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Abstract

We propose a general classification of all the modes of a given thermoacoustic

system into two sets: one of acoustic origin and one of intrinsic thermoacous-

tic (ITA) origin. To do this, the definition of intrinsic modes, traditionally

based on anechoic boundary conditions, is reformulated in terms of the gain

n of the Flame Transfer Function (FTF). As a consequence of this classifica-

tion, we show how theoretical results for the estimation of all thermoacoustic

modes can be derived in the limit n→ 0, for both axial and annular combus-

tors, independent of the acoustic boundary conditions. Starting from this

limit and using standard continuation methods while increasing n, all the

eigenvalues of interest in a given domain in the frequency space can be iden-

tified. We also discuss how thermoacoustic modes of acoustic and ITA origin

can interact, and in some cases coalesce generating exceptional points (EPs).
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Although all EPs found have negative growth rates, in their vicinity ther-

moacoustic eigenmodes have very large sensitivities and exhibit strong mode

veering. We demonstrate how, in some cases, mode veering is responsible

for the occurence of thermoacoustic instabilities, and propose a numerical

method to identify EPs. All the theoretical results are numerically verified

using two generic thermoacoustic configurations.

Keywords: Thermoacoustics, Intrinsic modes, Exceptional point,

Combustion instabilities

1. Introduction1

Intrinsic thermoacoustic (ITA) instabilities were first recognized in [1, 2],2

where it was shown that even a thermoacoustic system with anechoic bound-3

ary conditions can exhibit thermoacoustic instabilities. Analytical models of4

ITA instabilities were developed in [3, 4], which allowed for their connection5

to an intrinsic feedback loop that does not require acoustic reflections at6

boundaries. Using an n–τ model, it was shown that the ITA resonance fre-7

quency can be calculated from the time delay of the acoustic flame response8

only, and that ITA resonance frequencies are directly related to the peaks of9

the elements of the scattering matrix [5, 6].10

Direct numerical simulations of anechoic systems that exhibited ITA in-11

stabilities [7, 8], together with some experimental evidence [2, 9], further12

corroborate that ITA instabilities are indeed physical, and not just the result13

of a mathematical artifact. The physical mechanism governing ITA insta-14

bilities relies on the feedback between acoustic waves generated by unsteady15

heat release rate and the latter being sensitive to acoustic velocity fluctua-16
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tions upstream of the flame [10, 11]. ITA instabilities do not require ideal17

anechoic conditions to exist: in [12, 13] it has been demonstrated that this18

kind of instability is relevant in thermoacoustic systems with partially re-19

flecting boundary conditions. In [14] it was shown that, for a fully reflective20

Rijke-tube like systems with an n–τ flame response model, the resonance21

frequency characterizing the ITA feedback loop for n→ 0 is the same as the22

one obtained in anechoic systems. In [15] the evolution of thermoacoustic23

eigenfrequency trajectories from fully reflecting to anechoic conditions was24

reported. Some trajectories are pushed to infinitely negative growth rates25

in the anechoic limit, others retain a finite frequency and growth rate. The26

former were called ITA eigenfrequencies (for nonzero reflecting conditions)27

and the latter “pure ITA” eigenfrequencies (in the anechoic limit).28

One objective of the present study is demonstrating that the conclusions29

derived for ITA modes in simple configurations (straight Rijke tubes) and/or30

with simple flame models (n–τ) can be generalized to a much larger set of31

thermoacoustic systems. We will show that a clear distinction between “ITA32

driven” and “acoustic driven” thermoacoustic modes (as in [15]) is not al-33

ways possible when using the definitions of ITA and acoustic modes given34

in the literature; an alternative definition that allows for this distinction is35

proposed. Furthermore, we will show that the interplay between modes of36

acoustic and ITA origin leads to the existence of exceptional points (EPs).37

EPs have been identified as the fundamental concept at the base of many38

scientific phenomena in several fields, including non-Hermitian quantum me-39

chanics, optics and acoustics [16–18]. In thermoacoustics, they have only40

been recently discussed [19]. At EPs two or more eigenvalues coalesce and41
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so do their corresponding modeshapes. The resulting eigenvalue is, thus,42

degenerate and defective. In the simplest case, a defective eigenvalue has43

algebraic multiplicity two and geometric multiplicity one. This is accompa-44

nied by special properties like infinite parameter sensitivity. The effects of45

EPs on thermoacoustic eigenvalue trajectories is the second main objective46

of the study. In particular, we will demonstrate how thermoacoustic eigen-47

modes can become unstable because of strong mode veering caused by their48

interaction with EPs, even if the latter have negative growth rates. The iden-49

tification of EPs, thus, helps understanding the origin of some thermoacoustic50

instabilities.51

In §2, the definition of ITA modes is revised, and the findings of [14]52

are generalized to arbitrary thermoacoustic systems. It is also shown that a53

given thermoacoustic mode could be thought of as originating from either an54

acoustic or a “pure ITA” mode, depending on whether a thermoacoustic con-55

figuration is considered to be originating from (i) an acoustic cavity in which56

the strength of the flame is gradually increased, or (ii) an anechoic com-57

bustion chamber in which the reflection coefficients are gradually increased.58

In §3, this ambiguity is tied to the existence of EPs. A general strategy to59

numerically identify EPs is proposed, and their effect on the trajectories of60

thermoacoustic modes is discussed. The theory is demonstrated in §4 using61

two thermoacoustic configurations modeled with the 3D Helmholtz equa-62

tion. In §4.1 an axial combustor is considered, and EPs stemming from the63

interaction between acoustic and ITA modes are found; in §4.2 an annular64

combustor is considered, and an EP is identified as the coalescence of two65

thermoacoustic modes of acoustic origin.66

4



2. Acoustic, intrinsic, and thermoacoustic modes67

Thermoacoustic phenomena arise from the interaction between unsteady68

heat release rate and acoustic fluctuations. The linear stability of thermoa-69

coustic systems in the low-Mach-number limit can be assessed by investi-70

gating the eigenvalues of the Helmholtz equation with a heat release source71

term [20, 21]. In the frequency domain it reads [22, 23]72

∇ ·
(
c2∇p̂

)
− s2p̂− (γ − 1)

ρ

q(x)

u
F(s)∇p̂ref · n̂ref = 0, (1)

where p̂ represents the pressure fluctuations in frequency domain, γ the heat73

capacity ratio, c the local speed of sound, ρ the mean density, and s ≡74

σ + iω the Laplace variable – where σ is the growth rate and ω ≡ 2πf75

is the angular frequency – representing the eigenvalues of interest. F(s) is76

the Flame Transfer Function (FTF), which represents the linear response77

of heat release rate fluctuations resulting from perturbations in the acoustic78

velocity field at a reference location, indicated with the subscript ()ref . The79

heat release is located only in a (compact) sub-domain of the total volume,80

where the local mean heat release, q(x) in Eq. (1), is non-zero. Here we are81

implicitly assuming that the unsteady heat release rate is proportional to82

the mean one, which is not strictly necessary but inconsequential due to the83

acoustic compactness of the flame.84

The FTF is often expressed in terms of the n–τ model85

F(s) ≡ u

Q

q̂

û
≡ ne−sτ , (2)

where n and τ represent the heat release gain and time-lag with respect to86

velocity fluctuations, and u and Q are the mean characteristic velocity and87
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mean global heat release rate, respectively. A non-dimensional impedance Z88

specifies the boundary conditions:89

p̂+
cZ

s
∇p̂ · n̂ = 0. (3)

Traditionally, thermoacoustic modes have been understood as perturba-90

tions of purely acoustic modes (as defined in §1). Consequently, their eigen-91

frequencies and modeshapes have been sought in the vicinity of those of the92

same system without any unsteady heat release rate (F = 0 in eq. (1)). By93

this assumption, Galerkin mode expansions of thermoacoustic modes based94

on the acoustic modes have been proposed [24]. The recently discovered in-95

trinsic thermoacoustic modes, however, show that this is not always appropri-96

ate. Thermoacoustic oscillations can have frequencies which are not directly97

related to the purely acoustic eigenfrequencies of the combustor [1, 9]. This98

is because these modes arise from the feedback loop created by upstream99

traveling acoustic perturbations generated by the flame, which trigger veloc-100

ity fluctuations upstream of the flame [10, 11, 25]. These in turn lead to101

the generation of heat release rate fluctuations (see Fig. 2). Because this102

mechanism does not require any interaction with acoustic waves reflected at103

the boundaries, its associated modes have been labelled ITA modes.104

2.1. Origin of thermoacoustic modes105

From the literature, modes of ITA origin are defined to be those associated106

with the eigenfrequency loci that contain pure ITA eigenfrequencies in the107

anechoic limit [26]. Equivalently, modes of acoustic origin are defined to be108

those associated with the eigenfrequency loci that contain purely acoustic109

eigenfrequencies in the n → 0 limit. It appears therefore meaningful that a110
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given thermoacoustic mode can be referred to as of acoustic origin or of ITA111

origin [15]. There is, however, an inconsistency between the definitions given112

above and the idea of classifying thermoacoustic modes depending on their113

origin, which we now demonstrate.114

For this purpose, we consider a Rijke tube configuration: a straight duct115

of length 0.5 m with a temperature jump T2/T1 = 4 across a flame element116

located in the middle of the tube. Explicit expressions for the dispersion117

relation of the thermoacoustic eigenvalues can be found in this configuration118

using network approaches (see [27–29] and §1 in the supplementary material).119
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Figure 1: Thermoacoustic mode trajectories while varying the reflection coefficient R

or the interaction index n. Depending on which parameter is varied towards zero, the

thermoacoustic mode converges to either an acoustic or a pure ITA mode. This illustrates

the need for an unambiguous definition of the origin of the thermoacoustic mode origin.

We model the Rijke tube using finite elements, solving the nonlinear120

eigenvalue problem (1). We use continuation methods – based on high-order121
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adjoint-based eigenvalue sensitivity [30] – to track the evolution of a specific122

eigenvalue while varying two parameters: the flame interaction index n, and123

the magnitude of the reflection coefficients |R|. The flame time delay is fixed124

to τ = 3.96 ms. In the fully reflective case, |R| = 1, the tube is assumed to125

be acoustically closed (R = 1) in the cold region, and open (R = −1) in the126

hot one. The corresponding non-dimensional impedances (3) are calculated127

as128

Z =
1 +R

1−R. (4)

We start by setting |R| = 1 (so that the up- and downstream impedances129

are ∞ and 0, respectively), and n = 0. Then, only purely acoustic modes130

exist, featuring zero growth rate as no damping mechanisms are modeled.131

An acoustic mode with an angular frequency of 274 Hz is found (see Fig. 1).132

This value agrees well with that predicted from low-order network models133

(see supplementary material §1). We then vary the interaction index n and134

track the eigenvalue evolution. Note that, for small values of the interac-135

tion index the flame damps the mode, but for larger values this trend is136

reversed and the mode becomes unstable. Once we have reached n = 0.5, a137

reasonable value for a flame response, we maintain this value and vary the138

reflection coefficient magnitudes |R| from 1 to 0. The up- and downstream139

impedances are calculated according to Eq. (4), with R positive (negative)140

in the upstream (downstream) region. When |R| = 0, the mode is a pure141

ITA mode. There are analytical expressions available from the literature for142

pure ITA modes in Rijke tubes (see [1, 3] and supplementary material §1).143
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These are given by144

sITA ≡
1

τ
ln

[(√
T2
T1
− 1

)
n

]
+

(2k + 1)π

τ
i, k ∈ Z. (5)

For the chosen values of n and τ , the resulting intrinsic frequency and growth145

rate are fITA = 1/(2τ) ≈ 126 Hz and σITA = −175 s−1, which agree well with146

the values obtained from the Helmholtz model (see Fig. 1).147

2.2. An alternative definition of intrinsic modes148

The previous example indicates that there exist thermoacoustic modes149

that can be arbitrarily associated to either acoustic or pure ITA eigenfre-150

quencies. This depends on whether the parameter responsible for the ther-151

moacoustic coupling is considered to be n or R. With the given definitions of152

acoustic modes (n = 0) and pure intrinsic modes (R = 0), it is therefore am-153

biguous to think of a thermoacoustic mode as of “acoustic” or “ITA” origin.154

In order to assign to thermoacoustic modes a specific source, the definition155

of acoustic and intrinsic modes must rely on one parameter.156

A step in this direction has been done in [14], considering a 1D Rijke157

tube with an n–τ flame response. Damping, mean flow and entropy-wave158

effects have been neglected. For this configuration a dispersion relation can159

be derived, whose zeroes represent the thermoacoustic modes. Using it, it160

was shown that, when steering n towards zero, any thermoacoustic mode161

will either reduce to an acoustic mode or move towards an infinitely damped162

mode, with the same angular frequency as an intrinsic mode, regardless of163

the boundary conditions. Thus, using only the parameter n it is still possible164

to identify intrinsic eigenfrequencies, and uniquely associate an origin to each165

thermoacoustic mode.166
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These findings are in fact much more general. In the following, we will167

present a derivation of these results with a method different from that of [14].168

Our proof is independent of the dispersion relation and, thus, valid for con-169

figurations with mean flow, damping, arbitrary reflection coefficients, and170

arbitrary expression for the FTF.171
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Figure 2: Block-diagram representation of a generic axial combustor. The upstream and

downstream impedances can be complex-valued and frequency dependent, so that they

can be used to model arbitrarily shaped volumes. The flame is considered compact, so

that jump conditions across it can be expressed in terms of a scattering matrix S. The

ITA feedback loop is highlighted in orange, and does not involve any interaction with the

acoustic boundary conditions.

We consider an arbitrary axial combustor, in which only plane waves172

propagate, containing an acoustically compact flame. No assumption is made173

on the actual shape of the setup, presence of a mean flow, or the acoustic174

boundary conditions. Such a generic configuration can still be represented in175

block form (Fig. 2), as commonly done in control theory and network model176
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approaches. The propagation blocks, Pj = e−sτj , transport the acoustic177

waves from a location x to x+∆x. τj is a characteristic acoustic propagation178

time delay [20], proportional to ∆x, and generally a function of the mean179

flow. Damping models add an imaginary term in the exponential of the180

propagating terms, multiplying s. The jump conditions across the compact181

flame are contained in the coefficients of the scattering matrix, relating the182

incident and outgoing acoustic waves:183  fd

gu

 = S

 fu

gd

+ Hq̂ =

 S11 S12

S21 S22

 fu

gd

+

 H1

H2

 q̂. (6)

The factors Hj account for the scaling between the heat release rate fluc-184

tuations and the acoustic waves, and are not frequency dependent (see sup-185

plementary material). The coefficients of the scattering matrix, Sij, can in186

general be function of the frequency, when losses or inertial effects in terms187

of effective lengths are considered. However, it is standard in the analysis of188

intrinsic modes in thermoacoustics to assume that they are not, to allow for189

analytical treatment. The coefficients of S are derived from jump conditions,190

which are conservative and show no frequency dependence. Their expression191

depends on the presence/absence of an area increase/decrease, temperature192

jump, entropy and/or vorticity waves. The theory presented here is gen-193

eral in this respect, and the definition of the coefficients Sij is kept implicit;194

an example of their expression is provided in the supplementary material.195

Lastly, the response of the acoustic configuration upstream and downstream196

of the flame is modeled by means of arbitrary impedances, which are con-197

verted into reflection coefficients R via Eq. (4). These can be complex-valued198

and/or frequency dependent, and may contain the effects of area variations.199
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From Fig. 2, considering the balance of the waves at each node, it can be200

shown that the response of acoustic velocity fluctuations û to heat release201

rate fluctuations q̂ is202

û =
(1− P1P4R1)[H2 + (P2P3R2)(H1S22 −H2S12)]

P1P4R1S21 + P2P3R2S12 + P1P2P3P4R1R2(S22S11 − S21S12)− 1
q̂. (7)

Assuming that all the components of (7) are analytic functions of the eigen-203

frequency s, its numerator, N(s), does not have poles. Thus, the acoustic204

eigenfrequencies are those for which the denominator of (7), D(s), vanishes:205

206

D(s) := P1P4R1S21 + P2P3R2S12 + P1P2P3P4R1R2(S22S11 − S21S12)− 1 = 0

(8)

The heat release rate response, q̂c/Q = F(s)û/u, is assumed to have207

no finite poles, for simplicity, although this assumption could be relaxed.208

This is true for many traditional flame response approximations, including209

n−τ models with constant or polynomial coefficients, and more generally for210

sum of time delay models, which can well fit Flame Transfer and Describing211

Functions [31, 32].212

The ITA loop of the system is highlighted in Fig. 2. It is characterized213

by the transfer function214

q̂ =
1

H2F(s) + 1
q̂n, (9)

where q̂n can be understood as a source of combustion noise [12]. This implies215

that ITA modes are found when216

H2F(s) + 1 = 0, (10)

12



which is equivalent to definitions found in the literature [1, 3] for a Rijke217

tube with anechoic boundary conditions. Coupling the acoustic and flame218

responses yields the closed-loop transfer function219

û =
N(s)

D(s)−N(s)F(s)
q̂n. (11)

The thermoacoustic modes are found1 when D(s)−N(s)F(s) = 0.220

One can then track these eigenvalues by slowly varying the gain of the221

FTF from a finite value towards zero. In the following, we shall assume222

that F(s) = ne−sτ , as this permits a direct comparison of our results with223

those available in the literature, and eases the notation. Two scenarios are224

possible:225

1. lim
n→0
|ne−sτ | → 0. Then, for s to be a pole of Eq. (11), the condition226

D(s) = 0 must be satisfied. This coincides with the acoustic modes, as227

per Eq. (8);228

2. lim
n→0
|ne−sτ | → O(1). This is possible if and only if, asymptotically,229

e−στ ∼ α/n, with α ∈ R. This value is not arbitrary, but can be linked230

to the elements of the scattering matrix and the heat release scaling231

coefficients Hj (see Appendix A). This implies that232

σ ∼ 1

τ
log(n/α) as n→ 0, (12)

and that lim
n→0

ne−(σ+iω)τ ∝ e−iωτ . In other words, the infinite growth rate233

of the time-delayed terms is balanced by the vanishing flame strength234

when n → 0. We now want to find those values of s that are poles235

1This assumes that no zero–pole cancellations, which are nonetheless extremely rare,

occurs; otherwise, some extra modes are identified.
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of (11) in this limit. It can be shown (see Appendix A) that the236

angular frequencies of these infinitely damped modes are identical to237

those of ITA modes (Eq. (5)).238

This proves that, in the n→ 0 limit, thermoacoustic modes are split into239

two distinct sets. One of them is equivalent to the set of acoustic modes, the240

other is connected to the ITA modes (with infinite damping), regardless of241

the boundary conditions.242

We remark that the intrinsic loop highlighted in Fig. 2 and defined in243

Eq. (10) exists in an isolated fashion only when no area variations are present244

in the volumes upstream/downstream of the flame. Otherwise, even when245

purely anechoic boundary conditions are imposed, reflection of acoustic waves246

will occur due to the area changes. This modifies the anechoic intrinsic loop247

and the consequent definition of pure intrinsic modes, as discussed in [7]. This248

is, however, unimportant in the current analysis because only the limit n→ 0249

is considered. The amplitude of the ITA generated waves that propagate250

away from the flame vanish in this limit because they are infinitely damped,251

regardless of the presence of area variations. As a consequence of this, the252

definition of intrinsic modes for vanishing n depends only on the values of253

the scattering matrix and flame scaling coefficients, as shown in Appendix254

A.255

Using a single parameter to define both acoustic and ITA frequencies256

allows for unambiguously associating each thermoacoustic mode with a spe-257

cific origin. This is not possible when different parameters are used to define258

ITA and acoustic modes. Here, the chosen parameter is the flame gain (as259

it retains the natural definition of acoustic modes), but the reflection coeffi-260
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cient could be chosen equivalently (which would lead to a different, but still261

unique, classification of the eigenvalues).262

Furthermore, the results of this section have an important consequence263

for practical applications and the numerical calculation of thermoacoustic264

modes. Commonly, thermoacoustic modes are found by initializing Helmholtz265

solvers with the purely acoustic frequencies (found when n = 0) and then266

by gradually increasing the value of n and track the evolution of the eigen-267

values [33]. However, this method fails in identifying all thermoacoustic268

modes, as some modes are of ITA origin. Using the results of this proof,269

we have a new set of guesses that can be used to identify the remaining270

thermoacoustic modes: starting from a small but non-zero value of the in-271

teraction index, thermoacoustic modes of intrinsic origin are approximately272

given by Eq. (A.5). No other modes can be found because, when n → 0,273

all modes must belong to one of these two sets. Once located in this limit,274

all thermoacoustic eigenvalues can be tracked to the desired value of n us-275

ing continuation methods. Thus, with this strategy the space that needs to276

be explored is limited to that in the vicinity of the theoretically estimated277

solutions. This leads to a gain in both the numerical time needed to locate278

the thermoacoustic modes, and in the confidence that all modes (in a given279

frequency range) have been identified. This will be demonstrated in §4.280

2.2.1. The annular combustor case281

In this section we qualitatively discuss how the results of §2.2 can be282

extended to annular and can-annular thermoacoustic configurations. In par-283

ticular, we will consider systems featuring a discrete rotational symmetry.284

Such systems are generally modeled with two acoustic volumes connected by285
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Figure 3: Block-diagram representation of an annular combustor with discrete rotational

symmetry and Nf flames. The flames are located in ducts that connect upstream and

downstream acoustic cavities (annular plenum and annular combustion chamber).

Nf ducts, in which identical flames are located (see Fig. 3). The acoustic286

boundary conditions couple the responses of the various ducts, in which the287

acoustic field is assumed to be one dimensional, and can be modeled with288

impedance matrices [34, 35]. These contain the acoustic response in all the289

ducts when the acoustic field in a given duct is excited. Given the rota-290

tional symmetry of the system, these matrices are circulant, which has direct291

connections with a possible Bloch representation of the dynamics [36–38].292

In the limit n→ 0, the same results of the previous section must hold for293

each duct. In this limit, there is no physical mechanism that couples the Nf294

intrinsic loops. Since the flames in the various ducts are identical, so are all295

intrinsic loops, which are still governed by the dispersion relation (10). This296

results in Nf identical intrinsic eigenfrequencies, infinitely damped, and with297

the same frequency of pure ITA modes. This discussion is kept qualitative298

because, given the matrix formulation needed to represent annular systems299
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with discrete symmetries, a closed-form formulation of analytical results is300

impractical.301

These intrinsic loops can be thought of as a set of identical, decoupled302

oscillators. A weak coupling between them is achieved by either consider-303

ing small but non-zero up- and downstream reflection coefficients when the304

flame interaction index is finite, or a small but non-zero flame interaction305

index when the reflection coefficients are finite. In both cases, the dynam-306

ics of ITA modes is governed by weakly coupled oscillators. When identical307

oscillators are weakly coupled, the eigenvalues of the weakly coupled system308

form clusters of closely spaced eigenvalues [39]. This is the case, for example,309

in can-annular systems, in which the acoustic coupling between the various310

cans is weak, and clustering of thermoacoustic modes can be observed [40].311

The same holds true for modes of ITA origin in annular systems. This has312

been first observed numerically in [41], where clusters of modes with eigen-313

frequencies close to those of ITA modes were found.314

3. Interaction of acoustic and intrinsic modes with exceptional315

points316

In the previous section, we have discussed how the origin of thermoacous-317

tic modes can be assessed using only the interaction index n of the flame.318

There remain however some points in the spectrum of thermoacoustic systems319

that elude this classification. These points are known as exceptional points320

(EPs). EPs are a particular type of degenerate, defective eigenvalues, with321

the additional property of being singularities in the parameter space [42]. EPs322

have recently been identified in the spectrum of a Rijke tube-like thermoa-323
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coustic system using an explicitly known dispersion relation [19]. Here, we324

show how EPs of any thermoacoustic systems can be identified numerically325

without using the dispersion relation, but the self-orthogonality property of326

the eigenfunctions at EPs.327

3.1. Self-orthogonality328

The eigenvalue sensitivity of thermoacoustic modes w.r.t. a parameter ξ329

is given by [43, 44]:330

∂sj
∂ξ

= −
〈
p̂†j
∣∣∂L
∂ξ
p̂j
〉〈

p̂†j
∣∣∂L
∂s
p̂j
〉∣∣∣∣∣
s=sj

, (13)

where the adjoint eigenvectors have been denoted with the superscript †,331

and the matrix L contains the discretization of the thermoacoustic eigen-332

value problem (1). Equation (13) is valid whenever the denominator is non-333

zero. This is always guaranteed to be the case for non-defective eigenvalues334

(even if they are degenerate), but it is zero for defective eigenvalues [45]. In335

fact, the derivation of equation (13) assumes that a bi-orthonormal set of336

direct/adjoint eigenfunctions can be chosen [46]:337 〈
p̂†i
∣∣∂L
∂s

p̂j
〉

= δi,j. (14)

This breaks down at defective points, because the basis of the eigenvectors is338

incomplete. In particular, it is possible to show that, for defective eigenvalues,339

the direct and corresponding adjoint eigenvectors satisfy [47]340 〈
p̂†def

∣∣∂L
∂s

p̂def

〉
= 0. (15)

This property is known as self-orthogonality. At EPs, it manifests itself in341

infinite eigenvalue sensitivity. We reference to the supplementary material §2342

for remarks on numerical aspects of self-orthogonality.343
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3.1.1. General method for the identification of exceptional points344

We exploit the infinite eigenvalue sensitivity at EPs to devise a general345

strategy for their identification in thermoacoustic systems. At EPs, we have346

347

lim
ξ→ξEP

∣∣∣∣∂s∂ξ
∣∣∣∣−1 = 0 (16)

Thus, the identification of EPs is reduced to a root-finding problem, which348

can be straightforwardly solved numerically with iterative methods. Note349

that, every time the parameter ξ is updated in the iterative scheme, a new350

eigenvalue problem needs to be solved, and the sensitivity can then be calcu-351

lated using Eq. (13). Furthermore, since the eigenvalues of thermoacoustic352

problems are generally complex-valued, also the value of the parameter ξ at353

which the EP is found using this strategy can be complex-valued. These354

complex-valued parameters may or may not be physically realizable: an EP355

found in a Rijke tube having a complex-valued length would not be realizable,356

but one found for a complex-valued impedance would. In order to identify357

EPs for real-valued parameters, we need to extend the parameter space un-358

der consideration to two independent parameters [42]. The identification of359

EPs in the real-valued parameter space reads360

lim
ξ1→ξ1,EP

ξ2→ξ2,EP

∣∣∣∣ ∂s∂ξi
∣∣∣∣−1 = 0 for i = 1 or 2, (17)

which can be solved using standard multi-parameter root finding algorithms.361

Despite their peculiar nature, EPs are not rare, and have been observed362

in a large variety of physical systems [48]. In thermoacoustics, they have363

been first discussed only recently [19]. In the latter study, they have been364

identified making use of the dispersion relation for the eigenvalues, which is365
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available only for simple networks. The method outlined in this study is more366

general because it does not rely on the explicit knowledge of the dispersion367

relation, which is typically not available, for instance, when using Helmholtz368

solvers. The method has been tested on several configurations. For all tested369

cases, identifying real-valued EPs was possible, as discussed in §4.370

Lastly, we highlight that there appears to be evidence in the literature371

that the effects of EPs in the spectra of thermoacoustic systems, even if not372

investigated directly, have already been observed. In [49], eigenvalues hav-373

ing infinite sensitivity have been identified analytically, in a Rijke tube-like374

system. They have however imprecisely been linked to arbitrary degenerate375

states rather than to EPs. Large eigenvalue sensitivities were also observed376

in [50], together with the phenomenon of mode veering. Mode veering is377

a manifestation of avoided crossing of two eigenvalues. This always occurs378

when the thermoacoustic system parameters are close to a degenerate point,379

at which the eigenvalue trajectories intersect. The behavior of the eigen-380

value trajectories tells whether the degeneracy is defective or not. For a381

degenerate eigenvalue with multiplicity 2, if the trajectories approach each382

other from nearly opposite direction and then veer by 90° (as is the case383

in [50]), then there is an EP close in parameter space, at which the eigen-384

value sensitivity is infinite [42]. On the other hand, if the trajectories veer at385

different angles, then the veering is due to a degenerate, non-defective point,386

and the eigenvalue sensitivity remains finite. The existence of EPs is evident387

also in [26, 51], where regions of high sensitivity exhibiting mode veering388

have been identified, and their universality in connection to non-dimensional389

groups has been demonstrated. Regarding annular combustors, the presence390
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of EPs can be inferred from the eigenvalue trajectories shown in [52, Fig. 8]391

and [53, Fig. 6], constructed while varying n and τ . This example will be392

further discussed in §4.2.393

3.2. The effect of exceptional points on thermoacoustic eigenvalue trajectories394

We shall now return to the Rijke tube example of §2.1. Using the nu-395

merical method outlined in the previous section, with ξ1 = n and ξ2 = τ ,396

an EP is identified in this configuration for nEP = 0.075 and τEP = 4.66 ms,397

having a frequency close to that of the acoustic mode of Fig. 1 and a negative398

growth rate. Starting from the EP, we vary the flame gain n in the range399

[0,0.5] and the reflection coefficient |R| in the range [0,1.3]. The resulting400

eigenvalue trajectories are shown in Fig. 4.401

One of the two trajectories obtained while varying n starts (for n = 0) at402

the acoustic eigenvalue (on the neutral line); the other comes instead from403

a very negative growth rate. On the contrary, the two trajectories obtained404

while varying R start (for R = 0) from pure ITA modes, whose values es-405

timated from Eq. (5) are reported with red circular markers in Fig. 4. The406

trajectories meet at the exceptional value, and turn by 90° across it. Further-407

more, because no discontinuities in the parameters are present in the modeled408

system, the eigenvalue trajectories must be continuous. In the vicinity of the409

exceptional point, this means that the trajectories must strongly veer, to410

avoid a crossing. This explains the behavior of the eigenvalue trajectory411

shown in Fig. 1: increasing n, the eigenvalue trajectory is first attracted to-412

wards the EP, which has a negative growth rate. However, since crossing is413

prohibited, the trajectory must strongly veer, which leads to a sudden change414

in the trend of the eigenvalue sensitivity and eventually to the existence of415
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Figure 4: Behaviour of the eigenvalue trajectories obtained while varying the flame in-

teraction index and reflection coefficients across an EP. The arrows indicate the direction

that the trajectories follow when the parameters are increased. The acoustic solution is

marked with a black circle, and the pure ITA modes for τ = τEP with red circles. Be-

cause trajectories cannot intersect in the vicinity of an EP, four regions, labelled I to IV,

corresponding to different behaviors in the limits n → 0 and R → 0 are identified. The

thermoacoustic mode and the eigenvalue trajectory of Fig. 1 lie in region I.

an unstable mode. This is true even though the identified EP has a negative416

growth rate. Rather than the EP per se, it is its interaction with the eigen-417

value trajectories which is relevant: identifying the parameters at which EPs418

are found gives information about when strong changes in the eigenvalues419

sensitivities are expected. As demonstrated in Fig. 4, this sudden change in420

sensitivity can lead to thermoacoustic instabilities.421

The fact that eigenvalue trajectories cannot cross in the vicinity of an422
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EP leads to a classification of the eigenvalue space in its vicinity. Consider423

the exceptional trajectories for n highlighted with thick red lines in Fig. 4:424

the acoustic mode is contained in the portion of the plane above this line.425

Because eigenvalue trajectories cannot intersect, thermoacoustic modes that426

start above this line must converge to the acoustic mode when n→ 0. On the427

other hand, modes that start below this line cannot converge to an acoustic428

mode when n → 0, and will be pushed towards σ → −∞. Similarly, the429

exceptional trajectories for R highlighted with thick black lines in Fig. 4430

delimit the region of convergence towards two separate pure ITA modes when431

R → 0: on the left, eigenvalues must be attracted towards the ITA mode432

with frequency 1/(2τ); on the right, towards the ITA mode with frequency433

3/(2τ). Thus, four regions exist (I-IV in Fig. 4) in which the behavior of the434

eigenvalues in the limits n → 0 and R → 0 differs. For example in region I435

(top–left), eigenvalues must be attracted towards an acoustic solution when436

n→ 0 and to the ITA solution with frequency 1/(2τ) when R→ 0. Similar437

arguments hold for the remaining regions. The thermoacoustic mode shown438

in Fig. 1 lies in region I in Fig. 4, which is consistent with the seemingly439

ambiguous n→ 0 and R→ 0 limits.440

In summary, the “basins of attraction” of acoustic and pure ITA modes441

are determined by the parameter chosen to describe the thermoacoustic cou-442

pling. Because the exceptional trajectories for varying n and R are different,443

the resulting basins differ too. This explains why a classification of the ther-444

moacoustic modes using two separate parameters can be ambiguous. These445

findings on the identification of EPs and the behavior of eigenvalue trajecto-446

ries in their vicinity are general, and will be demonstrated on more complex447
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geometries in the last part of the study.448

4. Numerical examples449

In this section we demonstrate with two examples (an axial and an450

annular configurations) the theoretical findings of this study. Both cases451

are solved using the freely available 3D FEM code PyHoltz2, dedicated to452

(thermo)acoustic eigenvalue problems.453

4.1. BRS combustor454

As an axial configuration, we focus on the so-called BRS combustor [54].455

Thermoacoustic oscillations with a frequency which is not close to any acous-456

tic mode have been experimentally observed in this combustor [9], and have457

been related to the effect of ITA modes in the literature [13]. The mod-458

eled combustor is shown in Fig. 7 (see the aforementioned references for an459

exhaustive geometrical description of the combustor).460

We assume that the inlet/outlet are respectively acoustically closed and461

open, and that a sudden temperature jump, T2/T1 = 5.46, occurs across462

the flame. Starting from the purely acoustic scenario (n = 0, fully reflective463

boundaries), we identify several acoustic modes having zero growth rate. The464

lowest two frequencies correspond to a Helmholtz mode with fH = 54 Hz and465

a quarter-wave like mode, with a frequency of f1/4 = 589 Hz, and are shown466

in Fig. 5.467

We then set the interaction index to the small value n = 0.001 and the468

time delay (arbitrarily) to τ = 6.88 ms. The eigenvalues of this thermoacous-469

2Freely available at https://bitbucket.org/pyholtzdevelopers/public
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Figure 5: Location of the acoustic (black circles) and thermoacoustic (red circles) eigen-

values when n = 0 and n = 0.001, respectively. The theoretical guesses for the locations

of the thermoacoustic modes of ITA origin are indicated with green markers. The lines

track the eigenvalue trajectories for n ∈ [0.001, 3].

tic system are shown in Fig. 5 with red markers; because of the weak effect of470

the flame, the eigenvalues of acoustic origin are almost unaffected. However,471

a new set of modes, having ITA origin, is found. These modes have been iden-472

tified using as guesses the expression (A.5), with β−1 = (θ2 − 1)/(Arθ + 1),473

obtained from (A.3) when a temperature jump (θ =
√
T2/T1) and an area474

jump (Ar = A2/A1 = 7.95) are found across the flame, and mean flow is475

neglected. The theoretical guesses are marked in Fig. 5 with green circles,476

and are used to initialize the search of thermoacoustic eigenvalues via New-477

ton’s method. The converged thermoacoustic eigenvalues for n = 0.001 are478
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marked with red circles, and agree well with the theoretical predictions. The479

configuration at hand has an area jump upstream of the flame, which affects480

the definition of pure ITA modes in the anechoic limit [7]. However, this has481

no effect on the definition of the ITA modes originating in the limit n→ 0.482

Using these initial guesses, we can then track the evolution of all ther-483

moacoustic eigenvalues in the region of interest while increasing the value484

of the interaction index to any desired value. These trajectories are shown485

with lines in Fig. 5: the growth rates of thermoacoustic modes of ITA origin486

are far more sensitive to changes in n than the growth rate of the modes of487

acoustic origin. For large values of n, the modes of ITA origin can become488

unstable and feature the largest growth rates. Also, mode veering between489

an eigenvalue of acoustic origin and one of ITA origin is visible at a frequency490

of about 60 Hz.491

This mode veering is relevant for the experimental observations of [9],492

where oscillations with a frequency of 100 Hz were observed, and have been493

associated to an ITA mode instability [4]. Therefore, we shall focus the494

attention around the low-frequency Helmholtz mode only. To understand the495

influence of the flame response on the spectrum, we vary n ∈ [0, 3] and τ ∈496

[0, 0.016]. The maximum τ is chosen to be < 1/fH , to avoid that eigenvalue497

trajectories intersect in the vicinity of the acoustic solution. The resulting498

stability map is shown in Fig. 6; as commonly observed, depending on the499

particular choice of both n and τ , the resulting thermoacoustic mode can500

be stable or unstable. In the vicinity of the acoustic solution the eigenvalue501

sensitivity with respect to changes in the interaction index is nonlinear: a502

small increase in n from zero first stabilizes the pole, but the trajectory503
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Figure 6: Trajectories of the lowest frequency eigenvalue of the BRS combustor when

varying the parameters of the flame model. The trajectories with constant n and constant

τ are highlighted with different colormaps. The acoustic solution (f = 53.75 Hz) is

highlighted with a black circle. In the region which is avoided by the eigenvalues, there

exists an EP (nEP = 2.181, τEP = 6.96 ms), indicated in red. The local behavior of the

trajectories in this region is shown in Fig. 8a.

strongly veers and the mode can become unstable for larger values of n, as504

was observed in Fig. 1. Because of their veering, which can be observed for505

both the n- and τ -isolines, the eigenvalue trajectories avoid a region in the506

complex-frequency space, as discussed in [26]. The presence of this avoided507

region is one of the characteristics of EPs. Its existence can be confirmed508

using the procedure outlined in §3.1: starting from an educated guess based509

on Fig. 6, a root of Eq. (17) is found while varying n and τ . This root510

identifies an EP (see Fig. 8). Its modeshape is reported in Fig. 7, together511

with that of the purely acoustic Helmholtz mode (plenum dominant) and of512

the mode of ITA origin in the n → 0 limit (flame region dominant). These513
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are the two modes that coalesce to create the EP, whose modeshape has514

clearly inherited features from both of them.515

Figure 7: Geometry of the BRS combustor and pressure modeshapes of the low-frequency

acoustic (left), ITA origin (right) and exceptional (middle) modes.

The trajectories of the eigenvalues around the EP are shown in Fig. 8. At516

the EP, two eigenvalues, one of acoustic and one of intrinsic origin, coalesce.517

Due to the high sensitivity of the eigenvalues in the vicinity of the EP, a small518

parameter range is considered. When one parameter (n or τ) is fixed at the519

exceptional value and the other is varied, the trajectories collide at the EP,520

and branch off at angles of 90° (Fig. 8a). The further the parameter values521

are from those of the EP, the less intense is the veering. Figures 8b and 8c522

show the frequency and growth rate surfaces as functions of n and τ close523

to the EP. Because real and imaginary part of the eigenvalue surfaces are524
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trajectories cross forming right angles. (b)-(c): Frequency and growth rate surfaces as

functions of n and τ close to the EP. The Riemann cuts of the surfaces are highlighted
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plotted separately, each surface self-intersects, forming Riemann cuts [18].525

The number of eigenvalues found for an arbitrary pair of values (n, τ) close526

to the EP is equal to the number of intersections of vertical lines passing527

through (n, τ) with the complex-valued surface. This is always equal to 2528

in Figs. 8b and 8c, except at the EP at which it is equal to 1, indicating529
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eigenvalue crossing.530

Our analysis of the BRS system is consistent with the theoretical discus-531

sion that thermoacoustic modes can uniquely be classified as of acoustic or532

ITA origin in the limit n → 0, regardless of the boundary conditions and533

presence of area variations upstream of the flame. An EP exists in the spec-534

tra of this combustor for specific values of n and τ , at which two eigenvalues535

(one of acoustic and one of intrinsic origin) coalesce. Even if the system is not536

operated at EP conditions, being sufficiently close to it in parameter space537

results in strong mode veering. This can explain why the unstable frequency538

observed experimentally in [9] significantly differs from all the acoustic eigen-539

frequencies of the system, although the unstable mode may still be of acoustic540

origin.541

4.2. Annular configuration542

As for an annular configuration, we consider the Helmholtz model of543

a generic geometry formed by plenum and chamber volumes connected by544

a given number of ducts (see Fig. 10). These configurations can also be545

analyzed using network models, as discussed in [35, 55–57]. We investigate546

the Nf = 4 burners setup presented in [52] because (i) the configuration has547

closely spaced acoustic eigenvalues, and (ii) different regimes (uncoupled,548

weakly coupled, and strongly coupled) have been identified in [52], which are549

revisited here. This will show that the occurrence of these different regimes550

can be explained with the existence of EPs.551

The geometrical and thermodynamical parameters are taken from [56],552

with the difference that a smaller temperature jump has been considered,553

T2/T1 = 1.5, in order to have closely spaced acoustic eigenvalues when n = 0,554
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as in [52]. The two acoustic eigenvalues with the lowest frequencies are re-555

ported with black circles in Fig. 9. The two modes are plenum- and chamber-556

dominant, respectively, with azimuthal order m = 1, therefore degenerate.557

Their modeshapes3 are reported in Fig. 10, and the frequencies are close to558

the frequencies of the plenum/chamber, fi = ci/(πDi), where Di are the559

diameters of the volumes. The deviation from these values is due to the560

cross-talking of the plenum-chamber volumes via the connecting ducts.561

To investigate the effect of the flame response on the eigenvalues, we vary562

n ∈ [0, 2] and τ ∈ [0, 0.015] s. The maximum time delay value is chosen563

to be 1/fchamber so that eigenvalue trajectories looping around the acoustic564

eigenvalues will not cross each other [26, 58]. We track the eigenvalues using565

continuation methods and show the eigenvalue trajectories in Fig. 9. In the566

range of parameters studied, we identify three topologically different groups567

of eigenvalue trajectories:568

I. when n < 1.17, varying τ results in looping the thermoacoustic eigenval-569

ues that originate from the plenum and chamber acoustic modes around570

these solutions. This corresponds to the “weakly coupled” regime dis-571

cussed in [56], in which it is appropriate to associate each thermoacous-572

tic mode to an acoustic mode.573

II. when 1.17 < n < 1.44, the trajectories do not follow closed loops any-574

more. The thermoacoustic eigenvalue that starts close to the plenum575

acoustic mode is shifted towards a value close to that of the chamber576

3Because these solutions are degenerate with geometric multiplicity 2, they each have

2 linearly independent modeshapes. Only one of them is shown in Fig. 10.
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Figure 9: Eigenvalue trajectories of the annular configuration for constant n (isoline values)

when τ is varied. The system has two closely spaced purely acoustic eigenvalues (black

dots). Two exceptional points (red squares) are identified: one due to the interaction

between two modes of acoustic origin, close to the real axis, and one due to the interaction

between acoustic and intrinsic modes. The values of n at which EPs are located determine

topological changes in the eigenvalue trajectories.

acoustic mode, and vice versa. In other words, the nature of these ther-577

moacoustic modes strongly varies depending on the value of τ consid-578

ered. For intermediate values of τ , the modes have frequencies which lie579

between those of the two acoustic modes, and their modeshapes are not580

anymore dominant in only the plenum or chamber, but instead in both581

cavities (see Fig. 10). For this reason, in this regime, which corresponds582

to the “strongly coupled” regime of [56], it would be inappropriate to583
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Figure 10: Absolute value of the pressure of various modes found in the annular com-

bustor configuration. Left column: plenum and chamber dominant acoustic modes (see

Fig. 9). Middle column: cluster of ITA modes found in the limit n→ 0 (see Fig. 11); the

modeshapes are identical and dominant in the flame region, as expected for ITA modes.

Right column: modeshapes of the two identified exceptional points (see Fig. 9). One is

due to the interaction between two modes of acoustic origin, the other between a mode of

acoustic origin and one of ITA origin.

perform a single-mode (degenerate) Galerkin expansion. A two-mode584

Galerkin expansion that accounts for both the plenum- and chamber585

dominant modes should yield a good approximation, as hinted by the586

modeshapes shown in both Figs. 7 and 10.587

III. Another topological change in the eigenvalue trajectories is observed588

when n > 1.44. The eigenvalues that start close to the chamber acoustic589

mode are shifted towards plenum-dominant solutions when τ increases,590

as in the previous regime. The same is, however, not anymore true591

for the other eigenvalue. The mode that starts close to the plenum-592

dominant solution is pushed away from any known acoustic solution,593
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and a trajectory that starts from a solution that is not related to any594

known acoustic mode (on the right of Fig. 9) ends with a frequency close595

to the chamber-dominant acoustic mode. In this regime, which has not596

been discussed before, also a two-mode Galerkin expansion based on597

the acoustic modes cannot yield a good approximation of the original598

system, because the thermoacoustic modes can be significantly different599

from the acoustic ones.600

From the topological structure of the various eigenvalue trajectories, it is601

possible to infer that EPs must exist for specific pairs of n and τ . These EPs602

in fact discriminate between the three regimes just discussed. Starting from603

educated guesses based on shape of the eigenvalue trajectories, and using the604

numerical procedure outlined in §3.1, we identify two EPs in the parameter605

region investigated. One is found for nEP,aa = 1.17 and τEP,aa = 8.19 ms,606

and discriminates between the aforementioned regimes I and II. The other607

is found for nEP,ai = 1.44 and τEP,ai = 8.91 ms, and discriminates between608

regimes II and III.609

The first EP is labelled with the subscript aa because it results from610

the collision of two modes of acoustic origin. In [19] only EPs that arise611

from the interaction of a mode of acoustic origin and one of ITA origin612

were discussed. EPs arising from two acoustic eigenvalues are already known613

from the discussions of EPs in acoustic systems, and have a relevance, e.g.,614

in optimizing the performance of Helmholtz dampers [18, 59]. However, in615

the current example the coalescence of two eigenvalues of acoustic origin616

at the EP is driven by the flame response parameters. Such EPs were not617

discussed in the literature before. The acoustic–acoustic nature of this EP618
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is also visible in its modeshape, shown in Fig. 10: in contrast to the acoustic619

modes – purely plenum- or chamber dominant – this modeshape has the620

same magnitude in both cavities, suggesting that a single-mode Galerkin621

expansion (that preserves only the plenum’s or chamber’s structure) would622

not be a suitable approximation in its vicinity.623

The other EP is labelled with the subscript ai because it originates from624

the interaction between modes of acoustic and ITA origin. Its behavior is625

analogous to that discussed in §4.1 and [19], as is more evident from Fig. 11:626

starting from nEP,ai and decreasing the value of n towards zero, two eigen-627

values stem from this EP: one converges to an acoustic solution (that of the628

chamber), the other tends towards an ITA mode. Also, because of the dis-629

crete rotational symmetry of the annular configuration under investigation,630

each eigenvalue shown in Fig. 9 is degenerate with algebraic and geometric631

multiplicity 2. As both EPs identified for this configuration are found when632

2 eigenvalues (each having algebraic multiplicity 2) coalesce, the EPs have633

algebraic multiplicity 4, but are defective in that only two linearly indepen-634

dent modeshapes exist, i.e. they have geometric multiplicity 2. Only one635

of these modeshapes is shown in Fig. 10, the other is phase-inverted, as for636

degenerate (thermo)acoustic modes.637

Lastly, we verify that, for annular configurations, in the limit n→ 0 the638

Nf modes of ITA origin are almost decoupled, as discussed in §2.2.1. Thus,639

a cluster of Nf = 4 eigenvalues of ITA origin is expected to be found in640

the vicinity of the value predicted by Eq. (A.5). Starting from this theoret-641

ical guess, a Newton method is employed to identify the close eigenvalues.642

Given the fact that the modes cluster, however, it is difficult to identify all643
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Figure 11: Modes of ITA origin found in the annular setup when n → 0. The cluster of

ITA modes estimated using equation (A.5) for n = 0.001 is shown in green. Four thermoa-

coustic eigenvalues (one for each burner, and two are degenerate due to the symmetries of

the annular configuration) are found in its vicinity. The lines track all the eigenvalues for

n ∈ [0.001, 2]: two modes of ITA and acoustic origin coalesce at nEP,ai.

the modes, as the iterative algorithm tends to converge to the same solu-644

tion. Bloch-wave theory comes to aid [37]. By using this formalism, the645

clustered modes are naturally split across the various Bloch-wave numbers646

b = 0, 1, . . . Nf − 1. In the n → 0 limit, a mode of ITA origin is found for647

each Bloch-wave number for the configuration at hand when n = 0.001, as648

shown in Fig. 11. Because of the mirror symmetry of the system, the modes649
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found for b = 1 and b = 3 are degenerate for any value of n. In general,650

for a system with an even number Nf of burners, the cluster of eigenvalues651

found in the n→ 0 limit will be formed by Nf/2 + 1 distinct eigenvalues, of652

which Nf/2− 1 are degenerate with multiplicity 2. We can then track these653

solutions of ITA origin by increasing n towards any desired finite value. The654

eigenvalue trajectories are shown in Fig. 11. Because we have fixed the time655

delay to τEP,ai, we identify again the EP of acoustic–intrinsic nature. No-656

tably, only the mode of ITA origin with b = 1 (or equivalently 3, given the657

degeneracy) interacts with the mode of acoustic origin and generates an EP.658

This is because modes associated with different Bloch-wave numbers are or-659

thogonal [30]. Because both modes of acoustic origin are azimuthal modes660

of order m = 1, thus associated with Bloch-wave numbers b = 1, only the661

modes of ITA origin associated with the latter Bloch-wave numbers can in-662

teract with them and lead to the formation of EPs, or more generally to663

mode veering. This also explains why the ITA modes found in the clustered664

region do not interact with each other and neither exhibit veering nor form665

EPs despite their eigenvalues being so closed.666

5. Conclusions667

In this study, a different perspective to the notion of intrinsic modes668

has been presented, with the aim of associating each thermoacoustic mode669

with a unique origin without altering the acoustic state (in particular the670

reflection coefficients) of the system. We have demonstrated that this is671

not possible with the traditional definitions of acoustic and intrinsic modes,672

because these definitions are based on two separate parameters: the former673
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are defined in the absence of heat release dynamics, when n = 0, whereas674

the latter are defined in anechoic conditions, when R = 0. Instead, we675

propose to use only one parameter, chosen to be n, to define the origin676

of all the modes independent of the acoustic boundary conditions of the677

system. We have shown in a rather general way that any thermoacoustic678

mode can be uniquely associated with one of these two classes of modes when679

n→ 0. Furthermore, an explicit expression has been found for the modes of680

ITA origin when an n − τ model is adopted. These are independent of the681

acoustic properties even for systems which, despite having anechoic boundary682

conditions, still have an acoustic response due to, e.g., area expansions. Their683

expressions are functions only of the coefficients of the scattering matrix684

S and the heat release scaling coefficients. In some special cases (absence685

of mean flow and cross-sectional area variations across the flame, anechoic686

boundary conditions), the definition of ITA modes proposed in this study687

coincides with that found in the literature for anechoic conditions. We have688

also discussed how, in the case of rotationally symmetric annular combustors,689

modes of ITA origin tend to form clusters of eigenvalues in the limit n→ 0,690

and generally behave as (weakly) coupled oscillators for finite values of n.691

The presented theory enables us to theoretically estimate the location692

of all thermoacoustic eigenvalues in the limit n → 0, in a given range of693

eigenfrequencies. The estimate is based on the numerical identification of694

eigenvalues of acoustic origin, found in the vicinity of acoustic modes and695

easily obtainable with standard Helmholtz solvers, and eigenvalues of ITA696

origin, in the vicinity of theoretically estimated values having large negative697

growth rates. Having at hand the solutions in the limit n→ 0, continuation698
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methods can be used to track the trajectories of these eigenvalues to any699

desired value of n. This reduces the numerical effort needed for identifying700

large sets of thermoacoustic eigenvalues, and increases the confidence that701

all modes in a given frequency range have been identified. For finite val-702

ues of n, the modes of acoustic and ITA origin may interact, giving rise to703

strong veering of the eigenvalue trajectories. This effect has been related to704

the existence of exceptional points (EPs) in the spectra of thermoacoustic705

systems, at which eigenvalues and their corresponding eigenfunctions coa-706

lesce. Even though the identified EPs always have negative growth rates,707

we have demonstrated how mode veering in their vicinity is responsible for708

strong changes in the eigenvalues sensitivities: in some cases, this can cause709

eigenvalues that are predicted to stabilize by linear stability analysis (for710

weak flames) to become unstable. In this respect, EPs can be considered as711

one of the causes of thermoacoustic instabilities, and their identification is712

practically relevant. A numerical method for the identification of real-valued713

EPs has been presented, which uses the self-orthogonality property of the714

defective eigenvalues found at EPs.715

All the theoretical results presented have also been demonstrated numeri-716

cally on 3D axial and annular thermoacoustic configurations. The theoretical717

predictions on the locations of the modes of ITA origin agree well with numer-718

ical results in all tested cases. Clustering of modes is predicted and observed719

in annular configurations. EPs have been identified in all configurations and720

can result from the interaction of (i) modes of acoustic and of intrinsic origin,721

or (ii) modes of only acoustic origin. No EPs resulting from the interaction722

between two intrinsic modes have been identified so far. The modeshapes of723
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the EPs contain a strong signature of which modes are responsible for their724

formation. We have linked the existence of EPs to the topological behavior of725

the eigenvalue trajectories in parameter space, and related those to regimes726

that have been previously indicated as “weakly” or “strongly” coupled, as727

well as identified a new regime which is triggered at moderatly high values728

of the interaction index n. Generally, knowledge on the EPs’ locations leads729

to the identification of several regimes within which the topological behavior730

of eigenvalue trajectories is preserved, and to a good qualitative prediction731

and understanding of the eigenvalue trajectories of thermoacoustic systems732

in parameter space.733
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Appendix A. Poles of the closed thermoacoustic feedback loop737

when |ne−sτ | → O(1) for n→ 0738

Given the expression for the growth rate (12), all the propagation terms739

Pj = e−sτj diverge to infinity in the limit n → 0. To find the poles of (11)740

when the growth rate σ becomes infinitely negative, it is convenient to rewrite741

it as742

û =
1

D(s)
N(s)
−F(s)

q̂n. (A.1)

The fraction at the denominator of the above equation is an indeterminate743

form in the σ → −∞ limit. To solve it, we divide numerator and denominator744
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of Eq. (7) by P1P2P3P4, obtaining745

D(s)
N(s)

= P
−1
2 P

−1
3 R1S21+P

−1
1 P

−1
4 R2S12+R1R2(S22S11−S21S12)−(P1P2P3P4)

−1

(P
−1
1 P

−1
4 −R1)[P

−1
2 P

−1
3 H2+R2(H1S22−H2S12)]

. (A.2)

Considering now the limit σ → −∞, all the terms containing P−1j vanish746

because of the growth rate expression (12). Thus, Eq. (A.2) reduces to747

lim
σ→0

D(s)

N(s)
= −���R1R2(S22S11 − S21S12)

���R1R2(H1S22 −H2S12)
≡ −β, (A.3)

where we have defined the factor β as a function of the scattering matrix748

elements Sij and the scaling factors between flame and acoustic responses749

Hi. Note that the reflection coefficients, which generally include also possible750

area variations in the regions upstream/downstream of the flame, simplify in751

the above expressions.752

The poles of (A.1) in the limit of infinitely negative growth rate are753

therefore given by754

1

β
F(s) + 1 = 0. (A.4)

The latter equation can always be solved numerically, for arbitrary expres-755

sions of the FTF. In the special case in which the flame response can be756

modelled with an n − τ model, F(s) = ne−sτ , analytical solutions can be757

found:758

s =
1

τ
log

(
n

β

)
+

(2k + 1)π

τ
i, k ∈ Z. (A.5)

The angular frequencies of these solutions are identical to those of the in-759

trinsic ones, as per Eq. (5). The expression for the growth rate is consistent760

with that obtained in the asymptotic limit (see Eq. (12)), with α = β, which761

makes the solutions valid. In the special case in which no mean flow effects762
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are considered, it can be proven that β = 1
H2

, so that the dispersion rela-763

tion (A.4) is formally equivalent to that of the pure ITA modes (10), and so764

are the eigensolutions. This was implicitly shown in [14], but can be derived765

from first principles given the explicit expressions of the scattering matrix766

elements.767

In summary, we have proven that there always exists a set of modes768

in the n → 0 limit which are infinitely damped, and whose frequencies are769

identical to those of the pure ITA modes, which are found when the reflection770

coefficients are set to zero.771
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