established. The last 10 s of the time series
in can 1 were used to compute the spectrum shown in
Fig. 4. It shows that the system reaches a limit cycle
with fundamental frequency 256.2 Hz, with a first har-
monic contribution.

The evolution of the modal amplitudes, computed
with the method outlined in §3, allows for a deeper in-
sight into the transient dynamics and the interaction be-
tween the modes. The modal amplitudes are shown in
Figs. 5a) and 5b) for the fundamental and first harmonic
components, respectively. All linearly unstable modes
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Figure 3: Velocity fluctuations upstream of the flames in all 6 cans.
Left: transient. Right: steady state.
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Figure 4: Spectrum of the velocity time series upstream of the flame
in the first can. The frequencies of the linearly unstable modes are
highlighted with vertical lines. The colors indicate the azimuthal order
as in Fig. 2. The frequency resolution is 0.1 Hz.

are independently growing exponentially in the linear
regime (until about t = 1 s). With increasing ampli-
tude levels, nonlinear effects kick in, and the modes start
to interact. As some modes continue growing in am-
plitude, others are suppressed. Not all modes are sup-
pressed at the same rate. The m = 2 mode, which cor-
responds to the eigenfrequency with the largest growth
rate (see Fig. 2), grows the fastest. Its amplitude reaches
a maximum at about t = 1.4 s and is an order of magni-
tude larger than that of all other modes; however, rather
than saturating to a constant value, it starts decaying
afterwards. The m = 3 mode, instead, monotonically
increases in amplitude at a slower rate and eventually
saturates to a fixed amplitude; it is the only mode that
persists in the steady-state oscillation. The evolution of
the modal amplitudes of the first harmonics (Fig. 5b) is
slaved to that of the fundamental frequencies. Note that
the azimuthal order of the modes in this frequency re-
gion does not correspond to the azimuthal order of the
corresponding fundamental mode. The G-equation non-
linearity is dominated by a quadratic term [21]. Thus,

Figure 5: Temporal evolution of the modal amplitudes belonging to
an unstable cluster. The time signals are filtered around the a) funda-
mental frequencies and b) their first harmonics.
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the first harmonic of a fundamental oscillation with an-
gular frequency ω and azimuthal order m oscillates at
frequency 2ω with azimuthal order 2m, measured by N
sensors as mod(2m,N) − NH(mod(2m,N) − N/2 − 0.5)
due to aliasing. H is the Heaviside function. The har-
monic of the m = 2 fundamental mode has therefore
azimuthal order m = −2, and the harmonic of the m = 3
fundamental mode has m = 0.
4.2. Case 2: locking between three frequencies
The second case, with N = 4, was simulated for about
90 s. The evolution of the modal amplitudes is shown
in Fig. 6. In contrast to the previous case, the modal
amplitudes reach constant values after a much longer
time, at t = 35 s. Besides the much longer interac-
tion period, this second case reaches a saturated state in
which modes of different azimuthal order are present.
Modes of order m = −1, 2 and 0 are clearly visible, the
mode of order m = 1 is suppressed to an amplitude of
2 × 10−4 m/s.

Since multiple modes with close fundamental fre-
quencies survive, the quadratic nonlinearity leads to first
harmonic oscillations whose frequencies are linear com-
binations of all fundamental ones. As a consequence,
at a given azimuthal order, more than one frequency is
found in the range of the harmonics (for instance fre-
quencies 2 f and 2 f ±2∆ all contribute to the m = 0 har-
monic amplitude). This causes a non-smooth modal am-
plitude reconstruction with the Hilbert transform. Nev-
ertheless, it can be seen that due to the quadratic term
of the nonlinearity, the fundamental m = −1 mode
strongly feeds a first harmonic oscillation of azimuthal
order m = 2.

After t = 35 s, the simulation was continued further

Figure 6: Modal amplitudes, which are computed with the method
explained in §3. The upper plot shows the modal amplitudes of the
fundamental frequencies and the lower the ones of their first harmon-
ics.

Figure 7: Spectrum of the velocity time series upstream of the flame
in the first can. The frequencies of the linearly unstable modes are
highlighted with vertical lines. The colors indicate the azimuthal order
as in Fig. 6. The frequency resolution is 0.025 Hz.

to provide a highly resolved steady state spectrum. Fig-
ure 7 shows the spectrum of the last 40 seconds of the
simulation, and Fig. 8 shows the quasi-periodic veloc-
ity fluctuations in the four cans for the last 0.05 s. In
the linear regime, the m = 0, 1, 2 modes were found to
have frequencies f lin

0,1,2 of 242.7, 249.0 and 254.8 Hz,
respectively (see Fig. 2). However, the spectrum corre-
sponding to the nonlinear oscillation state shows three
dominant closely spaced frequencies f0,−1,2, which in
addition are equispaced (| f0 − f−1| = | f−1 − f2| = ∆ =

7 Hz). As a consequence, all frequencies correspond-
ing to peaks in the spectrum can be expressed as linear
combinations of only two linearly independent frequen-
cies, such as the frequencies f = f−1 and ∆, as shown
in Figure 7. This indicates that two of the three modes
have synchronized in such a way that their frequencies
are now equispaced with respect to the remaining one.
Note that the system does not feature any dynamic mode
close to ∆ = 7 Hz, so that this peak must result from an
interaction between the three modes oscillating at finite
amplitude.

The peaks in the fundamental frequency range can be
directly related to the amplitudes in Fig. 6, but, due to
synchronization, the peaks in the first harmonic range
cannot be related directly to a unique interaction be-
tween the fundamental frequencies. For example, the
2 f harmonic frequency arises from the interaction of
the mode with fundamental frequency f with itself, but
also from the interaction between the modes with fre-
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Figure 8: Acoustic velocities upstream of the flames.
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quencies f0 = f − ∆ and f2 = f + ∆.

5. Discussion and conclusion

In this study we developed a low-order model that
simulates self-excited thermoacoustic oscillations in a
generic can-annular combustor consisting of N cans.
The acoustic model consists of plane acoustic waves in-
side the cans and can-to-can communication. The lat-
ter is established through a coupling boundary condition
that is based on conservation of mass and the Rayleigh
conductivity. For increasing coupling strength between
the cans, thermoacoustic eigenfrequencies of azimuthal
order m , 0 grow out of the m = 0 eigenfrequency,
which also exists for a single-can system. As a result,
the eigenfrequencies appear in clusters for small cou-
pling radii. This implies that if cans are designed in such
a way that their thermoacoustic eigenfrequencies have a
large negative growth rate, also the eigenfrequencies of
a corresponding can-annular system with weak acoustic
coupling will have negative growth rates. On the other
hand, if a m = 0 eigenfrequency of an isolated can is
linearly unstable with a large positive growth rate, a re-
spective weakly coupled can-annular system will show
a cluster of linearly unstable eigenfrequencies.

The nonlinear interaction of multiple unstable modes
in clusters was investigated in the time domain by con-
sidering two parameter combinations. Due to the close
spacing of the eigenfrequencies, the various linearly un-
stable modes show a complex interaction in the nonlin-
ear regime. The time until a saturated state is reached
is generally relatively long, due to the slow time scale
induced by the beating of closely spaced frequencies. It
was shown that it is not necessarily the mode with the
largest growth rate that dominates the system in the sat-
urated state. While a limit cycle manifests in the first
case, the second case shows a multi-mode oscillation
involving three different azimuthal orders and giving
rise to a non-periodic oscillation pattern. The oscilla-
tion frequencies of these modes have synchronized, so
that the spectrum only shows two linearly independent
frequencies. When only one fundamental frequency
contributes to the oscillations, the azimuthal order of
the first harmonic frequency is uniquely determined by
the leading term of the nonlinearity, which is quadratic
for the G-equation. This is however not true for non-
periodic oscillations, and the interaction between all os-
cillating modes needs to be considered. In summary, it
was shown that a cluster of linearly unstable modes can
cause a complex and relatively slow mode-interaction
transient, in which modes of different azimuthal order
can also synchronize. So far, the effects of initial con-
ditions have not been considered, although they likely

have a role in determining the route undertaken and the
steady state reached by the system.
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